[2025-01-17 21:41:35 internimage_t_1k_224] (main.py 665): INFO Full config saved to work_dirs/internimage_t_1k_224/config.json [2025-01-17 21:41:35 internimage_t_1k_224] (main.py 668): INFO AMP_OPT_LEVEL: O1 AMP_TYPE: float16 AUG: AUTO_AUGMENT: rand-m9-mstd0.5-inc1 COLOR_JITTER: 0.4 CUTMIX: 1.0 CUTMIX_MINMAX: null MEAN: - 0.485 - 0.456 - 0.406 MIXUP: 0.8 MIXUP_MODE: batch MIXUP_PROB: 1.0 MIXUP_SWITCH_PROB: 0.5 RANDOM_RESIZED_CROP: false RECOUNT: 1 REMODE: pixel REPROB: 0.25 STD: - 0.229 - 0.224 - 0.225 BASE: - '' DATA: BATCH_SIZE: 128 CACHE_MODE: part DATASET: imagenet DATA_PATH: data/imagenet IMG_ON_MEMORY: true IMG_SIZE: 224 INTERPOLATION: bicubic NUM_WORKERS: 8 PIN_MEMORY: true ZIP_MODE: false EVAL_22K_TO_1K: false EVAL_FREQ: 1 EVAL_MODE: false LOCAL_RANK: 0 MODEL: DROP_PATH_RATE: 0.1 DROP_PATH_TYPE: linear DROP_RATE: 0.0 INTERN_IMAGE: CENTER_FEATURE_SCALE: false CHANNELS: 64 CORE_OP: DCNv3 DEPTHS: - 4 - 4 - 18 - 4 DW_KERNEL_SIZE: null GROUPS: - 4 - 8 - 16 - 32 LAYER_SCALE: null LEVEL2_POST_NORM: false LEVEL2_POST_NORM_BLOCK_IDS: null MLP_RATIO: 4.0 OFFSET_SCALE: 1.0 POST_NORM: false REMOVE_CENTER: false RES_POST_NORM: false USE_CLIP_PROJECTOR: false LABEL_SMOOTHING: 0.1 NAME: internimage_t_1k_224 NUM_CLASSES: 1000 PRETRAINED: '' RESUME: '' TYPE: intern_image OUTPUT: work_dirs/internimage_t_1k_224 PRINT_FREQ: 10 SAVE_CKPT_NUM: 1 SAVE_FREQ: 1 SEED: 0 TAG: default TEST: CROP: true SEQUENTIAL: false THROUGHPUT_MODE: false TRAIN: ACCUMULATION_STEPS: 1 AUTO_RESUME: true BASE_LR: 0.004 CLIP_GRAD: 5.0 EMA: DECAY: 0.9999 ENABLE: true EPOCHS: 300 LR_LAYER_DECAY: false LR_LAYER_DECAY_RATIO: 0.875 LR_SCHEDULER: DECAY_EPOCHS: 30 DECAY_RATE: 0.1 NAME: cosine MIN_LR: 4.0e-05 OPTIMIZER: BETAS: - 0.9 - 0.999 DCN_LR_MUL: null EPS: 1.0e-08 FREEZE_BACKBONE: null MOMENTUM: 0.9 NAME: adamw USE_ZERO: false RAND_INIT_FT_HEAD: false START_EPOCH: 0 USE_CHECKPOINT: false WARMUP_EPOCHS: 20 WARMUP_LR: 4.0e-06 WEIGHT_DECAY: 0.05 [2025-01-17 21:46:54 internimage_t_1k_224] (main.py 174): INFO Creating model:intern_image/internimage_t_1k_224 [2025-01-17 21:47:16 internimage_t_1k_224] (main.py 177): INFO InternImage( (patch_embed): StemLayer( (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (norm1): Sequential( (0): to_channels_last() (1): LayerNorm((32,), eps=1e-06, elementwise_affine=True) (2): to_channels_first() ) (act): GELU() (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (norm2): Sequential( (0): to_channels_last() (1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) ) (pos_drop): Dropout(p=0.0, inplace=False) (levels): ModuleList( (0): InternImageBlock( (blocks): ModuleList( (0): InternImageLayer( (norm1): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) (1): Sequential( (0): to_channels_last() (1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=64, out_features=72, bias=True) (mask): Linear(in_features=64, out_features=36, bias=True) (input_proj): Linear(in_features=64, out_features=64, bias=True) (output_proj): Linear(in_features=64, out_features=64, bias=True) ) (drop_path): Identity() (norm2): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=64, out_features=256, bias=True) (act): GELU() (fc2): Linear(in_features=256, out_features=64, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (1): InternImageLayer( (norm1): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) (1): Sequential( (0): to_channels_last() (1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=64, out_features=72, bias=True) (mask): Linear(in_features=64, out_features=36, bias=True) (input_proj): Linear(in_features=64, out_features=64, bias=True) (output_proj): Linear(in_features=64, out_features=64, bias=True) ) (drop_path): DropPath(drop_prob=0.003) (norm2): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=64, out_features=256, bias=True) (act): GELU() (fc2): Linear(in_features=256, out_features=64, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (2): InternImageLayer( (norm1): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) (1): Sequential( (0): to_channels_last() (1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=64, out_features=72, bias=True) (mask): Linear(in_features=64, out_features=36, bias=True) (input_proj): Linear(in_features=64, out_features=64, bias=True) (output_proj): Linear(in_features=64, out_features=64, bias=True) ) (drop_path): DropPath(drop_prob=0.007) (norm2): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=64, out_features=256, bias=True) (act): GELU() (fc2): Linear(in_features=256, out_features=64, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (3): InternImageLayer( (norm1): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) (1): Sequential( (0): to_channels_last() (1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=64, out_features=72, bias=True) (mask): Linear(in_features=64, out_features=36, bias=True) (input_proj): Linear(in_features=64, out_features=64, bias=True) (output_proj): Linear(in_features=64, out_features=64, bias=True) ) (drop_path): DropPath(drop_prob=0.010) (norm2): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=64, out_features=256, bias=True) (act): GELU() (fc2): Linear(in_features=256, out_features=64, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) ) (norm): Sequential( (0): LayerNorm((64,), eps=1e-06, elementwise_affine=True) ) (downsample): DownsampleLayer( (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (norm): Sequential( (0): to_channels_last() (1): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) ) ) (1): InternImageBlock( (blocks): ModuleList( (0): InternImageLayer( (norm1): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128) (1): Sequential( (0): to_channels_last() (1): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=128, out_features=144, bias=True) (mask): Linear(in_features=128, out_features=72, bias=True) (input_proj): Linear(in_features=128, out_features=128, bias=True) (output_proj): Linear(in_features=128, out_features=128, bias=True) ) (drop_path): DropPath(drop_prob=0.014) (norm2): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=128, out_features=512, bias=True) (act): GELU() (fc2): Linear(in_features=512, out_features=128, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (1): InternImageLayer( (norm1): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128) (1): Sequential( (0): to_channels_last() (1): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=128, out_features=144, bias=True) (mask): Linear(in_features=128, out_features=72, bias=True) (input_proj): Linear(in_features=128, out_features=128, bias=True) (output_proj): Linear(in_features=128, out_features=128, bias=True) ) (drop_path): DropPath(drop_prob=0.017) (norm2): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=128, out_features=512, bias=True) (act): GELU() (fc2): Linear(in_features=512, out_features=128, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (2): InternImageLayer( (norm1): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128) (1): Sequential( (0): to_channels_last() (1): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=128, out_features=144, bias=True) (mask): Linear(in_features=128, out_features=72, bias=True) (input_proj): Linear(in_features=128, out_features=128, bias=True) (output_proj): Linear(in_features=128, out_features=128, bias=True) ) (drop_path): DropPath(drop_prob=0.021) (norm2): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=128, out_features=512, bias=True) (act): GELU() (fc2): Linear(in_features=512, out_features=128, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (3): InternImageLayer( (norm1): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128) (1): Sequential( (0): to_channels_last() (1): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=128, out_features=144, bias=True) (mask): Linear(in_features=128, out_features=72, bias=True) (input_proj): Linear(in_features=128, out_features=128, bias=True) (output_proj): Linear(in_features=128, out_features=128, bias=True) ) (drop_path): DropPath(drop_prob=0.024) (norm2): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=128, out_features=512, bias=True) (act): GELU() (fc2): Linear(in_features=512, out_features=128, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) ) (norm): Sequential( (0): LayerNorm((128,), eps=1e-06, elementwise_affine=True) ) (downsample): DownsampleLayer( (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (norm): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) ) ) (2): InternImageBlock( (blocks): ModuleList( (0): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.028) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (1): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.031) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (2): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.034) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (3): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.038) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (4): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.041) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (5): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.045) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (6): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.048) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (7): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.052) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (8): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.055) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (9): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.059) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (10): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.062) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (11): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.066) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (12): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.069) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (13): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.072) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (14): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.076) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (15): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.079) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (16): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.083) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (17): InternImageLayer( (norm1): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256) (1): Sequential( (0): to_channels_last() (1): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=256, out_features=288, bias=True) (mask): Linear(in_features=256, out_features=144, bias=True) (input_proj): Linear(in_features=256, out_features=256, bias=True) (output_proj): Linear(in_features=256, out_features=256, bias=True) ) (drop_path): DropPath(drop_prob=0.086) (norm2): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=256, out_features=1024, bias=True) (act): GELU() (fc2): Linear(in_features=1024, out_features=256, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) ) (norm): Sequential( (0): LayerNorm((256,), eps=1e-06, elementwise_affine=True) ) (downsample): DownsampleLayer( (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (norm): Sequential( (0): to_channels_last() (1): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) ) ) (3): InternImageBlock( (blocks): ModuleList( (0): InternImageLayer( (norm1): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512) (1): Sequential( (0): to_channels_last() (1): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=512, out_features=576, bias=True) (mask): Linear(in_features=512, out_features=288, bias=True) (input_proj): Linear(in_features=512, out_features=512, bias=True) (output_proj): Linear(in_features=512, out_features=512, bias=True) ) (drop_path): DropPath(drop_prob=0.090) (norm2): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=512, out_features=2048, bias=True) (act): GELU() (fc2): Linear(in_features=2048, out_features=512, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (1): InternImageLayer( (norm1): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512) (1): Sequential( (0): to_channels_last() (1): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=512, out_features=576, bias=True) (mask): Linear(in_features=512, out_features=288, bias=True) (input_proj): Linear(in_features=512, out_features=512, bias=True) (output_proj): Linear(in_features=512, out_features=512, bias=True) ) (drop_path): DropPath(drop_prob=0.093) (norm2): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=512, out_features=2048, bias=True) (act): GELU() (fc2): Linear(in_features=2048, out_features=512, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (2): InternImageLayer( (norm1): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512) (1): Sequential( (0): to_channels_last() (1): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=512, out_features=576, bias=True) (mask): Linear(in_features=512, out_features=288, bias=True) (input_proj): Linear(in_features=512, out_features=512, bias=True) (output_proj): Linear(in_features=512, out_features=512, bias=True) ) (drop_path): DropPath(drop_prob=0.097) (norm2): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=512, out_features=2048, bias=True) (act): GELU() (fc2): Linear(in_features=2048, out_features=512, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) (3): InternImageLayer( (norm1): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (dcn): DCNv3( (dw_conv): Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512) (1): Sequential( (0): to_channels_last() (1): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (2): GELU() ) (offset): Linear(in_features=512, out_features=576, bias=True) (mask): Linear(in_features=512, out_features=288, bias=True) (input_proj): Linear(in_features=512, out_features=512, bias=True) (output_proj): Linear(in_features=512, out_features=512, bias=True) ) (drop_path): DropPath(drop_prob=0.100) (norm2): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) (mlp): MLPLayer( (fc1): Linear(in_features=512, out_features=2048, bias=True) (act): GELU() (fc2): Linear(in_features=2048, out_features=512, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) ) (norm): Sequential( (0): LayerNorm((512,), eps=1e-06, elementwise_affine=True) ) ) ) (conv_head): Sequential( (0): Conv2d(512, 768, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): Sequential( (0): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (2): GELU() ) (head): Linear(in_features=768, out_features=1000, bias=True) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) ) [2025-01-17 21:47:16 internimage_t_1k_224] (main.py 213): INFO Using native Torch AMP. Training in mixed precision. [2025-01-17 21:47:17 internimage_t_1k_224] (main.py 225): INFO using fp16_compress_hook! [2025-01-17 21:47:17 internimage_t_1k_224] (main.py 233): INFO number of params: 29918424 [2025-01-17 21:47:17 internimage_t_1k_224] (main.py 267): INFO no checkpoint found in work_dirs/internimage_t_1k_224, ignoring auto resume [2025-01-17 21:47:17 internimage_t_1k_224] (main.py 308): INFO Start training [2025-01-17 21:47:24 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][0/312] eta 0:37:05 lr 0.000004 time 7.1327 (7.1327) model_time 3.5897 (3.5897) loss 6.9363 (6.9363) grad_norm 0.5964 (0.5964/0.0000) mem 15750MB [2025-01-17 21:47:29 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][10/312] eta 0:05:33 lr 0.000010 time 0.4424 (1.1036) model_time 0.4422 (0.7812) loss 6.9431 (6.9553) grad_norm 0.4755 (0.5357/0.0277) mem 16099MB [2025-01-17 21:47:33 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][20/312] eta 0:03:51 lr 0.000017 time 0.4464 (0.7944) model_time 0.4460 (0.6254) loss 6.9539 (6.9486) grad_norm 0.4948 (0.5235/0.0267) mem 16099MB [2025-01-17 21:47:38 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][30/312] eta 0:03:13 lr 0.000023 time 0.4534 (0.6845) model_time 0.4533 (0.5699) loss 6.9064 (6.9409) grad_norm 0.4668 (0.5094/0.0313) mem 16099MB [2025-01-17 21:47:42 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][40/312] eta 0:02:51 lr 0.000030 time 0.4477 (0.6289) model_time 0.4475 (0.5421) loss 6.9170 (6.9368) grad_norm 0.4043 (0.4894/0.0452) mem 16099MB [2025-01-17 21:47:47 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][50/312] eta 0:02:36 lr 0.000036 time 0.4609 (0.5961) model_time 0.4607 (0.5263) loss 6.8691 (6.9289) grad_norm 0.4182 (0.4733/0.0524) mem 16099MB [2025-01-17 21:47:52 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][60/312] eta 0:02:24 lr 0.000042 time 0.4379 (0.5728) model_time 0.4377 (0.5144) loss 6.9049 (6.9228) grad_norm 0.3863 (0.4616/0.0562) mem 16099MB [2025-01-17 21:47:56 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][70/312] eta 0:02:14 lr 0.000049 time 0.4382 (0.5575) model_time 0.4380 (0.5072) loss 6.8734 (6.9178) grad_norm 0.4156 (0.4511/0.0586) mem 16099MB [2025-01-17 21:48:01 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][80/312] eta 0:02:06 lr 0.000055 time 0.4590 (0.5455) model_time 0.4588 (0.5015) loss 6.8451 (6.9133) grad_norm 0.3945 (0.4440/0.0599) mem 16099MB [2025-01-17 21:48:05 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][90/312] eta 0:01:58 lr 0.000062 time 0.4745 (0.5354) model_time 0.4743 (0.4962) loss 6.8973 (6.9085) grad_norm 0.3735 (0.4430/0.0584) mem 16099MB [2025-01-17 21:48:10 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][100/312] eta 0:01:51 lr 0.000068 time 0.4395 (0.5270) model_time 0.4391 (0.4916) loss 6.8747 (6.9045) grad_norm 0.4788 (0.4461/0.0625) mem 16099MB [2025-01-17 21:48:14 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][110/312] eta 0:01:45 lr 0.000074 time 0.4439 (0.5207) model_time 0.4435 (0.4884) loss 6.7811 (6.8993) grad_norm 0.6120 (0.4569/0.0763) mem 16099MB [2025-01-17 21:48:19 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][120/312] eta 0:01:38 lr 0.000081 time 0.4471 (0.5155) model_time 0.4467 (0.4859) loss 6.8082 (6.8943) grad_norm 0.7132 (0.4732/0.0976) mem 16099MB [2025-01-17 21:48:23 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][130/312] eta 0:01:32 lr 0.000087 time 0.4487 (0.5107) model_time 0.4485 (0.4833) loss 6.8781 (6.8896) grad_norm 0.6191 (0.4940/0.1384) mem 16099MB [2025-01-17 21:48:28 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][140/312] eta 0:01:27 lr 0.000094 time 0.5009 (0.5072) model_time 0.5005 (0.4818) loss 6.7929 (6.8837) grad_norm 0.8867 (0.5068/0.1441) mem 16099MB [2025-01-17 21:48:33 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][150/312] eta 0:01:21 lr 0.000100 time 0.4403 (0.5034) model_time 0.4401 (0.4796) loss 6.7813 (6.8794) grad_norm 0.6639 (0.5257/0.1633) mem 16099MB [2025-01-17 21:48:37 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][160/312] eta 0:01:16 lr 0.000106 time 0.4512 (0.5004) model_time 0.4510 (0.4780) loss 6.8519 (6.8747) grad_norm 1.6084 (0.5606/0.2220) mem 16099MB [2025-01-17 21:48:42 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][170/312] eta 0:01:10 lr 0.000113 time 0.4469 (0.4977) model_time 0.4464 (0.4766) loss 6.7766 (6.8697) grad_norm 1.3393 (0.6019/0.2803) mem 16099MB [2025-01-17 21:48:46 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][180/312] eta 0:01:05 lr 0.000119 time 0.4394 (0.4954) model_time 0.4392 (0.4755) loss 6.8242 (6.8638) grad_norm 1.7728 (0.6452/0.3378) mem 16099MB [2025-01-17 21:48:51 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][190/312] eta 0:01:00 lr 0.000126 time 0.4479 (0.4934) model_time 0.4475 (0.4745) loss 6.7642 (6.8590) grad_norm 1.8268 (0.6862/0.3767) mem 16099MB [2025-01-17 21:48:55 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][200/312] eta 0:00:55 lr 0.000132 time 0.4698 (0.4915) model_time 0.4693 (0.4736) loss 6.7502 (6.8528) grad_norm 1.5288 (0.7376/0.4360) mem 16099MB [2025-01-17 21:49:00 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][210/312] eta 0:00:49 lr 0.000138 time 0.4496 (0.4898) model_time 0.4495 (0.4726) loss 6.7611 (6.8480) grad_norm 2.1617 (0.7854/0.4842) mem 16099MB [2025-01-17 21:49:04 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][220/312] eta 0:00:44 lr 0.000145 time 0.4407 (0.4879) model_time 0.4406 (0.4715) loss 6.7481 (6.8423) grad_norm 2.9866 (0.8331/0.5334) mem 16099MB [2025-01-17 21:49:09 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][230/312] eta 0:00:39 lr 0.000151 time 0.4480 (0.4866) model_time 0.4479 (0.4708) loss 6.6709 (6.8380) grad_norm 2.6711 (0.9088/0.6511) mem 16099MB [2025-01-17 21:49:14 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][240/312] eta 0:00:34 lr 0.000158 time 0.4397 (0.4855) model_time 0.4393 (0.4704) loss 6.7324 (6.8334) grad_norm 2.2392 (0.9722/0.7200) mem 16099MB [2025-01-17 21:49:18 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][250/312] eta 0:00:30 lr 0.000164 time 0.4419 (0.4842) model_time 0.4418 (0.4697) loss 6.7239 (6.8278) grad_norm 2.8250 (1.0272/0.7657) mem 16099MB [2025-01-17 21:49:23 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][260/312] eta 0:00:25 lr 0.000170 time 0.4614 (0.4833) model_time 0.4613 (0.4693) loss 6.6860 (6.8229) grad_norm 1.8314 (1.0871/0.8166) mem 16099MB [2025-01-17 21:49:27 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][270/312] eta 0:00:20 lr 0.000177 time 0.4873 (0.4823) model_time 0.4871 (0.4688) loss 6.6811 (6.8185) grad_norm 2.3664 (1.1509/0.8779) mem 16099MB [2025-01-17 21:49:32 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][280/312] eta 0:00:15 lr 0.000183 time 0.4445 (0.4813) model_time 0.4440 (0.4684) loss 6.7257 (6.8159) grad_norm 3.5013 (1.2356/0.9832) mem 16099MB [2025-01-17 21:49:36 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][290/312] eta 0:00:10 lr 0.000190 time 0.4481 (0.4804) model_time 0.4480 (0.4678) loss 6.5332 (6.8110) grad_norm 1.8865 (1.2842/1.0135) mem 16099MB [2025-01-17 21:49:41 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][300/312] eta 0:00:05 lr 0.000196 time 0.4386 (0.4800) model_time 0.4385 (0.4678) loss 6.7027 (6.8055) grad_norm 2.6551 (1.3470/1.0645) mem 16099MB [2025-01-17 21:49:45 internimage_t_1k_224] (main.py 510): INFO Train: [0/300][310/312] eta 0:00:00 lr 0.000203 time 0.4324 (0.4788) model_time 0.4323 (0.4670) loss 6.8173 (6.8029) grad_norm 5.4406 (1.4486/1.1532) mem 16099MB [2025-01-17 21:49:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 0 training takes 0:02:29 [2025-01-17 21:49:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_0.pth saving...... [2025-01-17 21:49:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_0.pth saved !!! [2025-01-17 21:49:57 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 9.885 (9.885) Loss 6.1458 (6.1458) Acc@1 1.831 (1.831) Acc@5 8.130 (8.130) Mem 16099MB [2025-01-17 21:49:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.087) Loss 6.2849 (6.2797) Acc@1 1.514 (1.649) Acc@5 6.274 (5.970) Mem 16099MB [2025-01-17 21:49:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:0] * Acc@1 2.005 Acc@5 7.034 [2025-01-17 21:49:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 2.0% [2025-01-17 21:49:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 21:50:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 21:50:00 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 2.01% [2025-01-17 21:50:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.281 (7.281) Loss 6.9095 (6.9095) Acc@1 0.806 (0.806) Acc@5 2.148 (2.148) Mem 16099MB [2025-01-17 21:50:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.976) Loss 6.9464 (6.9159) Acc@1 0.000 (0.111) Acc@5 0.073 (0.604) Mem 16099MB [2025-01-17 21:50:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:0] * Acc@1 0.102 Acc@5 0.558 [2025-01-17 21:50:11 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.1% [2025-01-17 21:50:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 21:50:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 21:50:13 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.10% [2025-01-17 21:50:16 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][0/312] eta 0:14:55 lr 0.000204 time 2.8714 (2.8714) model_time 0.7260 (0.7260) loss 6.7528 (6.7528) grad_norm 3.5790 (3.5790/0.0000) mem 16099MB [2025-01-17 21:50:20 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][10/312] eta 0:03:25 lr 0.000210 time 0.4598 (0.6788) model_time 0.4593 (0.4835) loss 6.7782 (6.7480) grad_norm 2.8419 (3.2305/0.7709) mem 16099MB [2025-01-17 21:50:25 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][20/312] eta 0:02:47 lr 0.000217 time 0.4612 (0.5722) model_time 0.4610 (0.4697) loss 6.7139 (6.7057) grad_norm 1.7682 (3.0185/0.7595) mem 16099MB [2025-01-17 21:50:29 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][30/312] eta 0:02:30 lr 0.000223 time 0.4485 (0.5344) model_time 0.4483 (0.4649) loss 6.6877 (6.6916) grad_norm 2.1410 (3.0317/0.8332) mem 16099MB [2025-01-17 21:50:34 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][40/312] eta 0:02:20 lr 0.000229 time 0.4433 (0.5151) model_time 0.4431 (0.4625) loss 6.6388 (6.6794) grad_norm 2.8389 (3.0401/0.8909) mem 16099MB [2025-01-17 21:50:39 