--- license: "cc-by-nc-4.0" tags: - vision - video-classification --- # VideoMAE-v2 (base-sized model, Pretrained on UnlabeledHybrid-1M) VideoMAEv2-Base model pre-trained for 800 epochs in a self-supervised way on UnlabeldHybrid-1M dataset. It was introduced in the paper [[CVPR23]VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking](https://arxiv.org/abs/2203.12602) by Wang et al. and first released in [GitHub](https://github.com/OpenGVLab/VideoMAEv2). ## Intended uses & limitations You can use the raw model for video feature extraction. ### How to use Here is how to use this model to extract a video feature: ```python from transformers import VideoMAEImageProcessor, AutoModel, AutoConfig import numpy as np import torch config = AutoConfig.from_pretrained("./", trust_remote_code=True) model = AutoModel.from_pretrained('./', config=config, trust_remote_code=True) video = list(np.random.rand(16, 3, 224, 224)) processor = VideoMAEImageProcessor.from_pretrained("./") model = AutoModel.from_pretrained("./",config=config, trust_remote_code=True) # B, T, C, H, W -> B, C, T, H, W inputs = processor(video, return_tensors="pt") inputs['pixel_values'] = inputs['pixel_values'].permute(0, 2, 1, 3, 4) with torch.no_grad(): outputs = model(**inputs) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{wang2023videomaev2, author = {Wang, Limin and Huang, Bingkun and Zhao, Zhiyu and Tong, Zhan and He, Yinan and Wang, Yi and Wang, Yali and Qiao, Yu}, title = {VideoMAE V2: Scaling Video Masked Autoencoders With Dual Masking}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, pages = {14549-14560} } @misc{videomaev2, title={VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking}, author={Limin Wang and Bingkun Huang and Zhiyu Zhao and Zhan Tong and Yinan He and Yi Wang and Yali Wang and Yu Qiao}, year={2023}, eprint={2303.16727}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```