Upload 26 files
Browse files- .gitattributes +1 -0
- README.md +147 -0
- added_tokens.json +14 -0
- config.json +196 -0
- configuration_intern_vit.py +120 -0
- configuration_internvl_chat.py +95 -0
- conversation.py +391 -0
- generation_config.json +8 -0
- merges.txt +0 -0
- modeling_intern_vit.py +430 -0
- modeling_internvl_chat.py +348 -0
- openvino_config.json +28 -0
- openvino_detokenizer.bin +3 -0
- openvino_detokenizer.xml +279 -0
- openvino_language_model.bin +3 -0
- openvino_language_model.xml +0 -0
- openvino_text_embeddings_model.bin +3 -0
- openvino_text_embeddings_model.xml +173 -0
- openvino_tokenizer.bin +3 -0
- openvino_tokenizer.xml +719 -0
- openvino_vision_embeddings_model.bin +3 -0
- openvino_vision_embeddings_model.xml +0 -0
- preprocessor_config.json +27 -0
- special_tokens_map.json +29 -0
- tokenizer.json +3 -0
- tokenizer_config.json +126 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
pipeline_tag: image-text-to-text
|
6 |
+
tags:
|
7 |
+
- nlp
|
8 |
+
- vision
|
9 |
+
- internvl
|
10 |
+
base_model:
|
11 |
+
- OpenGVLab/InternVL2-1B
|
12 |
+
base_model_relation: quantized
|
13 |
+
---
|
14 |
+
|
15 |
+
# InternVL2-1B-int8-ov
|
16 |
+
|
17 |
+
* Model creator: [OpenGVLab](https://huggingface.co/OpenGVLab)
|
18 |
+
* Original model: [InternVL2-1B](https://huggingface.co/OpenGVLab/InternVL2-1B)
|
19 |
+
|
20 |
+
## Description
|
21 |
+
|
22 |
+
This is [OpenGVLab/InternVL2-1B](https://huggingface.co/OpenGVLab/InternVL2-1B) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
23 |
+
|
24 |
+
|
25 |
+
## Quantization Parameters
|
26 |
+
|
27 |
+
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
28 |
+
* mode: **INT8_ASYM**
|
29 |
+
|
30 |
+
## Compatibility
|
31 |
+
|
32 |
+
The provided OpenVINO™ IR model is compatible with:
|
33 |
+
|
34 |
+
* OpenVINO version 2025.0.0 and higher
|
35 |
+
* Optimum Intel 1.21.0 and higher
|
36 |
+
|
37 |
+
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
38 |
+
|
39 |
+
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
40 |
+
|
41 |
+
```
|
42 |
+
pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino
|
43 |
+
|
44 |
+
pip install git+https://github.com/huggingface/optimum-intel.git
|
45 |
+
```
|
46 |
+
|
47 |
+
2. Run model inference
|
48 |
+
|
49 |
+
```
|
50 |
+
from PIL import Image
|
51 |
+
import requests
|
52 |
+
from optimum.intel.openvino import OVModelForVisualCausalLM
|
53 |
+
from transformers import AutoTokenizer, TextStreamer
|
54 |
+
|
55 |
+
model_id = "OpenVINO/InternVL2-1B-int8-ov"
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
58 |
+
|
59 |
+
ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True)
|
60 |
+
prompt = "What is unusual on this picture?"
|
61 |
+
|
62 |
+
url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
|
63 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
64 |
+
|
65 |
+
inputs = ov_model.preprocess_inputs(text=prompt, image=image, tokenizer=tokenizer, config=ov_model.config)
|
66 |
+
|
67 |
+
generation_args = {
|
68 |
+
"max_new_tokens": 100,
|
69 |
+
"streamer": TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
70 |
+
}
|
71 |
+
|
72 |
+
generate_ids = ov_model.generate(**inputs, **generation_args)
|
73 |
+
|
74 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
75 |
+
response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
|
76 |
+
|
77 |
+
```
|
78 |
+
|
79 |
+
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
|
80 |
+
|
81 |
+
1. Install packages required for using OpenVINO GenAI.
|
82 |
+
```
|
83 |
+
pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino openvino-tokenizers openvino-genai
|
84 |
+
|
85 |
+
pip install huggingface_hub
|
86 |
+
```
|
87 |
+
|
88 |
+
2. Download model from HuggingFace Hub
|
89 |
+
|
90 |
+
```
|
91 |
+
import huggingface_hub as hf_hub
|
92 |
+
|
93 |
+
model_id = "OpenVINO/InternVL2-1B-int8-ov"
|
94 |
+
model_path = "InternVL2-1B-int8-ov"
|
95 |
+
|
96 |
+
hf_hub.snapshot_download(model_id, local_dir=model_path)
|
97 |
+
|
98 |
+
```
|
99 |
+
|
100 |
+
1. Run model inference:
|
101 |
+
|
102 |
+
```
|
103 |
+
import openvino_genai as ov_genai
|
104 |
+
import requests
|
105 |
+
from PIL import Image
|
106 |
+
from io import BytesIO
|
107 |
+
import numpy as np
|
108 |
+
import openvino as ov
|
109 |
+
|
110 |
+
device = "CPU"
|
111 |
+
pipe = ov_genai.VLMPipeline(model_path, device)
|
112 |
+
|
113 |
+
def load_image(image_file):
|
114 |
+
if isinstance(image_file, str) and (image_file.startswith("http") or image_file.startswith("https")):
|
115 |
+
response = requests.get(image_file)
|
116 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
117 |
+
else:
|
118 |
+
image = Image.open(image_file).convert("RGB")
|
119 |
+
image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.byte)
|
120 |
+
return ov.Tensor(image_data)
|
121 |
+
|
122 |
+
prompt = "What is unusual on this picture?"
|
123 |
+
|
124 |
+
url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
|
125 |
+
image_tensor = load_image(url)
|
126 |
+
|
127 |
+
def streamer(subword: str) -> bool:
|
128 |
+
print(subword, end="", flush=True)
|
129 |
+
return False
|
130 |
+
|
131 |
+
pipe.start_chat()
|
132 |
+
output = pipe.generate(prompt, image=image_tensor, max_new_tokens=100, streamer=streamer)
|
133 |
+
pipe.finish_chat()
|
134 |
+
```
|
135 |
+
|
136 |
+
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
|
137 |
+
|
138 |
+
|
139 |
+
## Limitations
|
140 |
+
|
141 |
+
|
142 |
+
Check the original [model card](https://huggingface.co/OpenGVLab/InternVL2-1B) for limitations.
|
143 |
+
|
144 |
+
## Legal information
|
145 |
+
|
146 |
+
The original model is distributed under [MIT](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md) license. More details can be found in [original model card](https://huggingface.co/OpenGVLab/InternVL2-1B).
|
147 |
+
|
added_tokens.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 151654,
|
3 |
+
"</img>": 151647,
|
4 |
+
"</quad>": 151650,
|
5 |
+
"</ref>": 151652,
|
6 |
+
"<IMG_CONTEXT>": 151648,
|
7 |
+
"<box>": 151653,
|
8 |
+
"<img>": 151646,
|
9 |
+
"<quad>": 151649,
|
10 |
+
"<ref>": 151651,
|
11 |
+
"<|endoftext|>": 151643,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_commit_hash": "3bc2e85347e17591b9387f283fef91b985b770c3",
|
4 |
+
"_name_or_path": "OpenGVLab/InternVL2-1B",
|
5 |
+
"architectures": [
|
6 |
+
"InternVLChatModel"
|
7 |
+
],
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
|
10 |
+
"AutoModel": "modeling_internvl_chat.InternVLChatModel",
|
11 |
+
"AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
|
12 |
+
},
|
13 |
+
"downsample_ratio": 0.5,
|
14 |
+
"dynamic_image_size": true,
|
15 |
+
"force_image_size": 448,
|
16 |
+
"img_context_token_id": 151648,
|
17 |
+
"llm_config": {
|
18 |
+
"_attn_implementation_autoset": true,
|
19 |
+
"_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
|
20 |
+
"add_cross_attention": false,
|
21 |
+
"architectures": [
|
22 |
+
"Qwen2ForCausalLM"
|
23 |
+
],
|
24 |
+
"attention_dropout": 0.0,
|
25 |
+
"bad_words_ids": null,
|
26 |
+
"begin_suppress_tokens": null,
|
27 |
+
"bos_token_id": 151643,
|
28 |
+
"chunk_size_feed_forward": 0,
|
29 |
+
"cross_attention_hidden_size": null,
|
30 |
+
"decoder_start_token_id": null,
|
31 |
+
"diversity_penalty": 0.0,
|
32 |
+
"do_sample": false,
|
33 |
+
"early_stopping": false,
|
34 |
+
"encoder_no_repeat_ngram_size": 0,
|
35 |
+
"eos_token_id": 151645,
|
36 |
+
"exponential_decay_length_penalty": null,
|
37 |
+
"finetuning_task": null,
|
38 |
+
"forced_bos_token_id": null,
|
39 |
+
"forced_eos_token_id": null,
|
40 |
+
"hidden_act": "silu",
|
41 |
+
"hidden_size": 896,
|
42 |
+
"id2label": {
|
43 |
+
"0": "LABEL_0",
|
44 |
+
"1": "LABEL_1"
|
45 |
+
},
|
46 |
+
"initializer_range": 0.02,
|
47 |
+
"intermediate_size": 4864,
|
48 |
+
"is_decoder": false,
|
49 |
+
"is_encoder_decoder": false,
|
50 |
+
"label2id": {
|
51 |
+
"LABEL_0": 0,
|
52 |
+
"LABEL_1": 1
|
53 |
+
},
|
54 |
+
"length_penalty": 1.0,
|
55 |
+
"max_length": 20,
|
56 |
+
"max_position_embeddings": 32768,
|
57 |
+
"max_window_layers": 24,
|
58 |
+
"min_length": 0,
|
59 |
+
"model_type": "qwen2",
|
60 |
+
"no_repeat_ngram_size": 0,
|
61 |
+
"num_attention_heads": 14,
|
62 |
+
"num_beam_groups": 1,
|
63 |
+
"num_beams": 1,
|
64 |
+
"num_hidden_layers": 24,
|
65 |
+
"num_key_value_heads": 2,
|
66 |
+
"num_return_sequences": 1,
|
67 |
+
"output_attentions": false,
|
68 |
+
"output_hidden_states": false,
|
69 |
+
"output_scores": false,
|
70 |
+
"pad_token_id": null,
|
71 |
+
"prefix": null,
|
72 |
+
"problem_type": null,
|
73 |
+
"pruned_heads": {},
|
74 |
+
"remove_invalid_values": false,
|
75 |
+
"repetition_penalty": 1.0,
|
76 |
+
"return_dict": true,
|
77 |
+
"return_dict_in_generate": false,
|
78 |
+
"rms_norm_eps": 1e-06,
|
79 |
+
"rope_scaling": null,
|
80 |
+
"rope_theta": 1000000.0,
|
81 |
+
"sep_token_id": null,
|
82 |
+
"sliding_window": null,
|
83 |
+
"suppress_tokens": null,
|
84 |
+
"task_specific_params": null,
|
85 |
+
"temperature": 1.0,
|
86 |
+
"tf_legacy_loss": false,
|
87 |
+
"tie_encoder_decoder": false,
|
88 |
+
"tie_word_embeddings": false,
|
89 |
+
"tokenizer_class": null,
|
90 |
+
"top_k": 50,
|
91 |
+
"top_p": 1.0,
|
92 |
+
"torch_dtype": "bfloat16",
|
93 |
+
"torchscript": false,
|
94 |
+
"transformers_version": "4.47.0",
|
95 |
+
"typical_p": 1.0,
|
96 |
+
"use_bfloat16": true,
|
97 |
+
"use_cache": true,
|
98 |
+
"use_sliding_window": false,
|
99 |
+
"vocab_size": 151655
|
100 |
+
},
|
101 |
+
"max_dynamic_patch": 12,
|
102 |
+
"min_dynamic_patch": 1,
|
103 |
+
"model_type": "internvl_chat",
|
104 |
+
"ps_version": "v2",
|
105 |
+
"select_layer": -1,
|
106 |
+
"template": "Hermes-2",
|
107 |
+
"transformers_version": null,
|
108 |
+
"use_backbone_lora": 0,
|
109 |
+
"use_llm_lora": 0,
|
110 |
+
"use_thumbnail": true,
|
111 |
+
"vision_config": {
|
112 |
+
"_attn_implementation_autoset": true,
|
113 |
+
"_name_or_path": "",
|
114 |
+
"add_cross_attention": false,
|
115 |
+
"architectures": [
|
116 |
+
"InternVisionModel"
|
117 |
+
],
|
118 |
+
"attention_dropout": 0.0,
|
119 |
+
"bad_words_ids": null,
|
120 |
+
"begin_suppress_tokens": null,
|
121 |
+
"bos_token_id": null,
|
122 |
+
"chunk_size_feed_forward": 0,
|
123 |
+
"cross_attention_hidden_size": null,
|
124 |
+
"decoder_start_token_id": null,
|
125 |
+
"diversity_penalty": 0.0,
|
126 |
+
"do_sample": false,
|
127 |
+
"drop_path_rate": 0.0,
|
128 |
+
"dropout": 0.0,
|
129 |
+
"early_stopping": false,
|
130 |
+
"encoder_no_repeat_ngram_size": 0,
|
131 |
+
"eos_token_id": null,
|
132 |
+
"exponential_decay_length_penalty": null,
|
133 |
+
"finetuning_task": null,
|
134 |
+
"forced_bos_token_id": null,
|
135 |
+
"forced_eos_token_id": null,
|
136 |
+
"hidden_act": "gelu",
|
137 |
+
"hidden_size": 1024,
|
138 |
+
"id2label": {
|
139 |
+
"0": "LABEL_0",
|
140 |
+
"1": "LABEL_1"
|
141 |
+
},
|
142 |
+
"image_size": 448,
|
143 |
+
"initializer_factor": 1.0,
|
144 |
+
"initializer_range": 0.02,
|
145 |
+
"intermediate_size": 4096,
|
146 |
+
"is_decoder": false,
|
147 |
+
"is_encoder_decoder": false,
|
148 |
+
"label2id": {
|
149 |
+
"LABEL_0": 0,
|
150 |
+
"LABEL_1": 1
|
151 |
+
},
|
152 |
+
"layer_norm_eps": 1e-06,
|
153 |
+
"length_penalty": 1.0,
|
154 |
+
"max_length": 20,
|
155 |
+
"min_length": 0,
|
156 |
+
"model_type": "intern_vit_6b",
|
157 |
+
"no_repeat_ngram_size": 0,
|
158 |
+
"norm_type": "layer_norm",
|
159 |
+
"num_attention_heads": 16,
|
160 |
+
"num_beam_groups": 1,
|
161 |
+
"num_beams": 1,
|
162 |
+
"num_channels": 3,
|
163 |
+
"num_hidden_layers": 24,
|
164 |
+
"num_return_sequences": 1,
|
165 |
+
"output_attentions": false,
|
166 |
+
"output_hidden_states": false,
|
167 |
+
"output_scores": false,
|
168 |
+
"pad_token_id": null,
|
169 |
+
"patch_size": 14,
|
170 |
+
"prefix": null,
|
171 |
+
"problem_type": null,
|
172 |
+
"pruned_heads": {},
|
173 |
+
"qk_normalization": false,
|
174 |
+
"qkv_bias": true,
|
175 |
+
"remove_invalid_values": false,
|
176 |
+
"repetition_penalty": 1.0,
|
177 |
+
"return_dict": true,
|
178 |
+
"return_dict_in_generate": false,
|
179 |
+
"sep_token_id": null,
|
180 |
+
"suppress_tokens": null,
|
181 |
+
"task_specific_params": null,
|
182 |
+
"temperature": 1.0,
|
183 |
+
"tf_legacy_loss": false,
|
184 |
+
"tie_encoder_decoder": false,
|
185 |
+
"tie_word_embeddings": true,
|
186 |
+
"tokenizer_class": null,
|
187 |
+
"top_k": 50,
|
188 |
+
"top_p": 1.0,
|
189 |
+
"torch_dtype": "bfloat16",
|
190 |
+
"torchscript": false,
|
191 |
+
"transformers_version": "4.47.0",
|
192 |
+
"typical_p": 1.0,
|
193 |
+
"use_bfloat16": true,
|
194 |
+
"use_flash_attn": false
|
195 |
+
}
|
196 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import os
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class InternVisionConfig(PretrainedConfig):
|
17 |
+
r"""
|
18 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
28 |
+
The size (resolution) of each patch.