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][50/312] eta 0:02:11 lr 0.000236 time 0.4535 (0.5031) model_time 0.4534 (0.4607) loss 6.6240 (6.6667) grad_norm 5.0263 (3.1460/0.9846) mem 16099MB [2025-01-17 21:50:43 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][60/312] eta 0:02:04 lr 0.000242 time 0.4432 (0.4951) model_time 0.4430 (0.4596) loss 6.5655 (6.6564) grad_norm 3.1072 (3.2022/0.9378) mem 16099MB [2025-01-17 21:50:48 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][70/312] eta 0:01:58 lr 0.000249 time 0.4459 (0.4888) model_time 0.4457 (0.4583) loss 6.4549 (6.6492) grad_norm 2.2013 (3.2042/0.9443) mem 16099MB [2025-01-17 21:50:52 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][80/312] eta 0:01:52 lr 0.000255 time 0.4455 (0.4839) model_time 0.4451 (0.4571) loss 6.7089 (6.6383) grad_norm 2.8437 (3.2828/0.9826) mem 16099MB [2025-01-17 21:50:57 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][90/312] eta 0:01:46 lr 0.000261 time 0.4557 (0.4806) model_time 0.4555 (0.4567) loss 6.4861 (6.6374) grad_norm 3.7592 (3.2868/0.9614) mem 16099MB [2025-01-17 21:51:01 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][100/312] eta 0:01:41 lr 0.000268 time 0.4447 (0.4780) model_time 0.4445 (0.4564) loss 6.5923 (6.6368) grad_norm 2.9605 (3.2625/0.9361) mem 16099MB [2025-01-17 21:51:06 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][110/312] eta 0:01:36 lr 0.000274 time 0.4063 (0.4753) model_time 0.4059 (0.4557) loss 6.3623 (6.6281) grad_norm inf (3.2905/0.9232) mem 16099MB [2025-01-17 21:51:10 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][120/312] eta 0:01:30 lr 0.000281 time 0.4463 (0.4736) model_time 0.4459 (0.4555) loss 6.6681 (6.6295) grad_norm 3.3136 (3.2823/0.9383) mem 16099MB [2025-01-17 21:51:15 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][130/312] eta 0:01:25 lr 0.000287 time 0.4496 (0.4720) model_time 0.4494 (0.4553) loss 6.5549 (6.6276) grad_norm 2.7823 (3.3342/0.9818) mem 16099MB [2025-01-17 21:51:19 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][140/312] eta 0:01:20 lr 0.000293 time 0.4503 (0.4702) model_time 0.4502 (0.4547) loss 6.4405 (6.6219) grad_norm 2.9916 (3.3427/0.9834) mem 16099MB [2025-01-17 21:51:24 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][150/312] eta 0:01:15 lr 0.000300 time 0.4437 (0.4690) model_time 0.4432 (0.4544) loss 6.5041 (6.6137) grad_norm 1.8569 (3.3196/0.9670) mem 16099MB [2025-01-17 21:51:28 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][160/312] eta 0:01:11 lr 0.000306 time 0.4601 (0.4688) model_time 0.4599 (0.4551) loss 6.3991 (6.6044) grad_norm 3.9315 (3.3148/0.9731) mem 16099MB [2025-01-17 21:51:33 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][170/312] eta 0:01:06 lr 0.000313 time 0.4395 (0.4679) model_time 0.4387 (0.4549) loss 6.7631 (6.6014) grad_norm 3.8043 (3.2974/0.9659) mem 16099MB [2025-01-17 21:51:37 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][180/312] eta 0:01:01 lr 0.000319 time 0.4527 (0.4674) model_time 0.4523 (0.4551) loss 6.2023 (6.5984) grad_norm 3.5282 (3.3000/0.9579) mem 16099MB [2025-01-17 21:51:42 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][190/312] eta 0:00:56 lr 0.000325 time 0.4513 (0.4664) model_time 0.4508 (0.4548) loss 6.2827 (6.5935) grad_norm 3.0732 (3.3008/0.9447) mem 16099MB [2025-01-17 21:51:47 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][200/312] eta 0:00:52 lr 0.000332 time 0.4597 (0.4658) model_time 0.4593 (0.4547) loss 6.6574 (6.5945) grad_norm 3.4928 (3.3046/0.9303) mem 16099MB [2025-01-17 21:51:51 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][210/312] eta 0:00:47 lr 0.000338 time 0.4405 (0.4650) model_time 0.4403 (0.4545) loss 6.4767 (6.5876) grad_norm 4.6659 (3.3461/0.9637) mem 16099MB [2025-01-17 21:51:55 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][220/312] eta 0:00:42 lr 0.000345 time 0.4404 (0.4642) model_time 0.4402 (0.4541) loss 6.5688 (6.5841) grad_norm 3.5619 (3.3945/0.9903) mem 16099MB [2025-01-17 21:52:00 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][230/312] eta 0:00:38 lr 0.000351 time 0.4407 (0.4649) model_time 0.4403 (0.4552) loss 6.5282 (6.5779) grad_norm 3.3145 (3.3900/0.9785) mem 16099MB [2025-01-17 21:52:05 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][240/312] eta 0:00:33 lr 0.000357 time 0.4854 (0.4644) model_time 0.4852 (0.4552) loss 6.5391 (6.5761) grad_norm 3.0546 (3.3901/0.9757) mem 16099MB [2025-01-17 21:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][250/312] eta 0:00:28 lr 0.000364 time 0.4518 (0.4638) model_time 0.4517 (0.4549) loss 6.5371 (6.5755) grad_norm 3.6224 (3.3763/0.9741) mem 16099MB [2025-01-17 21:52:14 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][260/312] eta 0:00:24 lr 0.000370 time 0.4482 (0.4633) model_time 0.4480 (0.4547) loss 6.3134 (6.5728) grad_norm 2.9860 (3.4012/0.9775) mem 16099MB [2025-01-17 21:52:18 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][270/312] eta 0:00:19 lr 0.000377 time 0.4495 (0.4628) model_time 0.4493 (0.4545) loss 6.6599 (6.5709) grad_norm 3.7649 (3.4138/1.0024) mem 16099MB [2025-01-17 21:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][280/312] eta 0:00:14 lr 0.000383 time 0.4477 (0.4624) model_time 0.4473 (0.4544) loss 6.2167 (6.5682) grad_norm 3.5551 (3.4108/0.9991) mem 16099MB [2025-01-17 21:52:27 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][290/312] eta 0:00:10 lr 0.000390 time 0.4562 (0.4619) model_time 0.4561 (0.4542) loss 6.1319 (6.5614) grad_norm 6.6186 (3.4267/1.0181) mem 16099MB [2025-01-17 21:52:32 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][300/312] eta 0:00:05 lr 0.000396 time 0.4359 (0.4615) model_time 0.4358 (0.4540) loss 6.5682 (6.5583) grad_norm 2.8770 (3.4731/1.0666) mem 16099MB [2025-01-17 21:52:36 internimage_t_1k_224] (main.py 510): INFO Train: [1/300][310/312] eta 0:00:00 lr 0.000402 time 0.4370 (0.4609) model_time 0.4369 (0.4536) loss 6.6663 (6.5587) grad_norm 2.4216 (3.4708/1.0706) mem 16099MB [2025-01-17 21:52:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 1 training takes 0:02:23 [2025-01-17 21:52:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_1.pth saving...... [2025-01-17 21:52:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_1.pth saved !!! [2025-01-17 21:52:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.262 (7.262) Loss 5.5874 (5.5874) Acc@1 3.003 (3.003) Acc@5 13.257 (13.257) Mem 16099MB [2025-01-17 21:52:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.992) Loss 5.7907 (5.7081) Acc@1 3.784 (3.893) Acc@5 12.476 (12.698) Mem 16099MB [2025-01-17 21:52:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:1] * Acc@1 4.505 Acc@5 13.994 [2025-01-17 21:52:49 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 4.5% [2025-01-17 21:52:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 21:52:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 21:52:50 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 4.50% [2025-01-17 21:52:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.496 (7.496) Loss 6.8962 (6.8962) Acc@1 0.610 (0.610) Acc@5 1.855 (1.855) Mem 16099MB [2025-01-17 21:53:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.988) Loss 6.9434 (6.9078) Acc@1 0.000 (0.107) Acc@5 0.024 (0.668) Mem 16099MB [2025-01-17 21:53:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:1] * Acc@1 0.102 Acc@5 0.626 [2025-01-17 21:53:01 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.1% [2025-01-17 21:53:01 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.10% [2025-01-17 21:53:04 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][0/312] eta 0:15:56 lr 0.000404 time 3.0669 (3.0669) model_time 0.4747 (0.4747) loss 6.5293 (6.5293) grad_norm 3.2293 (3.2293/0.0000) mem 16099MB [2025-01-17 21:53:09 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][10/312] eta 0:03:32 lr 0.000410 time 0.4376 (0.7029) model_time 0.4375 (0.4669) loss 6.3989 (6.4666) grad_norm 2.7317 (3.6829/0.6929) mem 16099MB [2025-01-17 21:53:14 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][20/312] eta 0:02:51 lr 0.000416 time 0.4522 (0.5867) model_time 0.4521 (0.4629) loss 6.2451 (6.4021) grad_norm 3.6750 (3.8124/0.6537) mem 16099MB [2025-01-17 21:53:18 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][30/312] eta 0:02:33 lr 0.000423 time 0.4467 (0.5428) model_time 0.4465 (0.4588) loss 6.2997 (6.4114) grad_norm 2.7026 (3.9609/0.8400) mem 16099MB [2025-01-17 21:53:23 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][40/312] eta 0:02:22 lr 0.000429 time 0.4349 (0.5231) model_time 0.4347 (0.4595) loss 6.4079 (6.3914) grad_norm 3.9970 (4.0543/0.8379) mem 16099MB [2025-01-17 21:53:27 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][50/312] eta 0:02:13 lr 0.000436 time 0.4404 (0.5084) model_time 0.4400 (0.4573) loss 6.5018 (6.4115) grad_norm 5.2497 (3.9719/0.9166) mem 16099MB [2025-01-17 21:53:32 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][60/312] eta 0:02:05 lr 0.000442 time 0.4448 (0.4990) model_time 0.4444 (0.4562) loss 6.5110 (6.4084) grad_norm 3.6224 (3.8597/0.9181) mem 16099MB [2025-01-17 21:53:36 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][70/312] eta 0:01:59 lr 0.000448 time 0.4454 (0.4926) model_time 0.4450 (0.4557) loss 6.4248 (6.4006) grad_norm 2.9732 (3.7919/0.9128) mem 16099MB [2025-01-17 21:53:41 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][80/312] eta 0:01:53 lr 0.000455 time 0.4373 (0.4877) model_time 0.4372 (0.4553) loss 6.4850 (6.3923) grad_norm 4.5285 (3.8044/0.9075) mem 16099MB [2025-01-17 21:53:45 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][90/312] eta 0:01:47 lr 0.000461 time 0.4466 (0.4839) model_time 0.4461 (0.4550) loss 6.5159 (6.3806) grad_norm 2.5859 (3.7376/0.9054) mem 16099MB [2025-01-17 21:53:50 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][100/312] eta 0:01:41 lr 0.000468 time 0.4473 (0.4806) model_time 0.4469 (0.4545) loss 6.2102 (6.3735) grad_norm 2.1190 (3.6721/0.9006) mem 16099MB [2025-01-17 21:53:54 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][110/312] eta 0:01:36 lr 0.000474 time 0.4441 (0.4774) model_time 0.4439 (0.4537) loss 6.4051 (6.3755) grad_norm 4.0387 (3.7253/0.9368) mem 16099MB [2025-01-17 21:53:59 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][120/312] eta 0:01:31 lr 0.000480 time 0.4453 (0.4751) model_time 0.4449 (0.4533) loss 6.4870 (6.3791) grad_norm 4.4871 (3.7690/0.9788) mem 16099MB [2025-01-17 21:54:03 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][130/312] eta 0:01:26 lr 0.000487 time 0.4520 (0.4733) model_time 0.4519 (0.4531) loss 5.9878 (6.3715) grad_norm 3.3281 (3.7686/0.9775) mem 16099MB [2025-01-17 21:54:08 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][140/312] eta 0:01:21 lr 0.000493 time 0.4625 (0.4733) model_time 0.4621 (0.4545) loss 6.4211 (6.3749) grad_norm 2.7184 (3.7299/0.9779) mem 16099MB [2025-01-17 21:54:12 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][150/312] eta 0:01:16 lr 0.000500 time 0.4472 (0.4717) model_time 0.4470 (0.4542) loss 6.0119 (6.3756) grad_norm 2.9887 (3.6833/0.9712) mem 16099MB [2025-01-17 21:54:17 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][160/312] eta 0:01:11 lr 0.000506 time 0.4442 (0.4704) model_time 0.4438 (0.4539) loss 6.0717 (6.3746) grad_norm 3.4472 (3.6819/0.9473) mem 16099MB [2025-01-17 21:54:21 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][170/312] eta 0:01:06 lr 0.000512 time 0.4485 (0.4694) model_time 0.4483 (0.4538) loss 6.1887 (6.3746) grad_norm 2.9022 (3.6566/0.9394) mem 16099MB [2025-01-17 21:54:26 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][180/312] eta 0:01:01 lr 0.000519 time 0.4590 (0.4683) model_time 0.4586 (0.4536) loss 6.6173 (6.3698) grad_norm 3.1551 (3.6545/0.9461) mem 16099MB [2025-01-17 21:54:31 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][190/312] eta 0:00:57 lr 0.000525 time 0.4432 (0.4678) model_time 0.4430 (0.4538) loss 6.4738 (6.3585) grad_norm 5.5837 (3.6539/0.9500) mem 16099MB [2025-01-17 21:54:35 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][200/312] eta 0:00:52 lr 0.000532 time 0.4463 (0.4668) model_time 0.4458 (0.4536) loss 5.8879 (6.3557) grad_norm 3.2619 (3.6265/0.9456) mem 16099MB [2025-01-17 21:54:39 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][210/312] eta 0:00:47 lr 0.000538 time 0.4425 (0.4658) model_time 0.4423 (0.4532) loss 5.8964 (6.3451) grad_norm 4.0295 (3.6209/0.9473) mem 16099MB [2025-01-17 21:54:44 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][220/312] eta 0:00:42 lr 0.000544 time 0.4374 (0.4650) model_time 0.4373 (0.4528) loss 5.8759 (6.3373) grad_norm 3.2515 (3.6153/0.9323) mem 16099MB [2025-01-17 21:54:49 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][230/312] eta 0:00:38 lr 0.000551 time 0.4461 (0.4646) model_time 0.4457 (0.4530) loss 6.3940 (6.3365) grad_norm 3.0014 (3.6108/0.9294) mem 16099MB [2025-01-17 21:54:53 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][240/312] eta 0:00:33 lr 0.000557 time 0.4405 (0.4640) model_time 0.4400 (0.4529) loss 6.1831 (6.3335) grad_norm 2.3355 (3.5876/0.9268) mem 16099MB [2025-01-17 21:54:58 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][250/312] eta 0:00:28 lr 0.000564 time 0.4560 (0.4637) model_time 0.4555 (0.4530) loss 6.1547 (6.3331) grad_norm 3.4283 (3.5680/0.9252) mem 16099MB [2025-01-17 21:55:02 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][260/312] eta 0:00:24 lr 0.000570 time 0.4484 (0.4637) model_time 0.4480 (0.4534) loss 5.8070 (6.3246) grad_norm 3.5221 (3.5600/0.9268) mem 16099MB [2025-01-17 21:55:07 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][270/312] eta 0:00:19 lr 0.000577 time 0.4615 (0.4642) model_time 0.4613 (0.4542) loss 6.3366 (6.3213) grad_norm 2.7848 (3.5308/0.9230) mem 16099MB [2025-01-17 21:55:11 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][280/312] eta 0:00:14 lr 0.000583 time 0.4469 (0.4637) model_time 0.4465 (0.4541) loss 6.3015 (6.3173) grad_norm 3.3044 (3.5260/0.9132) mem 16099MB [2025-01-17 21:55:16 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][290/312] eta 0:00:10 lr 0.000589 time 0.4514 (0.4632) model_time 0.4510 (0.4539) loss 6.4490 (6.3107) grad_norm 2.6261 (3.4946/0.9154) mem 16099MB [2025-01-17 21:55:20 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][300/312] eta 0:00:05 lr 0.000596 time 0.4361 (0.4626) model_time 0.4360 (0.4536) loss 6.3754 (6.3122) grad_norm 3.8083 (3.5198/0.9236) mem 16099MB [2025-01-17 21:55:25 internimage_t_1k_224] (main.py 510): INFO Train: [2/300][310/312] eta 0:00:00 lr 0.000602 time 0.4351 (0.4618) model_time 0.4350 (0.4531) loss 5.6755 (6.3081) grad_norm 3.6231 (3.5070/0.9300) mem 16099MB [2025-01-17 21:55:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 2 training takes 0:02:24 [2025-01-17 21:55:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_2.pth saving...... [2025-01-17 21:55:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_2.pth saved !!! [2025-01-17 21:55:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.582 (7.582) Loss 5.1909 (5.1909) Acc@1 7.617 (7.617) Acc@5 22.095 (22.095) Mem 16099MB [2025-01-17 21:55:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.000) Loss 5.2090 (5.1415) Acc@1 7.520 (7.990) Acc@5 19.238 (21.598) Mem 16099MB [2025-01-17 21:55:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:2] * Acc@1 8.717 Acc@5 22.773 [2025-01-17 21:55:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 8.7% [2025-01-17 21:55:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 21:55:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 21:55:39 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 8.72% [2025-01-17 21:55:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.530 (7.530) Loss 6.8758 (6.8758) Acc@1 0.317 (0.317) Acc@5 1.440 (1.440) Mem 16099MB [2025-01-17 21:55:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.011) Loss 6.9404 (6.8959) Acc@1 0.000 (0.149) Acc@5 0.049 (0.790) Mem 16099MB [2025-01-17 21:55:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:2] * Acc@1 0.144 Acc@5 0.764 [2025-01-17 21:55:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.1% [2025-01-17 21:55:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 21:55:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 21:55:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.14% [2025-01-17 21:55:55 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][0/312] eta 0:15:50 lr 0.000603 time 3.0449 (3.0449) model_time 0.4774 (0.4774) loss 6.4907 (6.4907) grad_norm 3.4651 (3.4651/0.0000) mem 16099MB [2025-01-17 21:55:59 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][10/312] eta 0:03:27 lr 0.000610 time 0.4481 (0.6876) model_time 0.4476 (0.4538) loss 5.8668 (6.1112) grad_norm 3.3467 (3.6320/0.6695) mem 16099MB [2025-01-17 21:56:04 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][20/312] eta 0:02:48 lr 0.000616 time 0.4422 (0.5764) model_time 0.4418 (0.4538) loss 6.0630 (6.0915) grad_norm 2.4052 (3.4944/0.8053) mem 16099MB [2025-01-17 21:56:08 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][30/312] eta 0:02:31 lr 0.000623 time 0.4398 (0.5370) model_time 0.4394 (0.4538) loss 6.4504 (6.1404) grad_norm 2.8392 (3.3266/0.8110) mem 16099MB [2025-01-17 21:56:13 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][40/312] eta 0:02:20 lr 0.000629 time 0.4493 (0.5154) model_time 0.4492 (0.4524) loss 5.5905 (6.1632) grad_norm 2.6243 (3.3179/0.7675) mem 16099MB [2025-01-17 21:56:17 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][50/312] eta 0:02:11 lr 0.000635 time 0.4448 (0.5026) model_time 0.4443 (0.4519) loss 6.5354 (6.1712) grad_norm 3.9580 (3.3699/0.9282) mem 16099MB [2025-01-17 21:56:22 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][60/312] eta 0:02:04 lr 0.000642 time 0.4418 (0.4937) model_time 0.4416 (0.4513) loss 5.5975 (6.1542) grad_norm 2.3473 (3.3798/0.9133) mem 16099MB [2025-01-17 21:56:26 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][70/312] eta 0:01:57 lr 0.000648 time 0.4438 (0.4873) model_time 0.4434 (0.4508) loss 6.1443 (6.1567) grad_norm 2.6670 (3.4659/0.9814) mem 16099MB [2025-01-17 21:56:31 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][80/312] eta 0:01:52 lr 0.000655 time 0.4562 (0.4834) model_time 0.4561 (0.4513) loss 5.6462 (6.1644) grad_norm 4.1880 (3.4866/0.9610) mem 16099MB [2025-01-17 21:56:35 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][90/312] eta 0:01:46 lr 0.000661 time 0.4827 (0.4802) model_time 0.4822 (0.4516) loss 6.1309 (6.1406) grad_norm 2.6283 (3.4937/0.9949) mem 16099MB [2025-01-17 21:56:40 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][100/312] eta 0:01:41 lr 0.000667 time 0.4637 (0.4788) model_time 0.4633 (0.4530) loss 6.3190 (6.1436) grad_norm 3.4667 (3.4714/1.0075) mem 16099MB [2025-01-17 21:56:44 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][110/312] eta 0:01:36 lr 0.000674 time 0.4387 (0.4761) model_time 0.4382 (0.4526) loss 5.9544 (6.1459) grad_norm 2.4126 (3.4568/1.0055) mem 16099MB [2025-01-17 21:56:49 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][120/312] eta 0:01:31 lr 0.000680 time 0.5540 (0.4744) model_time 0.5539 (0.4528) loss 6.2059 (6.1487) grad_norm 4.3833 (3.5224/1.0839) mem 16099MB [2025-01-17 21:56:53 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][130/312] eta 0:01:25 lr 0.000687 time 0.4443 (0.4723) model_time 0.4441 (0.4523) loss 5.9247 (6.1470) grad_norm 2.5498 (3.5052/1.0919) mem 16099MB [2025-01-17 21:56:58 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][140/312] eta 0:01:20 lr 0.000693 time 0.4459 (0.4707) model_time 0.4454 (0.4521) loss 6.3988 (6.1395) grad_norm 2.6008 (3.5308/1.1052) mem 16099MB [2025-01-17 21:57:02 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][150/312] eta 0:01:16 lr 0.000699 time 0.4451 (0.4703) model_time 0.4447 (0.4529) loss 6.1493 (6.1360) grad_norm 3.8154 (3.5150/1.0781) mem 16099MB [2025-01-17 21:57:07 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][160/312] eta 0:01:11 lr 0.000706 time 0.4441 (0.4689) model_time 0.4436 (0.4525) loss 6.3351 (6.1294) grad_norm 3.1432 (3.5253/1.0696) mem 16099MB [2025-01-17 21:57:12 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][170/312] eta 0:01:06 lr 0.000712 time 0.4535 (0.4686) model_time 0.4534 (0.4532) loss 6.1938 (6.1280) grad_norm 3.3866 (3.5095/1.0546) mem 16099MB [2025-01-17 21:57:16 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][180/312] eta 0:01:01 lr 0.000719 time 0.4453 (0.4681) model_time 0.4448 (0.4536) loss 6.2520 (6.1309) grad_norm 3.6099 (3.4976/1.0348) mem 16099MB [2025-01-17 21:57:21 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][190/312] eta 0:00:57 lr 0.000725 time 0.4428 (0.4675) model_time 0.4427 (0.4537) loss 6.1400 (6.1280) grad_norm 3.5803 (3.4864/1.0239) mem 16099MB [2025-01-17 21:57:25 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][200/312] eta 0:00:52 lr 0.000731 time 0.4460 (0.4666) model_time 0.4456 (0.4534) loss 5.9697 (6.1266) grad_norm 4.7246 (3.5165/1.0307) mem 16099MB [2025-01-17 21:57:30 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][210/312] eta 0:00:47 lr 0.000738 time 0.4466 (0.4659) model_time 0.4462 (0.4534) loss 6.5646 (6.1262) grad_norm 2.4386 (3.5369/1.0257) mem 16099MB [2025-01-17 21:57:34 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][220/312] eta 0:00:42 lr 0.000744 time 0.4454 (0.4652) model_time 0.4450 (0.4532) loss 5.9961 (6.1234) grad_norm 4.6414 (3.5565/1.0230) mem 16099MB [2025-01-17 21:57:39 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][230/312] eta 0:00:38 lr 0.000751 time 0.4492 (0.4647) model_time 0.4487 (0.4532) loss 6.1272 (6.1138) grad_norm 2.6910 (3.5536/1.0150) mem 16099MB [2025-01-17 21:57:43 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][240/312] eta 0:00:33 lr 0.000757 time 0.4511 (0.4640) model_time 0.4507 (0.4530) loss 6.3642 (6.1174) grad_norm 2.4156 (3.5330/1.0107) mem 16099MB [2025-01-17 21:57:48 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][250/312] eta 0:00:28 lr 0.000763 time 0.4413 (0.4634) model_time 0.4412 (0.4527) loss 6.3371 (6.1225) grad_norm 2.8603 (3.5244/1.0160) mem 16099MB [2025-01-17 21:57:52 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][260/312] eta 0:00:24 lr 0.000770 time 0.4530 (0.4629) model_time 0.4526 (0.4527) loss 6.1475 (6.1173) grad_norm 6.9975 (3.5067/1.0372) mem 16099MB [2025-01-17 21:57:57 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][270/312] eta 0:00:19 lr 0.000776 time 0.4492 (0.4629) model_time 0.4488 (0.4530) loss 6.1688 (6.1190) grad_norm 3.2824 (3.4984/1.0269) mem 16099MB [2025-01-17 21:58:01 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][280/312] eta 0:00:14 lr 0.000783 time 0.4457 (0.4624) model_time 0.4455 (0.4529) loss 6.4802 (6.1171) grad_norm 2.1711 (3.4859/1.0189) mem 16099MB [2025-01-17 21:58:06 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][290/312] eta 0:00:10 lr 0.000789 time 0.4458 (0.4619) model_time 0.4454 (0.4527) loss 5.9471 (6.1088) grad_norm 3.4431 (3.4909/1.0108) mem 16099MB [2025-01-17 21:58:10 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][300/312] eta 0:00:05 lr 0.000796 time 0.4342 (0.4614) model_time 0.4341 (0.4525) loss 6.2087 (6.1041) grad_norm 3.3555 (3.4973/1.0130) mem 16099MB [2025-01-17 21:58:15 internimage_t_1k_224] (main.py 510): INFO Train: [3/300][310/312] eta 0:00:00 lr 0.000802 time 0.4397 (0.4608) model_time 0.4396 (0.4521) loss 6.1866 (6.1020) grad_norm 6.3064 (3.4972/1.0352) mem 16099MB [2025-01-17 21:58:15 internimage_t_1k_224] (main.py 519): INFO EPOCH 3 training takes 0:02:23 [2025-01-17 21:58:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_3.pth saving...... [2025-01-17 21:58:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_3.pth saved !!! [2025-01-17 21:58:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.614 (7.614) Loss 4.4098 (4.4098) Acc@1 14.941 (14.941) Acc@5 36.646 (36.646) Mem 16099MB [2025-01-17 21:58:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.006) Loss 4.7669 (4.5656) Acc@1 12.354 (14.198) Acc@5 28.833 (33.689) Mem 16099MB [2025-01-17 21:58:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:3] * Acc@1 14.895 Acc@5 34.679 [2025-01-17 21:58:28 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 14.9% [2025-01-17 21:58:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 21:58:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 21:58:29 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 14.90% [2025-01-17 21:58:36 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.288 (7.288) Loss 6.8494 (6.8494) Acc@1 0.195 (0.195) Acc@5 1.367 (1.367) Mem 16099MB [2025-01-17 21:58:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.988) Loss 6.9417 (6.8834) Acc@1 0.000 (0.215) Acc@5 0.073 (0.959) Mem 16099MB [2025-01-17 21:58:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:3] * Acc@1 0.198 Acc@5 0.996 [2025-01-17 21:58:40 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.2% [2025-01-17 21:58:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 21:58:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 21:58:41 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.20% [2025-01-17 21:58:44 