Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -68,13 +68,15 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
|
|
68 |
|
69 |
### Video Benchmarks
|
70 |
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
| Video
|
77 |
-
| Video
|
|
|
|
|
78 |
|
79 |
- We evaluate our models on MVBench by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
|
80 |
|
@@ -643,13 +645,15 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
643 |
|
644 |
### 视频相关评测
|
645 |
|
646 |
-
|
|
647 |
-
|
|
648 |
-
|
|
649 |
-
|
|
650 |
-
|
|
651 |
-
| Video
|
652 |
-
| Video
|
|
|
|
|
653 |
|
654 |
- 我们通过从每个视频中提取16帧来评估我们的模型在MVBench上的性能,每个视频帧被调整为448x448的图像。
|
655 |
|
|
|
68 |
|
69 |
### Video Benchmarks
|
70 |
|
71 |
+
| Benchmark | GPT-4V | VILA-1.5 | LLaVA-NeXT-Video | InternVL-Chat-V1-5 | InternVL2-26B |
|
72 |
+
| :-------------------------: | :----: | :------: | :--------------: | :----------------: | :-----------: |
|
73 |
+
| Model Size | - | 34B | 34B | 25.5B | 25.5B |
|
74 |
+
| | | | | | |
|
75 |
+
| MVBench | - | - | - | 52.1 | 67.5 |
|
76 |
+
| MMBench-Video<sub>8f</sub> | 1.53 | - | - | 1.26 | 1.27 |
|
77 |
+
| MMBench-Video<sub>16f</sub> | 1.68 | - | - | 1.31 | 1.41 |
|
78 |
+
| Video-MME<br>wo subs | 59.9 | 59.0 | 52.0 | TODO | TODO |
|
79 |
+
| Video-MME<br>w/ subs | 63.3 | 59.4 | 54.9 | TODO | TODO |
|
80 |
|
81 |
- We evaluate our models on MVBench by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
|
82 |
|
|
|
645 |
|
646 |
### 视频相关评测
|
647 |
|
648 |
+
| 评测数据集 | GPT-4V | VILA-1.5 | LLaVA-NeXT-Video | InternVL-Chat-V1-5 | InternVL2-26B |
|
649 |
+
| :-------------------------: | :----: | :------: | :--------------: | :----------------: | :-----------: |
|
650 |
+
| 模型大小 | - | 34B | 34B | 25.5B | 25.5B |
|
651 |
+
| | | | | | |
|
652 |
+
| MVBench | - | - | - | 52.1 | 67.5 |
|
653 |
+
| MMBench-Video<sub>8f</sub> | 1.53 | - | - | 1.26 | 1.27 |
|
654 |
+
| MMBench-Video<sub>16f</sub> | 1.68 | - | - | 1.31 | 1.41 |
|
655 |
+
| Video-MME<br>wo subs | 59.9 | 59.0 | 52.0 | TODO | TODO |
|
656 |
+
| Video-MME<br>w/ subs | 63.3 | 59.4 | 54.9 | TODO | TODO |
|
657 |
|
658 |
- 我们通过从每个视频中提取16帧来评估我们的模型在MVBench上的性能,每个视频帧被调整为448x448的图像。
|
659 |
|