|
29 |
+
image_size (`int`, *optional*, defaults to 224):
|
30 |
+
The size (resolution) of each image.
|
31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
42 |
+
Number of hidden layers in the Transformer encoder.
|
43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
44 |
+
Whether to use flash attention mechanism.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
49 |
+
The epsilon used by the layer normalization layers.
|
50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
53 |
+
Dropout rate for stochastic depth.
|
54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
55 |
+
The dropout ratio for the attention probabilities.
|
56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
59 |
+
A factor for layer scale.
|
60 |
+
"""
|
61 |
+
|
62 |
+
model_type = 'intern_vit_6b'
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
num_channels=3,
|
67 |
+
patch_size=14,
|
68 |
+
image_size=224,
|
69 |
+
qkv_bias=False,
|
70 |
+
hidden_size=3200,
|
71 |
+
num_attention_heads=25,
|
72 |
+
intermediate_size=12800,
|
73 |
+
qk_normalization=True,
|
74 |
+
num_hidden_layers=48,
|
75 |
+
use_flash_attn=True,
|
76 |
+
hidden_act='gelu',
|
77 |
+
norm_type='rms_norm',
|
78 |
+
layer_norm_eps=1e-6,
|
79 |
+
dropout=0.0,
|
80 |
+
drop_path_rate=0.0,
|
81 |
+
attention_dropout=0.0,
|
82 |
+
initializer_range=0.02,
|
83 |
+
initializer_factor=0.1,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
|
88 |
+
self.hidden_size = hidden_size
|
89 |
+
self.intermediate_size = intermediate_size
|
90 |
+
self.dropout = dropout
|
91 |
+
self.drop_path_rate = drop_path_rate
|
92 |
+
self.num_hidden_layers = num_hidden_layers
|
93 |
+
self.num_attention_heads = num_attention_heads
|
94 |
+
self.num_channels = num_channels
|
95 |
+
self.patch_size = patch_size
|
96 |
+
self.image_size = image_size
|
97 |
+
self.initializer_range = initializer_range
|
98 |
+
self.initializer_factor = initializer_factor
|
99 |
+
self.attention_dropout = attention_dropout
|
100 |
+
self.layer_norm_eps = layer_norm_eps
|
101 |
+
self.hidden_act = hidden_act
|
102 |
+
self.norm_type = norm_type
|
103 |
+
self.qkv_bias = qkv_bias
|
104 |
+
self.qk_normalization = qk_normalization
|
105 |
+
self.use_flash_attn = use_flash_attn
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
109 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
110 |
+
|
111 |
+
if 'vision_config' in config_dict:
|
112 |
+
config_dict = config_dict['vision_config']
|
113 |
+
|
114 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
115 |
+
logger.warning(
|
116 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
117 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
118 |
+
)
|
119 |
+
|
120 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internvl_chat.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from .configuration_intern_vit import InternVisionConfig
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class InternVLChatConfig(PretrainedConfig):
|
19 |
+
model_type = 'internvl_chat'
|
20 |
+
is_composition = True
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
vision_config=None,
|
25 |
+
llm_config=None,
|
26 |
+
use_backbone_lora=0,
|
27 |
+
use_llm_lora=0,
|
28 |
+
select_layer=-1,
|
29 |
+
force_image_size=None,
|
30 |
+
downsample_ratio=0.5,
|
31 |
+
template=None,
|
32 |
+
dynamic_image_size=False,
|
33 |
+
use_thumbnail=False,
|
34 |
+
ps_version='v1',
|
35 |
+
min_dynamic_patch=1,
|
36 |
+
max_dynamic_patch=6,
|
37 |
+
**kwargs):
|
38 |
+
super().__init__(**kwargs)
|
39 |
+
|
40 |
+
if vision_config is None:
|
41 |
+
vision_config = {'architectures': ['InternVisionModel']}
|
42 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
43 |
+
|
44 |
+
if llm_config is None:
|
45 |
+
llm_config = {'architectures': ['Qwen2ForCausalLM']}
|
46 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
47 |
+
|
48 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
49 |
+
if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
|
50 |
+
self.llm_config = LlamaConfig(**llm_config)
|
51 |
+
elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
|
52 |
+
self.llm_config = Qwen2Config(**llm_config)
|
53 |
+
else:
|
54 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
|
55 |
+
self.use_backbone_lora = use_backbone_lora
|
56 |
+
self.use_llm_lora = use_llm_lora
|
57 |
+
self.select_layer = select_layer
|
58 |
+
self.force_image_size = force_image_size
|
59 |
+
self.downsample_ratio = downsample_ratio
|
60 |
+
self.template = template
|
61 |
+
self.dynamic_image_size = dynamic_image_size
|
62 |
+
self.use_thumbnail = use_thumbnail
|
63 |
+
self.ps_version = ps_version # pixel shuffle version
|
64 |
+
self.min_dynamic_patch = min_dynamic_patch
|
65 |
+
self.max_dynamic_patch = max_dynamic_patch
|
66 |
+
|
67 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
68 |
+
logger.info(f'ps_version: {self.ps_version}')
|
69 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
70 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
71 |
+
|
72 |
+
def to_dict(self):
|
73 |
+
"""
|
74 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
78 |
+
"""
|
79 |
+
output = copy.deepcopy(self.__dict__)
|
80 |
+
output['vision_config'] = self.vision_config.to_dict()
|
81 |
+
output['llm_config'] = self.llm_config.to_dict()
|
82 |
+
output['model_type'] = self.__class__.model_type
|
83 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
84 |
+
output['use_llm_lora'] = self.use_llm_lora
|
85 |
+
output['select_layer'] = self.select_layer
|
86 |
+
output['force_image_size'] = self.force_image_size
|
87 |
+
output['downsample_ratio'] = self.downsample_ratio
|
88 |
+
output['template'] = self.template
|
89 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
90 |
+
output['use_thumbnail'] = self.use_thumbnail
|
91 |
+
output['ps_version'] = self.ps_version
|
92 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
93 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
94 |
+
|
95 |
+
return output
|
conversation.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
|
7 |
+
Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
8 |
+
"""
|
9 |
+
|
10 |
+
import dataclasses
|
11 |
+
from enum import IntEnum, auto
|
12 |
+
from typing import Dict, List, Tuple, Union
|
13 |
+
|
14 |
+
|
15 |
+
class SeparatorStyle(IntEnum):
|
16 |
+
"""Separator styles."""
|
17 |
+
|
18 |
+
ADD_COLON_SINGLE = auto()
|
19 |
+
ADD_COLON_TWO = auto()
|
20 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
21 |
+
NO_COLON_SINGLE = auto()
|
22 |
+
NO_COLON_TWO = auto()
|
23 |
+
ADD_NEW_LINE_SINGLE = auto()
|
24 |
+
LLAMA2 = auto()
|
25 |
+
CHATGLM = auto()
|
26 |
+
CHATML = auto()
|
27 |
+
CHATINTERN = auto()
|
28 |
+
DOLLY = auto()
|
29 |
+
RWKV = auto()
|
30 |
+
PHOENIX = auto()
|
31 |
+
ROBIN = auto()
|
32 |
+
FALCON_CHAT = auto()
|
33 |
+
CHATGLM3 = auto()
|
34 |
+
INTERNVL_ZH = auto()
|
35 |
+
MPT = auto()
|
36 |
+
|
37 |
+
|
38 |
+
@dataclasses.dataclass
|
39 |
+
class Conversation:
|
40 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
41 |
+
|
42 |
+
# The name of this template
|
43 |
+
name: str
|
44 |
+
# The template of the system prompt
|
45 |
+
system_template: str = '{system_message}'
|
46 |
+
# The system message
|
47 |
+
system_message: str = ''
|
48 |
+
# The names of two roles
|
49 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
50 |
+
# All messages. Each item is (role, message).
|
51 |
+
messages: List[List[str]] = ()
|
52 |
+
# The number of few shot examples
|
53 |
+
offset: int = 0
|
54 |
+
# The separator style and configurations
|
55 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
56 |
+
sep: str = '\n'
|
57 |
+
sep2: str = None
|
58 |
+
# Stop criteria (the default one is EOS token)
|
59 |
+
stop_str: Union[str, List[str]] = None
|
60 |
+
# Stops generation if meeting any token in this list
|
61 |
+
stop_token_ids: List[int] = None
|
62 |
+
|
63 |
+
def get_prompt(self) -> str:
|
64 |
+
"""Get the prompt for generation."""
|
65 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
66 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
67 |
+
ret = system_prompt + self.sep
|
68 |
+
for role, message in self.messages:
|
69 |
+
if message:
|
70 |
+
ret += role + ': ' + message + self.sep
|
71 |
+
else:
|
72 |
+
ret += role + ':'
|
73 |
+
return ret
|
74 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
75 |
+
seps = [self.sep, self.sep2]
|
76 |
+
ret = system_prompt + seps[0]
|
77 |
+
for i, (role, message) in enumerate(self.messages):
|
78 |
+
if message:
|
79 |
+
ret += role + ': ' + message + seps[i % 2]
|
80 |
+
else:
|
81 |
+
ret += role + ':'
|
82 |
+
return ret
|
83 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
84 |
+
ret = system_prompt + self.sep
|
85 |
+
for role, message in self.messages:
|
86 |
+
if message:
|
87 |
+
ret += role + ': ' + message + self.sep
|
88 |
+
else:
|
89 |
+
ret += role + ': ' # must be end with a space
|
90 |
+
return ret
|
91 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
92 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
93 |
+
for role, message in self.messages:
|
94 |
+
if message:
|
95 |
+
ret += role + '\n' + message + self.sep
|
96 |
+
else:
|
97 |
+
ret += role + '\n'
|
98 |
+
return ret
|
99 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
100 |
+
ret = system_prompt
|
101 |
+
for role, message in self.messages:
|
102 |
+
if message:
|
103 |
+
ret += role + message + self.sep
|
104 |
+
else:
|
105 |
+
ret += role
|
106 |
+
return ret
|
107 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
108 |
+
seps = [self.sep, self.sep2]
|
109 |
+
ret = system_prompt
|
110 |
+
for i, (role, message) in enumerate(self.messages):
|
111 |
+
if message:
|
112 |
+
ret += role + message + seps[i % 2]
|
113 |
+
else:
|
114 |
+
ret += role
|
115 |
+
return ret
|
116 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
117 |
+
ret = system_prompt
|
118 |
+
for i, (role, message) in enumerate(self.messages):
|
119 |
+
if message:
|
120 |
+
ret += (
|
121 |
+
role
|
122 |
+
+ ': '
|
123 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
124 |
+
)
|
125 |
+
ret += '\n\n'
|
126 |
+
else:
|
127 |
+
ret += role + ':'
|
128 |
+
return ret
|
129 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
130 |
+
seps = [self.sep, self.sep2]
|
131 |
+
if self.system_message:
|
132 |
+
ret = system_prompt
|
133 |
+
else:
|
134 |
+
ret = '[INST] '
|
135 |
+
for i, (role, message) in enumerate(self.messages):
|
136 |
+
tag = self.roles[i % 2]
|
137 |
+
if message:
|
138 |
+
if i == 0:
|
139 |
+
ret += message + ' '
|
140 |
+
else:
|
141 |
+
ret += tag + ' ' + message + seps[i % 2]
|
142 |
+
else:
|
143 |
+
ret += tag
|
144 |
+
return ret
|
145 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
146 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
147 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
148 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
149 |
+
if system_prompt:
|
150 |
+
ret = system_prompt + self.sep
|
151 |
+
else:
|
152 |
+
ret = ''
|
153 |
+
|
154 |
+
for i, (role, message) in enumerate(self.messages):
|
155 |
+
if i % 2 == 0:
|
156 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
157 |
+
|
158 |
+
if message:
|
159 |
+
ret += f'{role}:{message}{self.sep}'
|
160 |
+
else:
|
161 |
+
ret += f'{role}:'
|
162 |
+
return ret
|
163 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
164 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
165 |
+
for role, message in self.messages:
|
166 |
+
if message:
|
167 |
+
ret += role + '\n' + message + self.sep + '\n'
|
168 |
+
else:
|
169 |
+
ret += role + '\n'
|
170 |
+
return ret
|
171 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
172 |
+
ret = ''
|
173 |
+
if self.system_message:
|
174 |
+
ret += system_prompt
|
175 |
+
for role, message in self.messages:
|
176 |
+
if message:
|
177 |
+
ret += role + '\n' + ' ' + message
|
178 |
+
else:
|
179 |
+
ret += role
|
180 |
+
return ret
|
181 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
182 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
183 |
+
seps = [self.sep, self.sep2]
|
184 |
+
ret = system_prompt
|
185 |
+
for i, (role, message) in enumerate(self.messages):
|
186 |
+
# if i % 2 == 0:
|
187 |
+
# ret += "<s>"
|
188 |
+
if message:
|
189 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
190 |
+
else:
|
191 |
+
ret += role + ':'
|
192 |
+
return ret
|
193 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
194 |
+
seps = [self.sep, self.sep2]
|
195 |
+
ret = system_prompt
|
196 |
+
for i, (role, message) in enumerate(self.messages):
|
197 |
+
if message:
|
198 |
+
ret += role + ':\n' + message + seps[i % 2]
|
199 |
+
if i % 2 == 1:
|
200 |
+
ret += '\n\n'
|
201 |
+
else:
|
202 |
+
ret += role + ':\n'
|
203 |
+
return ret
|
204 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
205 |
+
ret = system_prompt
|
206 |
+
for role, message in self.messages:
|
207 |
+
if message:
|
208 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
209 |
+
else:
|
210 |
+
ret += role + ': ' + '<s>'
|
211 |
+
return ret
|
212 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
213 |
+
ret = system_prompt + self.sep
|
214 |
+
for role, message in self.messages:
|
215 |
+
if message:
|
216 |
+
ret += role + ':\n' + message + self.sep
|
217 |
+
else:
|
218 |
+
ret += role + ':\n'
|
219 |
+
return ret
|
220 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
221 |
+
ret = ''
|
222 |
+
if self.system_message:
|
223 |
+
ret += system_prompt + self.sep
|
224 |
+
for role, message in self.messages:
|
225 |
+
if message:
|
226 |
+
ret += role + ': ' + message + self.sep
|
227 |
+
else:
|
228 |
+
ret += role + ':'
|
229 |
+
|
230 |
+
return ret
|
231 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
232 |
+
seps = [self.sep, self.sep2]
|
233 |
+
ret = self.system_message + seps[0]
|
234 |
+
for i, (role, message) in enumerate(self.messages):
|
235 |
+
if message:
|
236 |
+
ret += role + ': ' + message + seps[i % 2]
|
237 |
+
else:
|
238 |
+
ret += role + ':'
|
239 |
+
return ret
|
240 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
241 |
+
ret = system_prompt + self.sep
|
242 |
+
for role, message in self.messages:
|
243 |
+
if message:
|
244 |
+
if type(message) is tuple:
|
245 |
+
message, _, _ = message
|
246 |
+
ret += role + message + self.sep
|
247 |
+
else:
|
248 |
+
ret += role
|
249 |
+
return ret
|
250 |
+
else:
|
251 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
252 |
+
|
253 |
+
def set_system_message(self, system_message: str):
|
254 |
+
"""Set the system message."""