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][0/312] eta 0:15:28 lr 0.000803 time 2.9759 (2.9759) model_time 0.4636 (0.4636) loss 5.2360 (5.2360) grad_norm 5.2968 (5.2968/0.0000) mem 16099MB [2025-01-17 21:58:49 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][10/312] eta 0:03:26 lr 0.000810 time 0.4510 (0.6833) model_time 0.4509 (0.4547) loss 6.3976 (5.9681) grad_norm 3.6790 (3.7268/0.9383) mem 16099MB [2025-01-17 21:58:53 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][20/312] eta 0:02:50 lr 0.000816 time 0.4481 (0.5832) model_time 0.4479 (0.4633) loss 6.2372 (6.0470) grad_norm 4.7038 (3.4624/0.9696) mem 16099MB [2025-01-17 21:58:58 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][30/312] eta 0:02:32 lr 0.000822 time 0.4545 (0.5396) model_time 0.4543 (0.4583) loss 5.7657 (6.0365) grad_norm 2.6987 (3.6461/1.1800) mem 16099MB [2025-01-17 21:59:03 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][40/312] eta 0:02:21 lr 0.000829 time 0.4451 (0.5184) model_time 0.4450 (0.4568) loss 5.7793 (6.0630) grad_norm 4.5481 (3.5645/1.1135) mem 16099MB [2025-01-17 21:59:07 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][50/312] eta 0:02:12 lr 0.000835 time 0.4426 (0.5054) model_time 0.4421 (0.4558) loss 6.3204 (6.0525) grad_norm 4.0038 (3.6642/1.1089) mem 16099MB [2025-01-17 21:59:12 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][60/312] eta 0:02:05 lr 0.000842 time 0.4796 (0.4965) model_time 0.4794 (0.4550) loss 5.4624 (6.0294) grad_norm 3.5428 (3.6080/1.0743) mem 16099MB [2025-01-17 21:59:16 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][70/312] eta 0:01:58 lr 0.000848 time 0.4406 (0.4903) model_time 0.4405 (0.4546) loss 5.7166 (5.9965) grad_norm 4.1289 (3.5390/1.0310) mem 16099MB [2025-01-17 21:59:21 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][80/312] eta 0:01:52 lr 0.000854 time 0.4478 (0.4861) model_time 0.4476 (0.4547) loss 5.9568 (5.9836) grad_norm 2.5250 (3.5154/1.0133) mem 16099MB [2025-01-17 21:59:25 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][90/312] eta 0:01:47 lr 0.000861 time 0.4462 (0.4827) model_time 0.4457 (0.4548) loss 6.4175 (5.9802) grad_norm 4.7524 (3.5045/0.9975) mem 16099MB [2025-01-17 21:59:30 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][100/312] eta 0:01:41 lr 0.000867 time 0.4544 (0.4796) model_time 0.4539 (0.4544) loss 6.2950 (5.9786) grad_norm 5.5893 (3.5021/1.0446) mem 16099MB [2025-01-17 21:59:34 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][110/312] eta 0:01:36 lr 0.000874 time 0.4425 (0.4780) model_time 0.4423 (0.4550) loss 5.5355 (5.9856) grad_norm 3.5372 (3.4879/1.0308) mem 16099MB [2025-01-17 21:59:39 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][120/312] eta 0:01:31 lr 0.000880 time 0.5344 (0.4764) model_time 0.5342 (0.4553) loss 5.7226 (5.9867) grad_norm 2.7996 (3.4754/1.0276) mem 16099MB [2025-01-17 21:59:43 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][130/312] eta 0:01:26 lr 0.000886 time 0.4384 (0.4751) model_time 0.4379 (0.4555) loss 6.0895 (5.9902) grad_norm 3.1452 (3.4851/1.0114) mem 16099MB [2025-01-17 21:59:48 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][140/312] eta 0:01:21 lr 0.000893 time 0.4448 (0.4734) model_time 0.4444 (0.4553) loss 6.2601 (5.9904) grad_norm 4.2923 (3.4813/1.0064) mem 16099MB [2025-01-17 21:59:53 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][150/312] eta 0:01:16 lr 0.000899 time 0.4540 (0.4722) model_time 0.4538 (0.4552) loss 5.3964 (5.9845) grad_norm 2.9781 (3.5277/1.1168) mem 16099MB [2025-01-17 21:59:57 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][160/312] eta 0:01:11 lr 0.000906 time 0.4431 (0.4707) model_time 0.4429 (0.4547) loss 5.7587 (5.9858) grad_norm 3.8558 (3.5709/1.1341) mem 16099MB [2025-01-17 22:00:02 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][170/312] eta 0:01:06 lr 0.000912 time 0.4466 (0.4696) model_time 0.4462 (0.4545) loss 6.1861 (5.9818) grad_norm 4.3427 (3.5817/1.1166) mem 16099MB [2025-01-17 22:00:06 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][180/312] eta 0:01:01 lr 0.000918 time 0.4469 (0.4684) model_time 0.4465 (0.4541) loss 5.6480 (5.9717) grad_norm 4.2260 (3.5732/1.1220) mem 16099MB [2025-01-17 22:00:11 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][190/312] eta 0:00:57 lr 0.000925 time 0.4450 (0.4676) model_time 0.4448 (0.4540) loss 5.5414 (5.9649) grad_norm 3.2611 (3.7265/1.4169) mem 16099MB [2025-01-17 22:00:15 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][200/312] eta 0:00:52 lr 0.000931 time 0.4499 (0.4666) model_time 0.4498 (0.4537) loss 5.3395 (5.9621) grad_norm 2.2198 (3.7003/1.3954) mem 16099MB [2025-01-17 22:00:20 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][210/312] eta 0:00:47 lr 0.000938 time 0.4553 (0.4660) model_time 0.4549 (0.4538) loss 5.3400 (5.9617) grad_norm 2.2678 (3.6727/1.3928) mem 16099MB [2025-01-17 22:00:24 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][220/312] eta 0:00:42 lr 0.000944 time 0.4545 (0.4654) model_time 0.4544 (0.4537) loss 5.9837 (5.9615) grad_norm 2.4191 (3.6626/1.3714) mem 16099MB [2025-01-17 22:00:29 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][230/312] eta 0:00:38 lr 0.000950 time 0.4376 (0.4649) model_time 0.4371 (0.4537) loss 5.5914 (5.9507) grad_norm 2.6888 (3.6527/1.3525) mem 16099MB [2025-01-17 22:00:33 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][240/312] eta 0:00:33 lr 0.000957 time 0.4445 (0.4645) model_time 0.4443 (0.4537) loss 6.0518 (5.9342) grad_norm 4.5383 (3.6558/1.3362) mem 16099MB [2025-01-17 22:00:38 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][250/312] eta 0:00:28 lr 0.000963 time 0.4377 (0.4646) model_time 0.4375 (0.4543) loss 5.8075 (5.9229) grad_norm 2.1080 (3.6239/1.3218) mem 16099MB [2025-01-17 22:00:42 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][260/312] eta 0:00:24 lr 0.000970 time 0.4413 (0.4642) model_time 0.4411 (0.4542) loss 5.5926 (5.9254) grad_norm 2.9527 (3.6114/1.3166) mem 16099MB [2025-01-17 22:00:47 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][270/312] eta 0:00:19 lr 0.000976 time 0.4537 (0.4635) model_time 0.4532 (0.4539) loss 5.9477 (5.9259) grad_norm 3.3277 (3.5886/1.3049) mem 16099MB [2025-01-17 22:00:51 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][280/312] eta 0:00:14 lr 0.000983 time 0.4512 (0.4630) model_time 0.4508 (0.4537) loss 5.8740 (5.9217) grad_norm 2.7680 (3.5746/1.2905) mem 16099MB [2025-01-17 22:00:56 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][290/312] eta 0:00:10 lr 0.000989 time 0.4357 (0.4628) model_time 0.4353 (0.4538) loss 5.7337 (5.9164) grad_norm 5.4274 (3.5711/1.2878) mem 16099MB [2025-01-17 22:01:01 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][300/312] eta 0:00:05 lr 0.000995 time 0.4342 (0.4627) model_time 0.4341 (0.4540) loss 5.0189 (5.9067) grad_norm 3.0094 (3.5868/1.3053) mem 16099MB [2025-01-17 22:01:05 internimage_t_1k_224] (main.py 510): INFO Train: [4/300][310/312] eta 0:00:00 lr 0.001002 time 0.4330 (0.4618) model_time 0.4329 (0.4534) loss 5.9965 (5.9063) grad_norm 3.5414 (3.5805/1.2960) mem 16099MB [2025-01-17 22:01:05 internimage_t_1k_224] (main.py 519): INFO EPOCH 4 training takes 0:02:24 [2025-01-17 22:01:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_4.pth saving...... [2025-01-17 22:01:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_4.pth saved !!! [2025-01-17 22:01:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.326 (7.326) Loss 3.8630 (3.8630) Acc@1 22.949 (22.949) Acc@5 47.388 (47.388) Mem 16099MB [2025-01-17 22:01:17 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.990) Loss 4.2660 (4.0237) Acc@1 18.286 (21.123) Acc@5 39.600 (44.183) Mem 16099MB [2025-01-17 22:01:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:4] * Acc@1 21.925 Acc@5 45.146 [2025-01-17 22:01:18 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 21.9% [2025-01-17 22:01:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:01:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:01:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 21.92% [2025-01-17 22:01:26 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.406 (7.406) Loss 6.8170 (6.8170) Acc@1 0.317 (0.317) Acc@5 1.880 (1.880) Mem 16099MB [2025-01-17 22:01:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.988) Loss 6.9476 (6.8723) Acc@1 0.000 (0.249) Acc@5 0.024 (1.101) Mem 16099MB [2025-01-17 22:01:30 internimage_t_1k_224] (main.py 575): INFO [Epoch:4] * Acc@1 0.258 Acc@5 1.208 [2025-01-17 22:01:30 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.3% [2025-01-17 22:01:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 22:01:31 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 22:01:31 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.26% [2025-01-17 22:01:34 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][0/312] eta 0:15:27 lr 0.001003 time 2.9727 (2.9727) model_time 0.4718 (0.4718) loss 4.9557 (4.9557) grad_norm 2.6308 (2.6308/0.0000) mem 16099MB [2025-01-17 22:01:39 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][10/312] eta 0:03:33 lr 0.001009 time 0.4409 (0.7055) model_time 0.4407 (0.4778) loss 5.8251 (5.5164) grad_norm 4.8259 (3.2549/0.8356) mem 16099MB [2025-01-17 22:01:43 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][20/312] eta 0:02:50 lr 0.001016 time 0.4585 (0.5846) model_time 0.4584 (0.4652) loss 5.2412 (5.6500) grad_norm 3.0882 (3.5072/1.1044) mem 16099MB [2025-01-17 22:01:48 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][30/312] eta 0:02:32 lr 0.001022 time 0.4632 (0.5420) model_time 0.4631 (0.4610) loss 5.9397 (5.7157) grad_norm 2.7060 (3.2281/1.0130) mem 16099MB [2025-01-17 22:01:52 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][40/312] eta 0:02:21 lr 0.001029 time 0.4509 (0.5198) model_time 0.4505 (0.4585) loss 6.2521 (5.7867) grad_norm 4.6541 (3.2578/0.9531) mem 16099MB [2025-01-17 22:01:57 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][50/312] eta 0:02:12 lr 0.001035 time 0.4479 (0.5063) model_time 0.4477 (0.4569) loss 5.5662 (5.7927) grad_norm 2.7199 (3.4048/1.2346) mem 16099MB [2025-01-17 22:02:02 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][60/312] eta 0:02:05 lr 0.001041 time 0.4435 (0.4987) model_time 0.4431 (0.4574) loss 5.4947 (5.7846) grad_norm 2.7589 (3.3511/1.2422) mem 16099MB [2025-01-17 22:02:06 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][70/312] eta 0:01:59 lr 0.001048 time 0.4744 (0.4922) model_time 0.4739 (0.4567) loss 6.1978 (5.7905) grad_norm 4.1143 (3.3068/1.2004) mem 16099MB [2025-01-17 22:02:11 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][80/312] eta 0:01:52 lr 0.001054 time 0.4477 (0.4869) model_time 0.4473 (0.4557) loss 5.8274 (5.7808) grad_norm 3.8030 (3.3430/1.1469) mem 16099MB [2025-01-17 22:02:15 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][90/312] eta 0:01:47 lr 0.001061 time 0.4431 (0.4826) model_time 0.4429 (0.4548) loss 5.2753 (5.7364) grad_norm 2.6264 (3.3556/1.1206) mem 16099MB [2025-01-17 22:02:20 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][100/312] eta 0:01:41 lr 0.001067 time 0.4400 (0.4805) model_time 0.4398 (0.4554) loss 5.4994 (5.7099) grad_norm 2.4640 (3.3797/1.1856) mem 16099MB [2025-01-17 22:02:24 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][110/312] eta 0:01:36 lr 0.001073 time 0.4366 (0.4781) model_time 0.4364 (0.4552) loss 6.0277 (5.7127) grad_norm 2.9641 (3.4766/1.2883) mem 16099MB [2025-01-17 22:02:29 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][120/312] eta 0:01:31 lr 0.001080 time 0.4371 (0.4763) model_time 0.4367 (0.4553) loss 6.1460 (5.7133) grad_norm 3.7643 (3.4037/1.2697) mem 16099MB [2025-01-17 22:02:33 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][130/312] eta 0:01:26 lr 0.001086 time 0.4396 (0.4741) model_time 0.4395 (0.4547) loss 5.3560 (5.7140) grad_norm 2.1267 (3.3629/1.2368) mem 16099MB [2025-01-17 22:02:38 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][140/312] eta 0:01:21 lr 0.001093 time 0.4384 (0.4733) model_time 0.4383 (0.4553) loss 6.0458 (5.7297) grad_norm 3.2118 (3.4016/1.2384) mem 16099MB [2025-01-17 22:02:42 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][150/312] eta 0:01:16 lr 0.001099 time 0.4448 (0.4723) model_time 0.4446 (0.4554) loss 5.4580 (5.7250) grad_norm 6.6049 (3.4821/1.3438) mem 16099MB [2025-01-17 22:02:47 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][160/312] eta 0:01:11 lr 0.001105 time 0.4358 (0.4714) model_time 0.4353 (0.4555) loss 5.0129 (5.7139) grad_norm 2.7586 (3.4685/1.3156) mem 16099MB [2025-01-17 22:02:51 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][170/312] eta 0:01:06 lr 0.001112 time 0.4550 (0.4700) model_time 0.4548 (0.4550) loss 6.1092 (5.7248) grad_norm 2.9470 (3.4850/1.3644) mem 16099MB [2025-01-17 22:02:56 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][180/312] eta 0:01:01 lr 0.001118 time 0.4469 (0.4687) model_time 0.4467 (0.4545) loss 5.2584 (5.7158) grad_norm 3.3797 (3.4946/1.3374) mem 16099MB [2025-01-17 22:03:00 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][190/312] eta 0:00:57 lr 0.001125 time 0.4460 (0.4675) model_time 0.4458 (0.4540) loss 5.3326 (5.7061) grad_norm 2.0926 (3.4494/1.3235) mem 16099MB [2025-01-17 22:03:05 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][200/312] eta 0:00:52 lr 0.001131 time 0.4388 (0.4671) model_time 0.4383 (0.4544) loss 6.2331 (5.7037) grad_norm 2.9323 (3.4538/1.3016) mem 16099MB [2025-01-17 22:03:10 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][210/312] eta 0:00:47 lr 0.001137 time 0.4441 (0.4666) model_time 0.4437 (0.4544) loss 5.6259 (5.7055) grad_norm 2.9267 (3.4559/1.2762) mem 16099MB [2025-01-17 22:03:14 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][220/312] eta 0:00:42 lr 0.001144 time 0.4455 (0.4659) model_time 0.4454 (0.4542) loss 5.9832 (5.7054) grad_norm 2.9429 (3.4496/1.2602) mem 16099MB [2025-01-17 22:03:19 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][230/312] eta 0:00:38 lr 0.001150 time 0.4430 (0.4656) model_time 0.4428 (0.4544) loss 5.6971 (5.6955) grad_norm 3.2285 (3.4445/1.2601) mem 16099MB [2025-01-17 22:03:23 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][240/312] eta 0:00:33 lr 0.001157 time 0.4488 (0.4648) model_time 0.4483 (0.4541) loss 5.3835 (5.7001) grad_norm 2.4136 (3.4292/1.2420) mem 16099MB [2025-01-17 22:03:28 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][250/312] eta 0:00:28 lr 0.001163 time 0.4612 (0.4648) model_time 0.4610 (0.4545) loss 5.0156 (5.6935) grad_norm 3.8868 (3.4391/1.2457) mem 16099MB [2025-01-17 22:03:32 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][260/312] eta 0:00:24 lr 0.001170 time 0.4463 (0.4642) model_time 0.4458 (0.4543) loss 5.8853 (5.6935) grad_norm 4.7957 (3.4415/1.2426) mem 16099MB [2025-01-17 22:03:37 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][270/312] eta 0:00:19 lr 0.001176 time 0.4434 (0.4638) model_time 0.4432 (0.4543) loss 6.1021 (5.6967) grad_norm 2.6322 (3.4814/1.3332) mem 16099MB [2025-01-17 22:03:41 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][280/312] eta 0:00:14 lr 0.001182 time 0.4425 (0.4632) model_time 0.4423 (0.4540) loss 4.9210 (5.6932) grad_norm 3.1568 (3.4833/1.3418) mem 16099MB [2025-01-17 22:03:46 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][290/312] eta 0:00:10 lr 0.001189 time 0.4490 (0.4628) model_time 0.4488 (0.4539) loss 4.8320 (5.6847) grad_norm 3.5216 (3.4566/1.3350) mem 16099MB [2025-01-17 22:03:50 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][300/312] eta 0:00:05 lr 0.001195 time 0.4321 (0.4623) model_time 0.4320 (0.4537) loss 5.6721 (5.6825) grad_norm 4.0384 (3.4853/1.3526) mem 16099MB [2025-01-17 22:03:55 internimage_t_1k_224] (main.py 510): INFO Train: [5/300][310/312] eta 0:00:00 lr 0.001202 time 0.4387 (0.4616) model_time 0.4386 (0.4532) loss 5.8732 (5.6737) grad_norm 3.6174 (3.5065/1.3648) mem 16099MB [2025-01-17 22:03:55 internimage_t_1k_224] (main.py 519): INFO EPOCH 5 training takes 0:02:23 [2025-01-17 22:03:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_5.pth saving...... [2025-01-17 22:03:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_5.pth saved !!! [2025-01-17 22:04:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.234 (7.234) Loss 3.5593 (3.5593) Acc@1 27.905 (27.905) Acc@5 54.175 (54.175) Mem 16099MB [2025-01-17 22:04:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.989) Loss 4.0042 (3.6978) Acc@1 21.411 (26.030) Acc@5 44.678 (51.181) Mem 16099MB [2025-01-17 22:04:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:5] * Acc@1 26.843 Acc@5 51.911 [2025-01-17 22:04:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 26.8% [2025-01-17 22:04:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:04:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:04:09 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 26.84% [2025-01-17 22:04:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.533 (7.533) Loss 6.7796 (6.7796) Acc@1 0.854 (0.854) Acc@5 2.881 (2.881) Mem 16099MB [2025-01-17 22:04:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.016) Loss 6.9550 (6.8623) Acc@1 0.000 (0.311) Acc@5 0.024 (1.225) Mem 16099MB [2025-01-17 22:04:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:5] * Acc@1 0.370 Acc@5 1.512 [2025-01-17 22:04:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:04:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 22:04:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 22:04:21 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.37% [2025-01-17 22:04:24 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][0/312] eta 0:12:09 lr 0.001203 time 2.3381 (2.3381) model_time 0.4915 (0.4915) loss 6.0179 (6.0179) grad_norm 2.3733 (2.3733/0.0000) mem 16099MB [2025-01-17 22:04:28 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][10/312] eta 0:03:09 lr 0.001209 time 0.4451 (0.6266) model_time 0.4447 (0.4585) loss 4.9961 (5.7960) grad_norm 3.4857 (3.0137/0.7400) mem 16099MB [2025-01-17 22:04:33 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][20/312] eta 0:02:38 lr 0.001216 time 0.4496 (0.5415) model_time 0.4492 (0.4532) loss 5.9510 (5.6724) grad_norm 3.4391 (3.5231/1.3841) mem 16099MB [2025-01-17 22:04:37 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][30/312] eta 0:02:24 lr 0.001222 time 0.4464 (0.5110) model_time 0.4460 (0.4511) loss 5.6422 (5.6182) grad_norm 2.8037 (3.4360/1.2614) mem 16099MB [2025-01-17 22:04:42 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][40/312] eta 0:02:14 lr 0.001228 time 0.4403 (0.4953) model_time 0.4399 (0.4499) loss 5.2852 (5.6214) grad_norm 13.9809 (3.6554/1.9985) mem 16099MB [2025-01-17 22:04:46 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][50/312] eta 0:02:07 lr 0.001235 time 0.4840 (0.4870) model_time 0.4836 (0.4504) loss 5.0596 (5.5534) grad_norm 3.2759 (4.0505/2.5093) mem 16099MB [2025-01-17 22:04:51 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][60/312] eta 0:02:01 lr 0.001241 time 0.4399 (0.4823) model_time 0.4397 (0.4516) loss 5.4359 (5.5328) grad_norm 3.3070 (4.0029/2.3368) mem 16099MB [2025-01-17 22:04:55 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][70/312] eta 0:01:55 lr 0.001248 time 0.4499 (0.4780) model_time 0.4495 (0.4516) loss 5.7169 (5.5362) grad_norm 2.3672 (3.8013/2.2280) mem 16099MB [2025-01-17 22:05:00 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][80/312] eta 0:01:50 lr 0.001254 time 0.4480 (0.4760) model_time 0.4478 (0.4528) loss 4.6431 (5.5080) grad_norm 3.8491 (3.7455/2.1080) mem 16099MB [2025-01-17 22:05:04 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][90/312] eta 0:01:44 lr 0.001260 time 0.4365 (0.4727) model_time 0.4360 (0.4520) loss 4.9310 (5.5061) grad_norm 7.7186 (3.7221/2.0554) mem 16099MB [2025-01-17 22:05:09 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][100/312] eta 0:01:39 lr 0.001267 time 0.4491 (0.4705) model_time 0.4487 (0.4518) loss 5.4983 (5.4881) grad_norm 2.4797 (3.6441/1.9712) mem 16099MB [2025-01-17 22:05:13 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][110/312] eta 0:01:34 lr 0.001273 time 0.4574 (0.4684) model_time 0.4572 (0.4514) loss 5.9764 (5.4772) grad_norm 2.2634 (3.6372/1.9308) mem 16099MB [2025-01-17 22:05:18 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][120/312] eta 0:01:29 lr 0.001280 time 0.4471 (0.4682) model_time 0.4470 (0.4525) loss 4.9758 (5.4788) grad_norm 2.3813 (3.5933/1.8660) mem 16099MB [2025-01-17 22:05:23 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][130/312] eta 0:01:25 lr 0.001286 time 0.4471 (0.4681) model_time 0.4470 (0.4536) loss 5.9438 (5.4801) grad_norm 5.1720 (3.5807/1.8177) mem 16099MB [2025-01-17 22:05:27 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][140/312] eta 0:01:20 lr 0.001292 time 0.4456 (0.4681) model_time 0.4454 (0.4546) loss 4.7092 (5.4956) grad_norm 3.1511 (3.6173/1.8099) mem 16099MB [2025-01-17 22:05:32 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][150/312] eta 0:01:15 lr 0.001299 time 0.4457 (0.4675) model_time 0.4455 (0.4549) loss 5.9333 (5.5012) grad_norm 2.6076 (3.6109/1.7643) mem 16099MB [2025-01-17 22:05:36 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][160/312] eta 0:01:10 lr 0.001305 time 0.4433 (0.4664) model_time 0.4429 (0.4545) loss 5.8374 (5.5150) grad_norm 6.0089 (3.5829/1.7335) mem 16099MB [2025-01-17 22:05:41 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][170/312] eta 0:01:06 lr 0.001312 time 0.4416 (0.4658) model_time 0.4411 (0.4546) loss 5.5134 (5.5174) grad_norm 2.8860 (3.6170/1.8024) mem 16099MB [2025-01-17 22:05:45 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][180/312] eta 0:01:01 lr 0.001318 time 0.4435 (0.4653) model_time 0.4431 (0.4547) loss 6.1043 (5.5148) grad_norm 6.6857 (3.6385/1.7964) mem 16099MB [2025-01-17 22:05:50 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][190/312] eta 0:00:56 lr 0.001324 time 0.4424 (0.4642) model_time 0.4421 (0.4542) loss 5.3686 (5.5002) grad_norm 2.4541 (3.5950/1.7653) mem 16099MB [2025-01-17 22:05:54 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][200/312] eta 0:00:51 lr 0.001331 time 0.4396 (0.4639) model_time 0.4392 (0.4543) loss 5.4208 (5.5134) grad_norm 2.6514 (3.6361/1.7634) mem 16099MB [2025-01-17 22:05:59 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][210/312] eta 0:00:47 lr 0.001337 time 0.4386 (0.4634) model_time 0.4384 (0.4543) loss 5.3088 (5.5058) grad_norm 2.5703 (3.6223/1.7486) mem 16099MB [2025-01-17 22:06:04 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][220/312] eta 0:00:42 lr 0.001344 time 0.4421 (0.4630) model_time 0.4417 (0.4542) loss 6.0936 (5.5162) grad_norm 5.4132 (3.6323/1.7231) mem 16099MB [2025-01-17 22:06:08 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][230/312] eta 0:00:37 lr 0.001350 time 0.4463 (0.4627) model_time 0.4461 (0.4543) loss 5.8395 (5.5121) grad_norm 1.9149 (3.6219/1.7143) mem 16099MB [2025-01-17 22:06:13 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][240/312] eta 0:00:33 lr 0.001356 time 0.4692 (0.4624) model_time 0.4688 (0.4543) loss 5.1645 (5.5083) grad_norm 2.6392 (3.5838/1.6936) mem 16099MB [2025-01-17 22:06:17 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][250/312] eta 0:00:28 lr 0.001363 time 0.4375 (0.4621) model_time 0.4373 (0.4543) loss 5.5677 (5.5089) grad_norm 2.4875 (3.6001/1.6765) mem 16099MB [2025-01-17 22:06:22 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][260/312] eta 0:00:24 lr 0.001369 time 0.4444 (0.4615) model_time 0.4439 (0.4541) loss 6.0251 (5.5166) grad_norm 2.8610 (3.6044/1.6542) mem 16099MB [2025-01-17 22:06:26 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][270/312] eta 0:00:19 lr 0.001376 time 0.4368 (0.4613) model_time 0.4364 (0.4541) loss 4.7079 (5.5164) grad_norm 3.4104 (3.5842/1.6307) mem 16099MB [2025-01-17 22:06:31 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][280/312] eta 0:00:14 lr 0.001382 time 0.4907 (0.4611) model_time 0.4902 (0.4542) loss 5.3149 (5.5152) grad_norm 4.8376 (3.5679/1.6112) mem 16099MB [2025-01-17 22:06:36 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][290/312] eta 0:00:10 lr 0.001389 time 0.4390 (0.4616) model_time 0.4386 (0.4549) loss 5.8575 (5.5159) grad_norm 4.8497 (3.5657/1.5881) mem 16099MB [2025-01-17 22:06:40 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][300/312] eta 0:00:05 lr 0.001395 time 0.4345 (0.4613) model_time 0.4344 (0.4548) loss 4.9069 (5.5165) grad_norm 2.1428 (3.5840/1.6017) mem 16099MB [2025-01-17 22:06:44 internimage_t_1k_224] (main.py 510): INFO Train: [6/300][310/312] eta 0:00:00 lr 0.001401 time 0.4332 (0.4605) model_time 0.4332 (0.4542) loss 5.1277 (5.5159) grad_norm 3.9259 (3.6011/1.6151) mem 16099MB [2025-01-17 22:06:45 internimage_t_1k_224] (main.py 519): INFO EPOCH 6 training takes 0:02:23 [2025-01-17 22:06:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_6.pth saving...... [2025-01-17 22:06:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_6.pth saved !!! [2025-01-17 22:06:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.945 (7.945) Loss 3.0904 (3.0904) Acc@1 35.303 (35.303) Acc@5 61.792 (61.792) Mem 16099MB [2025-01-17 22:06:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.069) Loss 