mihaimasala commited on
Commit
89db878
·
verified ·
1 Parent(s): 0367178

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +746 -3
README.md CHANGED
@@ -1,3 +1,746 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - google/gemma-7b
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ model-index:
16
+ - name: OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09
17
+ results:
18
+ - task:
19
+ type: text-generation
20
+ dataset:
21
+ name: RoMT-Bench
22
+ type: RoMT-Bench
23
+ metrics:
24
+ - name: Score
25
+ type: Score
26
+ value: 5.24
27
+ - task:
28
+ type: text-generation
29
+ dataset:
30
+ name: RoCulturaBench
31
+ type: RoCulturaBench
32
+ metrics:
33
+ - name: Score
34
+ type: Score
35
+ value: 3.51
36
+ - task:
37
+ type: text-generation
38
+ dataset:
39
+ name: Romanian_Academic_Benchmarks
40
+ type: Romanian_Academic_Benchmarks
41
+ metrics:
42
+ - name: Average accuracy
43
+ type: accuracy
44
+ value: 50.48
45
+ - task:
46
+ type: text-generation
47
+ dataset:
48
+ name: OpenLLM-Ro/ro_arc_challenge
49
+ type: OpenLLM-Ro/ro_arc_challenge
50
+ metrics:
51
+ - name: Average accuracy
52
+ type: accuracy
53
+ value: 52.01
54
+ - task:
55
+ type: text-generation
56
+ dataset:
57
+ name: OpenLLM-Ro/ro_mmlu
58
+ type: OpenLLM-Ro/ro_mmlu
59
+ metrics:
60
+ - name: Average accuracy
61
+ type: accuracy
62
+ value: 52.37
63
+ - task:
64
+ type: text-generation
65
+ dataset:
66
+ name: OpenLLM-Ro/ro_winogrande
67
+ type: OpenLLM-Ro/ro_winogrande
68
+ metrics:
69
+ - name: Average accuracy
70
+ type: accuracy
71
+ value: 66.97
72
+ - task:
73
+ type: text-generation
74
+ dataset:
75
+ name: OpenLLM-Ro/ro_hellaswag
76
+ type: OpenLLM-Ro/ro_hellaswag
77
+ metrics:
78
+ - name: Average accuracy
79
+ type: accuracy
80
+ value: 56.34
81
+ - task:
82
+ type: text-generation
83
+ dataset:
84
+ name: OpenLLM-Ro/ro_gsm8k
85
+ type: OpenLLM-Ro/ro_gsm8k
86
+ metrics:
87
+ - name: Average accuracy
88
+ type: accuracy
89
+ value: 25.98
90
+ - task:
91
+ type: text-generation
92
+ dataset:
93
+ name: OpenLLM-Ro/ro_truthfulqa
94
+ type: OpenLLM-Ro/ro_truthfulqa
95
+ metrics:
96
+ - name: Average accuracy
97
+ type: accuracy
98
+ value: 49.18
99
+ - task:
100
+ type: text-generation
101
+ dataset:
102
+ name: LaRoSeDa_binary
103
+ type: LaRoSeDa_binary
104
+ metrics:
105
+ - name: Average macro-f1
106
+ type: macro-f1
107
+ value: 86.96
108
+ - task:
109
+ type: text-generation
110
+ dataset:
111
+ name: LaRoSeDa_multiclass
112
+ type: LaRoSeDa_multiclass
113
+ metrics:
114
+ - name: Average macro-f1
115
+ type: macro-f1
116
+ value: 56.72
117
+ - task:
118
+ type: text-generation
119
+ dataset:
120
+ name: LaRoSeDa_binary_finetuned
121
+ type: LaRoSeDa_binary_finetuned
122
+ metrics:
123
+ - name: Average macro-f1
124
+ type: macro-f1
125
+ value: 98.80
126
+ - task:
127
+ type: text-generation
128
+ dataset:
129
+ name: LaRoSeDa_multiclass_finetuned
130
+ type: LaRoSeDa_multiclass_finetuned