|
255 |
+
self.system_message = system_message
|
256 |
+
|
257 |
+
def append_message(self, role: str, message: str):
|
258 |
+
"""Append a new message."""
|
259 |
+
self.messages.append([role, message])
|
260 |
+
|
261 |
+
def update_last_message(self, message: str):
|
262 |
+
"""Update the last output.
|
263 |
+
|
264 |
+
The last message is typically set to be None when constructing the prompt,
|
265 |
+
so we need to update it in-place after getting the response from a model.
|
266 |
+
"""
|
267 |
+
self.messages[-1][1] = message
|
268 |
+
|
269 |
+
def to_gradio_chatbot(self):
|
270 |
+
"""Convert the conversation to gradio chatbot format."""
|
271 |
+
ret = []
|
272 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
273 |
+
if i % 2 == 0:
|
274 |
+
ret.append([msg, None])
|
275 |
+
else:
|
276 |
+
ret[-1][-1] = msg
|
277 |
+
return ret
|
278 |
+
|
279 |
+
def to_openai_api_messages(self):
|
280 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
281 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
282 |
+
|
283 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
284 |
+
if i % 2 == 0:
|
285 |
+
ret.append({'role': 'user', 'content': msg})
|
286 |
+
else:
|
287 |
+
if msg is not None:
|
288 |
+
ret.append({'role': 'assistant', 'content': msg})
|
289 |
+
return ret
|
290 |
+
|
291 |
+
def copy(self):
|
292 |
+
return Conversation(
|
293 |
+
name=self.name,
|
294 |
+
system_template=self.system_template,
|
295 |
+
system_message=self.system_message,
|
296 |
+
roles=self.roles,
|
297 |
+
messages=[[x, y] for x, y in self.messages],
|
298 |
+
offset=self.offset,
|
299 |
+
sep_style=self.sep_style,
|
300 |
+
sep=self.sep,
|
301 |
+
sep2=self.sep2,
|
302 |
+
stop_str=self.stop_str,
|
303 |
+
stop_token_ids=self.stop_token_ids,
|
304 |
+
)
|
305 |
+
|
306 |
+
def dict(self):
|
307 |
+
return {
|
308 |
+
'template_name': self.name,
|
309 |
+
'system_message': self.system_message,
|
310 |
+
'roles': self.roles,
|
311 |
+
'messages': self.messages,
|
312 |
+
'offset': self.offset,
|
313 |
+
}
|
314 |
+
|
315 |
+
|
316 |
+
# A global registry for all conversation templates
|
317 |
+
conv_templates: Dict[str, Conversation] = {}
|
318 |
+
|
319 |
+
|
320 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
321 |
+
"""Register a new conversation template."""
|
322 |
+
if not override:
|
323 |
+
assert (
|
324 |
+
template.name not in conv_templates
|
325 |
+
), f'{template.name} has been registered.'
|
326 |
+
|
327 |
+
conv_templates[template.name] = template
|
328 |
+
|
329 |
+
|
330 |
+
def get_conv_template(name: str) -> Conversation:
|
331 |
+
"""Get a conversation template."""
|
332 |
+
return conv_templates[name].copy()
|
333 |
+
|
334 |
+
|
335 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
336 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
337 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
338 |
+
# Therefore, they are completely equivalent during inference.
|
339 |
+
register_conv_template(
|
340 |
+
Conversation(
|
341 |
+
name='Hermes-2',
|
342 |
+
system_template='<|im_start|>system\n{system_message}',
|
343 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
344 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
345 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
346 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
347 |
+
sep_style=SeparatorStyle.MPT,
|
348 |
+
sep='<|im_end|>',
|
349 |
+
stop_str='<|endoftext|>',
|
350 |
+
)
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
register_conv_template(
|
355 |
+
Conversation(
|
356 |
+
name='internlm2-chat',
|
357 |
+
system_template='<|im_start|>system\n{system_message}',
|
358 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
359 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
360 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
361 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
362 |
+
sep_style=SeparatorStyle.MPT,
|
363 |
+
sep='<|im_end|>',
|
364 |
+
)
|
365 |
+
)
|
366 |
+
|
367 |
+
|
368 |
+
register_conv_template(
|
369 |
+
Conversation(
|
370 |
+
name='phi3-chat',
|
371 |
+
system_template='<|system|>\n{system_message}',
|
372 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
373 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
374 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
375 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
376 |
+
sep_style=SeparatorStyle.MPT,
|
377 |
+
sep='<|end|>',
|
378 |
+
)
|
379 |
+
)
|
380 |
+
|
381 |
+
|
382 |
+
register_conv_template(
|
383 |
+
Conversation(
|
384 |
+
name='internvl2_5',
|
385 |
+
system_template='<|im_start|>system\n{system_message}',
|
386 |
+
system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
387 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
388 |
+
sep_style=SeparatorStyle.MPT,
|
389 |
+
sep='<|im_end|>\n',
|
390 |
+
)
|
391 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": [
|
4 |
+
151644,
|
5 |
+
151645
|
6 |
+
],
|
7 |
+
"transformers_version": "4.47.0"
|
8 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from einops import rearrange
|
13 |
+
from timm.models.layers import DropPath
|
14 |
+
from torch import nn
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
17 |
+
BaseModelOutputWithPooling)
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
from .configuration_intern_vit import InternVisionConfig
|
22 |
+
|
23 |
+
try:
|
24 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
25 |
+
from flash_attn.flash_attn_interface import \
|
26 |
+
flash_attn_varlen_qkvpacked_func
|
27 |
+
has_flash_attn = True
|
28 |
+
except:
|
29 |
+
print('FlashAttention2 is not installed.')
|
30 |
+
has_flash_attn = False
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class FlashAttention(nn.Module):
|
36 |
+
"""Implement the scaled dot product attention with softmax.
|
37 |
+
Arguments
|
38 |
+
---------
|
39 |
+
softmax_scale: The temperature to use for the softmax attention.
|
40 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
41 |
+
runtime)
|
42 |
+
attention_dropout: The dropout rate to apply to the attention
|
43 |
+
(default: 0.0)
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
47 |
+
super().__init__()
|
48 |
+
self.softmax_scale = softmax_scale
|
49 |
+
self.dropout_p = attention_dropout
|
50 |
+
|
51 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
52 |
+
max_s=None, need_weights=False):
|
53 |
+
"""Implements the multihead softmax attention.
|
54 |
+
Arguments
|
55 |
+
---------
|
56 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
57 |
+
if unpadded: (nnz, 3, h, d)
|
58 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
59 |
+
"""
|
60 |
+
assert not need_weights
|
61 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
62 |
+
assert qkv.is_cuda
|
63 |
+
|
64 |
+
if cu_seqlens is None:
|
65 |
+
batch_size = qkv.shape[0]
|
66 |
+
seqlen = qkv.shape[1]
|
67 |
+
if key_padding_mask is None:
|
68 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
69 |
+
max_s = seqlen
|
70 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
71 |
+
device=qkv.device)
|
72 |
+
output = flash_attn_varlen_qkvpacked_func(
|
73 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
74 |
+
softmax_scale=self.softmax_scale, causal=causal
|
75 |
+
)
|
76 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
77 |
+
else:
|
78 |
+
nheads = qkv.shape[-2]
|
79 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
80 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
81 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
82 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
83 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
84 |
+
softmax_scale=self.softmax_scale, causal=causal
|
85 |
+
)
|
86 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
87 |
+
indices, batch_size, seqlen),
|
88 |
+
'b s (h d) -> b s h d', h=nheads)
|
89 |
+
else:
|
90 |
+
assert max_s is not None
|
91 |
+
output = flash_attn_varlen_qkvpacked_func(
|
92 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
93 |
+
softmax_scale=self.softmax_scale, causal=causal
|
94 |
+
)
|
95 |
+
|
96 |
+
return output, None
|
97 |
+
|
98 |
+
|
99 |
+
class InternRMSNorm(nn.Module):
|
100 |
+
def __init__(self, hidden_size, eps=1e-6):
|
101 |
+
super().__init__()
|
102 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
103 |
+
self.variance_epsilon = eps
|
104 |
+
|
105 |
+
def forward(self, hidden_states):
|
106 |
+
input_dtype = hidden_states.dtype
|
107 |
+
hidden_states = hidden_states.to(torch.float32)
|
108 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
109 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
110 |
+
return self.weight * hidden_states.to(input_dtype)
|
111 |
+
|
112 |
+
|
113 |
+
try:
|
114 |
+
from apex.normalization import FusedRMSNorm
|
115 |
+
|
116 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
117 |
+
|
118 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
119 |
+
except ImportError:
|
120 |
+
# using the normal InternRMSNorm
|
121 |
+
pass
|
122 |
+
except Exception:
|
123 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
124 |
+
pass
|
125 |
+
|
126 |
+
|
127 |
+
NORM2FN = {
|
128 |
+
'rms_norm': InternRMSNorm,
|
129 |
+
'layer_norm': nn.LayerNorm,
|
130 |
+
}
|
131 |
+
|
132 |
+
|
133 |
+
class InternVisionEmbeddings(nn.Module):
|
134 |
+
def __init__(self, config: InternVisionConfig):
|
135 |
+
super().__init__()
|
136 |
+
self.config = config
|
137 |
+
self.embed_dim = config.hidden_size
|
138 |
+
self.image_size = config.image_size
|
139 |
+
self.patch_size = config.patch_size
|
140 |
+
|
141 |
+
self.class_embedding = nn.Parameter(
|
142 |
+
torch.randn(1, 1, self.embed_dim),
|
143 |
+
)
|
144 |
+
|
145 |
+
self.patch_embedding = nn.Conv2d(
|
146 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
147 |
+
)
|
148 |
+
|
149 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
150 |
+
self.num_positions = self.num_patches + 1
|
151 |
+
|
152 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
153 |
+
|
154 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
155 |
+
target_dtype = pos_embed.dtype
|
156 |
+
pos_embed = pos_embed.float().reshape(
|
157 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
158 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
159 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
160 |
+
return pos_embed
|
161 |
+
|
162 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
163 |
+
target_dtype = self.patch_embedding.weight.dtype
|
164 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
165 |
+
batch_size, _, height, width = patch_embeds.shape
|
166 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
167 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
168 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
169 |
+
position_embedding = torch.cat([
|
170 |
+
self.position_embedding[:, :1, :],
|
171 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
172 |
+
], dim=1)
|
173 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
174 |
+
return embeddings
|
175 |
+
|
176 |
+
|
177 |
+
class InternAttention(nn.Module):
|
178 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
179 |
+
|
180 |
+
def __init__(self, config: InternVisionConfig):
|
181 |
+
super().__init__()
|
182 |
+
self.config = config
|
183 |
+
self.embed_dim = config.hidden_size
|
184 |
+
self.num_heads = config.num_attention_heads
|
185 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
186 |
+
if config.use_flash_attn and not has_flash_attn:
|
187 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
188 |
+
self.head_dim = self.embed_dim // self.num_heads
|
189 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
190 |
+
raise ValueError(
|
191 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
192 |
+
f' {self.num_heads}).'
|
193 |
+
)
|
194 |
+
|
195 |
+
self.scale = self.head_dim ** -0.5
|
196 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
197 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
198 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
199 |
+
|
200 |
+
self.qk_normalization = config.qk_normalization
|
201 |
+
|
202 |
+
if self.qk_normalization:
|
203 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
204 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
205 |
+
|
206 |
+
if self.use_flash_attn:
|
207 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
208 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
209 |
+
|
210 |
+
def _naive_attn(self, x):
|
211 |
+
B, N, C = x.shape
|
212 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
213 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
214 |
+
|
215 |
+
if self.qk_normalization:
|
216 |
+
B_, H_, N_, D_ = q.shape
|
217 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
218 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
219 |
+
|
220 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
221 |
+
attn = attn.softmax(dim=-1)
|
222 |
+
attn = self.attn_drop(attn)
|
223 |
+
|
224 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
225 |
+
x = self.proj(x)
|
226 |
+
x = self.proj_drop(x)
|
227 |
+
return x
|
228 |
+
|
229 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
230 |
+
qkv = self.qkv(x)
|
231 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
232 |
+
|
233 |
+
if self.qk_normalization:
|
234 |
+
q, k, v = qkv.unbind(2)
|
235 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
236 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
237 |
+
qkv = torch.stack([q, k, v], dim=2)
|
238 |
+
|
239 |
+
context, _ = self.inner_attn(
|
240 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
241 |
+
)
|
242 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
243 |
+
outs = self.proj_drop(outs)
|
244 |
+
return outs
|
245 |
+
|
246 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
247 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
248 |
+
return x
|
249 |
+
|
250 |
+
|
251 |
+
class InternMLP(nn.Module):
|
252 |
+
def __init__(self, config: InternVisionConfig):
|
253 |
+
super().__init__()
|
254 |
+
self.config = config
|
255 |
+
self.act = ACT2FN[config.hidden_act]
|
256 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
257 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
258 |
+
|
259 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
260 |
+
hidden_states = self.fc1(hidden_states)
|
261 |
+
hidden_states = self.act(hidden_states)
|
262 |
+
hidden_states = self.fc2(hidden_states)
|
263 |
+
return hidden_states
|
264 |
+
|
265 |
+
|
266 |
+
class InternVisionEncoderLayer(nn.Module):
|
267 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
268 |
+
super().__init__()
|
269 |
+
self.embed_dim = config.hidden_size
|
270 |
+
self.intermediate_size = config.intermediate_size
|
271 |
+
self.norm_type = config.norm_type
|
272 |
+
|
273 |
+
self.attn = InternAttention(config)
|
274 |
+
self.mlp = InternMLP(config)
|
275 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
276 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
277 |
+
|
278 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
279 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
280 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
281 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
282 |
+
|
283 |
+
def forward(
|
284 |
+
self,
|
285 |
+
hidden_states: torch.Tensor,
|
286 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
287 |
+
"""
|
288 |
+
Args:
|
289 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
290 |
+
"""
|
291 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
292 |
+
|
293 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
294 |
+
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
|
298 |
+
class InternVisionEncoder(nn.Module):
|
299 |
+
"""
|
300 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
301 |
+
[`InternEncoderLayer`].