3.7632 (3.3790) Acc@1 25.195 (31.157) Acc@5 49.438 (57.373) Mem 16099MB [2025-01-17 22:06:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:6] * Acc@1 31.944 Acc@5 58.299 [2025-01-17 22:06:58 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 31.9% [2025-01-17 22:06:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:06:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:06:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 31.94% [2025-01-17 22:07:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.467 (7.467) Loss 6.7374 (6.7374) Acc@1 0.952 (0.952) Acc@5 4.028 (4.028) Mem 16099MB [2025-01-17 22:07:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (1.016) Loss 6.9592 (6.8525) Acc@1 0.000 (0.282) Acc@5 0.000 (1.314) Mem 16099MB [2025-01-17 22:07:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:6] * Acc@1 0.422 Acc@5 1.743 [2025-01-17 22:07:10 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:07:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 22:07:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 22:07:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.42% [2025-01-17 22:07:14 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][0/312] eta 0:12:58 lr 0.001403 time 2.4958 (2.4958) model_time 0.4751 (0.4751) loss 5.8233 (5.8233) grad_norm 2.4791 (2.4791/0.0000) mem 16099MB [2025-01-17 22:07:19 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][10/312] eta 0:03:15 lr 0.001409 time 0.4493 (0.6476) model_time 0.4491 (0.4637) loss 5.0557 (5.6985) grad_norm 3.0685 (3.6448/1.3356) mem 16099MB [2025-01-17 22:07:23 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][20/312] eta 0:02:41 lr 0.001415 time 0.4433 (0.5542) model_time 0.4431 (0.4577) loss 4.6236 (5.4351) grad_norm 10.5365 (4.2815/2.2041) mem 16099MB [2025-01-17 22:07:28 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][30/312] eta 0:02:26 lr 0.001422 time 0.4529 (0.5206) model_time 0.4527 (0.4551) loss 5.7226 (5.4613) grad_norm 2.4746 (4.0346/1.9742) mem 16099MB [2025-01-17 22:07:32 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][40/312] eta 0:02:16 lr 0.001428 time 0.4449 (0.5029) model_time 0.4447 (0.4533) loss 4.9237 (5.3820) grad_norm 4.0451 (3.8435/1.7868) mem 16099MB [2025-01-17 22:07:37 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][50/312] eta 0:02:09 lr 0.001435 time 0.4462 (0.4937) model_time 0.4457 (0.4537) loss 5.6559 (5.3496) grad_norm 3.2567 (3.6741/1.6992) mem 16099MB [2025-01-17 22:07:41 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][60/312] eta 0:02:02 lr 0.001441 time 0.4438 (0.4859) model_time 0.4437 (0.4525) loss 5.0724 (5.3470) grad_norm 2.6059 (3.7053/1.6697) mem 16099MB [2025-01-17 22:07:46 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][70/312] eta 0:01:56 lr 0.001447 time 0.4401 (0.4817) model_time 0.4396 (0.4529) loss 4.8515 (5.3378) grad_norm 3.5309 (3.5536/1.6050) mem 16099MB [2025-01-17 22:07:51 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][80/312] eta 0:01:51 lr 0.001454 time 0.4366 (0.4789) model_time 0.4364 (0.4536) loss 5.9474 (5.3485) grad_norm 3.1521 (3.4665/1.5480) mem 16099MB [2025-01-17 22:07:55 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][90/312] eta 0:01:45 lr 0.001460 time 0.4506 (0.4765) model_time 0.4501 (0.4540) loss 5.7360 (5.3655) grad_norm 2.7882 (3.5069/1.5361) mem 16099MB [2025-01-17 22:08:00 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][100/312] eta 0:01:40 lr 0.001467 time 0.4669 (0.4744) model_time 0.4668 (0.4541) loss 4.7283 (5.3540) grad_norm 3.6893 (3.5230/1.5517) mem 16099MB [2025-01-17 22:08:04 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][110/312] eta 0:01:35 lr 0.001473 time 0.4402 (0.4736) model_time 0.4397 (0.4551) loss 4.5467 (5.3517) grad_norm 2.1246 (3.4782/1.5013) mem 16099MB [2025-01-17 22:08:09 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][120/312] eta 0:01:30 lr 0.001479 time 0.4386 (0.4720) model_time 0.4384 (0.4549) loss 4.5932 (5.3464) grad_norm 2.7783 (3.4847/1.4772) mem 16099MB [2025-01-17 22:08:13 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][130/312] eta 0:01:25 lr 0.001486 time 0.4419 (0.4699) model_time 0.4415 (0.4542) loss 5.2427 (5.3464) grad_norm 3.6935 (3.5163/1.5532) mem 16099MB [2025-01-17 22:08:18 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][140/312] eta 0:01:20 lr 0.001492 time 0.4774 (0.4685) model_time 0.4773 (0.4538) loss 5.5406 (5.3581) grad_norm 3.9441 (3.4843/1.5162) mem 16099MB [2025-01-17 22:08:22 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][150/312] eta 0:01:15 lr 0.001499 time 0.4435 (0.4671) model_time 0.4430 (0.4534) loss 5.5789 (5.3649) grad_norm 2.4290 (3.4274/1.4882) mem 16099MB [2025-01-17 22:08:27 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][160/312] eta 0:01:10 lr 0.001505 time 0.4501 (0.4660) model_time 0.4497 (0.4531) loss 5.3198 (5.3622) grad_norm 2.1806 (3.3781/1.4589) mem 16099MB [2025-01-17 22:08:31 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][170/312] eta 0:01:06 lr 0.001511 time 0.4532 (0.4655) model_time 0.4528 (0.4533) loss 4.7982 (5.3606) grad_norm 3.0767 (3.3467/1.4460) mem 16099MB [2025-01-17 22:08:36 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][180/312] eta 0:01:01 lr 0.001518 time 0.4600 (0.4645) model_time 0.4595 (0.4529) loss 5.3450 (5.3537) grad_norm 2.3953 (3.3486/1.4133) mem 16099MB [2025-01-17 22:08:40 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][190/312] eta 0:00:56 lr 0.001524 time 0.4727 (0.4637) model_time 0.4723 (0.4528) loss 4.4008 (5.3488) grad_norm 1.9017 (3.4158/1.4904) mem 16099MB [2025-01-17 22:08:45 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][200/312] eta 0:00:51 lr 0.001531 time 0.4848 (0.4635) model_time 0.4844 (0.4531) loss 5.8761 (5.3500) grad_norm 2.6165 (3.3660/1.4769) mem 16099MB [2025-01-17 22:08:49 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][210/312] eta 0:00:47 lr 0.001537 time 0.4361 (0.4627) model_time 0.4359 (0.4528) loss 5.1216 (5.3375) grad_norm 2.3485 (3.3765/1.5274) mem 16099MB [2025-01-17 22:08:54 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][220/312] eta 0:00:42 lr 0.001543 time 0.4390 (0.4625) model_time 0.4385 (0.4530) loss 5.6877 (5.3435) grad_norm 2.8068 (3.3652/1.5041) mem 16099MB [2025-01-17 22:08:58 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][230/312] eta 0:00:37 lr 0.001550 time 0.4383 (0.4618) model_time 0.4382 (0.4527) loss 5.6100 (5.3412) grad_norm 4.4035 (3.4018/1.5460) mem 16099MB [2025-01-17 22:09:03 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][240/312] eta 0:00:33 lr 0.001556 time 0.4368 (0.4617) model_time 0.4366 (0.4529) loss 5.1299 (5.3323) grad_norm 3.9093 (3.4156/1.5311) mem 16099MB [2025-01-17 22:09:08 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][250/312] eta 0:00:28 lr 0.001563 time 0.4366 (0.4613) model_time 0.4361 (0.4529) loss 5.4883 (5.3356) grad_norm 2.8394 (3.4039/1.5153) mem 16099MB [2025-01-17 22:09:12 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][260/312] eta 0:00:23 lr 0.001569 time 0.4452 (0.4608) model_time 0.4448 (0.4527) loss 5.7536 (5.3384) grad_norm 2.4210 (3.4664/1.6203) mem 16099MB [2025-01-17 22:09:17 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][270/312] eta 0:00:19 lr 0.001576 time 0.4406 (0.4606) model_time 0.4404 (0.4528) loss 5.6457 (5.3498) grad_norm 2.5328 (3.4475/1.6011) mem 16099MB [2025-01-17 22:09:21 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][280/312] eta 0:00:14 lr 0.001582 time 0.5279 (0.4608) model_time 0.5277 (0.4533) loss 5.6631 (5.3344) grad_norm 4.2819 (3.4564/1.5827) mem 16099MB [2025-01-17 22:09:26 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][290/312] eta 0:00:10 lr 0.001588 time 0.4492 (0.4606) model_time 0.4488 (0.4533) loss 5.4917 (5.3313) grad_norm 3.0236 (3.4662/1.5752) mem 16099MB [2025-01-17 22:09:30 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][300/312] eta 0:00:05 lr 0.001595 time 0.4380 (0.4605) model_time 0.4379 (0.4534) loss 5.5584 (5.3313) grad_norm 3.6834 (3.4507/1.5589) mem 16099MB [2025-01-17 22:09:35 internimage_t_1k_224] (main.py 510): INFO Train: [7/300][310/312] eta 0:00:00 lr 0.001601 time 0.4347 (0.4597) model_time 0.4346 (0.4528) loss 5.3923 (5.3303) grad_norm 4.0925 (3.4371/1.5427) mem 16099MB [2025-01-17 22:09:35 internimage_t_1k_224] (main.py 519): INFO EPOCH 7 training takes 0:02:23 [2025-01-17 22:09:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_7.pth saving...... [2025-01-17 22:09:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_7.pth saved !!! [2025-01-17 22:09:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.459 (7.459) Loss 3.0721 (3.0721) Acc@1 37.891 (37.891) Acc@5 62.646 (62.646) Mem 16099MB [2025-01-17 22:09:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.999) Loss 3.5047 (3.0711) Acc@1 28.760 (36.441) Acc@5 55.298 (63.124) Mem 16099MB [2025-01-17 22:09:47 internimage_t_1k_224] (main.py 575): INFO [Epoch:7] * Acc@1 37.314 Acc@5 63.818 [2025-01-17 22:09:47 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 37.3% [2025-01-17 22:09:47 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:09:49 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:09:49 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 37.31% [2025-01-17 22:09:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.415 (7.415) Loss 6.6912 (6.6912) Acc@1 1.025 (1.025) Acc@5 5.127 (5.127) Mem 16099MB [2025-01-17 22:10:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.995) Loss 6.9587 (6.8428) Acc@1 0.000 (0.249) Acc@5 0.024 (1.356) Mem 16099MB [2025-01-17 22:10:00 internimage_t_1k_224] (main.py 575): INFO [Epoch:7] * Acc@1 0.418 Acc@5 1.903 [2025-01-17 22:10:00 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:10:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.42% [2025-01-17 22:10:03 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][0/312] eta 0:14:55 lr 0.001602 time 2.8697 (2.8697) model_time 1.1304 (1.1304) loss 4.9526 (4.9526) grad_norm 2.6706 (2.6706/0.0000) mem 16099MB [2025-01-17 22:10:07 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][10/312] eta 0:03:30 lr 0.001609 time 0.4725 (0.6968) model_time 0.4723 (0.5384) loss 4.7315 (5.1311) grad_norm 2.7321 (3.0623/0.6610) mem 16099MB [2025-01-17 22:10:12 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][20/312] eta 0:02:50 lr 0.001615 time 0.5068 (0.5833) model_time 0.5064 (0.5001) loss 5.9137 (5.2378) grad_norm 1.7689 (2.8584/0.6707) mem 16099MB [2025-01-17 22:10:17 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][30/312] eta 0:02:33 lr 0.001622 time 0.4487 (0.5460) model_time 0.4483 (0.4896) loss 5.5573 (5.3025) grad_norm 3.0196 (2.9060/0.7967) mem 16099MB [2025-01-17 22:10:21 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][40/312] eta 0:02:22 lr 0.001628 time 0.4491 (0.5255) model_time 0.4489 (0.4828) loss 5.4384 (5.3056) grad_norm 2.8983 (3.2329/1.2168) mem 16099MB [2025-01-17 22:10:26 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][50/312] eta 0:02:14 lr 0.001634 time 0.4785 (0.5125) model_time 0.4783 (0.4781) loss 5.8132 (5.2907) grad_norm 4.1744 (3.3894/1.3824) mem 16099MB [2025-01-17 22:10:30 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][60/312] eta 0:02:07 lr 0.001641 time 0.6110 (0.5050) model_time 0.6109 (0.4762) loss 5.7236 (5.3356) grad_norm 3.0608 (3.5791/1.6814) mem 16099MB [2025-01-17 22:10:35 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][70/312] eta 0:02:00 lr 0.001647 time 0.4530 (0.4975) model_time 0.4526 (0.4727) loss 5.3032 (5.3565) grad_norm 3.8608 (3.4766/1.6070) mem 16099MB [2025-01-17 22:10:40 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][80/312] eta 0:01:54 lr 0.001654 time 0.4405 (0.4931) model_time 0.4401 (0.4713) loss 4.3384 (5.3508) grad_norm 2.5299 (3.3934/1.5308) mem 16099MB [2025-01-17 22:10:44 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][90/312] eta 0:01:48 lr 0.001660 time 0.4557 (0.4885) model_time 0.4555 (0.4690) loss 5.6095 (5.3432) grad_norm 2.9085 (3.3806/1.4610) mem 16099MB [2025-01-17 22:10:49 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][100/312] eta 0:01:42 lr 0.001666 time 0.4621 (0.4847) model_time 0.4620 (0.4671) loss 5.1428 (5.3182) grad_norm 4.9890 (3.3516/1.4161) mem 16099MB [2025-01-17 22:10:53 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][110/312] eta 0:01:37 lr 0.001673 time 0.4498 (0.4828) model_time 0.4494 (0.4668) loss 5.5112 (5.3151) grad_norm 3.1967 (3.3594/1.4034) mem 16099MB [2025-01-17 22:10:58 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][120/312] eta 0:01:32 lr 0.001679 time 0.4366 (0.4808) model_time 0.4361 (0.4660) loss 5.5716 (5.3016) grad_norm 7.2274 (3.4105/1.4020) mem 16099MB [2025-01-17 22:11:02 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][130/312] eta 0:01:27 lr 0.001686 time 0.4424 (0.4786) model_time 0.4422 (0.4649) loss 5.9474 (5.3022) grad_norm 7.8825 (3.4187/1.4300) mem 16099MB [2025-01-17 22:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][140/312] eta 0:01:22 lr 0.001692 time 0.4789 (0.4768) model_time 0.4784 (0.4641) loss 4.5015 (5.2961) grad_norm 5.4409 (3.3921/1.4204) mem 16099MB [2025-01-17 22:11:11 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][150/312] eta 0:01:16 lr 0.001698 time 0.4540 (0.4748) model_time 0.4538 (0.4629) loss 5.8220 (5.3091) grad_norm 2.3944 (3.3821/1.4218) mem 16099MB [2025-01-17 22:11:16 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][160/312] eta 0:01:12 lr 0.001705 time 0.5581 (0.4742) model_time 0.5579 (0.4630) loss 5.4541 (5.2940) grad_norm 2.5919 (3.3583/1.3935) mem 16099MB [2025-01-17 22:11:21 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][170/312] eta 0:01:07 lr 0.001711 time 0.4492 (0.4729) model_time 0.4491 (0.4623) loss 4.8640 (5.2875) grad_norm 4.0722 (3.3694/1.4244) mem 16099MB [2025-01-17 22:11:25 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][180/312] eta 0:01:02 lr 0.001718 time 0.4510 (0.4715) model_time 0.4506 (0.4616) loss 5.6419 (5.2894) grad_norm 2.9244 (3.4150/1.4088) mem 16099MB [2025-01-17 22:11:30 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][190/312] eta 0:00:57 lr 0.001724 time 0.4542 (0.4712) model_time 0.4540 (0.4617) loss 6.0162 (5.2928) grad_norm 4.2669 (3.3886/1.3835) mem 16099MB [2025-01-17 22:11:34 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][200/312] eta 0:00:52 lr 0.001730 time 0.4366 (0.4699) model_time 0.4361 (0.4609) loss 5.8620 (5.2937) grad_norm 2.6775 (3.3497/1.3719) mem 16099MB [2025-01-17 22:11:39 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][210/312] eta 0:00:47 lr 0.001737 time 0.4568 (0.4691) model_time 0.4567 (0.4605) loss 5.8293 (5.3069) grad_norm 3.4018 (3.3472/1.3565) mem 16099MB [2025-01-17 22:11:43 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][220/312] eta 0:00:43 lr 0.001743 time 0.4666 (0.4681) model_time 0.4664 (0.4598) loss 4.1337 (5.3007) grad_norm 4.1446 (3.3524/1.3400) mem 16099MB [2025-01-17 22:11:48 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][230/312] eta 0:00:38 lr 0.001750 time 0.4405 (0.4675) model_time 0.4401 (0.4596) loss 5.7155 (5.3027) grad_norm 1.6672 (3.3675/1.3726) mem 16099MB [2025-01-17 22:11:52 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][240/312] eta 0:00:33 lr 0.001756 time 0.4402 (0.4668) model_time 0.4398 (0.4592) loss 5.4113 (5.2922) grad_norm 2.7009 (3.3594/1.3558) mem 16099MB [2025-01-17 22:11:57 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][250/312] eta 0:00:28 lr 0.001762 time 0.4487 (0.4664) model_time 0.4486 (0.4591) loss 3.9718 (5.2798) grad_norm 3.3567 (3.3367/1.3391) mem 16099MB [2025-01-17 22:12:01 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][260/312] eta 0:00:24 lr 0.001769 time 0.4483 (0.4658) model_time 0.4479 (0.4588) loss 5.3410 (5.2691) grad_norm 3.7614 (3.3553/1.3486) mem 16099MB [2025-01-17 22:12:06 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][270/312] eta 0:00:19 lr 0.001775 time 0.4787 (0.4658) model_time 0.4782 (0.4590) loss 5.5014 (5.2681) grad_norm 3.1647 (3.3394/1.3326) mem 16099MB [2025-01-17 22:12:10 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][280/312] eta 0:00:14 lr 0.001782 time 0.4437 (0.4653) model_time 0.4435 (0.4587) loss 5.9466 (5.2702) grad_norm 3.6483 (3.3414/1.3275) mem 16099MB [2025-01-17 22:12:15 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][290/312] eta 0:00:10 lr 0.001788 time 0.4515 (0.4646) model_time 0.4511 (0.4583) loss 4.1861 (5.2546) grad_norm 2.5799 (3.3345/1.3200) mem 16099MB [2025-01-17 22:12:19 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][300/312] eta 0:00:05 lr 0.001795 time 0.5074 (0.4644) model_time 0.5073 (0.4583) loss 5.2248 (5.2463) grad_norm 4.4039 (3.3615/1.3276) mem 16099MB [2025-01-17 22:12:24 internimage_t_1k_224] (main.py 510): INFO Train: [8/300][310/312] eta 0:00:00 lr 0.001801 time 0.4362 (0.4635) model_time 0.4361 (0.4575) loss 5.3349 (5.2430) grad_norm 7.4145 (3.3521/1.3571) mem 16099MB [2025-01-17 22:12:24 internimage_t_1k_224] (main.py 519): INFO EPOCH 8 training takes 0:02:24 [2025-01-17 22:12:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_8.pth saving...... [2025-01-17 22:12:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_8.pth saved !!! [2025-01-17 22:12:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.698 (7.698) Loss 2.5863 (2.5863) Acc@1 46.338 (46.338) Acc@5 72.095 (72.095) Mem 16099MB [2025-01-17 22:12:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.035) Loss 3.1399 (2.8317) Acc@1 35.376 (40.936) Acc@5 62.280 (67.960) Mem 16099MB [2025-01-17 22:12:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:8] * Acc@1 41.537 Acc@5 68.520 [2025-01-17 22:12:37 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 41.5% [2025-01-17 22:12:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:12:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:12:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 41.54% [2025-01-17 22:12:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.580 (7.580) Loss 6.6438 (6.6438) Acc@1 0.879 (0.879) Acc@5 5.493 (5.493) Mem 16099MB [2025-01-17 22:12:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.028) Loss 6.9530 (6.8324) Acc@1 0.000 (0.231) Acc@5 0.049 (1.307) Mem 16099MB [2025-01-17 22:12:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:8] * Acc@1 0.422 Acc@5 1.973 [2025-01-17 22:12:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:12:50 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.42% [2025-01-17 22:12:53 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][0/312] eta 0:15:58 lr 0.001802 time 3.0737 (3.0737) model_time 0.8578 (0.8578) loss 5.2389 (5.2389) grad_norm 3.1946 (3.1946/0.0000) mem 16099MB [2025-01-17 22:12:57 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][10/312] eta 0:03:33 lr 0.001809 time 0.4465 (0.7063) model_time 0.4461 (0.5045) loss 4.7272 (5.1257) grad_norm 2.5158 (2.6741/0.7683) mem 16099MB [2025-01-17 22:13:02 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][20/312] eta 0:02:53 lr 0.001815 time 0.4662 (0.5929) model_time 0.4661 (0.4870) loss 5.3270 (5.1220) grad_norm 4.2192 (2.9171/1.2229) mem 16099MB [2025-01-17 22:13:07 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][30/312] eta 0:02:34 lr 0.001821 time 0.4433 (0.5467) model_time 0.4431 (0.4749) loss 5.2819 (5.0801) grad_norm 2.6799 (3.0232/1.1018) mem 16099MB [2025-01-17 22:13:11 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][40/312] eta 0:02:22 lr 0.001828 time 0.4528 (0.5232) model_time 0.4524 (0.4689) loss 5.4907 (5.0285) grad_norm 2.7506 (3.0202/1.0710) mem 16099MB [2025-01-17 22:13:16 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][50/312] eta 0:02:13 lr 0.001834 time 0.4389 (0.5099) model_time 0.4385 (0.4662) loss 4.0994 (4.9603) grad_norm 1.8698 (3.1222/1.1992) mem 16099MB [2025-01-17 22:13:20 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][60/312] eta 0:02:06 lr 0.001841 time 0.4522 (0.5008) model_time 0.4517 (0.4641) loss 5.5553 (4.9324) grad_norm 2.6589 (3.0548/1.1326) mem 16099MB [2025-01-17 22:13:25 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][70/312] eta 0:01:59 lr 0.001847 time 0.4664 (0.4944) model_time 0.4662 (0.4628) loss 4.6689 (4.9491) grad_norm 2.7660 (3.1637/1.2840) mem 16099MB [2025-01-17 22:13:29 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][80/312] eta 0:01:53 lr 0.001853 time 0.4463 (0.4893) model_time 0.4462 (0.4616) loss 5.0077 (4.9282) grad_norm 2.9375 (3.1206/1.2328) mem 16099MB [2025-01-17 22:13:34 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][90/312] eta 0:01:48 lr 0.001860 time 0.4480 (0.4867) model_time 0.4476 (0.4620) loss 5.6054 (4.9718) grad_norm 1.9973 (3.1359/1.2291) mem 16099MB [2025-01-17 22:13:38 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][100/312] eta 0:01:42 lr 0.001866 time 0.4455 (0.4829) model_time 0.4454 (0.4606) loss 4.0971 (4.9646) grad_norm 2.9236 (3.2593/1.4793) mem 16099MB [2025-01-17 22:13:43 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][110/312] eta 0:01:36 lr 0.001873 time 0.4469 (0.4798) model_time 0.4467 (0.4595) loss 4.5367 (4.9840) grad_norm 5.3830 (3.3082/1.4916) mem 16099MB [2025-01-17 22:13:47 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][120/312] eta 0:01:31 lr 0.001879 time 0.4387 (0.4778) model_time 0.4385 (0.4592) loss 5.9163 (5.0020) grad_norm 4.2167 (3.3739/1.4976) mem 16099MB [2025-01-17 22:13:52 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][130/312] eta 0:01:26 lr 0.001885 time 0.4457 (0.4760) model_time 0.4455 (0.4587) loss 5.4961 (5.0256) grad_norm 2.8979 (3.3302/1.4700) mem 16099MB [2025-01-17 22:13:57 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][140/312] eta 0:01:21 lr 0.001892 time 0.4408 (0.4746) model_time 0.4406 (0.4585) loss 4.4401 (5.0125) grad_norm 2.0016 (3.3445/1.4393) mem 16099MB [2025-01-17 22:14:01 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][150/312] eta 0:01:16 lr 0.001898 time 0.4402 (0.4744) model_time 0.4397 (0.4593) loss 4.6278 (5.0126) grad_norm 3.3986 (3.3780/1.4730) mem 16099MB [2025-01-17 22:14:06 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][160/312] eta 0:01:11 lr 0.001905 time 0.4396 (0.4731) model_time 0.4392 (0.4590) loss 5.4685 (5.0117) grad_norm 2.2116 (3.3458/1.4509) mem 16099MB [2025-01-17 22:14:10 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][170/312] eta 0:01:06 lr 0.001911 time 0.4466 (0.4718) model_time 0.4464 (0.4585) loss 4.7333 (5.0227) grad_norm 1.6704 (3.3123/1.4339) mem 16099MB [2025-01-17 22:14:15 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][180/312] eta 0:01:02 lr 0.001917 time 0.4459 (0.4709) model_time 0.4454 (0.4583) loss 5.2030 (5.0157) grad_norm 2.8873 (3.3402/1.4451) mem 16099MB [2025-01-17 22:14:19 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][190/312] eta 0:00:57 lr 0.001924 time 0.4388 (0.4698) model_time 0.4384 (0.4579) loss 3.8616 (5.0158) grad_norm 3.0169 (3.4184/1.5168) mem 16099MB [2025-01-17 22:14:24 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][200/312] eta 0:00:52 lr 0.001930 time 0.4480 (0.4691) model_time 0.4476 (0.4577) loss 5.0005 (5.0152) grad_norm 2.2500 (3.3630/1.5018) mem 16099MB [2025-01-17 22:14:28 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][210/312] eta 0:00:47 lr 0.001937 time 0.4412 (0.4679) model_time 0.4408 (0.4570) loss 5.1530 (5.0229) grad_norm 3.4039 (3.3527/1.4720) mem 16099MB [2025-01-17 22:14:33 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][220/312] eta 0:00:42 lr 0.001943 time 0.4400 (0.4671) model_time 0.4396 (0.4567) loss 5.1417 (5.0176) grad_norm 2.4948 (3.3712/1.4930) mem 16099MB [2025-01-17 22:14:37 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][230/312] eta 0:00:38 lr 0.001949 time 0.4638 (0.4663) model_time 0.4634 (0.4564) loss 5.0765 (5.0250) grad_norm 3.5447 (3.3734/1.4689) mem 16099MB [2025-01-17 22:14:42 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][240/312] eta 0:00:33 lr 0.001956 time 0.4477 (0.4655) model_time 0.4475 (0.4559) loss 5.7626 (5.0203) grad_norm 4.7828 (3.3450/1.4587) mem 16099MB [2025-01-17 22:14:46 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][250/312] eta 0:00:28 lr 0.001962 time 0.4920 (0.4649) model_time 0.4916 (0.4557) loss 4.2453 (5.0211) grad_norm 3.1842 (3.3266/1.4456) mem 16099MB [2025-01-17 22:14:51 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][260/312] eta 0:00:24 lr 0.001969 time 0.4432 (0.4645) model_time 0.4428 (0.4556) loss 5.3515 (5.0106) grad_norm 5.0602 (3.3257/1.4286) mem 16099MB [2025-01-17 22:14:55 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][270/312] eta 0:00:19 lr 0.001975 time 0.4533 (0.4643) model_time 0.4529 (0.4558) loss 5.1299 (5.0077) grad_norm 2.1978 (3.3108/1.4230) mem 16099MB [2025-01-17 22:15:00 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][280/312] eta 0:00:14 lr 0.001982 time 0.4757 (0.4639) model_time 0.4752 (0.4556) loss 4.4850 (4.9997) grad_norm 3.9919 (3.3092/1.4205) mem 16099MB [2025-01-17 22:15:05 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][290/312] eta 0:00:10 lr 0.001988 time 0.4366 (0.4638) model_time 0.4362 (0.4558) loss 4.2945 (5.0047) grad_norm 3.5358 (3.3182/1.4077) mem 16099MB [2025-01-17 22:15:09 