131
+ metrics:
132
+ - name: Average macro-f1
133
+ type: macro-f1
134
+ value: 85.81
135
+ - task:
136
+ type: text-generation
137
+ dataset:
138
+ name: WMT_EN-RO
139
+ type: WMT_EN-RO
140
+ metrics:
141
+ - name: Average bleu
142
+ type: bleu
143
+ value: 24.45
144
+ - task:
145
+ type: text-generation
146
+ dataset:
147
+ name: WMT_RO-EN
148
+ type: WMT_RO-EN
149
+ metrics:
150
+ - name: Average bleu
151
+ type: bleu
152
+ value: 14.20
153
+ - task:
154
+ type: text-generation
155
+ dataset:
156
+ name: WMT_EN-RO_finetuned
157
+ type: WMT_EN-RO_finetuned
158
+ metrics:
159
+ - name: Average bleu
160
+ type: bleu
161
+ value: 25.96
162
+ - task:
163
+ type: text-generation
164
+ dataset:
165
+ name: WMT_RO-EN_finetuned
166
+ type: WMT_RO-EN_finetuned
167
+ metrics:
168
+ - name: Average bleu
169
+ type: bleu
170
+ value: 39.07
171
+ - task:
172
+ type: text-generation
173
+ dataset:
174
+ name: XQuAD
175
+ type: XQuAD
176
+ metrics:
177
+ - name: Average exact_match
178
+ type: exact_match
179
+ value: 26.03
180
+ - task:
181
+ type: text-generation
182
+ dataset:
183
+ name: XQuAD
184
+ type: XQuAD
185
+ metrics:
186
+ - name: Average f1
187
+ type: f1
188
+ value: 41.58
189
+ - task:
190
+ type: text-generation
191
+ dataset:
192
+ name: XQuAD_finetuned
193
+ type: XQuAD_finetuned
194
+ metrics:
195
+ - name: Average exact_match
196
+ type: exact_match
197
+ value: 46.72
198
+ - task:
199
+ type: text-generation
200
+ dataset:
201
+ name: XQuAD_finetuned
202
+ type: XQuAD_finetuned
203
+ metrics:
204
+ - name: Average f1
205
+ type: f1
206
+ value: 60.79
207
+ - task:
208
+ type: text-generation
209
+ dataset:
210
+ name: STS
211
+ type: STS
212
+ metrics:
213
+ - name: Average spearman
214
+ type: spearman
215
+ value: 73.23
216
+ - task:
217
+ type: text-generation
218
+ dataset:
219
+ name: STS
220
+ type: STS
221
+ metrics:
222
+ - name: Average pearson
223
+ type: pearson
224
+ value: 71.58
225
+ - task:
226
+ type: text-generation
227
+ dataset:
228
+ name: STS_finetuned
229
+ type: STS_finetuned
230
+ metrics:
231
+ - name: Average spearman
232
+ type: spearman
233
+ value: 88.42
234
+ - task:
235
+ type: text-generation
236
+ dataset:
237
+ name: STS_finetuned
238
+ type: STS_finetuned
239
+ metrics:
240
+ - name: Average pearson
241
+ type: pearson
242
+ value: 88.45
243
+ - task:
244
+ type: text-generation
245
+ dataset:
246
+ name: RoMT-Bench
247
+ type: RoMT-Bench
248
+ metrics:
249
+ - name: First turn
250
+ type: Score
251
+ value: 5.55
252
+ - name: Second turn
253
+ type: Score
254
+ value: 4.94
255
+ - task:
256
+ type: text-generation
257
+ dataset:
258
+ name: OpenLLM-Ro/ro_arc_challenge
259
+ type: OpenLLM-Ro/ro_arc_challenge
260
+ metrics:
261
+ - name: 0-shot
262
+ type: accuracy
263
+ value: 49.53
264
+ - name: 1-shot
265
+ type: accuracy
266
+ value: 52.53
267
+ - name: 3-shot
268
+ type: accuracy
269
+ value: 51.50
270
+ - name: 5-shot
271