|
302 |
+
|
303 |
+
Args:
|
304 |
+
config (`InternConfig`):
|
305 |
+
The corresponding vision configuration for the `InternEncoder`.
|
306 |
+
"""
|
307 |
+
|
308 |
+
def __init__(self, config: InternVisionConfig):
|
309 |
+
super().__init__()
|
310 |
+
self.config = config
|
311 |
+
# stochastic depth decay rule
|
312 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
313 |
+
self.layers = nn.ModuleList([
|
314 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
315 |
+
self.gradient_checkpointing = True
|
316 |
+
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
inputs_embeds,
|
320 |
+
output_hidden_states: Optional[bool] = None,
|
321 |
+
return_dict: Optional[bool] = None,
|
322 |
+
) -> Union[Tuple, BaseModelOutput]:
|
323 |
+
r"""
|
324 |
+
Args:
|
325 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
326 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
327 |
+
output_hidden_states (`bool`, *optional*):
|
328 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
329 |
+
for more detail.
|
330 |
+
return_dict (`bool`, *optional*):
|
331 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
332 |
+
"""
|
333 |
+
output_hidden_states = (
|
334 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
335 |
+
)
|
336 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
337 |
+
|
338 |
+
encoder_states = () if output_hidden_states else None
|
339 |
+
hidden_states = inputs_embeds
|
340 |
+
|
341 |
+
for idx, encoder_layer in enumerate(self.layers):
|
342 |
+
if output_hidden_states:
|
343 |
+
encoder_states = encoder_states + (hidden_states,)
|
344 |
+
if self.gradient_checkpointing and self.training:
|
345 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
346 |
+
encoder_layer,
|
347 |
+
hidden_states)
|
348 |
+
else:
|
349 |
+
layer_outputs = encoder_layer(
|
350 |
+
hidden_states,
|
351 |
+
)
|
352 |
+
hidden_states = layer_outputs
|
353 |
+
|
354 |
+
if output_hidden_states:
|
355 |
+
encoder_states = encoder_states + (hidden_states,)
|
356 |
+
|
357 |
+
if not return_dict:
|
358 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
359 |
+
return BaseModelOutput(
|
360 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
361 |
+
)
|
362 |
+
|
363 |
+
|
364 |
+
class InternVisionModel(PreTrainedModel):
|
365 |
+
main_input_name = 'pixel_values'
|
366 |
+
_supports_flash_attn_2 = True
|
367 |
+
config_class = InternVisionConfig
|
368 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
369 |
+
|
370 |
+
def __init__(self, config: InternVisionConfig):
|
371 |
+
super().__init__(config)
|
372 |
+
self.config = config
|
373 |
+
|
374 |
+
self.embeddings = InternVisionEmbeddings(config)
|
375 |
+
self.encoder = InternVisionEncoder(config)
|
376 |
+
|
377 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
378 |
+
pos_emb = self.embeddings.position_embedding
|
379 |
+
_, num_positions, embed_dim = pos_emb.shape
|
380 |
+
cls_emb = pos_emb[:, :1, :]
|
381 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
382 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
383 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
384 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
385 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
386 |
+
self.embeddings.image_size = new_size
|
387 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
388 |
+
|
389 |
+
def get_input_embeddings(self):
|
390 |
+
return self.embeddings
|
391 |
+
|
392 |
+
def forward(
|
393 |
+
self,
|
394 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
395 |
+
output_hidden_states: Optional[bool] = None,
|
396 |
+
return_dict: Optional[bool] = None,
|
397 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
398 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
399 |
+
output_hidden_states = (
|
400 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
401 |
+
)
|
402 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
403 |
+
|
404 |
+
if pixel_values is None and pixel_embeds is None:
|
405 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
406 |
+
|
407 |
+
if pixel_embeds is not None:
|
408 |
+
hidden_states = pixel_embeds
|
409 |
+
else:
|
410 |
+
if len(pixel_values.shape) == 4:
|
411 |
+
hidden_states = self.embeddings(pixel_values)
|
412 |
+
else:
|
413 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
414 |
+
encoder_outputs = self.encoder(
|
415 |
+
inputs_embeds=hidden_states,
|
416 |
+
output_hidden_states=output_hidden_states,
|
417 |
+
return_dict=return_dict,
|
418 |
+
)
|
419 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
420 |
+
pooled_output = last_hidden_state[:, 0, :]
|
421 |
+
|
422 |
+
if not return_dict:
|
423 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
424 |
+
|
425 |
+
return BaseModelOutputWithPooling(
|
426 |
+
last_hidden_state=last_hidden_state,
|
427 |
+
pooler_output=pooled_output,
|
428 |
+
hidden_states=encoder_outputs.hidden_states,
|
429 |
+
attentions=encoder_outputs.attentions,
|
430 |
+
)
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import transformers
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
15 |
+
Qwen2ForCausalLM)
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import ModelOutput, logging
|
19 |
+
|
20 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
21 |
+
from .conversation import get_conv_template
|
22 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def version_cmp(v1, v2, op='eq'):
|
28 |
+
import operator
|
29 |
+
|
30 |
+
from packaging import version
|
31 |
+
op_func = getattr(operator, op)
|
32 |
+
return op_func(version.parse(v1), version.parse(v2))
|
33 |
+
|
34 |
+
|
35 |
+
class InternVLChatModel(PreTrainedModel):
|
36 |
+
config_class = InternVLChatConfig
|
37 |
+
main_input_name = 'pixel_values'
|
38 |
+
base_model_prefix = 'language_model'
|
39 |
+
_supports_flash_attn_2 = True
|
40 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
|
41 |
+
|
42 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
43 |
+
super().__init__(config)
|
44 |
+
|
45 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
46 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
47 |
+
patch_size = config.vision_config.patch_size
|
48 |
+
self.patch_size = patch_size
|
49 |
+
self.select_layer = config.select_layer
|
50 |
+
self.template = config.template
|
51 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
52 |
+
self.downsample_ratio = config.downsample_ratio
|
53 |
+
self.ps_version = config.ps_version
|
54 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
55 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
56 |
+
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
57 |
+
|
58 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
59 |
+
logger.info(f'ps_version: {self.ps_version}')
|
60 |
+
if vision_model is not None:
|
61 |
+
self.vision_model = vision_model
|
62 |
+
else:
|
63 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
64 |
+
if language_model is not None:
|
65 |
+
self.language_model = language_model
|
66 |
+
else:
|
67 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
68 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
69 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
70 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
71 |
+
else:
|
72 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
73 |
+
|
74 |
+
vit_hidden_size = config.vision_config.hidden_size
|
75 |
+
llm_hidden_size = config.llm_config.hidden_size
|
76 |
+
|
77 |
+
self.mlp1 = nn.Sequential(
|
78 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
79 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
80 |
+
nn.GELU(),
|
81 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
82 |
+
)
|
83 |
+
|
84 |
+
self.img_context_token_id = None
|
85 |
+
self.conv_template = get_conv_template(self.template)
|
86 |
+
self.system_message = self.conv_template.system_message
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
pixel_values: torch.FloatTensor,
|
91 |
+
input_ids: torch.LongTensor = None,
|
92 |
+
attention_mask: Optional[torch.Tensor] = None,
|
93 |
+
position_ids: Optional[torch.LongTensor] = None,
|
94 |
+
image_flags: Optional[torch.LongTensor] = None,
|
95 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
96 |
+
labels: Optional[torch.LongTensor] = None,
|
97 |
+
use_cache: Optional[bool] = None,
|
98 |
+
output_attentions: Optional[bool] = None,
|
99 |
+
output_hidden_states: Optional[bool] = None,
|
100 |
+
return_dict: Optional[bool] = None,
|
101 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
102 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
103 |
+
|
104 |
+
image_flags = image_flags.squeeze(-1)
|
105 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
106 |
+
|
107 |
+
vit_embeds = self.extract_feature(pixel_values)
|
108 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
109 |
+
vit_batch_size = pixel_values.shape[0]
|
110 |
+
|
111 |
+
B, N, C = input_embeds.shape
|
112 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
113 |
+
|
114 |
+
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
|
115 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
116 |
+
|
117 |
+
input_ids = input_ids.reshape(B * N)
|
118 |
+
selected = (input_ids == self.img_context_token_id)
|
119 |
+
try:
|
120 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
121 |
+
except Exception as e:
|
122 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
123 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
124 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
125 |
+
n_token = selected.sum()
|
126 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
127 |
+
|
128 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
129 |
+
|
130 |
+
outputs = self.language_model(
|
131 |
+
inputs_embeds=input_embeds,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
position_ids=position_ids,
|
134 |
+
past_key_values=past_key_values,
|
135 |
+
use_cache=use_cache,
|
136 |
+
output_attentions=output_attentions,
|
137 |
+
output_hidden_states=output_hidden_states,
|
138 |
+
return_dict=return_dict,
|
139 |
+
)
|
140 |
+
logits = outputs.logits
|
141 |
+
|
142 |
+
loss = None
|
143 |
+
if labels is not None:
|
144 |
+
# Shift so that tokens < n predict n
|
145 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
146 |
+
shift_labels = labels[..., 1:].contiguous()
|
147 |
+
# Flatten the tokens
|
148 |
+
loss_fct = CrossEntropyLoss()
|
149 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
150 |
+
shift_labels = shift_labels.view(-1)
|
151 |
+
# Enable model parallelism
|
152 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
153 |
+
loss = loss_fct(shift_logits, shift_labels)
|
154 |
+
|
155 |
+
if not return_dict:
|
156 |
+
output = (logits,) + outputs[1:]
|
157 |
+
return (loss,) + output if loss is not None else output
|
158 |
+
|
159 |
+
return CausalLMOutputWithPast(
|
160 |
+
loss=loss,
|
161 |
+
logits=logits,
|
162 |
+
past_key_values=outputs.past_key_values,
|
163 |
+
hidden_states=outputs.hidden_states,
|
164 |
+
attentions=outputs.attentions,
|
165 |
+
)
|
166 |
+
|
167 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
168 |
+
n, w, h, c = x.size()
|
169 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
170 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
171 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
172 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
173 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
174 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
175 |
+
int(c / (scale_factor * scale_factor)))
|
176 |
+
if self.ps_version == 'v1':
|
177 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
178 |
+
'which results in a transposed image.')