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][300/312] eta 0:00:05 lr 0.001994 time 0.4288 (0.4630) model_time 0.4287 (0.4553) loss 4.7799 (5.0016) grad_norm 5.5802 (3.2957/1.4052) mem 16099MB [2025-01-17 22:15:13 internimage_t_1k_224] (main.py 510): INFO Train: [9/300][310/312] eta 0:00:00 lr 0.002001 time 0.4350 (0.4627) model_time 0.4350 (0.4552) loss 4.7740 (5.0046) grad_norm 2.3855 (3.2995/1.4000) mem 16099MB [2025-01-17 22:15:14 internimage_t_1k_224] (main.py 519): INFO EPOCH 9 training takes 0:02:24 [2025-01-17 22:15:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_9.pth saving...... [2025-01-17 22:15:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_9.pth saved !!! [2025-01-17 22:15:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.312 (7.312) Loss 2.4112 (2.4112) Acc@1 49.341 (49.341) Acc@5 74.585 (74.585) Mem 16099MB [2025-01-17 22:15:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.984) Loss 2.9806 (2.6123) Acc@1 38.794 (45.179) Acc@5 64.038 (71.618) Mem 16099MB [2025-01-17 22:15:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:9] * Acc@1 45.635 Acc@5 72.011 [2025-01-17 22:15:26 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 45.6% [2025-01-17 22:15:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:15:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:15:27 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 45.64% [2025-01-17 22:15:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.408 (7.408) Loss 6.5989 (6.5989) Acc@1 0.830 (0.830) Acc@5 5.322 (5.322) Mem 16099MB [2025-01-17 22:15:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.056) Loss 6.9423 (6.8220) Acc@1 0.000 (0.200) Acc@5 0.073 (1.265) Mem 16099MB [2025-01-17 22:15:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:9] * Acc@1 0.404 Acc@5 2.049 [2025-01-17 22:15:39 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:15:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.42% [2025-01-17 22:15:42 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][0/312] eta 0:15:08 lr 0.002002 time 2.9130 (2.9130) model_time 0.9621 (0.9621) loss 5.1500 (5.1500) grad_norm 2.3796 (2.3796/0.0000) mem 16099MB [2025-01-17 22:15:47 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][10/312] eta 0:03:31 lr 0.002008 time 0.4475 (0.6987) model_time 0.4471 (0.5209) loss 5.3179 (5.0055) grad_norm 3.1128 (2.1352/0.4167) mem 16099MB [2025-01-17 22:15:51 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][20/312] eta 0:02:51 lr 0.002015 time 0.4481 (0.5865) model_time 0.4479 (0.4932) loss 4.4405 (4.8351) grad_norm 3.2726 (2.4082/0.6827) mem 16099MB [2025-01-17 22:15:56 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][30/312] eta 0:02:33 lr 0.002021 time 0.4511 (0.5452) model_time 0.4507 (0.4819) loss 3.8755 (4.8726) grad_norm 3.3640 (2.9242/1.5342) mem 16099MB [2025-01-17 22:16:01 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][40/312] eta 0:02:21 lr 0.002028 time 0.4539 (0.5219) model_time 0.4537 (0.4739) loss 4.3348 (4.8913) grad_norm 1.5055 (3.2103/1.7333) mem 16099MB [2025-01-17 22:16:05 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][50/312] eta 0:02:14 lr 0.002034 time 0.4534 (0.5127) model_time 0.4532 (0.4741) loss 5.4015 (4.9047) grad_norm 5.9938 (3.3092/1.7399) mem 16099MB [2025-01-17 22:16:10 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][60/312] eta 0:02:06 lr 0.002040 time 0.4447 (0.5021) model_time 0.4443 (0.4697) loss 5.3619 (4.9228) grad_norm 2.6507 (3.2808/1.6524) mem 16099MB [2025-01-17 22:16:14 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][70/312] eta 0:01:59 lr 0.002047 time 0.4577 (0.4947) model_time 0.4576 (0.4669) loss 5.2696 (4.8939) grad_norm 4.4802 (3.2399/1.5676) mem 16099MB [2025-01-17 22:16:19 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][80/312] eta 0:01:53 lr 0.002053 time 0.4418 (0.4911) model_time 0.4405 (0.4666) loss 5.7245 (4.9080) grad_norm 2.5314 (3.2012/1.4775) mem 16099MB [2025-01-17 22:16:23 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][90/312] eta 0:01:47 lr 0.002060 time 0.4448 (0.4863) model_time 0.4444 (0.4644) loss 5.5733 (4.9169) grad_norm 2.8617 (3.1986/1.4634) mem 16099MB [2025-01-17 22:16:28 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][100/312] eta 0:01:42 lr 0.002066 time 0.4507 (0.4829) model_time 0.4505 (0.4631) loss 5.8304 (4.9308) grad_norm 7.4935 (3.3041/1.5347) mem 16099MB [2025-01-17 22:16:32 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][110/312] eta 0:01:36 lr 0.002072 time 0.4480 (0.4799) model_time 0.4479 (0.4619) loss 5.5607 (4.9464) grad_norm 2.3641 (3.3108/1.5077) mem 16099MB [2025-01-17 22:16:37 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][120/312] eta 0:01:31 lr 0.002079 time 0.4440 (0.4774) model_time 0.4436 (0.4609) loss 5.8893 (4.9871) grad_norm 2.3260 (3.3306/1.5268) mem 16099MB [2025-01-17 22:16:41 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][130/312] eta 0:01:26 lr 0.002085 time 0.4475 (0.4759) model_time 0.4470 (0.4606) loss 5.6624 (4.9873) grad_norm 3.9213 (3.2880/1.4949) mem 16099MB [2025-01-17 22:16:46 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][140/312] eta 0:01:21 lr 0.002092 time 0.4364 (0.4740) model_time 0.4360 (0.4598) loss 4.3270 (4.9833) grad_norm 3.1101 (3.2444/1.4609) mem 16099MB [2025-01-17 22:16:50 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][150/312] eta 0:01:16 lr 0.002098 time 0.4444 (0.4724) model_time 0.4442 (0.4591) loss 4.3209 (4.9679) grad_norm 1.7994 (3.1948/1.4326) mem 16099MB [2025-01-17 22:16:55 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][160/312] eta 0:01:11 lr 0.002104 time 0.4624 (0.4713) model_time 0.4622 (0.4588) loss 5.2170 (4.9598) grad_norm 2.3891 (3.1706/1.4323) mem 16099MB [2025-01-17 22:17:00 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][170/312] eta 0:01:06 lr 0.002111 time 0.4438 (0.4705) model_time 0.4434 (0.4587) loss 5.2387 (4.9585) grad_norm 3.0239 (3.1512/1.3958) mem 16099MB [2025-01-17 22:17:04 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][180/312] eta 0:01:02 lr 0.002117 time 0.4457 (0.4711) model_time 0.4453 (0.4599) loss 3.6979 (4.9560) grad_norm 1.9685 (3.1470/1.3855) mem 16099MB [2025-01-17 22:17:09 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][190/312] eta 0:00:57 lr 0.002124 time 0.4377 (0.4697) model_time 0.4376 (0.4591) loss 5.8197 (4.9686) grad_norm 2.6518 (3.1442/1.3675) mem 16099MB [2025-01-17 22:17:13 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][200/312] eta 0:00:52 lr 0.002130 time 0.5038 (0.4693) model_time 0.5034 (0.4591) loss 5.0432 (4.9732) grad_norm 2.7963 (3.1530/1.3850) mem 16099MB [2025-01-17 22:17:18 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][210/312] eta 0:00:47 lr 0.002136 time 0.4453 (0.4685) model_time 0.4451 (0.4588) loss 4.4052 (4.9527) grad_norm 3.4275 (3.1649/1.4049) mem 16099MB [2025-01-17 22:17:22 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][220/312] eta 0:00:43 lr 0.002143 time 0.4435 (0.4677) model_time 0.4431 (0.4585) loss 5.5538 (4.9341) grad_norm 3.3631 (3.2270/1.5199) mem 16099MB [2025-01-17 22:17:27 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][230/312] eta 0:00:38 lr 0.002149 time 0.4479 (0.4669) model_time 0.4475 (0.4580) loss 5.1799 (4.9318) grad_norm 2.5164 (3.2739/1.5569) mem 16099MB [2025-01-17 22:17:31 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][240/312] eta 0:00:33 lr 0.002156 time 0.4478 (0.4661) model_time 0.4474 (0.4576) loss 5.1779 (4.9325) grad_norm 3.1460 (3.2482/1.5389) mem 16099MB [2025-01-17 22:17:36 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][250/312] eta 0:00:28 lr 0.002162 time 0.4356 (0.4654) model_time 0.4354 (0.4572) loss 5.0030 (4.9327) grad_norm 2.4083 (3.2401/1.5272) mem 16099MB [2025-01-17 22:17:40 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][260/312] eta 0:00:24 lr 0.002169 time 0.4459 (0.4647) model_time 0.4455 (0.4568) loss 5.0965 (4.9373) grad_norm 2.4785 (3.2171/1.5157) mem 16099MB [2025-01-17 22:17:45 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][270/312] eta 0:00:19 lr 0.002175 time 0.4380 (0.4643) model_time 0.4378 (0.4566) loss 5.3547 (4.9415) grad_norm 3.4362 (3.2102/1.4918) mem 16099MB [2025-01-17 22:17:49 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][280/312] eta 0:00:14 lr 0.002181 time 0.4443 (0.4638) model_time 0.4439 (0.4565) loss 4.0433 (4.9295) grad_norm 3.1042 (3.1954/1.4727) mem 16099MB [2025-01-17 22:17:54 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][290/312] eta 0:00:10 lr 0.002188 time 0.4393 (0.4643) model_time 0.4392 (0.4571) loss 5.3349 (4.9345) grad_norm 2.6173 (3.2281/1.4894) mem 16099MB [2025-01-17 22:17:59 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][300/312] eta 0:00:05 lr 0.002194 time 0.4372 (0.4638) model_time 0.4372 (0.4569) loss 3.9630 (4.9310) grad_norm 1.4780 (3.2079/1.4762) mem 16099MB [2025-01-17 22:18:03 internimage_t_1k_224] (main.py 510): INFO Train: [10/300][310/312] eta 0:00:00 lr 0.002201 time 0.4348 (0.4630) model_time 0.4347 (0.4563) loss 4.4899 (4.9261) grad_norm 3.2682 (3.2231/1.4747) mem 16099MB [2025-01-17 22:18:04 internimage_t_1k_224] (main.py 519): INFO EPOCH 10 training takes 0:02:24 [2025-01-17 22:18:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_10.pth saving...... [2025-01-17 22:18:05 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_10.pth saved !!! [2025-01-17 22:18:13 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.740 (7.740) Loss 2.2174 (2.2174) Acc@1 53.101 (53.101) Acc@5 78.247 (78.247) Mem 16099MB [2025-01-17 22:18:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.016) Loss 2.8275 (2.4459) Acc@1 40.601 (48.189) Acc@5 67.676 (74.265) Mem 16099MB [2025-01-17 22:18:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:10] * Acc@1 48.578 Acc@5 74.558 [2025-01-17 22:18:16 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 48.6% [2025-01-17 22:18:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:18:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:18:17 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 48.58% [2025-01-17 22:18:25 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.545 (7.545) Loss 6.5694 (6.5694) Acc@1 0.854 (0.854) Acc@5 5.029 (5.029) Mem 16099MB [2025-01-17 22:18:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.013) Loss 6.9291 (6.8128) Acc@1 0.000 (0.200) Acc@5 0.146 (1.236) Mem 16099MB [2025-01-17 22:18:29 internimage_t_1k_224] (main.py 575): INFO [Epoch:10] * Acc@1 0.418 Acc@5 2.115 [2025-01-17 22:18:29 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:18:29 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.42% [2025-01-17 22:18:32 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][0/312] eta 0:15:38 lr 0.002202 time 3.0064 (3.0064) model_time 0.6815 (0.6815) loss 5.5022 (5.5022) grad_norm 1.8977 (1.8977/0.0000) mem 16099MB [2025-01-17 22:18:36 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][10/312] eta 0:03:29 lr 0.002208 time 0.4461 (0.6951) model_time 0.4460 (0.4834) loss 5.3878 (4.8354) grad_norm 2.6802 (2.7143/0.7361) mem 16099MB [2025-01-17 22:18:41 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][20/312] eta 0:02:48 lr 0.002215 time 0.4480 (0.5768) model_time 0.4478 (0.4657) loss 5.2766 (4.8396) grad_norm 1.6421 (2.7366/0.6920) mem 16099MB [2025-01-17 22:18:45 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][30/312] eta 0:02:31 lr 0.002221 time 0.4397 (0.5379) model_time 0.4393 (0.4626) loss 5.6033 (4.8848) grad_norm 2.1447 (2.9491/1.1129) mem 16099MB [2025-01-17 22:18:50 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][40/312] eta 0:02:20 lr 0.002227 time 0.4469 (0.5174) model_time 0.4464 (0.4603) loss 4.6791 (4.7772) grad_norm 3.7828 (3.0480/1.2048) mem 16099MB [2025-01-17 22:18:55 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][50/312] eta 0:02:13 lr 0.002234 time 0.4465 (0.5089) model_time 0.4460 (0.4629) loss 3.8909 (4.7758) grad_norm 2.1274 (2.9521/1.1586) mem 16099MB [2025-01-17 22:18:59 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][60/312] eta 0:02:05 lr 0.002240 time 0.4484 (0.4993) model_time 0.4480 (0.4608) loss 5.0408 (4.7919) grad_norm 2.2228 (3.0430/1.3452) mem 16099MB [2025-01-17 22:19:04 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][70/312] eta 0:01:59 lr 0.002247 time 0.4564 (0.4930) model_time 0.4560 (0.4599) loss 5.5557 (4.7971) grad_norm 2.5482 (3.1248/1.4742) mem 16099MB [2025-01-17 22:19:08 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][80/312] eta 0:01:53 lr 0.002253 time 0.4563 (0.4892) model_time 0.4562 (0.4601) loss 5.6084 (4.8115) grad_norm 2.7168 (3.0698/1.4483) mem 16099MB [2025-01-17 22:19:13 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][90/312] eta 0:01:47 lr 0.002259 time 0.4461 (0.4848) model_time 0.4457 (0.4589) loss 5.3242 (4.7863) grad_norm 4.1888 (3.1698/1.6863) mem 16099MB [2025-01-17 22:19:17 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][100/312] eta 0:01:42 lr 0.002266 time 0.4433 (0.4820) model_time 0.4428 (0.4587) loss 5.5051 (4.7996) grad_norm 2.0218 (3.1804/1.6644) mem 16099MB [2025-01-17 22:19:22 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][110/312] eta 0:01:37 lr 0.002272 time 0.5632 (0.4806) model_time 0.5627 (0.4593) loss 3.7166 (4.7816) grad_norm 2.0366 (3.1322/1.6072) mem 16099MB [2025-01-17 22:19:27 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][120/312] eta 0:01:32 lr 0.002279 time 0.4358 (0.4799) model_time 0.4354 (0.4603) loss 5.3773 (4.7796) grad_norm 2.9314 (3.1053/1.5620) mem 16099MB [2025-01-17 22:19:31 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][130/312] eta 0:01:26 lr 0.002285 time 0.4490 (0.4776) model_time 0.4486 (0.4595) loss 5.6626 (4.8079) grad_norm 2.1184 (3.0776/1.5178) mem 16099MB [2025-01-17 22:19:36 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][140/312] eta 0:01:21 lr 0.002291 time 0.4483 (0.4759) model_time 0.4482 (0.4591) loss 5.0714 (4.8070) grad_norm 2.6336 (3.0896/1.4993) mem 16099MB [2025-01-17 22:19:40 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][150/312] eta 0:01:17 lr 0.002298 time 0.4803 (0.4754) model_time 0.4801 (0.4596) loss 4.8836 (4.8219) grad_norm 2.1864 (3.1018/1.5458) mem 16099MB [2025-01-17 22:19:45 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][160/312] eta 0:01:12 lr 0.002304 time 0.4480 (0.4748) model_time 0.4475 (0.4600) loss 3.9060 (4.8238) grad_norm 2.0871 (3.1389/1.5998) mem 16099MB [2025-01-17 22:19:49 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][170/312] eta 0:01:07 lr 0.002311 time 0.4366 (0.4733) model_time 0.4364 (0.4594) loss 4.0063 (4.8039) grad_norm 1.6418 (3.0966/1.5754) mem 16099MB [2025-01-17 22:19:54 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][180/312] eta 0:01:02 lr 0.002317 time 0.4363 (0.4721) model_time 0.4359 (0.4589) loss 4.6525 (4.8202) grad_norm 2.5363 (3.0849/1.5470) mem 16099MB [2025-01-17 22:19:59 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][190/312] eta 0:00:57 lr 0.002323 time 0.4486 (0.4711) model_time 0.4481 (0.4585) loss 4.2438 (4.8239) grad_norm 2.7272 (3.1222/1.6060) mem 16099MB [2025-01-17 22:20:03 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][200/312] eta 0:00:52 lr 0.002330 time 0.4552 (0.4704) model_time 0.4548 (0.4585) loss 4.8087 (4.8372) grad_norm 3.7132 (3.1309/1.5879) mem 16099MB [2025-01-17 22:20:08 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][210/312] eta 0:00:47 lr 0.002336 time 0.5264 (0.4696) model_time 0.5260 (0.4583) loss 5.5295 (4.8387) grad_norm 2.5027 (3.1143/1.5546) mem 16099MB [2025-01-17 22:20:12 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][220/312] eta 0:00:43 lr 0.002343 time 0.4569 (0.4687) model_time 0.4564 (0.4578) loss 5.0196 (4.8423) grad_norm 3.3184 (3.0992/1.5360) mem 16099MB [2025-01-17 22:20:17 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][230/312] eta 0:00:38 lr 0.002349 time 0.4380 (0.4681) model_time 0.4374 (0.4577) loss 5.0988 (4.8387) grad_norm 2.2986 (3.0903/1.5250) mem 16099MB [2025-01-17 22:20:21 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][240/312] eta 0:00:33 lr 0.002355 time 0.4615 (0.4677) model_time 0.4611 (0.4577) loss 4.3575 (4.8423) grad_norm 3.9345 (3.1245/1.5407) mem 16099MB [2025-01-17 22:20:26 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][250/312] eta 0:00:28 lr 0.002362 time 0.4399 (0.4672) model_time 0.4398 (0.4576) loss 4.9469 (4.8447) grad_norm 3.1261 (3.1269/1.5564) mem 16099MB [2025-01-17 22:20:30 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][260/312] eta 0:00:24 lr 0.002368 time 0.4593 (0.4668) model_time 0.4588 (0.4575) loss 4.2323 (4.8433) grad_norm 2.3913 (3.1277/1.5467) mem 16099MB [2025-01-17 22:20:35 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][270/312] eta 0:00:19 lr 0.002375 time 0.4495 (0.4660) model_time 0.4494 (0.4571) loss 4.9317 (4.8396) grad_norm 2.9080 (3.0918/1.5324) mem 16099MB [2025-01-17 22:20:39 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][280/312] eta 0:00:14 lr 0.002381 time 0.4557 (0.4658) model_time 0.4553 (0.4572) loss 5.3349 (4.8337) grad_norm 3.0079 (3.0842/1.5129) mem 16099MB [2025-01-17 22:20:44 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][290/312] eta 0:00:10 lr 0.002388 time 0.4386 (0.4659) model_time 0.4385 (0.4575) loss 5.1516 (4.8400) grad_norm 1.8499 (3.0891/1.5333) mem 16099MB [2025-01-17 22:20:49 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][300/312] eta 0:00:05 lr 0.002394 time 0.4346 (0.4652) model_time 0.4345 (0.4571) loss 4.4074 (4.8401) grad_norm 10.8186 (3.1155/1.5860) mem 16099MB [2025-01-17 22:20:53 internimage_t_1k_224] (main.py 510): INFO Train: [11/300][310/312] eta 0:00:00 lr 0.002400 time 0.5095 (0.4646) model_time 0.5094 (0.4568) loss 5.0417 (4.8422) grad_norm 1.7116 (3.1152/1.5882) mem 16099MB [2025-01-17 22:20:53 internimage_t_1k_224] (main.py 519): INFO EPOCH 11 training takes 0:02:24 [2025-01-17 22:20:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_11.pth saving...... [2025-01-17 22:20:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_11.pth saved !!! [2025-01-17 22:21:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.480 (7.480) Loss 2.0725 (2.0725) Acc@1 56.006 (56.006) Acc@5 80.688 (80.688) Mem 16099MB [2025-01-17 22:21:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.022) Loss 2.6746 (2.3100) Acc@1 44.409 (50.974) Acc@5 69.629 (76.762) Mem 16099MB [2025-01-17 22:21:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:11] * Acc@1 51.400 Acc@5 77.075 [2025-01-17 22:21:06 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 51.4% [2025-01-17 22:21:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:21:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:21:07 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 51.40% [2025-01-17 22:21:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.315 (7.315) Loss 6.5622 (6.5622) Acc@1 0.879 (0.879) Acc@5 4.834 (4.834) Mem 16099MB [2025-01-17 22:21:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.984) Loss 6.9109 (6.8039) Acc@1 0.000 (0.220) Acc@5 0.244 (1.238) Mem 16099MB [2025-01-17 22:21:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:11] * Acc@1 0.452 Acc@5 2.157 [2025-01-17 22:21:18 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.5% [2025-01-17 22:21:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 22:21:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 22:21:20 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.45% [2025-01-17 22:21:22 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][0/312] eta 0:13:09 lr 0.002402 time 2.5304 (2.5304) model_time 0.4745 (0.4745) loss 4.9289 (4.9289) grad_norm 3.6087 (3.6087/0.0000) mem 16099MB [2025-01-17 22:21:27 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][10/312] eta 0:03:18 lr 0.002408 time 0.4457 (0.6559) model_time 0.4455 (0.4687) loss 5.1371 (4.5382) grad_norm 2.4873 (2.7459/0.8573) mem 16099MB [2025-01-17 22:21:32 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][20/312] eta 0:02:43 lr 0.002414 time 0.4567 (0.5587) model_time 0.4566 (0.4606) loss 3.9386 (4.6727) grad_norm 5.3375 (3.0639/1.2603) mem 16099MB [2025-01-17 22:21:36 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][30/312] eta 0:02:28 lr 0.002421 time 0.4489 (0.5270) model_time 0.4483 (0.4604) loss 4.8984 (4.6966) grad_norm 2.8998 (2.8579/1.1083) mem 16099MB [2025-01-17 22:21:41 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][40/312] eta 0:02:18 lr 0.002427 time 0.4522 (0.5076) model_time 0.4520 (0.4572) loss 4.8312 (4.7059) grad_norm 2.5274 (3.0878/1.5159) mem 16099MB [2025-01-17 22:21:45 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][50/312] eta 0:02:10 lr 0.002434 time 0.4457 (0.4973) model_time 0.4456 (0.4567) loss 4.6781 (4.7324) grad_norm 1.8096 (2.9117/1.4333) mem 16099MB [2025-01-17 22:21:50 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][60/312] eta 0:02:04 lr 0.002440 time 0.4593 (0.4924) model_time 0.4588 (0.4584) loss 3.6391 (4.7368) grad_norm 4.0537 (2.8997/1.3600) mem 16099MB [2025-01-17 22:21:54 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][70/312] eta 0:01:58 lr 0.002446 time 0.4453 (0.4881) model_time 0.4451 (0.4588) loss 3.7815 (4.6936) grad_norm 2.8311 (2.8466/1.3016) mem 16099MB [2025-01-17 22:21:59 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][80/312] eta 0:01:52 lr 0.002453 time 0.4455 (0.4840) model_time 0.4451 (0.4583) loss 5.2383 (4.7240) grad_norm 2.1699 (2.7958/1.2426) mem 16099MB [2025-01-17 22:22:04 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][90/312] eta 0:01:46 lr 0.002459 time 0.4609 (0.4812) model_time 0.4607 (0.4583) loss 4.7951 (4.7360) grad_norm 2.8421 (2.8476/1.2029) mem 16099MB [2025-01-17 22:22:08 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][100/312] eta 0:01:41 lr 0.002466 time 0.4309 (0.4779) model_time 0.4304 (0.4572) loss 5.4516 (4.7203) grad_norm 1.6728 (2.8813/1.2536) mem 16099MB [2025-01-17 22:22:13 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][110/312] eta 0:01:36 lr 0.002472 time 0.4489 (0.4753) model_time 0.4485 (0.4564) loss 3.5533 (4.7305) grad_norm 1.7885 (2.8753/1.2310) mem 16099MB [2025-01-17 22:22:17 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][120/312] eta 0:01:30 lr 0.002478 time 0.4426 (0.4732) model_time 0.4422 (0.4558) loss 4.2161 (4.7136) grad_norm 2.4511 (2.8362/1.2099) mem 16099MB [2025-01-17 22:22:22 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][130/312] eta 0:01:25 lr 0.002485 time 0.5396 (0.4721) model_time 0.5392 (0.4560) loss 5.6501 (4.7121) grad_norm 2.5859 (2.8487/1.1873) mem 16099MB [2025-01-17 22:22:26 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][140/312] eta 0:01:21 lr 0.002491 time 0.4443 (0.4712) model_time 0.4438 (0.4562) loss 5.2005 (4.6971) grad_norm 2.0511 (2.8079/1.1660) mem 16099MB [2025-01-17 22:22:31 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][150/312] eta 0:01:16 lr 0.002498 time 0.4641 (0.4702) model_time 0.4637 (0.4563) loss 4.7687 (4.6943) grad_norm 5.1670 (2.8327/1.2038) mem 16099MB [2025-01-17 22:22:35 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][160/312] eta 0:01:11 lr 0.002504 time 0.4539 (0.4690) model_time 0.4537 (0.4559) loss 4.2408 (4.6817) grad_norm 3.1172 (2.8649/1.2504) mem 16099MB [2025-01-17 22:22:40 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][170/312] eta 0:01:06 lr 0.002510 time 0.4440 (0.4684) model_time 0.4436 (0.4560) loss 5.4953 (4.6890) grad_norm 2.6897 (2.8492/1.2215) mem 16099MB [2025-01-17 22:22:44 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][180/312] eta 0:01:01 lr 0.002517 time 0.4522 (0.4677) model_time 0.4517 (0.4560) loss 4.2904 (4.6882) grad_norm 3.1784 (2.8206/1.2034) mem 16099MB [2025-01-17 22:22:49 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][190/312] eta 0:00:56 lr 0.002523 time 0.4425 (0.4667) model_time 0.4421 (0.4556) loss 4.1790 (4.6821) grad_norm 5.0424 (2.8232/1.1891) mem 16099MB [2025-01-17 22:22:54 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][200/312] eta 0:00:52 lr 0.002530 time 0.4540 (0.4663) model_time 0.4535 (0.4557) loss 4.7466 (4.6747) grad_norm 5.7217 (2.8927/1.2650) mem 16099MB [2025-01-17 22:22:58 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][210/312] eta 0:00:47 lr 0.002536 time 0.4446 (0.4653) model_time 0.4442 (0.4551) loss 4.7803 (4.6719) grad_norm 3.2996 (2.9351/1.4826) mem 16099MB [2025-01-17 22:23:03 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][220/312] eta 0:00:42 lr 0.002542 time 0.4549 (0.4653) model_time 0.4545 (0.4556) loss 5.1221 (4.6791) grad_norm 2.4132 (2.9177/1.4576) mem 16099MB [2025-01-17 22:23:07 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][230/312] eta 0:00:38 lr 0.002549 time 0.4490 (0.4653) model_time 0.4488 (0.4561) loss 4.5748 (4.6844) grad_norm 4.8076 (2.9122/1.4510) mem 16099MB [2025-01-17 22:23:12 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][240/312] eta 0:00:33 lr 0.002555 time 0.4379 (0.4650) model_time 0.4375 (0.4561) loss 3.9757 (4.6877) grad_norm 2.1023 (2.8690/1.4374) mem 16099MB [2025-01-17 22:23:16 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][250/312] eta 0:00:28 lr 0.002562 time 0.4632 (0.4644) model_time 0.4628 (0.4559) loss 3.5916 (4.6924) grad_norm 