czczup commited on
Commit
bd30e18
·
verified ·
1 Parent(s): 7597d99

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -65,7 +65,7 @@ To construct this dataset, we propose an efficient data construction pipeline. S
65
 
66
  - **For samples with clear ground truths:**
67
  the model is prompted to first provide the reasoning process and then give the final answer in the format like `Final Answer: ***`.
68
- Responses matching the ground truth answer constitute the positive set \\(mathcal{Y}_p\\), while those that do not match make up the negative set \\(\mathcal{Y}_n\\). Additionally, responses that fail to provide a clear final answer are also merged into \\(\mathcal{Y}_n\\).
69
  Given these responses labeled as positive or negative, we build the preference pairs by selecting a chosen response \\(y_c\\) from \\(\mathcal{Y}_p\\) and a negative response \\(y_r\\) from \\(\mathcal{Y}_n\\).
70
 
71
  - **For samples without clear ground truths:**
@@ -160,7 +160,7 @@ To comprehensively compare InternVL's performance before and after MPO, we emplo
160
 
161
  ## Quick Start
162
 
163
- We provide an example code to run `InternVL2_5-1B` using `transformers`.
164
 
165
  > Please use transformers>=4.37.2 to ensure the model works normally.
166
 
@@ -171,7 +171,7 @@ We provide an example code to run `InternVL2_5-1B` using `transformers`.
171
  ```python
172
  import torch
173
  from transformers import AutoTokenizer, AutoModel
174
- path = "OpenGVLab/InternVL2_5-1B"
175
  model = AutoModel.from_pretrained(
176
  path,
177
  torch_dtype=torch.bfloat16,
@@ -185,7 +185,7 @@ model = AutoModel.from_pretrained(
185
  ```python
186
  import torch
187
  from transformers import AutoTokenizer, AutoModel
188
- path = "OpenGVLab/InternVL2_5-1B"
189
  model = AutoModel.from_pretrained(
190
  path,
191
  torch_dtype=torch.bfloat16,
@@ -230,8 +230,8 @@ def split_model(model_name):
230
 
231
  return device_map
232
 
233
- path = "OpenGVLab/InternVL2_5-1B"
234
- device_map = split_model('InternVL2_5-1B')
235
  model = AutoModel.from_pretrained(
236
  path,
237
  torch_dtype=torch.bfloat16,
@@ -327,7 +327,7 @@ def load_image(image_file, input_size=448, max_num=12):
327
  return pixel_values
328
 
329
  # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
330
- path = 'OpenGVLab/InternVL2_5-1B'
331
  model = AutoModel.from_pretrained(
332
  path,
333
  torch_dtype=torch.bfloat16,
@@ -510,7 +510,7 @@ LMDeploy abstracts the complex inference process of multi-modal Vision-Language
510
  from lmdeploy import pipeline, TurbomindEngineConfig
511
  from lmdeploy.vl import load_image
512
 
513
- model = 'OpenGVLab/InternVL2_5-1B'
514
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
515
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
516
  response = pipe(('describe this image', image))
@@ -528,7 +528,7 @@ from lmdeploy import pipeline, TurbomindEngineConfig
528
  from lmdeploy.vl import load_image
529
  from lmdeploy.vl.constants import IMAGE_TOKEN
530
 
531
- model = 'OpenGVLab/InternVL2_5-1B'
532
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
533
 
534
  image_urls=[
@@ -550,7 +550,7 @@ Conducting inference with batch prompts is quite straightforward; just place the
550
  from lmdeploy import pipeline, TurbomindEngineConfig
551
  from lmdeploy.vl import load_image
552
 
553
- model = 'OpenGVLab/InternVL2_5-1B'
554
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
555
 
556
  image_urls=[
@@ -570,7 +570,7 @@ There are two ways to do the multi-turn conversations with the pipeline. One is
570
  from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
571
  from lmdeploy.vl import load_image
572
 
573
- model = 'OpenGVLab/InternVL2_5-1B'
574
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
575
 
576
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
@@ -586,7 +586,7 @@ print(sess.response.text)
586
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
587
 