|
179 |
+
else:
|
180 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
181 |
+
return x
|
182 |
+
|
183 |
+
def extract_feature(self, pixel_values):
|
184 |
+
if self.select_layer == -1:
|
185 |
+
vit_embeds = self.vision_model(
|
186 |
+
pixel_values=pixel_values,
|
187 |
+
output_hidden_states=False,
|
188 |
+
return_dict=True).last_hidden_state
|
189 |
+
else:
|
190 |
+
vit_embeds = self.vision_model(
|
191 |
+
pixel_values=pixel_values,
|
192 |
+
output_hidden_states=True,
|
193 |
+
return_dict=True).hidden_states[self.select_layer]
|
194 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
195 |
+
|
196 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
197 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
198 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
199 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
200 |
+
vit_embeds = self.mlp1(vit_embeds)
|
201 |
+
return vit_embeds
|
202 |
+
|
203 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
204 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
205 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
206 |
+
if history is not None or return_history:
|
207 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
208 |
+
raise NotImplementedError
|
209 |
+
|
210 |
+
if image_counts is not None:
|
211 |
+
num_patches_list = image_counts
|
212 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
213 |
+
|
214 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
215 |
+
self.img_context_token_id = img_context_token_id
|
216 |
+
|
217 |
+
if verbose and pixel_values is not None:
|
218 |
+
image_bs = pixel_values.shape[0]
|
219 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
220 |
+
|
221 |
+
queries = []
|
222 |
+
for idx, num_patches in enumerate(num_patches_list):
|
223 |
+
question = questions[idx]
|
224 |
+
if pixel_values is not None and '<image>' not in question:
|
225 |
+
question = '<image>\n' + question
|
226 |
+
template = get_conv_template(self.template)
|
227 |
+
template.system_message = self.system_message
|
228 |
+
template.append_message(template.roles[0], question)
|
229 |
+
template.append_message(template.roles[1], None)
|
230 |
+
query = template.get_prompt()
|
231 |
+
|
232 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
233 |
+
query = query.replace('<image>', image_tokens, 1)
|
234 |
+
queries.append(query)
|
235 |
+
|
236 |
+
tokenizer.padding_side = 'left'
|
237 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
238 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
239 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
240 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
241 |
+
generation_config['eos_token_id'] = eos_token_id
|
242 |
+
generation_output = self.generate(
|
243 |
+
pixel_values=pixel_values,
|
244 |
+
input_ids=input_ids,
|
245 |
+
attention_mask=attention_mask,
|
246 |
+
**generation_config
|
247 |
+
)
|
248 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
249 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
250 |
+
return responses
|
251 |
+
|
252 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
253 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
254 |
+
verbose=False):
|
255 |
+
|
256 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
257 |
+
question = '<image>\n' + question
|
258 |
+
|
259 |
+
if num_patches_list is None:
|
260 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
261 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
262 |
+
|
263 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
264 |
+
self.img_context_token_id = img_context_token_id
|
265 |
+
|
266 |
+
template = get_conv_template(self.template)
|
267 |
+
template.system_message = self.system_message
|
268 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
269 |
+
|
270 |
+
history = [] if history is None else history
|
271 |
+
for (old_question, old_answer) in history:
|
272 |
+
template.append_message(template.roles[0], old_question)
|
273 |
+
template.append_message(template.roles[1], old_answer)
|
274 |
+
template.append_message(template.roles[0], question)
|
275 |
+
template.append_message(template.roles[1], None)
|
276 |
+
query = template.get_prompt()
|
277 |
+
|
278 |
+
if verbose and pixel_values is not None:
|
279 |
+
image_bs = pixel_values.shape[0]
|
280 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
281 |
+
|
282 |
+
for num_patches in num_patches_list:
|
283 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
284 |
+
query = query.replace('<image>', image_tokens, 1)
|
285 |
+
|
286 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
287 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
288 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
289 |
+
generation_config['eos_token_id'] = eos_token_id
|
290 |
+
generation_output = self.generate(
|
291 |
+
pixel_values=pixel_values,
|
292 |
+
input_ids=input_ids,
|
293 |
+
attention_mask=attention_mask,
|
294 |
+
**generation_config
|
295 |
+
)
|
296 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
297 |
+
response = response.split(template.sep.strip())[0].strip()
|
298 |
+
history.append((question, response))
|
299 |
+
if return_history:
|
300 |
+
return response, history
|
301 |
+
else:
|
302 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
303 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
304 |
+
if verbose:
|
305 |
+
print(query_to_print, response)
|
306 |
+
return response
|
307 |
+
|
308 |
+
@torch.no_grad()
|
309 |
+
def generate(
|
310 |
+
self,
|
311 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
312 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
313 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
314 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
315 |
+
generation_config: Optional[GenerationConfig] = None,
|
316 |
+
output_hidden_states: Optional[bool] = None,
|
317 |
+
**generate_kwargs,
|
318 |
+
) -> torch.LongTensor:
|
319 |
+
|
320 |
+
assert self.img_context_token_id is not None
|
321 |
+
if pixel_values is not None:
|
322 |
+
if visual_features is not None:
|
323 |
+
vit_embeds = visual_features
|
324 |
+
else:
|
325 |
+
vit_embeds = self.extract_feature(pixel_values)
|
326 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
327 |
+
B, N, C = input_embeds.shape
|
328 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
329 |
+
|
330 |
+
input_ids = input_ids.reshape(B * N)
|
331 |
+
selected = (input_ids == self.img_context_token_id)
|
332 |
+
assert selected.sum() != 0
|
333 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
334 |
+
|
335 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
336 |
+
else:
|
337 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
338 |
+
|
339 |
+
outputs = self.language_model.generate(
|
340 |
+
inputs_embeds=input_embeds,
|
341 |
+
attention_mask=attention_mask,
|
342 |
+
generation_config=generation_config,
|
343 |
+
output_hidden_states=output_hidden_states,
|
344 |
+
use_cache=True,
|
345 |
+
**generate_kwargs,
|
346 |
+
)
|
347 |
+
|
348 |
+
return outputs
|
openvino_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"compression": null,
|
3 |
+
"dtype": "int8",
|
4 |
+
"input_info": null,
|
5 |
+
"optimum_version": "1.24.0.dev0",
|
6 |
+
"quantization_config": {
|
7 |
+
"all_layers": null,
|
8 |
+
"backup_precision": null,
|
9 |
+
"bits": 8,
|
10 |
+
"dataset": null,
|
11 |
+
"gptq": null,
|
12 |
+
"group_size": -1,
|
13 |
+
"ignored_scope": null,
|
14 |
+
"lora_correction": null,
|
15 |
+
"num_samples": null,
|
16 |
+
"processor": null,
|
17 |
+
"quant_method": "default",
|
18 |
+
"ratio": 1,
|
19 |
+
"scale_estimation": null,
|
20 |
+
"sensitivity_metric": null,
|
21 |
+
"sym": false,
|
22 |
+
"tokenizer": null,
|
23 |
+
"trust_remote_code": false,
|
24 |
+
"weight_format": "int8"
|
25 |
+
},
|
26 |
+
"save_onnx_model": false,
|
27 |
+
"transformers_version": "4.47.0"
|
28 |
+
}
|
openvino_detokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a75fa1f91293966b14a7e48d848bf123b5478c286d745dcb79b042a2a3ab63cc
|
3 |
+
size 2189371
|
openvino_detokenizer.xml
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="detokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_134755" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="Parameter_134755">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="Convert_134771" type="Convert" version="opset1">
|
14 |
+
<data destination_type="i32" />
|
15 |
+
<input>
|
16 |
+
<port id="0" precision="I64">
|
17 |
+
<dim>-1</dim>
|
18 |
+
<dim>-1</dim>
|
19 |
+
</port>
|
20 |
+
</input>
|
21 |
+
<output>
|
22 |
+
<port id="1" precision="I32">
|
23 |
+
<dim>-1</dim>
|
24 |
+
<dim>-1</dim>
|
25 |
+
</port>
|
26 |
+
</output>
|
27 |
+
</layer>
|
28 |
+
<layer id="2" name="Constant_134718" type="Const" version="opset1">
|
29 |
+
<data element_type="i32" shape="151655" offset="0" size="606620" />
|
30 |
+
<output>
|
31 |
+
<port id="0" precision="I32">
|
32 |
+
<dim>151655</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="Constant_134720" type="Const" version="opset1">
|
37 |
+
<data element_type="i32" shape="151655" offset="606620" size="606620" />
|
38 |
+
<output>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>151655</dim>
|
41 |
+
</port>
|
42 |
+
</output>
|
43 |
+
</layer>
|
44 |
+
<layer id="4" name="Constant_134722" type="Const" version="opset1">
|
45 |
+
<data element_type="u8" shape="976063" offset="1213240" size="976063" />
|
46 |
+
<output>
|
47 |
+
<port id="0" precision="U8">
|
48 |
+
<dim>976063</dim>
|
49 |
+
</port>
|
50 |
+
</output>
|
51 |
+
</layer>
|
52 |
+
<layer id="5" name="Constant_134759" type="Const" version="opset1">
|
53 |
+
<data element_type="i32" shape="12" offset="2189303" size="48" />
|
54 |
+
<output>
|
55 |
+
<port id="0" precision="I32">
|
56 |
+
<dim>12</dim>
|
57 |
+
</port>
|
58 |
+
</output>
|
59 |
+
</layer>
|
60 |
+
<layer id="6" name="Constant_134757" type="Const" version="opset1">
|
61 |
+
<data element_type="i32" shape="1" offset="2189351" size="4" />
|
62 |
+
<output>
|
63 |
+
<port id="0" precision="I32">
|
64 |
+
<dim>1</dim>
|
65 |
+
</port>
|
66 |
+
</output>
|
67 |
+
</layer>
|
68 |
+
<layer id="7" name="Constant_134756" type="Const" version="opset1">
|
69 |
+
<data element_type="i32" shape="1" offset="2189355" size="4" />
|
70 |
+
<output>
|
71 |
+
<port id="0" precision="I32">
|
72 |
+
<dim>1</dim>
|
73 |
+
</port>
|
74 |
+
</output>
|
75 |
+
</layer>
|
76 |
+
<layer id="8" name="Constant_134758" type="Const" version="opset1">
|
77 |
+
<data element_type="i32" shape="1" offset="2189359" size="4" />
|
78 |
+
<output>
|
79 |
+
<port id="0" precision="I32">
|
80 |
+
<dim>1</dim>
|
81 |
+
</port>
|
82 |
+
</output>
|
83 |
+
</layer>
|
84 |
+
<layer id="9" name="Constant_134761" type="Const" version="opset1">
|
85 |
+
<data element_type="i64" shape="1" offset="2189363" size="8" />
|
86 |
+
<output>
|
87 |
+
<port id="0" precision="I64">
|
88 |
+
<dim>1</dim>
|
89 |
+
</port>
|
90 |
+
</output>
|
91 |
+
</layer>
|
92 |
+
<layer id="10" name="Slice_134760" type="Slice" version="opset8">
|
93 |
+
<input>
|
94 |
+
<port id="0" precision="I32">
|
95 |
+
<dim>12</dim>
|
96 |
+
</port>
|
97 |
+
<port id="1" precision="I32">
|
98 |
+
<dim>1</dim>
|
99 |
+
</port>
|
100 |
+
<port id="2" precision="I32">
|
101 |
+
<dim>1</dim>
|
102 |
+
</port>
|
103 |
+
<port id="3" precision="I32">
|
104 |
+
<dim>1</dim>
|
105 |
+
</port>
|
106 |
+
<port id="4" precision="I64">
|
107 |
+
<dim>1</dim>
|
108 |
+
</port>
|
109 |
+
</input>
|
110 |
+
<output>
|
111 |
+
<port id="5" precision="I32">
|
112 |
+
<dim>12</dim>
|
113 |
+
</port>
|
114 |
+
</output>
|
115 |
+
</layer>
|
116 |
+
<layer id="11" name="VocabDecoder_134762" type="VocabDecoder" version="extension">
|
117 |
+
<data skip_tokens="" />
|
118 |
+
<input>
|
119 |
+
<port id="0" precision="I32">
|
120 |
+
<dim>-1</dim>
|
121 |
+
<dim>-1</dim>
|
122 |
+
</port>
|
123 |
+
<port id="1" precision="I32">
|
124 |
+
<dim>151655</dim>
|
125 |
+
</port>
|
126 |
+
<port id="2" precision="I32">
|
127 |
+
<dim>151655</dim>
|
128 |
+
</port>
|
129 |
+
<port id="3" precision="U8">
|
130 |
+
<dim>976063</dim>
|
131 |
+
</port>
|
132 |
+
<port id="4" precision="I32">
|
133 |
+
<dim>12</dim>
|
134 |
+
</port>
|
135 |
+
</input>
|
136 |
+
<output>
|
137 |
+
<port id="5" precision="I32">
|
138 |
+
<dim>-1</dim>
|
139 |
+
</port>
|
140 |
+
<port id="6" precision="I32">
|
141 |
+
<dim>-1</dim>
|
142 |
+
</port>
|
143 |
+
<port id="7" precision="I32">
|
144 |
+
<dim>-1</dim>
|
145 |
+
</port>
|
146 |
+
<port id="8" precision="I32">
|
147 |
+
<dim>-1</dim>
|
148 |
+
</port>
|
149 |
+
<port id="9" precision="U8">
|
150 |
+
<dim>-1</dim>
|
151 |
+
</port>
|
152 |
+
</output>
|
153 |
+
</layer>
|
154 |
+
<layer id="12" name="FuzeRagged_134763" type="FuzeRagged" version="extension">
|
155 |
+
<input>
|
156 |
+
<port id="0" precision="I32">
|
157 |
+
<dim>-1</dim>
|
158 |
+
</port>
|
159 |
+
<port id="1" precision="I32">
|
160 |
+
<dim>-1</dim>
|
161 |
+
</port>
|
162 |
+
<port id="2" precision="I32">
|
163 |
+
<dim>-1</dim>
|
164 |
+
</port>
|
165 |
+
<port id="3" precision="I32">
|
166 |
+
<dim>-1</dim>
|
167 |
+
</port>
|
168 |
+
</input>
|
169 |
+
<output>
|
170 |
+
<port id="4" precision="I32">
|
171 |
+
<dim>-1</dim>
|
172 |
+
</port>
|
173 |
+
<port id="5" precision="I32">
|
174 |
+
<dim>-1</dim>
|
175 |
+
</port>
|
176 |
+
</output>