2.6331 (2.8778/1.4291) mem 16099MB [2025-01-17 22:23:21 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][260/312] eta 0:00:24 lr 0.002568 time 0.4507 (0.4639) model_time 0.4503 (0.4557) loss 4.6325 (4.6913) grad_norm 2.5206 (2.8955/1.4453) mem 16099MB [2025-01-17 22:23:25 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][270/312] eta 0:00:19 lr 0.002575 time 0.4452 (0.4633) model_time 0.4451 (0.4554) loss 3.9891 (4.6838) grad_norm 2.8896 (2.8918/1.4281) mem 16099MB [2025-01-17 22:23:30 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][280/312] eta 0:00:14 lr 0.002581 time 0.4438 (0.4628) model_time 0.4434 (0.4551) loss 5.8526 (4.6963) grad_norm 2.8952 (2.8905/1.4128) mem 16099MB [2025-01-17 22:23:35 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][290/312] eta 0:00:10 lr 0.002587 time 0.4531 (0.4632) model_time 0.4530 (0.4558) loss 4.8054 (4.6893) grad_norm 2.6697 (2.8831/1.3997) mem 16099MB [2025-01-17 22:23:39 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][300/312] eta 0:00:05 lr 0.002594 time 0.4383 (0.4629) model_time 0.4382 (0.4557) loss 4.9877 (4.7006) grad_norm 2.1429 (2.8832/1.3829) mem 16099MB [2025-01-17 22:23:44 internimage_t_1k_224] (main.py 510): INFO Train: [12/300][310/312] eta 0:00:00 lr 0.002600 time 0.5291 (0.4625) model_time 0.5290 (0.4555) loss 5.6630 (4.7097) grad_norm 3.3496 (2.8760/1.3824) mem 16099MB [2025-01-17 22:23:44 internimage_t_1k_224] (main.py 519): INFO EPOCH 12 training takes 0:02:24 [2025-01-17 22:23:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_12.pth saving...... [2025-01-17 22:23:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_12.pth saved !!! [2025-01-17 22:23:53 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.633 (7.633) Loss 2.0576 (2.0576) Acc@1 55.737 (55.737) Acc@5 80.591 (80.591) Mem 16099MB [2025-01-17 22:23:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.998) Loss 2.7069 (2.3057) Acc@1 44.849 (51.301) Acc@5 70.264 (76.989) Mem 16099MB [2025-01-17 22:23:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:12] * Acc@1 51.831 Acc@5 77.437 [2025-01-17 22:23:56 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 51.8% [2025-01-17 22:23:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:23:58 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:23:58 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 51.83% [2025-01-17 22:24:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.613 (7.613) Loss 6.5743 (6.5743) Acc@1 0.854 (0.854) Acc@5 4.419 (4.419) Mem 16099MB [2025-01-17 22:24:09 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.040) Loss 6.8950 (6.7972) Acc@1 0.000 (0.262) Acc@5 0.464 (1.247) Mem 16099MB [2025-01-17 22:24:09 internimage_t_1k_224] (main.py 575): INFO [Epoch:12] * Acc@1 0.496 Acc@5 2.189 [2025-01-17 22:24:09 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.5% [2025-01-17 22:24:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 22:24:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 22:24:11 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.50% [2025-01-17 22:24:13 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][0/312] eta 0:12:36 lr 0.002601 time 2.4247 (2.4247) model_time 0.4682 (0.4682) loss 5.0825 (5.0825) grad_norm 11.3529 (11.3529/0.0000) mem 16099MB [2025-01-17 22:24:18 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][10/312] eta 0:03:13 lr 0.002608 time 0.4583 (0.6392) model_time 0.4582 (0.4591) loss 3.5330 (4.3024) grad_norm 3.0323 (3.4566/2.6382) mem 16099MB [2025-01-17 22:24:22 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][20/312] eta 0:02:40 lr 0.002614 time 0.4458 (0.5513) model_time 0.4454 (0.4568) loss 5.3405 (4.4176) grad_norm 2.2112 (3.0813/2.1628) mem 16099MB [2025-01-17 22:24:27 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][30/312] eta 0:02:26 lr 0.002621 time 0.4484 (0.5203) model_time 0.4480 (0.4561) loss 4.3233 (4.3581) grad_norm 1.7450 (2.8378/1.8793) mem 16099MB [2025-01-17 22:24:31 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][40/312] eta 0:02:17 lr 0.002627 time 0.4711 (0.5041) model_time 0.4710 (0.4554) loss 4.1235 (4.4369) grad_norm 2.3858 (2.9228/1.8627) mem 16099MB [2025-01-17 22:24:36 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][50/312] eta 0:02:09 lr 0.002633 time 0.4367 (0.4954) model_time 0.4365 (0.4562) loss 5.0268 (4.4090) grad_norm 2.2904 (2.7597/1.7225) mem 16099MB [2025-01-17 22:24:40 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][60/312] eta 0:02:03 lr 0.002640 time 0.4569 (0.4899) model_time 0.4564 (0.4571) loss 4.5259 (4.4664) grad_norm 1.6060 (2.8260/1.6444) mem 16099MB [2025-01-17 22:24:45 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][70/312] eta 0:01:57 lr 0.002646 time 0.4473 (0.4871) model_time 0.4471 (0.4589) loss 5.6050 (4.4900) grad_norm 1.3667 (2.7143/1.5592) mem 16099MB [2025-01-17 22:24:50 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][80/312] eta 0:01:52 lr 0.002653 time 0.5815 (0.4843) model_time 0.5810 (0.4595) loss 4.6192 (4.4845) grad_norm 2.4258 (2.6903/1.4661) mem 16099MB [2025-01-17 22:24:54 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][90/312] eta 0:01:46 lr 0.002659 time 0.4600 (0.4810) model_time 0.4598 (0.4588) loss 4.3392 (4.4889) grad_norm 1.5763 (2.7643/1.5184) mem 16099MB [2025-01-17 22:24:59 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][100/312] eta 0:01:41 lr 0.002665 time 0.4462 (0.4782) model_time 0.4458 (0.4582) loss 5.1807 (4.5276) grad_norm 1.8618 (2.7325/1.4745) mem 16099MB [2025-01-17 22:25:04 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][110/312] eta 0:01:36 lr 0.002672 time 0.4541 (0.4773) model_time 0.4536 (0.4590) loss 4.8932 (4.5435) grad_norm 1.3230 (2.6865/1.4381) mem 16099MB [2025-01-17 22:25:08 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][120/312] eta 0:01:31 lr 0.002678 time 0.4380 (0.4763) model_time 0.4379 (0.4596) loss 4.9920 (4.5639) grad_norm 1.7815 (2.6339/1.4021) mem 16099MB [2025-01-17 22:25:13 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][130/312] eta 0:01:26 lr 0.002685 time 0.4694 (0.4745) model_time 0.4693 (0.4590) loss 3.9949 (4.5649) grad_norm 4.8469 (2.6738/1.4017) mem 16099MB [2025-01-17 22:25:17 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][140/312] eta 0:01:21 lr 0.002691 time 0.4483 (0.4727) model_time 0.4479 (0.4583) loss 5.7296 (4.5727) grad_norm 1.9273 (2.7121/1.4513) mem 16099MB [2025-01-17 22:25:22 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][150/312] eta 0:01:16 lr 0.002697 time 0.4378 (0.4716) model_time 0.4374 (0.4581) loss 4.7429 (4.5717) grad_norm 2.0785 (2.6656/1.4146) mem 16099MB [2025-01-17 22:25:26 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][160/312] eta 0:01:11 lr 0.002704 time 0.5367 (0.4707) model_time 0.5366 (0.4580) loss 5.1790 (4.5821) grad_norm 1.7677 (2.7211/1.4986) mem 16099MB [2025-01-17 22:25:31 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][170/312] eta 0:01:06 lr 0.002710 time 0.4584 (0.4715) model_time 0.4579 (0.4596) loss 4.6974 (4.5842) grad_norm 1.8190 (2.7341/1.4955) mem 16099MB [2025-01-17 22:25:36 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][180/312] eta 0:01:02 lr 0.002717 time 0.4499 (0.4702) model_time 0.4495 (0.4588) loss 4.6512 (4.5705) grad_norm 1.4798 (2.7054/1.4631) mem 16099MB [2025-01-17 22:25:40 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][190/312] eta 0:00:57 lr 0.002723 time 0.4646 (0.4691) model_time 0.4644 (0.4583) loss 5.3836 (4.5751) grad_norm 2.6944 (2.6779/1.4328) mem 16099MB [2025-01-17 22:25:45 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][200/312] eta 0:00:52 lr 0.002729 time 0.4497 (0.4683) model_time 0.4495 (0.4581) loss 4.9769 (4.5875) grad_norm 2.1041 (2.6598/1.4074) mem 16099MB [2025-01-17 22:25:49 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][210/312] eta 0:00:47 lr 0.002736 time 0.4398 (0.4677) model_time 0.4394 (0.4579) loss 3.9745 (4.5763) grad_norm 1.7565 (2.6754/1.3940) mem 16099MB [2025-01-17 22:25:54 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][220/312] eta 0:00:42 lr 0.002742 time 0.4501 (0.4669) model_time 0.4499 (0.4576) loss 3.7074 (4.5706) grad_norm 1.7447 (2.6480/1.3703) mem 16099MB [2025-01-17 22:25:59 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][230/312] eta 0:00:38 lr 0.002749 time 0.4512 (0.4673) model_time 0.4510 (0.4583) loss 5.4942 (4.5738) grad_norm 1.9276 (2.6337/1.3518) mem 16099MB [2025-01-17 22:26:03 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][240/312] eta 0:00:33 lr 0.002755 time 0.4417 (0.4669) model_time 0.4412 (0.4583) loss 5.4870 (4.5767) grad_norm 2.3881 (2.6427/1.3347) mem 16099MB [2025-01-17 22:26:08 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][250/312] eta 0:00:28 lr 0.002761 time 0.4365 (0.4670) model_time 0.4363 (0.4587) loss 4.6138 (4.5650) grad_norm 3.4809 (2.6284/1.3144) mem 16099MB [2025-01-17 22:26:12 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][260/312] eta 0:00:24 lr 0.002768 time 0.4366 (0.4670) model_time 0.4364 (0.4590) loss 4.7839 (4.5769) grad_norm 2.2417 (2.6565/1.3319) mem 16099MB [2025-01-17 22:26:17 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][270/312] eta 0:00:19 lr 0.002774 time 0.4437 (0.4667) model_time 0.4435 (0.4590) loss 3.6903 (4.5797) grad_norm 1.9204 (2.6415/1.3189) mem 16099MB [2025-01-17 22:26:22 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][280/312] eta 0:00:14 lr 0.002781 time 0.4436 (0.4661) model_time 0.4432 (0.4587) loss 3.4293 (4.5763) grad_norm 2.0003 (2.6283/1.3021) mem 16099MB [2025-01-17 22:26:26 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][290/312] eta 0:00:10 lr 0.002787 time 0.4400 (0.4655) model_time 0.4399 (0.4583) loss 4.8288 (4.5710) grad_norm 1.8384 (2.6110/1.2941) mem 16099MB [2025-01-17 22:26:31 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][300/312] eta 0:00:05 lr 0.002794 time 0.4340 (0.4650) model_time 0.4339 (0.4581) loss 4.8152 (4.5730) grad_norm 2.4965 (2.5637/1.1768) mem 16099MB [2025-01-17 22:26:35 internimage_t_1k_224] (main.py 510): INFO Train: [13/300][310/312] eta 0:00:00 lr 0.002800 time 0.4344 (0.4646) model_time 0.4343 (0.4579) loss 4.7560 (4.5675) grad_norm 2.0842 (2.5679/1.1976) mem 16099MB [2025-01-17 22:26:36 internimage_t_1k_224] (main.py 519): INFO EPOCH 13 training takes 0:02:24 [2025-01-17 22:26:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_13.pth saving...... [2025-01-17 22:26:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_13.pth saved !!! [2025-01-17 22:26:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.562 (7.562) Loss 1.8406 (1.8406) Acc@1 60.034 (60.034) Acc@5 83.130 (83.130) Mem 16099MB [2025-01-17 22:26:48 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.004) Loss 2.4541 (2.1217) Acc@1 48.413 (54.909) Acc@5 74.170 (79.909) Mem 16099MB [2025-01-17 22:26:48 internimage_t_1k_224] (main.py 575): INFO [Epoch:13] * Acc@1 55.310 Acc@5 80.214 [2025-01-17 22:26:48 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 55.3% [2025-01-17 22:26:48 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:26:49 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:26:49 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 55.31% [2025-01-17 22:26:57 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.616 (7.616) Loss 6.6088 (6.6088) Acc@1 0.928 (0.928) Acc@5 4.053 (4.053) Mem 16099MB [2025-01-17 22:27:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.004) Loss 6.8817 (6.7928) Acc@1 0.000 (0.315) Acc@5 0.635 (1.287) Mem 16099MB [2025-01-17 22:27:00 internimage_t_1k_224] (main.py 575): INFO [Epoch:13] * Acc@1 0.542 Acc@5 2.197 [2025-01-17 22:27:00 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.5% [2025-01-17 22:27:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 22:27:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 22:27:02 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.54% [2025-01-17 22:27:04 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][0/312] eta 0:12:09 lr 0.002801 time 2.3372 (2.3372) model_time 0.4653 (0.4653) loss 4.7450 (4.7450) grad_norm 1.8995 (1.8995/0.0000) mem 16099MB [2025-01-17 22:27:08 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][10/312] eta 0:03:09 lr 0.002808 time 0.4516 (0.6286) model_time 0.4515 (0.4581) loss 3.3296 (4.4675) grad_norm 3.0343 (1.9784/0.4780) mem 16099MB [2025-01-17 22:27:13 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][20/312] eta 0:02:42 lr 0.002814 time 0.5240 (0.5550) model_time 0.5238 (0.4656) loss 5.1591 (4.4888) grad_norm 3.2750 (2.0961/0.4939) mem 16099MB [2025-01-17 22:27:18 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][30/312] eta 0:02:28 lr 0.002820 time 0.4441 (0.5261) model_time 0.4439 (0.4654) loss 5.1868 (4.5791) grad_norm 1.5135 (2.3845/0.9885) mem 16099MB [2025-01-17 22:27:23 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][40/312] eta 0:02:19 lr 0.002827 time 0.4581 (0.5116) model_time 0.4577 (0.4657) loss 4.9560 (4.6014) grad_norm 1.4785 (2.4544/1.1927) mem 16099MB [2025-01-17 22:27:27 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][50/312] eta 0:02:11 lr 0.002833 time 0.4447 (0.5012) model_time 0.4445 (0.4642) loss 4.7487 (4.5544) grad_norm 1.2013 (2.5469/1.2976) mem 16099MB [2025-01-17 22:27:32 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][60/312] eta 0:02:04 lr 0.002840 time 0.4401 (0.4927) model_time 0.4400 (0.4618) loss 5.1581 (4.5499) grad_norm 1.5421 (2.5747/1.3621) mem 16099MB [2025-01-17 22:27:36 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][70/312] eta 0:01:58 lr 0.002846 time 0.4613 (0.4877) model_time 0.4612 (0.4610) loss 4.9777 (4.5705) grad_norm 1.9814 (2.5595/1.3129) mem 16099MB [2025-01-17 22:27:41 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][80/312] eta 0:01:52 lr 0.002852 time 0.4413 (0.4832) model_time 0.4411 (0.4598) loss 4.7447 (4.5934) grad_norm 2.2733 (2.5694/1.2806) mem 16099MB [2025-01-17 22:27:45 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][90/312] eta 0:01:46 lr 0.002859 time 0.4598 (0.4797) model_time 0.4594 (0.4588) loss 4.4366 (4.5612) grad_norm 1.7865 (2.5027/1.2284) mem 16099MB [2025-01-17 22:27:50 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][100/312] eta 0:01:41 lr 0.002865 time 0.4447 (0.4775) model_time 0.4446 (0.4587) loss 4.3321 (4.5865) grad_norm 4.6349 (2.5323/1.2260) mem 16099MB [2025-01-17 22:27:54 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][110/312] eta 0:01:35 lr 0.002872 time 0.4539 (0.4750) model_time 0.4537 (0.4578) loss 3.8876 (4.5898) grad_norm 1.5146 (2.6054/1.3147) mem 16099MB [2025-01-17 22:27:59 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][120/312] eta 0:01:30 lr 0.002878 time 0.4683 (0.4730) model_time 0.4682 (0.4572) loss 3.5731 (4.5809) grad_norm 3.3130 (2.5811/1.2779) mem 16099MB [2025-01-17 22:28:03 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][130/312] eta 0:01:25 lr 0.002884 time 0.4473 (0.4719) model_time 0.4469 (0.4573) loss 4.6344 (4.5828) grad_norm 2.7679 (2.5751/1.2635) mem 16099MB [2025-01-17 22:28:08 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][140/312] eta 0:01:21 lr 0.002891 time 0.4474 (0.4710) model_time 0.4470 (0.4574) loss 5.1069 (4.5896) grad_norm 2.1428 (2.5714/1.2277) mem 16099MB [2025-01-17 22:28:13 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][150/312] eta 0:01:16 lr 0.002897 time 0.4375 (0.4709) model_time 0.4374 (0.4582) loss 5.1487 (4.5844) grad_norm 2.1302 (2.5692/1.2084) mem 16099MB [2025-01-17 22:28:17 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][160/312] eta 0:01:11 lr 0.002904 time 0.4522 (0.4704) model_time 0.4521 (0.4584) loss 5.0833 (4.5872) grad_norm 1.8672 (2.6078/1.2663) mem 16099MB [2025-01-17 22:28:22 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][170/312] eta 0:01:06 lr 0.002910 time 0.4472 (0.4704) model_time 0.4467 (0.4592) loss 3.3936 (4.5735) grad_norm 2.1960 (2.5828/1.2406) mem 16099MB [2025-01-17 22:28:26 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][180/312] eta 0:01:01 lr 0.002916 time 0.4501 (0.4693) model_time 0.4497 (0.4586) loss 5.3359 (4.5778) grad_norm 5.9693 (2.6020/1.2503) mem 16099MB [2025-01-17 22:28:31 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][190/312] eta 0:00:57 lr 0.002923 time 0.4467 (0.4682) model_time 0.4466 (0.4581) loss 4.3994 (4.5855) grad_norm 1.9321 (2.5732/1.2354) mem 16099MB [2025-01-17 22:28:36 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][200/312] eta 0:00:52 lr 0.002929 time 0.4524 (0.4679) model_time 0.4520 (0.4582) loss 4.7516 (4.5850) grad_norm 2.0985 (2.5614/1.2193) mem 16099MB [2025-01-17 22:28:40 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][210/312] eta 0:00:47 lr 0.002936 time 0.4458 (0.4672) model_time 0.4456 (0.4580) loss 5.0523 (4.5849) grad_norm 1.7336 (2.5432/1.2009) mem 16099MB [2025-01-17 22:28:45 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][220/312] eta 0:00:42 lr 0.002942 time 0.4459 (0.4669) model_time 0.4457 (0.4581) loss 4.2208 (4.5935) grad_norm 1.7068 (2.5442/1.1791) mem 16099MB [2025-01-17 22:28:49 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][230/312] eta 0:00:38 lr 0.002948 time 0.4484 (0.4663) model_time 0.4479 (0.4579) loss 4.5842 (4.5945) grad_norm 3.9737 (2.5296/1.1645) mem 16099MB [2025-01-17 22:28:54 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][240/312] eta 0:00:33 lr 0.002955 time 0.4496 (0.4660) model_time 0.4495 (0.4579) loss 4.1702 (4.5812) grad_norm 2.5803 (2.5818/1.2199) mem 16099MB [2025-01-17 22:28:58 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][250/312] eta 0:00:28 lr 0.002961 time 0.4470 (0.4653) model_time 0.4466 (0.4576) loss 4.5543 (4.5907) grad_norm 3.0071 (2.5924/1.2076) mem 16099MB [2025-01-17 22:29:03 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][260/312] eta 0:00:24 lr 0.002968 time 0.4401 (0.4651) model_time 0.4399 (0.4576) loss 5.1982 (4.5882) grad_norm 2.1082 (2.5776/1.1890) mem 16099MB [2025-01-17 22:29:07 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][270/312] eta 0:00:19 lr 0.002974 time 0.4473 (0.4647) model_time 0.4471 (0.4575) loss 4.1372 (4.5876) grad_norm 1.3906 (2.5641/1.1789) mem 16099MB [2025-01-17 22:29:12 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][280/312] eta 0:00:14 lr 0.002981 time 0.4441 (0.4641) model_time 0.4440 (0.4572) loss 4.0212 (4.5878) grad_norm 1.3209 (2.5590/1.1687) mem 16099MB [2025-01-17 22:29:17 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][290/312] eta 0:00:10 lr 0.002987 time 0.4443 (0.4639) model_time 0.4439 (0.4571) loss 4.8712 (4.5955) grad_norm 2.4422 (2.5454/1.1548) mem 16099MB [2025-01-17 22:29:21 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][300/312] eta 0:00:05 lr 0.002993 time 0.4360 (0.4634) model_time 0.4359 (0.4568) loss 4.4720 (4.5979) grad_norm 5.7480 (2.5658/1.1606) mem 16099MB [2025-01-17 22:29:25 internimage_t_1k_224] (main.py 510): INFO Train: [14/300][310/312] eta 0:00:00 lr 0.003000 time 0.4378 (0.4627) model_time 0.4377 (0.4564) loss 5.4228 (4.5978) grad_norm 3.5519 (2.5785/1.1605) mem 16099MB [2025-01-17 22:29:26 internimage_t_1k_224] (main.py 519): INFO EPOCH 14 training takes 0:02:24 [2025-01-17 22:29:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_14.pth saving...... [2025-01-17 22:29:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_14.pth saved !!! [2025-01-17 22:29:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.151 (7.151) Loss 1.7114 (1.7114) Acc@1 61.304 (61.304) Acc@5 85.669 (85.669) Mem 16099MB [2025-01-17 22:29:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.960) Loss 2.5354 (2.0506) Acc@1 46.387 (56.254) Acc@5 72.974 (80.961) Mem 16099MB [2025-01-17 22:29:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:14] * Acc@1 56.436 Acc@5 81.158 [2025-01-17 22:29:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 56.4% [2025-01-17 22:29:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:29:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:29:39 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 56.44% [2025-01-17 22:29:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.263 (7.263) Loss 6.6566 (6.6566) Acc@1 1.025 (1.025) Acc@5 3.589 (3.589) Mem 16099MB [2025-01-17 22:29:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.983) Loss 6.8719 (6.7906) Acc@1 0.024 (0.364) Acc@5 0.830 (1.332) Mem 16099MB [2025-01-17 22:29:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:14] * Acc@1 0.582 Acc@5 2.173 [2025-01-17 22:29:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.6% [2025-01-17 22:29:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 22:29:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 22:29:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:29:54 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][0/312] eta 0:12:00 lr 0.003001 time 2.3088 (2.3088) model_time 0.4872 (0.4872) loss 4.5969 (4.5969) grad_norm 3.1772 (3.1772/0.0000) mem 16099MB [2025-01-17 22:29:58 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][10/312] eta 0:03:08 lr 0.003007 time 0.4389 (0.6258) model_time 0.4385 (0.4599) loss 4.9788 (4.6386) grad_norm 1.4837 (2.2207/0.6887) mem 16099MB [2025-01-17 22:30:03 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][20/312] eta 0:02:42 lr 0.003014 time 0.4871 (0.5555) model_time 0.4870 (0.4684) loss 5.4205 (4.7540) grad_norm 2.4461 (2.2254/0.5319) mem 16099MB [2025-01-17 22:30:07 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][30/312] eta 0:02:26 lr 0.003020 time 0.4411 (0.5209) model_time 0.4409 (0.4618) loss 4.6386 (4.6448) grad_norm 1.5580 (2.3020/0.7787) mem 16099MB [2025-01-17 22:30:12 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][40/312] eta 0:02:17 lr 0.003027 time 0.4696 (0.5066) model_time 0.4694 (0.4619) loss 4.8925 (4.6309) grad_norm 2.5392 (2.5673/1.1049) mem 16099MB [2025-01-17 22:30:17 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][50/312] eta 0:02:10 lr 0.003033 time 0.4502 (0.4988) model_time 0.4500 (0.4627) loss 3.9400 (4.5760) grad_norm 1.8944 (2.4896/1.0247) mem 16099MB [2025-01-17 22:30:21 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][60/312] eta 0:02:03 lr 0.003039 time 0.4464 (0.4914) model_time 0.4463 (0.4613) loss 4.7046 (4.5987) grad_norm 1.4992 (2.4686/0.9820) mem 16099MB [2025-01-17 22:30:26 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][70/312] eta 0:01:57 lr 0.003046 time 0.4467 (0.4871) model_time 0.4465 (0.4611) loss 4.1290 (4.5860) grad_norm 4.3515 (2.6413/1.2864) mem 16099MB [2025-01-17 22:30:30 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][80/312] eta 0:01:51 lr 0.003052 time 0.4489 (0.4826) model_time 0.4487 (0.4598) loss 3.9451 (4.5466) grad_norm 2.0214 (2.5389/1.2419) mem 16099MB [2025-01-17 22:30:35 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][90/312] eta 0:01:46 lr 0.003059 time 0.4531 (0.4804) model_time 0.4529 (0.4601) loss 4.8333 (4.5303) grad_norm 2.5821 (2.5861/1.2972) mem 16099MB [2025-01-17 22:30:40 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][100/312] eta 0:01:41 lr 0.003065 time 0.4444 (0.4780) model_time 0.4443 (0.4596) loss 4.7703 (4.5305) grad_norm 1.9296 (2.6428/1.3208) mem 16099MB [2025-01-17 22:30:44 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][110/312] eta 0:01:36 lr 0.003071 time 0.4407 (0.4774) model_time 0.4406 (0.4607) loss 5.3408 (4.5342) grad_norm 2.8274 (2.5733/1.2860) mem 16099MB [2025-01-17 22:30:49 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][120/312] eta 0:01:31 lr 0.003078 time 0.4469 (0.4753) model_time 0.4464 (0.4599) loss 4.8508 (4.5321) grad_norm 1.8420 (2.5794/1.2633) mem 16099MB [2025-01-17 22:30:53 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][130/312] eta 0:01:26 lr 0.003084 time 0.4468 (0.4739) model_time 0.4466 (0.4597) loss 4.1019 (4.5293) grad_norm 3.4163 (2.5543/1.2409) mem 16099MB [2025-01-17 22:30:58 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][140/312] eta 0:01:21 lr 0.003091 time 0.4493 (0.4722) model_time 0.4492 (0.4589) loss 3.7517 (4.5321) grad_norm 2.1996 (2.5167/1.2069) mem 16099MB [2025-01-17 22:31:02 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][150/312] eta 0:01:16 lr 0.003097 time 0.4461 (0.4714) model_time 0.4459 (0.4590) loss 4.5969 (4.5189) grad_norm 2.1308 (2.5644/1.3060) mem 16099MB [2025-01-17 22:31:07 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][160/312] eta 0:01:11 lr 0.003103 time 0.4560 (0.4705) model_time 0.4556 (0.4588) loss 4.4286 (4.5260) grad_norm 1.6200 (2.5239/1.2760) mem 16099MB [2025-01-17 22:31:12 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][170/312] eta 0:01:06 lr 0.003110 time 0.4481 (0.4695) model_time 0.4480 (0.4585) loss 4.5718 (4.5168) grad_norm 2.3442 (2.5093/1.2439) mem 16099MB [2025-01-17 22:31:16 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][180/312] eta 0:01:01 lr 0.003116 time 0.4444 (0.4687) model_time 0.4443 (0.4583) loss 4.3277 (4.4979) grad_norm 3.5754 (2.5150/1.2269) mem 16099MB [2025-01-17 22:31:21 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][190/312] eta 0:00:57 lr 0.003123 time 0.4461 (0.4677) model_time 0.4457 (0.4578) loss 3.5494 (4.4775) grad_norm 3.8634 (2.5163/1.2160) mem 16099MB [2025-01-17 22:31:25 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][200/312] eta 