--- language: - en library_name: transformers license: apache-2.0 metrics: - accuracy tags: - multimodal pipeline_tag: video-text-to-text --- # πŸ“•InternVL_2_5_HiCo_R16 ⚑ [\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5) [\[πŸ“œ Tech Report\]](https://arxiv.org/abs/2501.12386) ## πŸ“ˆ Performance | Model | MVBench | LongVideoBench | VideoMME(w/o sub)| | --- | --- | --- | --- | |InternVL_2_5_HiCo_R16| - | - | - | ## πŸš€ How to use the model First, you need to install [flash attention2](https://github.com/Dao-AILab/flash-attention) and some other modules. We provide a simple installation example below: ``` pip install transformers==4.40.1 pip install av pip install imageio pip install decord pip install opencv-python pip install flash-attn --no-build-isolation ``` Then you could use our model: ```python from transformers import AutoModel, AutoTokenizer # model setting model_path = 'OpenGVLab/InternVL_2_5_HiCo_R16' tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda() image_processor = model.get_vision_tower().image_processor # evaluation setting max_num_frames = 512 generation_config = dict( do_sample=False, temperature=0.0, max_new_tokens=1024, top_p=0.1, num_beams=1 ) video_path = "your_video.mp4" # single-turn conversation question1 = "Describe this video in detail." output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config) print(output1) # multi-turn conversation question2 = "How many people appear in the video?" output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config) print(output2) ``` ## ✏️ Citation ```bibtex @article{wang2025internvideo, title={InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling}, author={Wang, Yi and Li, Xinhao and Yan, Ziang and He, Yinan and Yu, Jiashuo and Zeng, Xiangyu and Wang, Chenting and Ma, Changlian and Huang, Haian and Gao, Jianfei and Dou, Min and Chen, Kai and Wang, Wenhai and Qiao, Yu and Wang, Yali and Wang, Limin}, journal={arXiv preprint arXiv:2501.12386}, year={2025} } ```