|
177 |
+
</layer>
|
178 |
+
<layer id="13" name="UTF8Validate_134764" type="UTF8Validate" version="extension">
|
179 |
+
<data replace_mode="true" />
|
180 |
+
<input>
|
181 |
+
<port id="0" precision="I32">
|
182 |
+
<dim>-1</dim>
|
183 |
+
</port>
|
184 |
+
<port id="1" precision="I32">
|
185 |
+
<dim>-1</dim>
|
186 |
+
</port>
|
187 |
+
<port id="2" precision="U8">
|
188 |
+
<dim>-1</dim>
|
189 |
+
</port>
|
190 |
+
</input>
|
191 |
+
<output>
|
192 |
+
<port id="3" precision="I32">
|
193 |
+
<dim>-1</dim>
|
194 |
+
</port>
|
195 |
+
<port id="4" precision="I32">
|
196 |
+
<dim>-1</dim>
|
197 |
+
</port>
|
198 |
+
<port id="5" precision="U8">
|
199 |
+
<dim>-1</dim>
|
200 |
+
</port>
|
201 |
+
</output>
|
202 |
+
</layer>
|
203 |
+
<layer id="14" name="StringTensorPack_134765" type="StringTensorPack" version="opset15">
|
204 |
+
<input>
|
205 |
+
<port id="0" precision="I32">
|
206 |
+
<dim>-1</dim>
|
207 |
+
</port>
|
208 |
+
<port id="1" precision="I32">
|
209 |
+
<dim>-1</dim>
|
210 |
+
</port>
|
211 |
+
<port id="2" precision="U8">
|
212 |
+
<dim>-1</dim>
|
213 |
+
</port>
|
214 |
+
</input>
|
215 |
+
<output>
|
216 |
+
<port id="3" precision="STRING" names="string_output">
|
217 |
+
<dim>-1</dim>
|
218 |
+
</port>
|
219 |
+
</output>
|
220 |
+
</layer>
|
221 |
+
<layer id="15" name="Result_134766" type="Result" version="opset1">
|
222 |
+
<input>
|
223 |
+
<port id="0" precision="STRING">
|
224 |
+
<dim>-1</dim>
|
225 |
+
</port>
|
226 |
+
</input>
|
227 |
+
</layer>
|
228 |
+
</layers>
|
229 |
+
<edges>
|
230 |
+
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
231 |
+
<edge from-layer="1" from-port="1" to-layer="11" to-port="0" />
|
232 |
+
<edge from-layer="2" from-port="0" to-layer="11" to-port="1" />
|
233 |
+
<edge from-layer="3" from-port="0" to-layer="11" to-port="2" />
|
234 |
+
<edge from-layer="4" from-port="0" to-layer="11" to-port="3" />
|
235 |
+
<edge from-layer="5" from-port="0" to-layer="10" to-port="0" />
|
236 |
+
<edge from-layer="6" from-port="0" to-layer="10" to-port="1" />
|
237 |
+
<edge from-layer="7" from-port="0" to-layer="10" to-port="2" />
|
238 |
+
<edge from-layer="8" from-port="0" to-layer="10" to-port="3" />
|
239 |
+
<edge from-layer="9" from-port="0" to-layer="10" to-port="4" />
|
240 |
+
<edge from-layer="10" from-port="5" to-layer="11" to-port="4" />
|
241 |
+
<edge from-layer="11" from-port="5" to-layer="12" to-port="0" />
|
242 |
+
<edge from-layer="11" from-port="9" to-layer="13" to-port="2" />
|
243 |
+
<edge from-layer="11" from-port="8" to-layer="12" to-port="3" />
|
244 |
+
<edge from-layer="11" from-port="7" to-layer="12" to-port="2" />
|
245 |
+
<edge from-layer="11" from-port="6" to-layer="12" to-port="1" />
|
246 |
+
<edge from-layer="12" from-port="4" to-layer="13" to-port="0" />
|
247 |
+
<edge from-layer="12" from-port="5" to-layer="13" to-port="1" />
|
248 |
+
<edge from-layer="13" from-port="3" to-layer="14" to-port="0" />
|
249 |
+
<edge from-layer="13" from-port="4" to-layer="14" to-port="1" />
|
250 |
+
<edge from-layer="13" from-port="5" to-layer="14" to-port="2" />
|
251 |
+
<edge from-layer="14" from-port="3" to-layer="15" to-port="0" />
|
252 |
+
</edges>
|
253 |
+
<rt_info>
|
254 |
+
<add_attention_mask value="True" />
|
255 |
+
<add_prefix_space />
|
256 |
+
<add_special_tokens value="True" />
|
257 |
+
<chat_template value="{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system You are a helpful assistant.<|im_end|> ' }}{% endif %}{{'<|im_start|>' + message['role'] + ' ' + message['content'] + '<|im_end|>' + ' '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant ' }}{% endif %}" />
|
258 |
+
<clean_up_tokenization_spaces />
|
259 |
+
<detokenizer_input_type value="i64" />
|
260 |
+
<eos_token_id value="151645" />
|
261 |
+
<handle_special_tokens_with_re />
|
262 |
+
<number_of_inputs value="1" />
|
263 |
+
<openvino_tokenizers_version value="2025.0.0.0-471-7f2ac4f9648" />
|
264 |
+
<openvino_version value="2025.0.0-17908-513dcc5c7b7-releases/2025/0" />
|
265 |
+
<original_tokenizer_class value="<class 'transformers.models.qwen2.tokenization_qwen2_fast.Qwen2TokenizerFast'>" />
|
266 |
+
<pad_token_id value="151643" />
|
267 |
+
<sentencepiece_version value="0.2.0" />
|
268 |
+
<skip_special_tokens value="True" />
|
269 |
+
<streaming_detokenizer value="False" />
|
270 |
+
<tiktoken_version value="0.7.0" />
|
271 |
+
<tokenizer_output_type value="i64" />
|
272 |
+
<tokenizers_version value="0.21.0" />
|
273 |
+
<transformers_version value="4.47.0" />
|
274 |
+
<use_max_padding value="False" />
|
275 |
+
<use_sentencepiece_backend value="False" />
|
276 |
+
<utf8_replace_mode value="replace" />
|
277 |
+
<with_detokenizer value="True" />
|
278 |
+
</rt_info>
|
279 |
+
</net>
|
openvino_language_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1082d96fb77e1f96e7df4797ff48f1cfd9c9d2577a4004aba4bd0415c4b95b73
|
3 |
+
size 495363421
|
openvino_language_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
openvino_text_embeddings_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3b56cdebfe4b6d884386a1fece4ebd7a9350f0ea575aeba1c02b465f87cd180
|
3 |
+
size 136186194
|
openvino_text_embeddings_model.xml
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model6" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="input">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="self.weight" type="Const" version="opset1">
|
14 |
+
<data element_type="i8" shape="151655, 896" offset="0" size="135882880" />
|
15 |
+
<output>
|
16 |
+
<port id="0" precision="I8">
|
17 |
+
<dim>151655</dim>
|
18 |
+
<dim>896</dim>
|
19 |
+
</port>
|
20 |
+
</output>
|
21 |
+
</layer>
|
22 |
+
<layer id="2" name="Convert_128423" type="Convert" version="opset1">
|
23 |
+
<data destination_type="f16" />
|
24 |
+
<input>
|
25 |
+
<port id="0" precision="I8">
|
26 |
+
<dim>151655</dim>
|
27 |
+
<dim>896</dim>
|
28 |
+
</port>
|
29 |
+
</input>
|
30 |
+
<output>
|
31 |
+
<port id="1" precision="FP16">
|
32 |
+
<dim>151655</dim>
|
33 |
+
<dim>896</dim>
|
34 |
+
</port>
|
35 |
+
</output>
|
36 |
+
</layer>
|
37 |
+
<layer id="3" name="self.weight/scale" type="Const" version="opset1">
|
38 |
+
<data element_type="f16" shape="151655, 1" offset="135882880" size="303310" />
|
39 |
+
<output>
|
40 |
+
<port id="0" precision="FP16">
|
41 |
+
<dim>151655</dim>
|
42 |
+
<dim>1</dim>
|
43 |
+
</port>
|
44 |
+
</output>
|
45 |
+
</layer>
|
46 |
+
<layer id="4" name="self.weight/fq_weights_0" type="Multiply" version="opset1">
|
47 |
+
<data auto_broadcast="numpy" />
|
48 |
+
<input>
|
49 |
+
<port id="0" precision="FP16">
|
50 |
+
<dim>151655</dim>
|
51 |
+
<dim>896</dim>
|
52 |
+
</port>
|
53 |
+
<port id="1" precision="FP16">
|
54 |
+
<dim>151655</dim>
|
55 |
+
<dim>1</dim>
|
56 |
+
</port>
|
57 |
+
</input>
|
58 |
+
<output>
|
59 |
+
<port id="2" precision="FP16">
|
60 |
+
<dim>151655</dim>
|
61 |
+
<dim>896</dim>
|
62 |
+
</port>
|
63 |
+
</output>
|
64 |
+
</layer>
|
65 |
+
<layer id="5" name="self.weight/fq_weights_0/convert" type="Convert" version="opset1">
|
66 |
+
<data destination_type="f32" />
|
67 |
+
<input>
|
68 |
+
<port id="0" precision="FP16">
|
69 |
+
<dim>151655</dim>
|
70 |
+
<dim>896</dim>
|
71 |
+
</port>
|
72 |
+
</input>
|
73 |
+
<output>
|
74 |
+
<port id="1" precision="FP32">
|
75 |
+
<dim>151655</dim>
|
76 |
+
<dim>896</dim>
|
77 |
+
</port>
|
78 |
+
</output>
|
79 |
+
</layer>
|
80 |
+
<layer id="6" name="aten::embedding/Convert" type="Convert" version="opset1">
|
81 |
+
<data destination_type="i32" />
|
82 |
+
<input>
|
83 |
+
<port id="0" precision="I64">
|
84 |
+
<dim>-1</dim>
|
85 |
+
<dim>-1</dim>
|
86 |
+
</port>
|
87 |
+
</input>
|
88 |
+
<output>
|
89 |
+
<port id="1" precision="I32">
|
90 |
+
<dim>-1</dim>
|
91 |
+
<dim>-1</dim>
|
92 |
+
</port>
|
93 |
+
</output>
|
94 |
+
</layer>
|
95 |
+
<layer id="7" name="aten::embedding/Constant" type="Const" version="opset1">
|
96 |
+
<data element_type="i32" shape="" offset="136186190" size="4" />
|
97 |
+
<output>
|
98 |
+
<port id="0" precision="I32" />
|
99 |
+
</output>
|
100 |
+
</layer>
|
101 |
+
<layer id="8" name="aten::embedding/Gather" type="Gather" version="opset8">
|
102 |
+
<data batch_dims="0" />
|
103 |
+
<input>
|
104 |
+
<port id="0" precision="FP32">
|
105 |
+
<dim>151655</dim>
|
106 |
+
<dim>896</dim>
|
107 |
+
</port>
|
108 |
+
<port id="1" precision="I32">
|
109 |
+
<dim>-1</dim>
|
110 |
+
<dim>-1</dim>
|
111 |
+
</port>
|
112 |
+
<port id="2" precision="I32" />
|
113 |
+
</input>
|
114 |
+
<output>
|
115 |
+
<port id="3" precision="FP32" names="inputs_embeds">
|
116 |
+
<dim>-1</dim>
|
117 |
+
<dim>-1</dim>
|
118 |
+
<dim>896</dim>
|
119 |
+
</port>
|
120 |
+
</output>
|
121 |
+
</layer>
|
122 |
+
<layer id="9" name="Result_99850" type="Result" version="opset1">
|
123 |
+
<input>
|
124 |
+
<port id="0" precision="FP32">
|
125 |
+
<dim>-1</dim>
|
126 |
+
<dim>-1</dim>
|
127 |
+
<dim>896</dim>
|
128 |
+
</port>
|
129 |
+
</input>
|
130 |
+
</layer>
|
131 |
+
</layers>
|
132 |
+
<edges>
|
133 |
+
<edge from-layer="0" from-port="0" to-layer="6" to-port="0" />
|
134 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
135 |
+
<edge from-layer="2" from-port="1" to-layer="4" to-port="0" />
|
136 |
+
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
|
137 |
+
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
|
138 |
+
<edge from-layer="5" from-port="1" to-layer="8" to-port="0" />
|
139 |
+
<edge from-layer="6" from-port="1" to-layer="8" to-port="1" />
|
140 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
141 |
+
<edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
|
142 |
+
</edges>
|
143 |
+
<rt_info>
|
144 |
+
<Runtime_version value="2025.0.0-17908-513dcc5c7b7-releases/2025/0" />
|
145 |
+
<conversion_parameters>
|
146 |
+
<framework value="pytorch" />
|
147 |
+
<is_python_object value="True" />
|
148 |
+
</conversion_parameters>
|
149 |
+
<nncf>
|
150 |
+
<friendly_names_were_updated value="True" />
|
151 |
+
<weight_compression>
|
152 |
+
<advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" />
|
153 |
+
<all_layers value="False" />
|
154 |
+
<awq value="False" />
|
155 |
+
<backup_mode value="int8_asym" />
|
156 |
+
<gptq value="False" />
|
157 |
+
<group_size value="-1" />
|
158 |
+
<ignored_scope value="[]" />
|
159 |
+
<lora_correction value="False" />
|
160 |
+
<mode value="int8_sym" />
|
161 |
+
<ratio value="1.0" />
|
162 |
+
<scale_estimation value="False" />
|
163 |
+
<sensitivity_metric value="weight_quantization_error" />
|
164 |
+
</weight_compression>
|
165 |
+
</nncf>
|
166 |
+
<optimum>
|
167 |
+
<optimum_intel_version value="1.22.0.dev0+2b0d642" />
|
168 |
+
<optimum_version value="1.24.0.dev0" />
|
169 |
+
<pytorch_version value="2.5.1+cpu" />
|
170 |
+
<transformers_version value="4.47.0" />
|
171 |
+
</optimum>
|
172 |
+
</rt_info>
|
173 |
+
</net>
|
openvino_tokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3a335c7a9e16bcc547408ea0e61cda12049f13d512689757a358310492ace17
|
3 |
+
size 5584911
|
openvino_tokenizer.xml
ADDED
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="tokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_134636" type="Parameter" version="opset1">
|
5 |
+
<data shape="?" element_type="string" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="STRING" names="Parameter_134636">
|
8 |
+
<dim>-1</dim>
|
9 |
+
</port>
|
10 |
+
</output>
|
11 |
+
</layer>
|
12 |
+
<layer id="1" name="Constant_134642" type="Const" version="opset1">
|
13 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
14 |
+
<output>
|
15 |
+
<port id="0" precision="I64" />
|
16 |
+
</output>
|
17 |
+
</layer>
|
18 |
+
<layer id="2" name="StringTensorUnpack_134637" type="StringTensorUnpack" version="opset15">
|
19 |
+
<input>
|
20 |
+
<port id="0" precision="STRING">
|
21 |
+
<dim>-1</dim>
|
22 |
+
</port>
|
23 |
+
</input>
|
24 |
+
<output>
|
25 |
+
<port id="1" precision="I32">
|
26 |
+
<dim>-1</dim>
|
27 |
+
</port>
|
28 |
+
<port id="2" precision="I32">
|
29 |
+
<dim>-1</dim>
|
30 |
+
</port>
|
31 |
+
<port id="3" precision="U8">
|
32 |
+
<dim>-1</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="ShapeOf_134638" type="ShapeOf" version="opset3">
|
37 |
+
<data output_type="i64" />
|
38 |
+
<input>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>-1</dim>
|
41 |
+
</port>
|
42 |
+
</input>
|
43 |
+
<output>
|
44 |
+
<port id="1" precision="I64">
|
45 |
+
<dim>1</dim>
|
46 |
+
</port>
|
47 |
+
</output>
|
48 |
+
</layer>
|
49 |
+
<layer id="4" name="Constant_134639" type="Const" version="opset1">
|
50 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
51 |
+
<output>
|
52 |
+
<port id="0" precision="I64" />
|
53 |
+
</output>
|
54 |
+
</layer>
|
55 |
+
<layer id="5" name="Constant_134640" type="Const" version="opset1">
|
56 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
57 |
+
<output>
|
58 |
+
<port id="0" precision="I64" />
|
59 |
+
</output>
|
60 |
+
</layer>
|
61 |
+
<layer id="6" name="Gather_134641" type="Gather" version="opset8">
|
62 |
+
<data batch_dims="0" />
|
63 |
+
<input>
|
64 |
+
<port id="0" precision="I64">
|
65 |
+
<dim>1</dim>
|
66 |
+
</port>
|
67 |
+
<port id="1" precision="I64" />
|
68 |
+
<port id="2" precision="I64" />
|
69 |
+
</input>
|
70 |
+
<output>
|
71 |
+
<port id="3" precision="I64" />
|
72 |
+
</output>
|
73 |
+
</layer>
|
74 |
+