588
  ```shell
589
- lmdeploy serve api_server OpenGVLab/InternVL2_5-1B --server-port 23333
590
  ```
591
 
592
  To use the OpenAI-style interface, you need to install OpenAI:
@@ -625,7 +625,7 @@ print(response)
625
 
626
  ## License
627
 
628
- This project is released under the MIT License. This project uses the pre-trained Qwen2.5-0.5B-Instruct as a component, which is licensed under the Apache License 2.0.
629
 
630
  ## Citation
631
 
 
65
 
66
  - **For samples with clear ground truths:**
67
  the model is prompted to first provide the reasoning process and then give the final answer in the format like `Final Answer: ***`.
68
+ Responses matching the ground truth answer constitute the positive set \\(\mathcal{Y}_p\\), while those that do not match make up the negative set \\(\mathcal{Y}_n\\). Additionally, responses that fail to provide a clear final answer are also merged into \\(\mathcal{Y}_n\\).
69
  Given these responses labeled as positive or negative, we build the preference pairs by selecting a chosen response \\(y_c\\) from \\(\mathcal{Y}_p\\) and a negative response \\(y_r\\) from \\(\mathcal{Y}_n\\).
70
 
71
  - **For samples without clear ground truths:**
 
160
 
161
  ## Quick Start
162
 
163
+ We provide an example code to run `InternVL2_5-26B-MPO` using `transformers`.
164
 
165
  > Please use transformers>=4.37.2 to ensure the model works normally.
166
 
 
171
  ```python
172
  import torch
173
  from transformers import AutoTokenizer, AutoModel
174
+ path = "OpenGVLab/InternVL2_5-26B-MPO"
175
  model = AutoModel.from_pretrained(
176
  path,
177
  torch_dtype=torch.bfloat16,
 
185
  ```python
186
  import torch
187
  from transformers import AutoTokenizer, AutoModel
188
+ path = "OpenGVLab/InternVL2_5-26B-MPO"
189
  model = AutoModel.from_pretrained(
190
  path,
191
  torch_dtype=torch.bfloat16,
 
230
 
231
  return device_map
232
 
233
+ path = "OpenGVLab/InternVL2_5-26B-MPO"
234
+ device_map = split_model('InternVL2_5-26B')
235
  model = AutoModel.from_pretrained(
236
  path,
237
  torch_dtype=torch.bfloat16,
 
327
  return pixel_values
328
 
329
  # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
330
+ path = 'OpenGVLab/InternVL2_5-26B-MPO'
331
  model = AutoModel.from_pretrained(
332
  path,
333
  torch_dtype=torch.bfloat16,
 
510
  from lmdeploy import pipeline, TurbomindEngineConfig
511
  from lmdeploy.vl import load_image
512
 
513
+ model = 'OpenGVLab/InternVL2_5-26B-MPO'
514
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
515
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
516
  response = pipe(('describe this image', image))
 
528
  from lmdeploy.vl import load_image
529
  from lmdeploy.vl.constants import IMAGE_TOKEN
530
 
531
+ model = 'OpenGVLab/InternVL2_5-26B-MPO'
532
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
533
 
534
  image_urls=[
 
550
  from lmdeploy import pipeline, TurbomindEngineConfig
551
  from lmdeploy.vl import load_image
552
 
553
+ model = 'OpenGVLab/InternVL2_5-26B-MPO'
554
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
555
 
556
  image_urls=[
 
570
  from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
571
  from lmdeploy.vl import load_image
572
 
573
+ model = 'OpenGVLab/InternVL2_5-26B-MPO'
574
  pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
575
 
576
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
 
586
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
587
 
588
  ```shell
589
+ lmdeploy serve api_server OpenGVLab/InternVL2_5-26B-MPO --server-port 23333
590
  ```
591
 
592
  To use the OpenAI-style interface, you need to install OpenAI:
 
625
 
626
  ## License
627
 
628
+ This project is released under the MIT License. This project uses the pre-trained internlm2_5-20b-chat as a component, which is licensed under the Apache License 2.0.
629
 
630
  ## Citation
631