+ type: accuracy
272
+ value: 53.56
273
+ - name: 10-shot
274
+ type: accuracy
275
+ value: 52.53
276
+ - name: 25-shot
277
+ type: accuracy
278
+ value: 52.44
279
+ - task:
280
+ type: text-generation
281
+ dataset:
282
+ name: OpenLLM-Ro/ro_mmlu
283
+ type: OpenLLM-Ro/ro_mmlu
284
+ metrics:
285
+ - name: 0-shot
286
+ type: accuracy
287
+ value: 51.81
288
+ - name: 1-shot
289
+ type: accuracy
290
+ value: 52.45
291
+ - name: 3-shot
292
+ type: accuracy
293
+ value: 52.52
294
+ - name: 5-shot
295
+ type: accuracy
296
+ value: 52.70
297
+ - task:
298
+ type: text-generation
299
+ dataset:
300
+ name: OpenLLM-Ro/ro_winogrande
301
+ type: OpenLLM-Ro/ro_winogrande
302
+ metrics:
303
+ - name: 0-shot
304
+ type: accuracy
305
+ value: 66.54
306
+ - name: 1-shot
307
+ type: accuracy
308
+ value: 66.69
309
+ - name: 3-shot
310
+ type: accuracy
311
+ value: 67.09
312
+ - name: 5-shot
313
+ type: accuracy
314
+ value: 67.56
315
+ - task:
316
+ type: text-generation
317
+ dataset:
318
+ name: OpenLLM-Ro/ro_hellaswag
319
+ type: OpenLLM-Ro/ro_hellaswag
320
+ metrics:
321
+ - name: 0-shot
322
+ type: accuracy
323
+ value: 58.80
324
+ - name: 1-shot
325
+ type: accuracy
326
+ value: 57.04
327
+ - name: 3-shot
328
+ type: accuracy
329
+ value: 55.85
330
+ - name: 5-shot
331
+ type: accuracy
332
+ value: 54.15
333
+ - name: 10-shot
334
+ type: accuracy
335
+ value: 55.88
336
+ - task:
337
+ type: text-generation
338
+ dataset:
339
+ name: OpenLLM-Ro/ro_gsm8k
340
+ type: OpenLLM-Ro/ro_gsm8k
341
+ metrics:
342
+ - name: 1-shot
343
+ type: accuracy
344
+ value: 22.06
345
+ - name: 3-shot
346
+ type: accuracy
347
+ value: 25.40
348
+ - name: 5-shot
349
+ type: accuracy
350
+ value: 30.48
351
+ - task:
352
+ type: text-generation
353
+ dataset:
354
+ name: LaRoSeDa_binary
355
+ type: LaRoSeDa_binary
356
+ metrics:
357
+ - name: 0-shot
358
+ type: macro-f1
359
+ value: 87.28
360
+ - name: 1-shot
361
+ type: macro-f1
362
+ value: 86.40
363
+ - name: 3-shot
364
+ type: macro-f1
365
+ value: 87.95
366
+ - name: 5-shot
367
+ type: macro-f1
368
+ value: 86.20
369
+ - task:
370
+ type: text-generation
371
+ dataset:
372
+ name: LaRoSeDa_multiclass
373
+ type: LaRoSeDa_multiclass
374
+ metrics:
375
+ - name: 0-shot
376
+ type: macro-f1
377
+ value: 38.35
378
+ - name: 1-shot
379
+ type: macro-f1
380
+ value: 63.86
381
+ - name: 3-shot
382
+ type: macro-f1
383
+ value: 62.03
384
+ - name: 5-shot
385
+ type: macro-f1
386
+ value: 62.62
387
+ - task:
388
+ type: text-generation
389
+ dataset:
390
+ name: WMT_EN-RO
391
+ type: WMT_EN-RO
392
+ metrics:
393
+ - name: 0-shot
394
+ type: bleu
395
+ value: 11.39
396
+ - name: 1-shot
397
+ type: bleu
398
+ value: 28.08
399
+ - name: 3-shot
400
+ type: bleu
401
+ value: 29.18
402
+ - name: 5-shot
403
+ type: bleu
404
+ value: 29.13
405
+ - task:
406
+ type: text-generation
407
+ dataset:
408
+ name: WMT_RO-EN
409
+ type: WMT_RO-EN
410
+ metrics:
411
+ - name: 0-shot
412