<layer id="7" name="Constant_134643" type="Const" version="opset1">
|
75 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
76 |
+
<output>
|
77 |
+
<port id="0" precision="I64" />
|
78 |
+
</output>
|
79 |
+
</layer>
|
80 |
+
<layer id="8" name="Range_134644" type="Range" version="opset4">
|
81 |
+
<data output_type="i32" />
|
82 |
+
<input>
|
83 |
+
<port id="0" precision="I64" />
|
84 |
+
<port id="1" precision="I64" />
|
85 |
+
<port id="2" precision="I64" />
|
86 |
+
</input>
|
87 |
+
<output>
|
88 |
+
<port id="3" precision="I32">
|
89 |
+
<dim>-1</dim>
|
90 |
+
</port>
|
91 |
+
</output>
|
92 |
+
</layer>
|
93 |
+
<layer id="9" name="Constant_134645" type="Const" version="opset1">
|
94 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
95 |
+
<output>
|
96 |
+
<port id="0" precision="I64" />
|
97 |
+
</output>
|
98 |
+
</layer>
|
99 |
+
<layer id="10" name="Constant_134646" type="Const" version="opset1">
|
100 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
101 |
+
<output>
|
102 |
+
<port id="0" precision="I64" />
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="11" name="Add_134647" type="Add" version="opset1">
|
106 |
+
<data auto_broadcast="numpy" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="I64" />
|
109 |
+
<port id="1" precision="I64" />
|
110 |
+
</input>
|
111 |
+
<output>
|
112 |
+
<port id="2" precision="I64" />
|
113 |
+
</output>
|
114 |
+
</layer>
|
115 |
+
<layer id="12" name="Constant_134648" type="Const" version="opset1">
|
116 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
117 |
+
<output>
|
118 |
+
<port id="0" precision="I64" />
|
119 |
+
</output>
|
120 |
+
</layer>
|
121 |
+
<layer id="13" name="Range_134649" type="Range" version="opset4">
|
122 |
+
<data output_type="i32" />
|
123 |
+
<input>
|
124 |
+
<port id="0" precision="I64" />
|
125 |
+
<port id="1" precision="I64" />
|
126 |
+
<port id="2" precision="I64" />
|
127 |
+
</input>
|
128 |
+
<output>
|
129 |
+
<port id="3" precision="I32">
|
130 |
+
<dim>-1</dim>
|
131 |
+
</port>
|
132 |
+
</output>
|
133 |
+
</layer>
|
134 |
+
<layer id="14" name="Constant_134711" type="Const" version="opset1">
|
135 |
+
<data element_type="u8" shape="163" offset="16" size="163" />
|
136 |
+
<output>
|
137 |
+
<port id="0" precision="U8">
|
138 |
+
<dim>163</dim>
|
139 |
+
</port>
|
140 |
+
</output>
|
141 |
+
</layer>
|
142 |
+
<layer id="15" name="SpecialTokensSplit_134712" type="SpecialTokensSplit" version="extension">
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="I32">
|
145 |
+
<dim>-1</dim>
|
146 |
+
</port>
|
147 |
+
<port id="1" precision="I32">
|
148 |
+
<dim>-1</dim>
|
149 |
+
</port>
|
150 |
+
<port id="2" precision="I32">
|
151 |
+
<dim>-1</dim>
|
152 |
+
</port>
|
153 |
+
<port id="3" precision="I32">
|
154 |
+
<dim>-1</dim>
|
155 |
+
</port>
|
156 |
+
<port id="4" precision="U8">
|
157 |
+
<dim>-1</dim>
|
158 |
+
</port>
|
159 |
+
<port id="5" precision="U8">
|
160 |
+
<dim>163</dim>
|
161 |
+
</port>
|
162 |
+
</input>
|
163 |
+
<output>
|
164 |
+
<port id="6" precision="I32">
|
165 |
+
<dim>-1</dim>
|
166 |
+
</port>
|
167 |
+
<port id="7" precision="I32">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
<port id="8" precision="I32">
|
171 |
+
<dim>-1</dim>
|
172 |
+
</port>
|
173 |
+
<port id="9" precision="I32">
|
174 |
+
<dim>-1</dim>
|
175 |
+
</port>
|
176 |
+
<port id="10" precision="U8">
|
177 |
+
<dim>-1</dim>
|
178 |
+
</port>
|
179 |
+
<port id="11" precision="BOOL">
|
180 |
+
<dim>-1</dim>
|
181 |
+
</port>
|
182 |
+
</output>
|
183 |
+
</layer>
|
184 |
+
<layer id="16" name="NormalizeUnicode_134713" type="NormalizeUnicode" version="extension">
|
185 |
+
<data normalization_form="NFC" />
|
186 |
+
<input>
|
187 |
+
<port id="0" precision="I32">
|
188 |
+
<dim>-1</dim>
|
189 |
+
</port>
|
190 |
+
<port id="1" precision="I32">
|
191 |
+
<dim>-1</dim>
|
192 |
+
</port>
|
193 |
+
<port id="2" precision="U8">
|
194 |
+
<dim>-1</dim>
|
195 |
+
</port>
|
196 |
+
<port id="3" precision="BOOL">
|
197 |
+
<dim>-1</dim>
|
198 |
+
</port>
|
199 |
+
</input>
|
200 |
+
<output>
|
201 |
+
<port id="4" precision="I32">
|
202 |
+
<dim>-1</dim>
|
203 |
+
</port>
|
204 |
+
<port id="5" precision="I32">
|
205 |
+
<dim>-1</dim>
|
206 |
+
</port>
|
207 |
+
<port id="6" precision="U8">
|
208 |
+
<dim>-1</dim>
|
209 |
+
</port>
|
210 |
+
<port id="7" precision="BOOL">
|
211 |
+
<dim>-1</dim>
|
212 |
+
</port>
|
213 |
+
</output>
|
214 |
+
</layer>
|
215 |
+
<layer id="17" name="Constant_134715" type="Const" version="opset1">
|
216 |
+
<data element_type="u8" shape="110" offset="179" size="110" />
|
217 |
+
<output>
|
218 |
+
<port id="0" precision="U8">
|
219 |
+
<dim>110</dim>
|
220 |
+
</port>
|
221 |
+
</output>
|
222 |
+
</layer>
|
223 |
+
<layer id="18" name="RegexSplit_134716" type="RegexSplit" version="extension">
|
224 |
+
<data behaviour="isolate" invert="false" max_splits="-1" />
|
225 |
+
<input>
|
226 |
+
<port id="0" precision="I32">
|
227 |
+
<dim>-1</dim>
|
228 |
+
</port>
|
229 |
+
<port id="1" precision="I32">
|
230 |
+
<dim>-1</dim>
|
231 |
+
</port>
|
232 |
+
<port id="2" precision="I32">
|
233 |
+
<dim>-1</dim>
|
234 |
+
</port>
|
235 |
+
<port id="3" precision="I32">
|
236 |
+
<dim>-1</dim>
|
237 |
+
</port>
|
238 |
+
<port id="4" precision="U8">
|
239 |
+
<dim>-1</dim>
|
240 |
+
</port>
|
241 |
+
<port id="5" precision="BOOL">
|
242 |
+
<dim>-1</dim>
|
243 |
+
</port>
|
244 |
+
<port id="6" precision="U8">
|
245 |
+
<dim>110</dim>
|
246 |
+
</port>
|
247 |
+
</input>
|
248 |
+
<output>
|
249 |
+
<port id="7" precision="I32">
|
250 |
+
<dim>-1</dim>
|
251 |
+
</port>
|
252 |
+
<port id="8" precision="I32">
|
253 |
+
<dim>-1</dim>
|
254 |
+
</port>
|
255 |
+
<port id="9" precision="I32">
|
256 |
+
<dim>-1</dim>
|
257 |
+
</port>
|
258 |
+
<port id="10" precision="I32">
|
259 |
+
<dim>-1</dim>
|
260 |
+
</port>
|
261 |
+
<port id="11" precision="U8">
|
262 |
+
<dim>-1</dim>
|
263 |
+
</port>
|
264 |
+
<port id="12" precision="BOOL">
|
265 |
+
<dim>-1</dim>
|
266 |
+
</port>
|
267 |
+
</output>
|
268 |
+
</layer>
|
269 |
+
<layer id="19" name="Constant_134718" type="Const" version="opset1">
|
270 |
+
<data element_type="i32" shape="151655" offset="289" size="606620" />
|
271 |
+
<output>
|
272 |
+
<port id="0" precision="I32">
|
273 |
+
<dim>151655</dim>
|
274 |
+
</port>
|
275 |
+
</output>
|
276 |
+
</layer>
|
277 |
+
<layer id="20" name="Constant_134720" type="Const" version="opset1">
|
278 |
+
<data element_type="i32" shape="151655" offset="606909" size="606620" />
|
279 |
+
<output>
|
280 |
+
<port id="0" precision="I32">
|
281 |
+
<dim>151655</dim>
|
282 |
+
</port>
|
283 |
+
</output>
|
284 |
+
</layer>
|
285 |
+
<layer id="21" name="Constant_134722" type="Const" version="opset1">
|
286 |
+
<data element_type="u8" shape="976063" offset="1213529" size="976063" />
|
287 |
+
<output>
|
288 |
+
<port id="0" precision="U8">
|
289 |
+
<dim>976063</dim>
|
290 |
+
</port>
|
291 |
+
</output>
|
292 |
+
</layer>
|
293 |
+
<layer id="22" name="Constant_134730" type="Const" version="opset1">
|
294 |
+
<data element_type="i32" shape="151291" offset="2189592" size="605164" />
|
295 |
+
<output>
|
296 |
+
<port id="0" precision="I32">
|
297 |
+
<dim>151291</dim>
|
298 |
+
</port>
|
299 |
+
</output>
|
300 |
+
</layer>
|
301 |
+
<layer id="23" name="Constant_134732" type="Const" version="opset1">
|
302 |
+
<data element_type="i32" shape="151291" offset="2794756" size="605164" />
|
303 |
+
<output>
|
304 |
+
<port id="0" precision="I32">
|
305 |
+
<dim>151291</dim>
|
306 |
+
</port>
|
307 |
+
</output>
|
308 |
+
</layer>
|
309 |
+
<layer id="24" name="Constant_134734" type="Const" version="opset1">
|
310 |
+
<data element_type="u8" shape="490634" offset="3399920" size="490634" />
|
311 |
+
<output>
|
312 |
+
<port id="0" precision="U8">
|
313 |
+
<dim>490634</dim>
|
314 |
+
</port>
|
315 |
+
</output>
|
316 |
+
</layer>
|
317 |
+
<layer id="25" name="Constant_134736" type="Const" version="opset1">
|
318 |
+
<data element_type="i32" shape="151291" offset="3890554" size="605164" />
|
319 |
+
<output>
|
320 |
+
<port id="0" precision="I32">
|
321 |
+
<dim>151291</dim>
|
322 |
+
</port>
|
323 |
+
</output>
|
324 |
+
</layer>
|
325 |
+
<layer id="26" name="Constant_134738" type="Const" version="opset1">
|
326 |
+
<data element_type="i32" shape="151291" offset="4495718" size="605164" />
|
327 |
+
<output>
|
328 |
+
<port id="0" precision="I32">
|
329 |
+
<dim>151291</dim>
|
330 |
+
</port>
|
331 |
+
</output>
|
332 |
+
</layer>
|
333 |
+
<layer id="27" name="Constant_134740" type="Const" version="opset1">
|
334 |
+
<data element_type="u8" shape="483779" offset="5100882" size="483779" />
|
335 |
+
<output>
|
336 |
+
<port id="0" precision="U8">
|
337 |
+
<dim>483779</dim>
|
338 |
+
</port>
|
339 |
+
</output>
|
340 |
+
</layer>
|
341 |
+
<layer id="28" name="Constant_134724" type="Const" version="opset1">
|
342 |
+
<data element_type="i32" shape="12" offset="5584661" size="48" />
|
343 |
+
<output>
|
344 |
+
<port id="0" precision="I32">
|
345 |
+
<dim>12</dim>
|
346 |
+
</port>
|
347 |
+
</output>
|
348 |
+
</layer>
|
349 |
+
<layer id="29" name="Constant_134726" type="Const" version="opset1">
|
350 |
+
<data element_type="i32" shape="12" offset="5584709" size="48" />
|
351 |
+
<output>
|
352 |
+
<port id="0" precision="I32">
|
353 |
+
<dim>12</dim>
|
354 |
+
</port>
|
355 |
+
</output>
|
356 |
+
</layer>
|
357 |
+
<layer id="30" name="Constant_134728" type="Const" version="opset1">
|
358 |
+
<data element_type="u8" shape="94" offset="5584757" size="94" />
|
359 |
+
<output>
|
360 |
+
<port id="0" precision="U8">
|
361 |
+
<dim>94</dim>
|
362 |
+
</port>
|
363 |
+
</output>
|
364 |
+
</layer>
|
365 |
+
<layer id="31" name="Constant_134741" type="Const" version="opset1">
|
366 |
+
<data element_type="i32" shape="12" offset="5584851" size="48" />
|
367 |
+
<output>
|
368 |
+
<port id="0" precision="I32">
|
369 |
+
<dim>12</dim>
|
370 |
+
</port>
|
371 |
+
</output>
|
372 |
+
</layer>
|
373 |
+
<layer id="32" name="BPETokenizer_134742" type="BPETokenizer" version="extension">
|
374 |
+
<data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="30328" />
|
375 |
+
<input>
|
376 |
+
<port id="0" precision="I32">
|
377 |
+
<dim>-1</dim>
|
378 |
+
</port>
|
379 |
+
<port id="1" precision="I32">
|
380 |
+
<dim>-1</dim>
|
381 |
+
</port>
|
382 |
+
<port id="2" precision="I32">
|
383 |
+
<dim>-1</dim>
|
384 |
+
</port>
|
385 |
+
<port id="3" precision="I32">
|
386 |
+
<dim>-1</dim>
|
387 |
+
</port>
|
388 |
+
<port id="4" precision="U8">
|
389 |
+
<dim>-1</dim>
|
390 |
+
</port>
|
391 |
+
<port id="5" precision="I32">
|
392 |
+
<dim>151655</dim>
|
393 |
+
</port>
|
394 |
+
<port id="6" precision="I32">
|
395 |
+
<dim>151655</dim>
|
396 |
+
</port>
|
397 |
+
<port id="7" precision="U8">
|
398 |
+
<dim>976063</dim>
|
399 |
+
</port>
|
400 |
+
<port id="8" precision="I32">
|
401 |
+
<dim>151291</dim>
|
402 |
+
</port>
|
403 |
+
<port id="9" precision="I32">
|
404 |
+
<dim>151291</dim>
|
405 |
+
</port>
|
406 |
+
<port id="10" precision="U8">
|
407 |
+
<dim>490634</dim>
|
408 |
+
</port>
|
409 |
+
<port id="11" precision="I32">
|
410 |
+
<dim>151291</dim>
|
411 |
+
</port>
|
412 |
+
<port id="12" precision="I32">
|
413 |
+
<dim>151291</dim>
|
414 |
+
</port>
|
415 |
+
<port id="13" precision="U8">
|
416 |
+
<dim>483779</dim>
|
417 |
+
</port>
|
418 |
+
<port id="14" precision="I32">
|
419 |
+
<dim>12</dim>
|
420 |
+
</port>
|
421 |
+
<port id="15" precision="I32">
|
422 |
+
<dim>12</dim>
|
423 |
+
</port>
|
424 |
+
<port id="16" precision="U8">
|
425 |
+
<dim>94</dim>
|
426 |
+
</port>
|
427 |
+
<port id="17" precision="I32">
|
428 |
+
<dim>12</dim>
|
429 |
+
</port>
|
430 |
+
</input>
|
431 |
+
<output>
|
432 |
+
<port id="18" precision="I32">
|
433 |
+
<dim>-1</dim>
|
434 |
+
</port>
|
435 |
+
<port id="19" precision="I32">
|
436 |
+
<dim>-1</dim>
|
437 |
+
</port>
|
438 |
+
<port id="20" precision="I32">
|
439 |
+
<dim>-1</dim>
|
440 |
+
</port>
|
441 |
+
</output>
|
442 |
+
</layer>
|
443 |
+
<layer id="33" name="Subtract_134743" type="Subtract" version="opset1">
|
444 |
+
<data auto_broadcast="numpy" />
|
445 |
+
<input>
|
446 |
+
<port id="0" precision="I32">
|
447 |
+
<dim>-1</dim>
|
448 |
+
</port>
|
449 |
+
<port id="1" precision="I32">
|
450 |
+
<dim>-1</dim>
|
451 |
+
</port>
|
452 |
+
</input>
|
453 |
+
<output>
|
454 |
+
<port id="2" precision="I32">
|
455 |
+
<dim>-1</dim>
|
456 |
+
</port>
|
457 |
+
</output>
|
458 |
+
</layer>
|
459 |
+
<layer id="34" name="Constant_134744" type="Const" version="opset1">
|
460 |
+
<data element_type="i32" shape="" offset="5584899" size="4" />
|
461 |
+
<output>
|
462 |
+
<port id="0" precision="I32" />
|
463 |
+
</output>
|
464 |
+
</layer>
|
465 |
+
<layer id="35" name="Minimum_134745" type="Minimum" version="opset1">
|
466 |
+
<data auto_broadcast="numpy" />
|
467 |
+
<input>
|
468 |
+
<port id="0" precision="I32">
|
469 |
+
<dim>-1</dim>
|
470 |
+
</port>
|
471 |
+
<port id="1" precision="I32" />
|
472 |
+
</input>
|
473 |
+
<output>
|
474 |
+
<port id="2" precision="I32">
|
475 |
+
<dim>-1</dim>
|
476 |
+
</port>
|
477 |
+
</output>
|
478 |
+
</layer>
|
479 |
+
<layer id="36" name="Add_134746" type="Add" version="opset1">
|
480 |
+
<data auto_broadcast="numpy" />
|
481 |
+
<input>
|
482 |
+
<port id="0" precision="I32">
|
483 |
+
<dim>-1</dim>
|