+ type: bleu
413
+ value: 1.92
414
+ - name: 1-shot
415
+ type: bleu
416
+ value: 9.39
417
+ - name: 3-shot
418
+ type: bleu
419
+ value: 21.81
420
+ - name: 5-shot
421
+ type: bleu
422
+ value: 23.66
423
+ - task:
424
+ type: text-generation
425
+ dataset:
426
+ name: XQuAD_EM
427
+ type: XQuAD_EM
428
+ metrics:
429
+ - name: 0-shot
430
+ type: exact_match
431
+ value: 32.77
432
+ - name: 1-shot
433
+ type: exact_match
434
+ value: 20.25
435
+ - name: 3-shot
436
+ type: exact_match
437
+ value: 18.49
438
+ - name: 5-shot
439
+ type: exact_match
440
+ value: 32.60
441
+ - task:
442
+ type: text-generation
443
+ dataset:
444
+ name: XQuAD_F1
445
+ type: XQuAD_F1
446
+ metrics:
447
+ - name: 0-shot
448
+ type: f1
449
+ value: 47.98
450
+ - name: 1-shot
451
+ type: f1
452
+ value: 34.92
453
+ - name: 3-shot
454
+ type: f1
455
+ value: 33.27
456
+ - name: 5-shot
457
+ type: f1
458
+ value: 50.14
459
+ - task:
460
+ type: text-generation
461
+ dataset:
462
+ name: STS_Spearman
463
+ type: STS_Spearman
464
+ metrics:
465
+ - name: 1-shot
466
+ type: spearman
467
+ value: 71.75
468
+ - name: 3-shot
469
+ type: spearman
470
+ value: 71.83
471
+ - name: 5-shot
472
+ type: spearman
473
+ value: 76.11
474
+ - task:
475
+ type: text-generation
476
+ dataset:
477
+ name: STS_Pearson
478
+ type: STS_Pearson
479
+ metrics:
480
+ - name: 1-shot
481
+ type: pearson
482
+ value: 69.97
483
+ - name: 3-shot
484
+ type: pearson
485
+ value: 69.87
486
+ - name: 5-shot
487
+ type: pearson
488
+ value: 74.89
489
+
490
+ ---
491
+
492
+ # Model Card for Model ID
493
+
494
+ <!-- Provide a quick summary of what the model is/does. -->
495
+
496
+ RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
497
+
498
+ ## Model Details
499
+
500
+ ### Model Description
501
+
502
+ <!-- Provide a longer summary of what this model is. -->
503
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
504
+
505
+
506
+ - **Developed by:** OpenLLM-Ro
507
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
508
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
509
+ <!-- - **Model type:** [More Information Needed] -->
510
+ - **Language(s):** Romanian
511
+ - **License:** cc-by-nc-4.0
512
+ - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
513
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
514
+
515
+
516
+ ### Model Sources
517
+
518
+ <!-- Provide the basic links for the model. -->
519
+
520
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
521
+ - **Paper:** https://arxiv.org/abs/2406.18266
522
+
523
+ ## Intended Use
524
+
525
+ ### Intended Use Cases
526
+
527
+ RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
528
+
529
+ ### Out-of-Scope Use
530
+
531
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
532
+
533
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
534
+
535
+
536
+
537
+ ## How to Get Started with the Model
538
+
539
+ Use the code below to get started with the model.
540
+
541
+ ```python
542
+ from transformers import AutoTokenizer, AutoModelForCausalLM
543
+
544
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09")
545
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09")
546
+
547
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
548
+ chat = [
549
+ {"role": "user", "content": instruction},
550
+ ]
551
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
552
+
553
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
554
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
555
+ print(tokenizer.decode(outputs[0]))
556
+ ```
557
+
558
+ ## Academic Benchmarks
559
+
560
+ <table>
561
+ <tbody>
562
+ <tr>
563
+ <td><strong>Model</strong></td>
564
+ <td><strong><center>Average</center></strong></td>
565
+ <td><strong><center>ARC</center></strong></td>
566
+ <td><strong><center>MMLU</center></strong></td>
567
+ <td><strong><center>Winogrande</center></strong></td>
568
+ <td><strong><center>Hellaswag</center></strong></td>
569
+ <td><strong><center>GSM8k</center></strong></td>
570
+ <td><strong><center>TruthfulQA</center></strong></td>
571
+ </tr>
572
+ <tr>
573
+ <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
574
+ </tr>
575
+ <tr>
576
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>53.41</strong></center></td><td><center><strong>52.44</strong></center></td><td><center>54.44</center></td><td><center><strong>69.36</strong></center></td><td><center><strong>61.96</strong></center></td><td><center>31.06</center></td><td><center><strong>51.23</strong></center></td>
577
+ </tr>
578
+ <tr>
579
+ <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>50.48</em></center></td><td><center><em>52.01</em></center></td><td><center><em>52.37</em></center></td><td><center><em>66.97</em></center></td><td><center><em>56.34</em></center></td><td><center><em>25.98</em></center></td><td><center><em>49.18</em></center></td>
580
+ </tr>
581
+ <tr>
582
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center><strong>34.98</strong></center></td><td><center>40.45</center></td>
583
+ </tr>
584
+ </tbody>
585
+ </table>
586
+
587
+
588
+ ## Downstream tasks
589
+
590
+ <table>
591
+ <tbody>
592
+ <tr>
593
+ <td></td>
594
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
595
+ <td colspan="4"><center><strong>WMT</strong></center></td>
596
+ </tr>
597
+ <tr>
598
+ <td></td>
599
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
600
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
601
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
602
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
603
+ </tr>
604
+ <tr>
605
+ <td><strong>Model</strong></td>
606
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
607
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
608
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
609
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
610
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
611
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
612
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
613
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
614
+ </tr>
615
+ <tr>
616
+ <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
617
+ </tr>
618
+ <tr>
619
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>97.86</strong></center></td><td><center><strong>65.70</strong></center></td><td><center>98.43</center></td><td><center><strong>87.17</strong></center></td><td><center><strong>27.91</strong></center></td><td><center>23.08</center></td><td><center><strong>27.99</strong></center></td><td><center><strong>39.51</strong></center></td>
620
+ </tr>
621
+ <tr>
622
+ <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>86.96</em></center></td><td><center><em>56.72</em></center></td><td><center><em><strong>98.80</strong></em></center></td><td><center><em>85.81</em></center></td><td><center><em>24.45</em></center></td><td><center><em>14.20</em></center></td><td><center><em>25.96</em></center></td><td><center><em>39.07</em></center></td>
623
+ </tr>
624
+ <tr>
625
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td>
626
+ </tr>
627
+ </tbody>
628
+ </table>
629
+
630
+
631
+ <table>
632
+ <tbody>
633
+ <tr>
634
+ <td></td>
635
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
636
+ <td colspan="4"><center><strong>STS</strong></center></td>
637
+ </tr>
638
+ <tr>
639
+ <td></td>
640