484 |
+
</port>
|
485 |
+
<port id="1" precision="I32">
|
486 |
+
<dim>-1</dim>
|
487 |
+
</port>
|
488 |
+
</input>
|
489 |
+
<output>
|
490 |
+
<port id="2" precision="I32">
|
491 |
+
<dim>-1</dim>
|
492 |
+
</port>
|
493 |
+
</output>
|
494 |
+
</layer>
|
495 |
+
<layer id="37" name="Subtract_134747" type="Subtract" version="opset1">
|
496 |
+
<data auto_broadcast="numpy" />
|
497 |
+
<input>
|
498 |
+
<port id="0" precision="I32">
|
499 |
+
<dim>-1</dim>
|
500 |
+
</port>
|
501 |
+
<port id="1" precision="I32">
|
502 |
+
<dim>-1</dim>
|
503 |
+
</port>
|
504 |
+
</input>
|
505 |
+
<output>
|
506 |
+
<port id="2" precision="I32">
|
507 |
+
<dim>-1</dim>
|
508 |
+
</port>
|
509 |
+
</output>
|
510 |
+
</layer>
|
511 |
+
<layer id="38" name="Constant_134748" type="Const" version="opset1">
|
512 |
+
<data element_type="i32" shape="" offset="5584903" size="4" />
|
513 |
+
<output>
|
514 |
+
<port id="0" precision="I32" />
|
515 |
+
</output>
|
516 |
+
</layer>
|
517 |
+
<layer id="39" name="ReduceMax_134749" type="ReduceMax" version="opset1">
|
518 |
+
<data keep_dims="false" />
|
519 |
+
<input>
|
520 |
+
<port id="0" precision="I32">
|
521 |
+
<dim>-1</dim>
|
522 |
+
</port>
|
523 |
+
<port id="1" precision="I32" />
|
524 |
+
</input>
|
525 |
+
<output>
|
526 |
+
<port id="2" precision="I32" />
|
527 |
+
</output>
|
528 |
+
</layer>
|
529 |
+
<layer id="40" name="Constant_134750" type="Const" version="opset1">
|
530 |
+
<data element_type="i32" shape="" offset="5584907" size="4" />
|
531 |
+
<output>
|
532 |
+
<port id="0" precision="I32" />
|
533 |
+
</output>
|
534 |
+
</layer>
|
535 |
+
<layer id="41" name="RaggedToDense_134751" type="RaggedToDense" version="extension">
|
536 |
+
<data pad_right="true" />
|
537 |
+
<input>
|
538 |
+
<port id="0" precision="I32">
|
539 |
+
<dim>-1</dim>
|
540 |
+
</port>
|
541 |
+
<port id="1" precision="I32">
|
542 |
+
<dim>-1</dim>
|
543 |
+
</port>
|
544 |
+
<port id="2" precision="I32">
|
545 |
+
<dim>-1</dim>
|
546 |
+
</port>
|
547 |
+
<port id="3" precision="I32" />
|
548 |
+
<port id="4" precision="I32" />
|
549 |
+
</input>
|
550 |
+
<output>
|
551 |
+
<port id="5" precision="I32">
|
552 |
+
<dim>-1</dim>
|
553 |
+
<dim>-1</dim>
|
554 |
+
</port>
|
555 |
+
<port id="6" precision="BOOL">
|
556 |
+
<dim>-1</dim>
|
557 |
+
<dim>-1</dim>
|
558 |
+
</port>
|
559 |
+
</output>
|
560 |
+
</layer>
|
561 |
+
<layer id="42" name="Convert_134752" type="Convert" version="opset1">
|
562 |
+
<data destination_type="i32" />
|
563 |
+
<input>
|
564 |
+
<port id="0" precision="BOOL">
|
565 |
+
<dim>-1</dim>
|
566 |
+
<dim>-1</dim>
|
567 |
+
</port>
|
568 |
+
</input>
|
569 |
+
<output>
|
570 |
+
<port id="1" precision="I32">
|
571 |
+
<dim>-1</dim>
|
572 |
+
<dim>-1</dim>
|
573 |
+
</port>
|
574 |
+
</output>
|
575 |
+
</layer>
|
576 |
+
<layer id="43" name="Convert_134752.0" type="Convert" version="opset1">
|
577 |
+
<data destination_type="i64" />
|
578 |
+
<input>
|
579 |
+
<port id="0" precision="I32">
|
580 |
+
<dim>-1</dim>
|
581 |
+
<dim>-1</dim>
|
582 |
+
</port>
|
583 |
+
</input>
|
584 |
+
<output>
|
585 |
+
<port id="1" precision="I64" names="attention_mask">
|
586 |
+
<dim>-1</dim>
|
587 |
+
<dim>-1</dim>
|
588 |
+
</port>
|
589 |
+
</output>
|
590 |
+
</layer>
|
591 |
+
<layer id="45" name="RaggedToDense_134751.0" type="Convert" version="opset1">
|
592 |
+
<data destination_type="i64" />
|
593 |
+
<input>
|
594 |
+
<port id="0" precision="I32">
|
595 |
+
<dim>-1</dim>
|
596 |
+
<dim>-1</dim>
|
597 |
+
</port>
|
598 |
+
</input>
|
599 |
+
<output>
|
600 |
+
<port id="1" precision="I64" names="input_ids">
|
601 |
+
<dim>-1</dim>
|
602 |
+
<dim>-1</dim>
|
603 |
+
</port>
|
604 |
+
</output>
|
605 |
+
</layer>
|
606 |
+
<layer id="46" name="Result_134753" type="Result" version="opset1">
|
607 |
+
<input>
|
608 |
+
<port id="0" precision="I64">
|
609 |
+
<dim>-1</dim>
|
610 |
+
<dim>-1</dim>
|
611 |
+
</port>
|
612 |
+
</input>
|
613 |
+
</layer>
|
614 |
+
<layer id="44" name="Result_134754" type="Result" version="opset1">
|
615 |
+
<input>
|
616 |
+
<port id="0" precision="I64">
|
617 |
+
<dim>-1</dim>
|
618 |
+
<dim>-1</dim>
|
619 |
+
</port>
|
620 |
+
</input>
|
621 |
+
</layer>
|
622 |
+
</layers>
|
623 |
+
<edges>
|
624 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
625 |
+
<edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
|
626 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
|
627 |
+
<edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
|
628 |
+
<edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
|
629 |
+
<edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
|
630 |
+
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
631 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
|
632 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
|
633 |
+
<edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
|
634 |
+
<edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
|
635 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
636 |
+
<edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
|
637 |
+
<edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
|
638 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
|
639 |
+
<edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
|
640 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
|
641 |
+
<edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
|
642 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
|
643 |
+
<edge from-layer="15" from-port="8" to-layer="16" to-port="0" />
|
644 |
+
<edge from-layer="15" from-port="7" to-layer="18" to-port="1" />
|
645 |
+
<edge from-layer="15" from-port="6" to-layer="18" to-port="0" />
|
646 |
+
<edge from-layer="15" from-port="11" to-layer="16" to-port="3" />
|
647 |
+
<edge from-layer="15" from-port="10" to-layer="16" to-port="2" />
|
648 |
+
<edge from-layer="15" from-port="9" to-layer="16" to-port="1" />
|
649 |
+
<edge from-layer="16" from-port="4" to-layer="18" to-port="2" />
|
650 |
+
<edge from-layer="16" from-port="5" to-layer="18" to-port="3" />
|
651 |
+
<edge from-layer="16" from-port="6" to-layer="18" to-port="4" />
|
652 |
+
<edge from-layer="16" from-port="7" to-layer="18" to-port="5" />
|
653 |
+
<edge from-layer="17" from-port="0" to-layer="18" to-port="6" />
|
654 |
+
<edge from-layer="18" from-port="11" to-layer="32" to-port="4" />
|
655 |
+
<edge from-layer="18" from-port="10" to-layer="32" to-port="3" />
|
656 |
+
<edge from-layer="18" from-port="8" to-layer="32" to-port="1" />
|
657 |
+
<edge from-layer="18" from-port="7" to-layer="32" to-port="0" />
|
658 |
+
<edge from-layer="18" from-port="9" to-layer="32" to-port="2" />
|
659 |
+
<edge from-layer="19" from-port="0" to-layer="32" to-port="5" />
|
660 |
+
<edge from-layer="20" from-port="0" to-layer="32" to-port="6" />
|
661 |
+
<edge from-layer="21" from-port="0" to-layer="32" to-port="7" />
|
662 |
+
<edge from-layer="22" from-port="0" to-layer="32" to-port="8" />
|
663 |
+
<edge from-layer="23" from-port="0" to-layer="32" to-port="9" />
|
664 |
+
<edge from-layer="24" from-port="0" to-layer="32" to-port="10" />
|
665 |
+
<edge from-layer="25" from-port="0" to-layer="32" to-port="11" />
|
666 |
+
<edge from-layer="26" from-port="0" to-layer="32" to-port="12" />
|
667 |
+
<edge from-layer="27" from-port="0" to-layer="32" to-port="13" />
|
668 |
+
<edge from-layer="28" from-port="0" to-layer="32" to-port="14" />
|
669 |
+
<edge from-layer="29" from-port="0" to-layer="32" to-port="15" />
|
670 |
+
<edge from-layer="30" from-port="0" to-layer="32" to-port="16" />
|
671 |
+
<edge from-layer="31" from-port="0" to-layer="32" to-port="17" />
|
672 |
+
<edge from-layer="32" from-port="19" to-layer="33" to-port="0" />
|
673 |
+
<edge from-layer="32" from-port="18" to-layer="33" to-port="1" />
|
674 |
+
<edge from-layer="32" from-port="20" to-layer="41" to-port="2" />
|
675 |
+
<edge from-layer="32" from-port="18" to-layer="36" to-port="0" />
|
676 |
+
<edge from-layer="32" from-port="18" to-layer="41" to-port="0" />
|
677 |
+
<edge from-layer="32" from-port="18" to-layer="37" to-port="1" />
|
678 |
+
<edge from-layer="33" from-port="2" to-layer="35" to-port="0" />
|
679 |
+
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
|
680 |
+
<edge from-layer="35" from-port="2" to-layer="36" to-port="1" />
|
681 |
+
<edge from-layer="36" from-port="2" to-layer="37" to-port="0" />
|
682 |
+
<edge from-layer="36" from-port="2" to-layer="41" to-port="1" />
|
683 |
+
<edge from-layer="37" from-port="2" to-layer="39" to-port="0" />
|
684 |
+
<edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
|
685 |
+
<edge from-layer="39" from-port="2" to-layer="41" to-port="3" />
|
686 |
+
<edge from-layer="40" from-port="0" to-layer="41" to-port="4" />
|
687 |
+
<edge from-layer="41" from-port="6" to-layer="42" to-port="0" />
|
688 |
+
<edge from-layer="41" from-port="5" to-layer="45" to-port="0" />
|
689 |
+
<edge from-layer="42" from-port="1" to-layer="43" to-port="0" />
|
690 |
+
<edge from-layer="43" from-port="1" to-layer="44" to-port="0" />
|
691 |
+
<edge from-layer="45" from-port="1" to-layer="46" to-port="0" />
|
692 |
+
</edges>
|
693 |
+
<rt_info>
|
694 |
+
<add_attention_mask value="True" />
|
695 |
+
<add_prefix_space />
|
696 |
+
<add_special_tokens value="True" />
|
697 |
+
<chat_template value="{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system You are a helpful assistant.<|im_end|> ' }}{% endif %}{{'<|im_start|>' + message['role'] + ' ' + message['content'] + '<|im_end|>' + ' '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant ' }}{% endif %}" />
|
698 |
+
<clean_up_tokenization_spaces />
|
699 |
+
<detokenizer_input_type value="i64" />
|
700 |
+
<eos_token_id value="151645" />
|
701 |
+
<handle_special_tokens_with_re />
|
702 |
+
<number_of_inputs value="1" />
|
703 |
+
<openvino_tokenizers_version value="2025.0.0.0-471-7f2ac4f9648" />
|
704 |
+
<openvino_version value="2025.0.0-17908-513dcc5c7b7-releases/2025/0" />
|
705 |
+
<original_tokenizer_class value="<class 'transformers.models.qwen2.tokenization_qwen2_fast.Qwen2TokenizerFast'>" />
|
706 |
+
<pad_token_id value="151643" />
|
707 |
+
<sentencepiece_version value="0.2.0" />
|
708 |
+
<skip_special_tokens value="True" />
|
709 |
+
<streaming_detokenizer value="False" />
|
710 |
+
<tiktoken_version value="0.7.0" />
|
711 |
+
<tokenizer_output_type value="i64" />
|
712 |
+
<tokenizers_version value="0.21.0" />
|
713 |
+
<transformers_version value="4.47.0" />
|
714 |
+
<use_max_padding value="False" />
|
715 |
+
<use_sentencepiece_backend value="False" />
|
716 |
+
<utf8_replace_mode value="replace" />
|
717 |
+
<with_detokenizer value="True" />
|
718 |
+
</rt_info>
|
719 |
+
</net>
|
openvino_vision_embeddings_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8995f4e5a7e271498532645b80d33339058533a754961c5bd557a93e3c583f7
|
3 |
+
size 313037732
|
openvino_vision_embeddings_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 448,
|
4 |
+
"width": 448
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.485,
|
13 |
+
0.456,
|
14 |
+
0.406
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPFeatureExtractor",
|
17 |
+
"image_std": [
|
18 |
+
0.229,
|
19 |
+
0.224,
|
20 |
+
0.225
|
21 |
+
],
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"shortest_edge": 448
|
26 |
+
}
|
27 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<img>",
|
6 |
+
"</img>",
|
7 |
+
"<IMG_CONTEXT>",
|
8 |
+
"<quad>",
|
9 |
+
"</quad>",
|
10 |
+
"<ref>",
|
11 |
+
"</ref>",
|
12 |
+
"<box>",
|
13 |
+
"</box>"
|
14 |
+
],
|
15 |
+
"eos_token": {
|
16 |
+
"content": "<|im_end|>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"pad_token": {
|
23 |
+
"content": "<|endoftext|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
}
|
29 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63a3df087afa0c8890b416fe2c4f3f2593f06181adda4aacf93db8eb34cf0208
|
3 |
+
size 11414752
|
tokenizer_config.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_eos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<img>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "</img>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<IMG_CONTEXT>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<quad>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "</quad>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<ref>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "</ref>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<box>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "</box>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"additional_special_tokens": [
|
103 |
+
"<|im_start|>",
|
104 |
+
"<|im_end|>",
|
105 |
+
"<img>",
|
106 |
+
"</img>",
|
107 |
+
"<IMG_CONTEXT>",
|
108 |
+
"<quad>",
|
109 |
+
"</quad>",
|
110 |
+
"<ref>",
|
111 |
+
"</ref>",
|
112 |
+
"<box>",
|
113 |
+
"</box>"
|
114 |
+
],
|
115 |
+
"bos_token": null,
|
116 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
117 |
+
"clean_up_tokenization_spaces": false,
|
118 |
+
"eos_token": "<|im_end|>",
|
119 |
+
"errors": "replace",
|
120 |
+
"extra_special_tokens": {},
|
121 |
+
"model_max_length": 8192,
|
122 |
+
"pad_token": "<|endoftext|>",
|
123 |
+
"split_special_tokens": false,
|
124 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
125 |
+
"unk_token": null
|
126 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|