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
641
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
642
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
643
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
644
+ </tr>
645
+ <tr>
646
+ <td><strong>Model</strong></td>
647
+ <td><center><strong>(EM)</strong></center></td>
648
+ <td><center><strong>(F1)</strong></center></td>
649
+ <td><center><strong>(EM)</strong></center></td>
650
+ <td><center><strong>(F1)</strong></center></td>
651
+ <td><center><strong>(Spearman)</strong></center></td>
652
+ <td><center><strong>(Pearson)</strong></center></td>
653
+ <td><center><strong>(Spearman)</strong></center></td>
654
+ <td><center><strong>(Pearson)</strong></center></td>
655
+ </tr>
656
+ <tr>
657
+ <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
658
+ </tr>
659
+ <tr>
660
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>17.75</center></td><td><center>28.11</center></td><td><center>52.02</center></td><td><center>68.43</center></td><td><center><strong>73.96</strong></center></td><td><center><strong>75.16</strong></center></td><td><center>86.45</center></td><td><center>86.31</center></td>
661
+ </tr>
662
+ <tr>
663
+ <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>26.03</em></center></td><td><center><em>41.58</em></center></td><td><center><em>46.72</em></center></td><td><center><em>60.79</em></center></td><td><center><em>73.23</em></center></td><td><center><em>71.58</em></center></td><td><center><em><strong>88.42</strong></em></center></td><td><center><em><strong>88.45</strong></em></center></td>
664
+ </tr>
665
+ <tr>
666
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td>
667
+ </tr>
668
+ </tbody>
669
+ </table>
670
+
671
+
672
+ ## MT-Bench
673
+
674
+ <table>
675
+ <tbody>
676
+ <tr>
677
+ <td><strong>Model</strong></td>
678
+ <td><strong><center>Average</center></strong></td>
679
+ <td><strong><center>1st turn</center></strong></td>
680
+ <td><strong><center>2nd turn</center></strong></td>
681
+ <td><strong><center>Answers in Ro</center></strong></td>
682
+ </tr>
683
+ <tr>
684
+ <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
685
+ </tr>
686
+ <tr>
687
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>5.26</center></td><td><center><strong>5.92</strong></center></td><td><center>4.60</center></td><td><center><strong>160/160</strong></center></td>
688
+ </tr>
689
+ <tr>
690
+ <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>5.24</em></center></td><td><center><em>5.55</em></center></td><td><center><em>4.94</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
691
+ </tr>
692
+ <tr>
693
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>5.47</strong></center></td><td><center><strong>5.92</strong></center></td><td><center><strong>5.03</strong></center></td><td><center><strong>160/160</strong></center></td>
694
+ </tr>
695
+ </tbody>
696
+ </table>
697
+
698
+ ## RoCulturaBench
699
+
700
+ <table>
701
+ <tbody>
702
+ <tr>
703
+ <td><strong>Model</strong></td>
704
+ <td><strong><center>Average</center></strong></td>
705
+ <td><strong><center>Answers in Ro</center></strong></td>
706
+ </tr>
707
+ <tr>
708
+ <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
709
+ </tr>
710
+ <tr>
711
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>3.26</center></td><td><center><strong>100/100</strong></center></td>
712
+ </tr>
713
+ <tr>
714
+ <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>3.51</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
715
+ </tr>
716
+ <tr>
717
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td>
718
+ </tr>
719
+ </tbody>
720
+ </table>
721
+
722
+ ## RoGemma Model Family
723
+
724
+ | Model | Link |
725
+ |--------------------|:--------:|
726
+ |RoGemma-7b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) |
727
+ |*RoGemma-7b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) |
728
+ |RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) |
729
+
730
+
731
+ ## Citation
732
+
733
+ ```
734
+ @misc{masala2024vorbecstiromanecsterecipetrain,
735
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
736
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
737
+ year={2024},
738
+ eprint={2406.18266},
739
+ archivePrefix={arXiv},
740
+ primaryClass={cs.CL},
741
+ url={https://arxiv.org/abs/2406.18266},
742
+ }
743
+ ```
744
+ <!-- **APA:**
745
+
746
+ [More Information Needed] -->