0:00:52 lr 0.003129 time 0.4601 (0.4671) model_time 0.4600 (0.4577) loss 5.3460 (4.4750) grad_norm 2.2815 (2.5148/1.2453) mem 16099MB [2025-01-17 22:31:30 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][210/312] eta 0:00:47 lr 0.003135 time 0.5349 (0.4666) model_time 0.5348 (0.4576) loss 4.6687 (4.4692) grad_norm 1.2940 (2.4789/1.2280) mem 16099MB [2025-01-17 22:31:34 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][220/312] eta 0:00:42 lr 0.003142 time 0.4488 (0.4658) model_time 0.4486 (0.4572) loss 3.6953 (4.4560) grad_norm 2.4038 (2.4487/1.2105) mem 16099MB [2025-01-17 22:31:39 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][230/312] eta 0:00:38 lr 0.003148 time 0.4374 (0.4656) model_time 0.4372 (0.4573) loss 3.1765 (4.4532) grad_norm 4.0933 (2.5146/1.2627) mem 16099MB [2025-01-17 22:31:43 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][240/312] eta 0:00:33 lr 0.003155 time 0.4539 (0.4648) model_time 0.4537 (0.4569) loss 4.1786 (4.4612) grad_norm 1.5767 (2.4918/1.2457) mem 16099MB [2025-01-17 22:31:48 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][250/312] eta 0:00:28 lr 0.003161 time 0.4477 (0.4644) model_time 0.4475 (0.4568) loss 4.5549 (4.4572) grad_norm 1.5218 (2.4908/1.2710) mem 16099MB [2025-01-17 22:31:52 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][260/312] eta 0:00:24 lr 0.003168 time 0.4368 (0.4643) model_time 0.4366 (0.4570) loss 5.6359 (4.4744) grad_norm 1.5592 (2.4725/1.2513) mem 16099MB [2025-01-17 22:31:57 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][270/312] eta 0:00:19 lr 0.003174 time 0.4567 (0.4640) model_time 0.4563 (0.4570) loss 4.2063 (4.4753) grad_norm 1.8621 (2.4760/1.2356) mem 16099MB [2025-01-17 22:32:02 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][280/312] eta 0:00:14 lr 0.003180 time 0.4450 (0.4641) model_time 0.4448 (0.4573) loss 3.8195 (4.4771) grad_norm 1.5430 (2.4676/1.2227) mem 16099MB [2025-01-17 22:32:06 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][290/312] eta 0:00:10 lr 0.003187 time 0.4435 (0.4641) model_time 0.4433 (0.4575) loss 4.9728 (4.4690) grad_norm 1.5410 (2.4378/1.2152) mem 16099MB [2025-01-17 22:32:11 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][300/312] eta 0:00:05 lr 0.003193 time 0.4345 (0.4634) model_time 0.4344 (0.4571) loss 4.6965 (4.4772) grad_norm 3.7833 (2.4342/1.2018) mem 16099MB [2025-01-17 22:32:15 internimage_t_1k_224] (main.py 510): INFO Train: [15/300][310/312] eta 0:00:00 lr 0.003200 time 0.4386 (0.4628) model_time 0.4385 (0.4566) loss 4.4161 (4.4786) grad_norm 2.6437 (2.4375/1.1985) mem 16099MB [2025-01-17 22:32:16 internimage_t_1k_224] (main.py 519): INFO EPOCH 15 training takes 0:02:24 [2025-01-17 22:32:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_15.pth saving...... [2025-01-17 22:32:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_15.pth saved !!! [2025-01-17 22:32:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.340 (7.340) Loss 1.6788 (1.6788) Acc@1 63.672 (63.672) Acc@5 86.499 (86.499) Mem 16099MB [2025-01-17 22:32:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.987) Loss 2.2939 (1.9420) Acc@1 51.514 (58.123) Acc@5 77.100 (82.573) Mem 16099MB [2025-01-17 22:32:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:15] * Acc@1 58.453 Acc@5 82.734 [2025-01-17 22:32:28 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 58.5% [2025-01-17 22:32:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:32:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:32:29 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 58.45% [2025-01-17 22:32:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.544 (7.544) Loss 6.7116 (6.7116) Acc@1 0.879 (0.879) Acc@5 2.930 (2.930) Mem 16099MB [2025-01-17 22:32:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.012) Loss 6.8639 (6.7922) Acc@1 0.049 (0.344) Acc@5 0.830 (1.303) Mem 16099MB [2025-01-17 22:32:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:15] * Acc@1 0.550 Acc@5 2.047 [2025-01-17 22:32:40 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.5% [2025-01-17 22:32:40 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:32:43 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][0/312] eta 0:14:00 lr 0.003201 time 2.6950 (2.6950) model_time 1.0030 (1.0030) loss 4.4589 (4.4589) grad_norm 2.7603 (2.7603/0.0000) mem 16099MB [2025-01-17 22:32:48 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][10/312] eta 0:03:25 lr 0.003207 time 0.5440 (0.6820) model_time 0.5436 (0.5279) loss 3.4980 (4.5543) grad_norm 1.6843 (2.4626/0.5746) mem 16099MB [2025-01-17 22:32:52 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][20/312] eta 0:02:47 lr 0.003214 time 0.4597 (0.5747) model_time 0.4595 (0.4938) loss 5.0257 (4.5388) grad_norm 3.4304 (2.5626/0.8577) mem 16099MB [2025-01-17 22:32:57 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][30/312] eta 0:02:31 lr 0.003220 time 0.4642 (0.5373) model_time 0.4641 (0.4824) loss 4.0232 (4.4763) grad_norm 1.9999 (2.5039/1.0951) mem 16099MB [2025-01-17 22:33:01 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][40/312] eta 0:02:20 lr 0.003226 time 0.4394 (0.5153) model_time 0.4389 (0.4738) loss 3.6626 (4.4457) grad_norm 1.2050 (2.4938/1.1116) mem 16099MB [2025-01-17 22:33:06 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][50/312] eta 0:02:12 lr 0.003233 time 0.4498 (0.5061) model_time 0.4494 (0.4726) loss 3.8999 (4.4382) grad_norm 2.3472 (2.4123/1.0396) mem 16099MB [2025-01-17 22:33:11 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][60/312] eta 0:02:05 lr 0.003239 time 0.4544 (0.4984) model_time 0.4543 (0.4703) loss 4.1505 (4.4266) grad_norm 2.1159 (2.3500/0.9687) mem 16099MB [2025-01-17 22:33:15 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][70/312] eta 0:01:59 lr 0.003246 time 0.4420 (0.4933) model_time 0.4418 (0.4691) loss 4.0976 (4.4636) grad_norm 1.8727 (2.4554/1.0946) mem 16099MB [2025-01-17 22:33:20 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][80/312] eta 0:01:53 lr 0.003252 time 0.4472 (0.4880) model_time 0.4468 (0.4668) loss 3.6906 (4.4414) grad_norm 1.2550 (2.4173/1.0569) mem 16099MB [2025-01-17 22:33:24 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][90/312] eta 0:01:47 lr 0.003258 time 0.5269 (0.4843) model_time 0.5267 (0.4654) loss 5.2933 (4.4505) grad_norm 2.1129 (2.3252/1.0346) mem 16099MB [2025-01-17 22:33:29 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][100/312] eta 0:01:42 lr 0.003265 time 0.4488 (0.4815) model_time 0.4484 (0.4644) loss 3.6080 (4.4181) grad_norm 2.5545 (2.3964/1.0927) mem 16099MB [2025-01-17 22:33:33 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][110/312] eta 0:01:36 lr 0.003271 time 0.4476 (0.4787) model_time 0.4474 (0.4631) loss 4.8348 (4.4173) grad_norm 1.2841 (2.3782/1.0677) mem 16099MB [2025-01-17 22:33:38 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][120/312] eta 0:01:31 lr 0.003278 time 0.4439 (0.4761) model_time 0.4438 (0.4618) loss 4.7713 (4.4237) grad_norm 1.4238 (2.3867/1.0760) mem 16099MB [2025-01-17 22:33:43 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][130/312] eta 0:01:26 lr 0.003284 time 0.4394 (0.4752) model_time 0.4393 (0.4620) loss 4.1976 (4.4109) grad_norm 1.3345 (2.3403/1.0576) mem 16099MB [2025-01-17 22:33:47 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][140/312] eta 0:01:21 lr 0.003290 time 0.4406 (0.4759) model_time 0.4401 (0.4635) loss 4.5171 (4.4305) grad_norm 1.5406 (2.3011/1.0338) mem 16099MB [2025-01-17 22:33:52 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][150/312] eta 0:01:16 lr 0.003297 time 0.4477 (0.4741) model_time 0.4475 (0.4625) loss 4.7929 (4.4436) grad_norm 2.7694 (2.3470/1.0276) mem 16099MB [2025-01-17 22:33:57 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][160/312] eta 0:01:12 lr 0.003303 time 0.4390 (0.4737) model_time 0.4386 (0.4628) loss 3.9914 (4.4385) grad_norm 1.9153 (2.3332/1.0075) mem 16099MB [2025-01-17 22:34:01 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][170/312] eta 0:01:07 lr 0.003310 time 0.4410 (0.4721) model_time 0.4406 (0.4619) loss 5.4777 (4.4516) grad_norm 1.5693 (2.3034/0.9934) mem 16099MB [2025-01-17 22:34:06 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][180/312] eta 0:01:02 lr 0.003316 time 0.5589 (0.4721) model_time 0.5587 (0.4624) loss 5.0642 (4.4456) grad_norm 2.0758 (2.3366/1.0202) mem 16099MB [2025-01-17 22:34:10 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][190/312] eta 0:00:57 lr 0.003322 time 0.4380 (0.4711) model_time 0.4378 (0.4619) loss 4.8821 (4.4583) grad_norm 2.0630 (2.3183/1.0068) mem 16099MB [2025-01-17 22:34:15 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][200/312] eta 0:00:52 lr 0.003329 time 0.4477 (0.4703) model_time 0.4476 (0.4615) loss 4.1986 (4.4435) grad_norm 1.7679 (2.2971/0.9894) mem 16099MB [2025-01-17 22:34:19 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][210/312] eta 0:00:47 lr 0.003335 time 0.4521 (0.4694) model_time 0.4520 (0.4610) loss 5.2387 (4.4543) grad_norm 2.0599 (2.2834/0.9704) mem 16099MB [2025-01-17 22:34:24 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][220/312] eta 0:00:43 lr 0.003342 time 0.4372 (0.4689) model_time 0.4371 (0.4609) loss 4.0515 (4.4525) grad_norm 1.9735 (2.2668/0.9563) mem 16099MB [2025-01-17 22:34:28 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][230/312] eta 0:00:38 lr 0.003348 time 0.4458 (0.4683) model_time 0.4457 (0.4606) loss 4.2839 (4.4631) grad_norm 3.9461 (2.2759/0.9551) mem 16099MB [2025-01-17 22:34:33 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][240/312] eta 0:00:33 lr 0.003354 time 0.4467 (0.4677) model_time 0.4463 (0.4603) loss 4.7268 (4.4567) grad_norm 1.7656 (2.3038/0.9925) mem 16099MB [2025-01-17 22:34:38 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][250/312] eta 0:00:28 lr 0.003361 time 0.4496 (0.4669) model_time 0.4491 (0.4598) loss 4.1447 (4.4645) grad_norm 2.3371 (2.2858/0.9780) mem 16099MB [2025-01-17 22:34:42 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][260/312] eta 0:00:24 lr 0.003367 time 0.4555 (0.4664) model_time 0.4553 (0.4595) loss 4.1300 (4.4673) grad_norm 1.9012 (2.2803/0.9654) mem 16099MB [2025-01-17 22:34:47 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][270/312] eta 0:00:19 lr 0.003374 time 0.4496 (0.4662) model_time 0.4494 (0.4596) loss 3.6182 (4.4689) grad_norm 2.2667 (2.3057/0.9982) mem 16099MB [2025-01-17 22:34:51 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][280/312] eta 0:00:14 lr 0.003380 time 0.4356 (0.4656) model_time 0.4355 (0.4592) loss 4.6456 (4.4675) grad_norm 1.1997 (2.2812/0.9941) mem 16099MB [2025-01-17 22:34:56 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][290/312] eta 0:00:10 lr 0.003387 time 0.4449 (0.4654) model_time 0.4447 (0.4592) loss 4.3260 (4.4660) grad_norm 2.6607 (2.3018/0.9947) mem 16099MB [2025-01-17 22:35:00 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][300/312] eta 0:00:05 lr 0.003393 time 0.4345 (0.4656) model_time 0.4344 (0.4596) loss 5.2750 (4.4736) grad_norm 2.3421 (2.3079/1.0130) mem 16099MB [2025-01-17 22:35:05 internimage_t_1k_224] (main.py 510): INFO Train: [16/300][310/312] eta 0:00:00 lr 0.003399 time 0.4415 (0.4648) model_time 0.4414 (0.4590) loss 4.7507 (4.4800) grad_norm 1.0572 (2.2867/1.0148) mem 16099MB [2025-01-17 22:35:05 internimage_t_1k_224] (main.py 519): INFO EPOCH 16 training takes 0:02:24 [2025-01-17 22:35:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_16.pth saving...... [2025-01-17 22:35:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_16.pth saved !!! [2025-01-17 22:35:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.171 (7.171) Loss 1.6684 (1.6684) Acc@1 64.014 (64.014) Acc@5 86.597 (86.597) Mem 16099MB [2025-01-17 22:35:17 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.977) Loss 2.2436 (1.9173) Acc@1 52.905 (59.235) Acc@5 77.026 (82.948) Mem 16099MB [2025-01-17 22:35:17 internimage_t_1k_224] (main.py 575): INFO [Epoch:16] * Acc@1 59.531 Acc@5 83.243 [2025-01-17 22:35:17 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 59.5% [2025-01-17 22:35:17 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:35:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:35:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 59.53% [2025-01-17 22:35:26 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.408 (7.408) Loss 6.7667 (6.7667) Acc@1 0.854 (0.854) Acc@5 2.637 (2.637) Mem 16099MB [2025-01-17 22:35:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.994) Loss 6.8564 (6.7960) Acc@1 0.098 (0.335) Acc@5 0.830 (1.329) Mem 16099MB [2025-01-17 22:35:30 internimage_t_1k_224] (main.py 575): INFO [Epoch:16] * Acc@1 0.504 Acc@5 1.935 [2025-01-17 22:35:30 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.5% [2025-01-17 22:35:30 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:35:33 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][0/312] eta 0:16:15 lr 0.003401 time 3.1252 (3.1252) model_time 1.3752 (1.3752) loss 4.3938 (4.3938) grad_norm 1.3100 (1.3100/0.0000) mem 16099MB [2025-01-17 22:35:38 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][10/312] eta 0:03:34 lr 0.003407 time 0.4529 (0.7115) model_time 0.4528 (0.5522) loss 4.5395 (4.1818) grad_norm 1.1255 (2.0634/0.6949) mem 16099MB [2025-01-17 22:35:42 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][20/312] eta 0:02:53 lr 0.003413 time 0.4534 (0.5943) model_time 0.4530 (0.5106) loss 5.0722 (4.2680) grad_norm 1.8466 (2.2806/0.9750) mem 16099MB [2025-01-17 22:35:47 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][30/312] eta 0:02:35 lr 0.003420 time 0.4360 (0.5508) model_time 0.4359 (0.4940) loss 3.5125 (4.2395) grad_norm 1.5801 (2.1123/0.8813) mem 16099MB [2025-01-17 22:35:51 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][40/312] eta 0:02:23 lr 0.003426 time 0.4518 (0.5262) model_time 0.4517 (0.4832) loss 4.5117 (4.3147) grad_norm 1.7044 (2.1198/0.8244) mem 16099MB [2025-01-17 22:35:56 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][50/312] eta 0:02:14 lr 0.003433 time 0.4588 (0.5129) model_time 0.4586 (0.4782) loss 4.8216 (4.3652) grad_norm 1.9334 (2.1604/0.8105) mem 16099MB [2025-01-17 22:36:00 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][60/312] eta 0:02:07 lr 0.003439 time 0.4403 (0.5051) model_time 0.4398 (0.4761) loss 4.1622 (4.3634) grad_norm 1.9118 (2.0889/0.7796) mem 16099MB [2025-01-17 22:36:05 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][70/312] eta 0:02:00 lr 0.003445 time 0.4372 (0.4975) model_time 0.4370 (0.4725) loss 4.4056 (4.3492) grad_norm 1.6922 (2.0576/0.7439) mem 16099MB [2025-01-17 22:36:09 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][80/312] eta 0:01:54 lr 0.003452 time 0.4454 (0.4916) model_time 0.4450 (0.4696) loss 4.5972 (4.3350) grad_norm 5.2362 (2.1546/0.8316) mem 16099MB [2025-01-17 22:36:14 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][90/312] eta 0:01:48 lr 0.003458 time 0.4487 (0.4880) model_time 0.4486 (0.4684) loss 4.5887 (4.3297) grad_norm 2.6669 (2.2152/0.9152) mem 16099MB [2025-01-17 22:36:19 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][100/312] eta 0:01:42 lr 0.003465 time 0.4380 (0.4848) model_time 0.4376 (0.4672) loss 4.7283 (4.3564) grad_norm 1.6854 (2.2023/0.8834) mem 16099MB [2025-01-17 22:36:23 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][110/312] eta 0:01:37 lr 0.003471 time 0.4491 (0.4819) model_time 0.4487 (0.4658) loss 4.8507 (4.3706) grad_norm 2.5212 (2.2546/1.0049) mem 16099MB [2025-01-17 22:36:28 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][120/312] eta 0:01:32 lr 0.003477 time 0.4601 (0.4799) model_time 0.4596 (0.4651) loss 3.9270 (4.3499) grad_norm 3.2133 (2.2151/0.9932) mem 16099MB [2025-01-17 22:36:32 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][130/312] eta 0:01:26 lr 0.003484 time 0.4494 (0.4775) model_time 0.4492 (0.4638) loss 4.7295 (4.3499) grad_norm 1.4694 (2.1968/0.9861) mem 16099MB [2025-01-17 22:36:37 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][140/312] eta 0:01:22 lr 0.003490 time 0.4390 (0.4768) model_time 0.4386 (0.4641) loss 5.0440 (4.3542) grad_norm 3.0574 (2.1972/0.9583) mem 16099MB [2025-01-17 22:36:41 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][150/312] eta 0:01:16 lr 0.003497 time 0.4387 (0.4752) model_time 0.4385 (0.4633) loss 4.0688 (4.3605) grad_norm 1.1786 (2.2194/0.9986) mem 16099MB [2025-01-17 22:36:46 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][160/312] eta 0:01:12 lr 0.003503 time 0.4603 (0.4750) model_time 0.4599 (0.4638) loss 4.7025 (4.3745) grad_norm 1.6041 (2.2082/0.9878) mem 16099MB [2025-01-17 22:36:51 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][170/312] eta 0:01:07 lr 0.003509 time 0.4429 (0.4736) model_time 0.4427 (0.4630) loss 4.5397 (4.3763) grad_norm 1.2495 (2.1716/0.9749) mem 16099MB [2025-01-17 22:36:55 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][180/312] eta 0:01:02 lr 0.003516 time 0.4380 (0.4730) model_time 0.4378 (0.4630) loss 3.5387 (4.3610) grad_norm 2.1997 (2.1696/0.9613) mem 16099MB [2025-01-17 22:37:00 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][190/312] eta 0:00:57 lr 0.003522 time 0.5324 (0.4724) model_time 0.5323 (0.4628) loss 4.7492 (4.3739) grad_norm 1.9682 (2.1764/0.9487) mem 16099MB [2025-01-17 22:37:04 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][200/312] eta 0:00:52 lr 0.003529 time 0.4461 (0.4715) model_time 0.4460 (0.4624) loss 5.1693 (4.3734) grad_norm 1.8683 (2.1682/0.9444) mem 16099MB [2025-01-17 22:37:09 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][210/312] eta 0:00:47 lr 0.003535 time 0.4387 (0.4706) model_time 0.4385 (0.4619) loss 4.1078 (4.3691) grad_norm 1.3474 (2.1866/0.9613) mem 16099MB [2025-01-17 22:37:13 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][220/312] eta 0:00:43 lr 0.003541 time 0.4474 (0.4697) model_time 0.4472 (0.4614) loss 5.2328 (4.3806) grad_norm 1.3286 (2.1772/0.9535) mem 16099MB [2025-01-17 22:37:18 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][230/312] eta 0:00:38 lr 0.003548 time 0.4675 (0.4689) model_time 0.4671 (0.4610) loss 3.4431 (4.3637) grad_norm 2.4076 (2.1704/0.9367) mem 16099MB [2025-01-17 22:37:23 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][240/312] eta 0:00:33 lr 0.003554 time 0.4433 (0.4689) model_time 0.4429 (0.4612) loss 3.0911 (4.3604) grad_norm 1.7021 (2.1431/0.9301) mem 16099MB [2025-01-17 22:37:27 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][250/312] eta 0:00:29 lr 0.003561 time 0.4395 (0.4687) model_time 0.4394 (0.4614) loss 4.4211 (4.3530) grad_norm 2.3483 (2.1841/0.9758) mem 16099MB [2025-01-17 22:37:32 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][260/312] eta 0:00:24 lr 0.003567 time 0.4549 (0.4683) model_time 0.4545 (0.4613) loss 3.3989 (4.3539) grad_norm 3.3740 (2.1843/0.9711) mem 16099MB [2025-01-17 22:37:36 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][270/312] eta 0:00:19 lr 0.003574 time 0.4475 (0.4679) model_time 0.4470 (0.4611) loss 3.6108 (4.3469) grad_norm 1.5234 (2.1823/0.9606) mem 16099MB [2025-01-17 22:37:41 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][280/312] eta 0:00:14 lr 0.003580 time 0.4694 (0.4674) model_time 0.4690 (0.4608) loss 4.8354 (4.3487) grad_norm 2.1045 (2.1775/0.9534) mem 16099MB [2025-01-17 22:37:46 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][290/312] eta 0:00:10 lr 0.003586 time 0.4550 (0.4676) model_time 0.4548 (0.4612) loss 5.3422 (4.3589) grad_norm 1.5816 (2.1698/0.9444) mem 16099MB [2025-01-17 22:37:50 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][300/312] eta 0:00:05 lr 0.003593 time 0.4346 (0.4671) model_time 0.4345 (0.4609) loss 3.7780 (4.3527) grad_norm 3.0754 (2.1969/0.9468) mem 16099MB [2025-01-17 22:37:55 internimage_t_1k_224] (main.py 510): INFO Train: [17/300][310/312] eta 0:00:00 lr 0.003599 time 0.4379 (0.4669) model_time 0.4378 (0.4609) loss 4.6903 (4.3556) grad_norm 4.3846 (2.1958/0.9552) mem 16099MB [2025-01-17 22:37:55 internimage_t_1k_224] (main.py 519): INFO EPOCH 17 training takes 0:02:25 [2025-01-17 22:37:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_17.pth saving...... [2025-01-17 22:37:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_17.pth saved !!! [2025-01-17 22:38:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.322 (8.322) Loss 1.5776 (1.5776) Acc@1 65.161 (65.161) Acc@5 87.549 (87.549) Mem 16099MB [2025-01-17 22:38:09 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.098) Loss 2.2069 (1.8701) Acc@1 53.491 (60.147) Acc@5 77.441 (83.780) Mem 16099MB [2025-01-17 22:38:09 internimage_t_1k_224] (main.py 575): INFO [Epoch:17] * Acc@1 60.437 Acc@5 83.947 [2025-01-17 22:38:09 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 60.4% [2025-01-17 22:38:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:38:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:38:10 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 60.44% [2025-01-17 22:38:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.485 (7.485) Loss 6.8114 (6.8114) Acc@1 0.781 (0.781) Acc@5 2.417 (2.417) Mem 16099MB [2025-01-17 22:38:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.007) Loss 6.8500 (6.7996) Acc@1 0.171 (0.302) Acc@5 0.708 (1.316) Mem 16099MB [2025-01-17 22:38:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:17] * Acc@1 0.440 Acc@5 1.861 [2025-01-17 22:38:21 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:38:21 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:38:24 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][0/312] eta 0:15:18 lr 0.003600 time 2.9446 (2.9446) model_time 1.2400 (1.2400) loss 3.7687 (3.7687) grad_norm 3.1427 (3.1427/0.0000) mem 16099MB [2025-01-17 22:38:29 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][10/312] eta 0:03:27 lr 0.003607 time 0.4503 (0.6877) model_time 0.4499 (0.5324) loss 5.5662 (4.4794) grad_norm 1.7804 (2.2278/0.6641) mem 16099MB [2025-01-17 22:38:33 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][20/312] eta 0:02:49 lr 0.003613 time 0.5205 (0.5798) model_time 0.5201 (0.4983) loss 3.7339 (4.5549) grad_norm 2.6066 (2.1797/0.6858) mem 16099MB [2025-01-17 22:38:38 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][30/312] eta 0:02:32 lr 0.003620 time 0.4402 (0.5411) model_time 0.4401 (0.4858) loss 3.6723 (4.4451) grad_norm 2.6157 (2.2546/0.7014) mem 16099MB [2025-01-17 22:38:42 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][40/312] eta 0:02:21 lr 0.003626 time 0.4371 (0.5186) model_time 0.4369 (0.4767) loss 3.6555 (4.3865) grad_norm 2.9789 (2.3530/0.8779) mem 16099MB [2025-01-17 22:38:47 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][50/312] eta 0:02:13 lr 0.003632 time 0.4428 (0.5084) model_time 0.4426 (0.4746) loss 4.2737 (4.4023) grad_norm 1.1236 (2.3437/1.0075) mem 16099MB [2025-01-17 22:38:52 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][60/312] eta 0:02:05 lr 0.003639 time 0.4695 (0.4988) model_time 0.4693 (0.4705) loss 4.7648 (4.3920) grad_norm 1.3891 (2.2764/0.9948) mem 16099MB [2025-01-17 22:38:56 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][70/312] eta 0:01:59 lr 0.003645 time 0.4484 (0.4927) model_time 0.4480 (0.4684) loss 4.5343 (4.3934) grad_norm 1.8075 (2.2383/0.9484) mem 16099MB [2025-01-17 22:39:01 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][80/312] eta 0:01:53 lr 0.003652 time 0.4462 (0.4884) model_time 0.4458 (0.4670) loss 4.6033 (4.4058) grad_norm 2.9288 (2.1783/0.9171) mem 16099MB [2025-01-17 22:39:05 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][90/312] eta 0:01:47 lr 0.003658 time 0.4474 (0.4846) model_time 0.4469 (0.4655) loss 3.6544 (4.4059) grad_norm 2.5690 (2.2119/0.8800) mem 16099MB [2025-01-17 22:39:10 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][100/312] eta 0:01:42 lr 0.003664 time 0.4638 (0.4814) model_time 0.4637 (0.4642) loss 3.5085 (4.3854) grad_norm 3.1957 (2.2805/0.9221) mem 16099MB [2025-01-17 22:39:14 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][110/312] eta 0:01:36 lr 0.003671 time 0.4444 (0.4785) model_time 0.4443 (0.4628) loss 4.4803 (4.3766) grad_norm 1.5375 (2.2456/0.9054) mem 16099MB [2025-01-17 22:39:19 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][120/312] eta 0:01:31 lr 0.003677 time 0.4558 (0.4768) model_time 0.4556 (0.4624) loss 3.9095 (4.3579) grad_norm 1.4270 (2.2352/0.8922) mem 16099MB [2025-01-17 22:39:24 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][130/312] eta 0:01:26 lr 0.003684 time 0.4423 (0.4774) model_time 0.4417 (0.4640) loss 4.5112 (4.3583) grad_norm 1.6645 (2.2036/0.8720) mem 16099MB [2025-01-17 22:39:29 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][140/312] eta 0:01:22 lr 0.003690 time 0.4675 (0.4785) model_time 0.4673 (0.4660) loss 4.5294 (4.3675) grad_norm 1.7194 (2.2446/0.9865) mem 16099MB [2025-01-17 22:39:33 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][150/312] eta 0:01:17 lr 0.003696 time 0.4382 (0.4774) model_time 0.4380 (0.4658) loss 4.3827 (4.3811) grad_norm 2.9669 (2.2275/0.9625) mem 16099MB [2025-01-17 22:39:38 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][160/312] eta 0:01:12 lr 0.003703 time 0.5304 (0.4768) model_time 0.5302 (0.4659) loss 4.6496 (4.3795) grad_norm 1.5218 (2.1922/0.9443) mem 16099MB [2025-01-17 22:39:42 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][170/312] eta 0:01:07 lr 0.003709 time 0.4441 (0.4754) model_time 0.4439 (0.4651) loss 2.9504 (4.3660) grad_norm 1.9928 (2.2392/1.0681) mem 16099MB [2025-01-17 22:39:47 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][180/312] eta 0:01:02 lr 0.003716 time 0.4584 (0.4744) model_time 0.4582 (0.4646) loss 4.2641 (4.3570) grad_norm 2.9540 (2.2252/1.0499) mem 16099MB [2025-01-17 22:39:51 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][190/312] eta 0:00:57 lr 0.003722 time 0.4459 (0.4730) model_time 0.4457 (0.4637) loss 5.2992 (4.3682) grad_norm 0.9964 (2.2050/1.0310) mem 16099MB [2025-01-17 22:39:56 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][200/312] eta 0:00:52 lr 0.003728 time 0.4568 (0.4724) model_time 0.4566 (0.4635) loss 3.8027 (4.3520) grad_norm 1.2634 (2.2246/1.0653) mem 16099MB [2025-01-17 22:40:01 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][210/312] eta 0:00:48 lr 0.003735 time 0.5330 (0.4721) model_time 0.5328 (0.4637) loss 4.7153 (4.3716) grad_norm 1.8170 (2.2205/1.0463) mem 16099MB [2025-01-17 22:40:05 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][220/312] eta 0:00:43 lr 0.003741 time 0.4452 (0.4712) model_time 0.4450 (0.4632) loss 4.5480 (4.3790) grad_norm 1.8828 (2.1897/1.0332) mem 16099MB [2025-01-17 22:40:10 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][230/312] eta 0:00:38 lr 0.003748 time 0.4524 (0.4702) model_time 0.4518 (0.4625) loss 4.2761 (4.3727) grad_norm 1.5176 (2.1710/1.0158) mem 16099MB [2025-01-17 22:40:14 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][240/312] eta 0:00:33 lr 0.003754 time 0.4847 (0.4695) model_time 0.4845 (0.4621) loss 4.4257 (4.3688) grad_norm 2.2900 (2.2256/1.1074) mem 16099MB [2025-01-17 22:40:19 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][250/312] eta 0:00:29 lr 0.003760 time 0.4494 (0.4687) model_time 0.4492 (0.4616) loss 5.0783 (4.3841) grad_norm 1.6709 (2.2058/1.0966) mem 16099MB [2025-01-17 22:40:23 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][260/312] eta 0:00:24 lr 0.003767 time 0.4469 (0.4680) model_time 0.4467 (0.4611) loss 4.6651 (4.4019) grad_norm 1.7841 (2.1928/1.0798) mem 16099MB [2025-01-17 22:40:28 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][270/312] eta 0:00:19 lr 0.003773 time 0.4445 (0.4673) model_time 0.4442 (0.4606) loss 5.2799 (4.4043) grad_norm 2.4589 (2.1946/1.0707) mem 16099MB [2025-01-17 22:40:32 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][280/312] eta 0:00:14 lr 0.003780 time 0.4589 (0.4668) model_time 0.4587 (0.4604) loss 3.4415 (4.3878) grad_norm 1.4722 (2.1937/1.0612) mem 16099MB [2025-01-17 22:40:37 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][290/312] eta 0:00:10 lr 0.003786 time 0.4504 (0.4664) model_time 0.4501 (0.4602) loss 5.2243 (4.3880) grad_norm 1.0209 (2.1763/1.0551) mem 16099MB [2025-01-17 22:40:41 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][300/312] eta 0:00:05 lr 0.003793 time 0.4349 (0.4658) model_time 0.4348 (0.4598) loss 3.2591 (4.3837) grad_norm 1.9606 (2.2092/1.1734) mem 16099MB [2025-01-17 22:40:46 internimage_t_1k_224] (main.py 510): INFO Train: [18/300][310/312] eta 0:00:00 lr 0.003799 time 0.4367 (0.4654) model_time 0.4366 (0.4596) loss 3.3098 (4.3836) grad_norm 1.7960 (2.1989/1.1717) mem 16099MB [2025-01-17 22:40:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 18 training takes 0:02:25 [2025-01-17 22:40:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_18.pth saving...... [2025-01-17 22:40:48 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_18.pth saved !!! [2025-01-17 22:40:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.421 (7.421) Loss 1.5995 (1.5995) Acc@1 65.674 (65.674) Acc@5 86.841 (86.841) Mem 16099MB [2025-01-17 22:40:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.982) Loss 2.1764 (1.8143) Acc@1 54.590 (61.697) Acc@5 78.442 (84.703) Mem 16099MB [2025-01-17 22:40:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:18] * Acc@1 61.976 Acc@5 84.929 [2025-01-17 22:40:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 62.0% [2025-01-17 22:40:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:41:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:41:00 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 61.98% [2025-01-17 22:41:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.380 (7.380) Loss 6.8465 (6.8465) Acc@1 0.610 (0.610) Acc@5 2.148 (2.148) Mem 16099MB [2025-01-17 22:41:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.006) Loss 6.8377 (6.8006) Acc@1 0.146 (0.257) Acc@5 0.659 (1.298) Mem 16099MB [2025-01-17 22:41:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:18] * Acc@1 0.374 Acc@5 1.793 [2025-01-17 22:41:11 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:41:11 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:41:14 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][0/312] eta 0:14:53 lr 0.003800 time 2.8643 (2.8643) model_time 1.3589 (1.3589) loss 4.7112 (4.7112) grad_norm 3.1409 (3.1409/0.0000) mem 16099MB [2025-01-17 22:41:18 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][10/312] eta 0:03:27 lr 0.003807 time 0.4547 (0.6886) model_time 0.4543 (0.5514) loss 4.7743 (4.5667) grad_norm 1.8591 (1.8074/0.5282) mem 16099MB [2025-01-17 22:41:23 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][20/312] eta 0:02:49 lr 0.003813 time 0.5292 (0.5791) model_time 0.5289 (0.5070) loss 4.7150 (4.4951) grad_norm 1.3666 (2.0734/0.7904) mem 16099MB [2025-01-17 22:41:28 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][30/312] eta 0:02:33 lr 0.003819 time 0.4776 (0.5428) model_time 0.4774 (0.4938) loss 3.7104 (4.3511) grad_norm 2.7146 (2.0051/0.7078) mem 16099MB [2025-01-17 22:41:32 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][40/312] eta 0:02:23 lr 0.003826 time 0.4460 (0.5265) model_time 0.4458 (0.4894) loss 5.0020 (4.3868) grad_norm 1.1407 (2.1211/1.0209) mem 16099MB [2025-01-17 22:41:37 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][50/312] eta 0:02:14 lr 0.003832 time 0.4374 (0.5139) model_time 0.4372 (0.4840) loss 4.9621 (4.3827) grad_norm 2.1411 (2.0949/0.9329) mem 16099MB [2025-01-17 22:41:42 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][60/312] eta 0:02:07 lr 0.003839 time 0.5277 (0.5052) model_time 0.5275 (0.4802) loss 4.7702 (4.4060) grad_norm 3.5582 (2.1998/1.0369) mem 16099MB [2025-01-17 22:41:46 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][70/312] eta 0:02:00 lr 0.003845 time 0.4436 (0.4992) model_time 0.4434 (0.4776) loss 3.5461 (4.3922) grad_norm 1.6096 (2.2011/1.0196) mem 16099MB [2025-01-17 22:41:51 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][80/312] eta 0:01:54 lr 0.003851 time 0.4437 (0.4934) model_time 0.4433 (0.4744) loss 4.4521 (4.3907) grad_norm 1.1162 (2.1392/0.9851) mem 16099MB [2025-01-17 22:41:55 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][90/312] eta 0:01:48 lr 0.003858 time 0.4508 (0.4887) model_time 0.4506 (0.4717) loss 3.9737 (4.3908) grad_norm 1.7705 (2.1336/0.9429) mem 16099MB [2025-01-17 22:42:00 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][100/312] eta 0:01:43 lr 0.003864 time 0.4697 (0.4866) model_time 0.4695 (0.4713) loss 3.2811 (4.3650) grad_norm 2.6779 (2.1259/0.9198) mem 16099MB [2025-01-17 22:42:05 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][110/312] eta 0:01:37 lr 0.003871 time 0.5435 (0.4842) model_time 0.5433 (0.4702) loss 4.3173 (4.3419) grad_norm 1.7516 (2.0728/0.9067) mem 16099MB [2025-01-17 22:42:09 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][120/312] eta 0:01:32 lr 0.003877 time 0.4399 (0.4820) model_time 0.4397 (0.4692) loss 3.4749 (4.3313) grad_norm 1.8542 (2.0525/0.8829) mem 16099MB [2025-01-17 22:42:14 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][130/312] eta 0:01:27 lr 0.003883 time 0.4599 (0.4798) model_time 0.4594 (0.4679) loss 3.7165 (4.3220) grad_norm 1.5953 (2.0417/0.8602) mem 16099MB [2025-01-17 22:42:18 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][140/312] eta 0:01:22 lr 0.003890 time 0.4401 (0.4779) model_time 0.4399 (0.4669) loss 4.8152 (4.3498) grad_norm 2.5170 (2.1051/1.0139) mem 16099MB [2025-01-17 22:42:23 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][150/312] eta 0:01:17 lr 0.003896 time 0.4456 (0.4769) model_time 0.4454 (0.4665) loss 4.9645 (4.3497) grad_norm 2.8351 (2.0838/0.9929) mem 16099MB [2025-01-17 22:42:27 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][160/312] eta 0:01:12 lr 0.003903 time 0.4472 (0.4753) model_time 0.4470 (0.4655) loss 3.6711 (4.3473) grad_norm 1.4829 (2.0471/0.9748) mem 16099MB [2025-01-17 22:42:32 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][170/312] eta 0:01:07 lr 0.003909 time 0.4475 (0.4744) model_time 0.4473 (0.4652) loss 3.5384 (4.3414) grad_norm 2.0810 (2.0218/0.9550) mem 16099MB [2025-01-17 22:42:37 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][180/312] eta 0:01:02 lr 0.003915 time 0.4451 (0.4734) model_time 0.4449 (0.4647) loss 3.6918 (4.3336) grad_norm 3.8550 (2.0729/0.9834) mem 16099MB [2025-01-17 22:42:41 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][190/312] eta 0:00:57 lr 0.003922 time 0.4448 (0.4729) model_time 0.4445 (0.4646) loss 4.9576 (4.3326) grad_norm 2.6760 (2.0799/0.9671) mem 16099MB [2025-01-17 22:42:46 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][200/312] eta 0:00:52 lr 0.003928 time 0.4435 (0.4717) model_time 0.4433 (0.4638) loss 4.8929 (4.3281) grad_norm 1.2669 (2.0826/0.9590) mem 16099MB [2025-01-17 22:42:50 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][210/312] eta 0:00:48 lr 0.003935 time 0.4458 (0.4711) model_time 0.4453 (0.4636) loss 4.1665 (4.3204) grad_norm 1.2227 (2.0493/0.9497) mem 16099MB [2025-01-17 22:42:55 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][220/312] eta 0:00:43 lr 0.003941 time 0.4480 (0.4702) model_time 0.4478 (0.4630) loss 5.3632 (4.3130) grad_norm 2.3900 (2.0525/0.9368) mem 16099MB [2025-01-17 22:42:59 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][230/312] eta 0:00:38 lr 0.003947 time 0.4549 (0.4695) model_time 0.4547 (0.4626) loss 3.1978 (4.3097) grad_norm 1.5953 (2.0525/0.9269) mem 16099MB [2025-01-17 22:43:04 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][240/312] eta 0:00:33 lr 0.003954 time 0.4287 (0.4691) model_time 0.4286 (0.4625) loss 3.7190 (4.3110) grad_norm 6.2318 (2.0670/0.9612) mem 16099MB [2025-01-17 22:43:09 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][250/312] eta 0:00:29 lr 0.003960 time 0.4506 (0.4685) model_time 0.4500 (0.4621) loss 3.9665 (4.3211) grad_norm 1.3762 (2.0785/0.9768) mem 16099MB [2025-01-17 22:43:13 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][260/312] eta 0:00:24 lr 0.003967 time 0.4407 (0.4678) model_time 0.4406 (0.4617) loss 5.0331 (4.3214) grad_norm 1.3553 (2.0717/0.9648) mem 16099MB [2025-01-17 22:43:18 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][270/312] eta 0:00:19 lr 0.003973 time 0.4300 (0.4675) model_time 0.4298 (0.4616) loss 4.5147 (4.3243) grad_norm 1.6414 (2.0686/0.9571) mem 16099MB [2025-01-17 22:43:23 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][280/312] eta 0:00:15 lr 0.003980 time 0.4481 (0.4689) model_time 0.4480 (0.4632) loss 3.3199 (4.3121) grad_norm 2.4629 (2.0485/0.9500) mem 16099MB [2025-01-17 22:43:27 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][290/312] eta 0:00:10 lr 0.003986 time 0.4493 (0.4684) model_time 0.4488 (0.4629) loss 4.3674 (4.3064) grad_norm 1.7508 (2.0350/0.9383) mem 16099MB [2025-01-17 22:43:32 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][300/312] eta 0:00:05 lr 0.003992 time 0.4333 (0.4679) model_time 0.4332 (0.4626) loss 4.1860 (4.3027) grad_norm 2.4303 (2.0299/0.9283) mem 16099MB [2025-01-17 22:43:36 internimage_t_1k_224] (main.py 510): INFO Train: [19/300][310/312] eta 0:00:00 lr 0.003999 time 0.4365 (0.4676) model_time 0.4364 (0.4624) loss 4.5838 (4.3096) grad_norm 1.2513 (2.0686/1.0039) mem 16099MB [2025-01-17 22:43:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 19 training takes 0:02:25 [2025-01-17 22:43:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_19.pth saving...... [2025-01-17 22:43:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_19.pth saved !!! [2025-01-17 22:43:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.361 (8.361) Loss 1.5098 (1.5098) Acc@1 66.626 (66.626) Acc@5 88.525 (88.525) Mem 16099MB [2025-01-17 22:43:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.110) Loss 2.1065 (1.7594) Acc@1 55.811 (62.314) Acc@5 80.005 (85.596) Mem 16099MB [2025-01-17 22:43:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:19] * Acc@1 62.408 Acc@5 85.705 [2025-01-17 22:43:50 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 62.4% [2025-01-17 22:43:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:43:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:43:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 62.41% [2025-01-17 22:43:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.885 (7.885) Loss 6.8693 (6.8693) Acc@1 0.537 (0.537) Acc@5 2.075 (2.075) Mem 16099MB [2025-01-17 22:44:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.038) Loss 6.8222 (6.7997) Acc@1 0.146 (0.237) Acc@5 0.806 (1.354) Mem 16099MB [2025-01-17 22:44:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:19] * Acc@1 0.346 Acc@5 1.795 [2025-01-17 22:44:03 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.3% [2025-01-17 22:44:03 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:44:06 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][0/312] eta 0:15:55 lr 0.003957 time 3.0620 (3.0620) model_time 0.9690 (0.9690) loss 4.7554 (4.7554) grad_norm 1.9582 (1.9582/0.0000) mem 16099MB [2025-01-17 22:44:11 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][10/312] eta 0:03:33 lr 0.003957 time 0.4566 (0.7083) model_time 0.4562 (0.5177) loss 5.2645 (4.6864) grad_norm 2.4796 (1.9284/0.5873) mem 16099MB [2025-01-17 22:44:16 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][20/312] eta 0:02:52 lr 0.003956 time 0.4496 (0.5900) model_time 0.4494 (0.4900) loss 5.4030 (4.5353) grad_norm 1.8272 (1.7985/0.5329) mem 16099MB [2025-01-17 22:44:20 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][30/312] eta 0:02:34 lr 0.003956 time 0.4573 (0.5461) model_time 0.4571 (0.4783) loss 4.4213 (4.5840) grad_norm 1.3677 (1.8216/0.4758) mem 16099MB [2025-01-17 22:44:25 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][40/312] eta 0:02:24 lr 0.003956 time 0.5655 (0.5326) model_time 0.5653 (0.4812) loss 5.1425 (4.5202) grad_norm 2.6621 (1.9807/0.6849) mem 16099MB [2025-01-17 22:44:30 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][50/312] eta 0:02:15 lr 0.003956 time 0.4642 (0.5186) model_time 0.4639 (0.4772) loss 5.1840 (4.5033) grad_norm 1.6533 (1.9768/0.6759) mem 16099MB [2025-01-17 22:44:34 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][60/312] eta 0:02:07 lr 0.003956 time 0.4548 (0.5070) model_time 0.4546 (0.4723) loss 4.5769 (4.5031) grad_norm 4.7723 (2.0937/1.0621) mem 16099MB [2025-01-17 22:44:39 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][70/312] eta 0:02:01 lr 0.003956 time 0.4449 (0.5007) model_time 0.4447 (0.4708) loss 5.4913 (4.5420) grad_norm 1.0236 (2.0419/1.0164) mem 16099MB [2025-01-17 22:44:43 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][80/312] eta 0:01:55 lr 0.003956 time 0.4346 (0.4968) model_time 0.4344 (0.4706) loss 3.7877 (4.5034) grad_norm 1.5547 (1.9959/0.9856) mem 16099MB [2025-01-17 22:44:48 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][90/312] eta 0:01:49 lr 0.003955 time 0.4471 (0.4914) model_time 0.4469 (0.4681) loss 4.2638 (4.4909) grad_norm 1.8982 (2.0215/0.9946) mem 16099MB [2025-01-17 22:44:52 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][100/312] eta 0:01:43 lr 0.003955 time 0.4455 (0.4872) model_time 0.4452 (0.4661) loss 3.0406 (4.4682) grad_norm 1.7960 (2.0901/1.0505) mem 16099MB [2025-01-17 22:44:57 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][110/312] eta 0:01:38 lr 0.003955 time 0.4556 (0.4865) model_time 0.4554 (0.4673) loss 3.1990 (4.4468) grad_norm 1.3373 (2.0533/1.0248) mem 16099MB [2025-01-17 22:45:02 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][120/312] eta 0:01:32 lr 0.003955 time 0.4781 (0.4839) model_time 0.4779 (0.4662) loss 5.2106 (4.4338) grad_norm 1.8918 (2.0377/0.9916) mem 16099MB [2025-01-17 22:45:06 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][130/312] eta 0:01:27 lr 0.003955 time 0.4343 (0.4815) model_time 0.4338 (0.4651) loss 4.7055 (4.4249) grad_norm 1.6849 (2.0007/0.9659) mem 16099MB [2025-01-17 22:45:11 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][140/312] eta 0:01:22 lr 0.003955 time 0.4487 (0.4797) model_time 0.4485 (0.4645) loss 5.1063 (4.4332) grad_norm 2.4443 (1.9837/0.9491) mem 16099MB [2025-01-17 22:45:15 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][150/312] eta 0:01:17 lr 0.003955 time 0.4431 (0.4787) model_time 0.4429 (0.4645) loss 5.3138 (4.4166) grad_norm 1.2368 (1.9700/0.9308) mem 16099MB [2025-01-17 22:45:20 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][160/312] eta 0:01:12 lr 0.003954 time 0.4514 (0.4791) model_time 0.4512 (0.4657) loss 2.8431 (4.4044) grad_norm 1.4170 (1.9620/0.9084) mem 16099MB [2025-01-17 22:45:25 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][170/312] eta 0:01:07 lr 0.003954 time 0.4406 (0.4778) model_time 0.4404 (0.4652) loss 3.6301 (4.3970) grad_norm 1.5451 (2.0004/1.0684) mem 16099MB [2025-01-17 22:45:29 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][180/312] eta 0:01:02 lr 0.003954 time 0.4437 (0.4761) model_time 0.4435 (0.4641) loss 4.9175 (4.4071) grad_norm 1.3238 (1.9790/1.0460) mem 16099MB [2025-01-17 22:45:34 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][190/312] eta 0:00:57 lr 0.003954 time 0.4741 (0.4750) model_time 0.4739 (0.4636) loss 4.0379 (4.3796) grad_norm 3.8763 (1.9829/1.0522) mem 16099MB [2025-01-17 22:45:38 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][200/312] eta 0:00:53 lr 0.003954 time 0.4453 (0.4742) model_time 0.4452 (0.4634) loss 4.4022 (4.3729) grad_norm 1.8041 (2.0038/1.0414) mem 16099MB [2025-01-17 22:45:43 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][210/312] eta 0:00:48 lr 0.003954 time 0.4375 (0.4734) model_time 0.4372 (0.4631) loss 4.9806 (4.3543) grad_norm 1.9809 (2.0083/1.0191) mem 16099MB [2025-01-17 22:45:48 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][220/312] eta 0:00:43 lr 0.003954 time 0.4459 (0.4724) model_time 0.4457 (0.4625) loss 3.7724 (4.3433) grad_norm 1.2226 (1.9964/1.0003) mem 16099MB [2025-01-17 22:45:52 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][230/312] eta 0:00:38 lr 0.003953 time 0.5365 (0.4720) model_time 0.5363 (0.4626) loss 3.4465 (4.3305) grad_norm 0.9884 (2.0075/1.0514) mem 16099MB [2025-01-17 22:45:57 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][240/312] eta 0:00:33 lr 0.003953 time 0.4414 (0.4713) model_time 0.4412 (0.4622) loss 4.5738 (4.3150) grad_norm 1.6171 (1.9855/1.0364) mem 16099MB [2025-01-17 22:46:01 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][250/312] eta 0:00:29 lr 0.003953 time 0.4427 (0.4709) model_time 0.4425 (0.4622) loss 5.0056 (4.3143) grad_norm 1.0809 (1.9940/1.0239) mem 16099MB [2025-01-17 22:46:06 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][260/312] eta 0:00:24 lr 0.003953 time 0.4457 (0.4704) model_time 0.4455 (0.4620) loss 4.3415 (4.3064) grad_norm 1.6717 (2.0242/1.0823) mem 16099MB [2025-01-17 22:46:11 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][270/312] eta 0:00:19 lr 0.003953 time 0.4414 (0.4703) model_time 0.4412 (0.4622) loss 4.5402 (4.3147) grad_norm 0.9387 (2.0149/1.0709) mem 16099MB [2025-01-17 22:46:15 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][280/312] eta 0:00:15 lr 0.003953 time 0.4449 (0.4705) model_time 0.4447 (0.4627) loss 3.5941 (4.3121) grad_norm 1.2188 (1.9914/1.0636) mem 16099MB [2025-01-17 22:46:20 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][290/312] eta 0:00:10 lr 0.003953 time 0.4502 (0.4698) model_time 0.4497 (0.4622) loss 3.2840 (4.3127) grad_norm 1.5166 (1.9782/1.0501) mem 16099MB [2025-01-17 22:46:24 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][300/312] eta 0:00:05 lr 0.003952 time 0.4351 (0.4690) model_time 0.4350 (0.4617) loss 5.0253 (4.3172) grad_norm 1.7378 (1.9799/1.0447) mem 16099MB [2025-01-17 22:46:29 internimage_t_1k_224] (main.py 510): INFO Train: [20/300][310/312] eta 0:00:00 lr 0.003952 time 0.4359 (0.4683) model_time 0.4358 (0.4612) loss 4.9293 (4.3193) grad_norm 2.6685 (1.9975/1.0492) mem 16099MB [2025-01-17 22:46:29 internimage_t_1k_224] (main.py 519): INFO EPOCH 20 training takes 0:02:26 [2025-01-17 22:46:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_20.pth saving...... [2025-01-17 22:46:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_20.pth saved !!! [2025-01-17 22:46:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.251 (7.251) Loss 1.4761 (1.4761) Acc@1 67.554 (67.554) Acc@5 88.623 (88.623) Mem 16099MB [2025-01-17 22:46:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.985) Loss 2.1072 (1.6984) Acc@1 55.396 (63.681) Acc@5 80.396 (86.057) Mem 16099MB [2025-01-17 22:46:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:20] * Acc@1 63.826 Acc@5 86.220 [2025-01-17 22:46:41 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 63.8% [2025-01-17 22:46:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:46:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:46:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 63.83% [2025-01-17 22:46:50 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.367 (7.367) Loss 6.8816 (6.8816) Acc@1 0.488 (0.488) Acc@5 1.807 (1.807) Mem 16099MB [2025-01-17 22:46:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.999) Loss 6.8026 (6.7968) Acc@1 0.171 (0.235) Acc@5 0.830 (1.356) Mem 16099MB [2025-01-17 22:46:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:20] * Acc@1 0.336 Acc@5 1.767 [2025-01-17 22:46:54 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.3% [2025-01-17 22:46:54 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:46:57 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][0/312] eta 0:15:08 lr 0.003952 time 2.9117 (2.9117) model_time 1.2566 (1.2566) loss 3.6027 (3.6027) grad_norm 2.0162 (2.0162/0.0000) mem 16099MB [2025-01-17 22:47:01 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][10/312] eta 0:03:32 lr 0.003952 time 0.5850 (0.7038) model_time 0.5848 (0.5530) loss 3.3219 (4.0557) grad_norm 2.8134 (1.6643/0.4533) mem 16099MB [2025-01-17 22:47:06 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][20/312] eta 0:02:50 lr 0.003952 time 0.4724 (0.5841) model_time 0.4722 (0.5049) loss 4.8796 (4.2970) grad_norm 1.2674 (2.1332/0.9195) mem 16099MB [2025-01-17 22:47:11 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][30/312] eta 0:02:34 lr 0.003952 time 0.4578 (0.5482) model_time 0.4576 (0.4945) loss 4.3051 (4.1871) grad_norm 1.0996 (1.9952/0.8746) mem 16099MB [2025-01-17 22:47:15 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][40/312] eta 0:02:24 lr 0.003952 time 0.4391 (0.5300) model_time 0.4386 (0.4892) loss 4.5159 (4.2428) grad_norm 2.4073 (1.9756/0.8102) mem 16099MB [2025-01-17 22:47:20 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][50/312] eta 0:02:14 lr 0.003952 time 0.4546 (0.5152) model_time 0.4542 (0.4824) loss 3.3948 (4.2328) grad_norm 2.8706 (1.9047/0.7737) mem 16099MB [2025-01-17 22:47:25 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][60/312] eta 0:02:07 lr 0.003951 time 0.5333 (0.5073) model_time 0.5330 (0.4798) loss 4.1047 (4.1896) grad_norm 1.4214 (1.9998/0.9100) mem 16099MB [2025-01-17 22:47:29 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][70/312] eta 0:02:00 lr 0.003951 time 0.4416 (0.4989) model_time 0.4412 (0.4752) loss 4.6936 (4.2430) grad_norm 1.3964 (1.9498/0.8660) mem 16099MB [2025-01-17 22:47:34 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][80/312] eta 0:01:54 lr 0.003951 time 0.4391 (0.4946) model_time 0.4389 (0.4738) loss 4.0022 (4.2038) grad_norm 1.7641 (1.9468/0.8186) mem 16099MB [2025-01-17 22:47:38 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][90/312] eta 0:01:48 lr 0.003951 time 0.4575 (0.4899) model_time 0.4573 (0.4713) loss 4.8548 (4.2165) grad_norm 1.2132 (1.9493/0.8012) mem 16099MB [2025-01-17 22:47:43 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][100/312] eta 0:01:43 lr 0.003951 time 0.4711 (0.4860) model_time 0.4706 (0.4692) loss 4.2069 (4.2152) grad_norm 2.0061 (1.9563/0.7857) mem 16099MB [2025-01-17 22:47:47 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][110/312] eta 0:01:37 lr 0.003951 time 0.4713 (0.4839) model_time 0.4711 (0.4686) loss 3.2354 (4.2001) grad_norm 1.4151 (1.9384/0.7759) mem 16099MB [2025-01-17 22:47:52 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][120/312] eta 0:01:32 lr 0.003951 time 0.4411 (0.4812) model_time 0.4409 (0.4671) loss 4.3435 (4.1869) grad_norm 2.8777 (1.9989/0.9918) mem 16099MB [2025-01-17 22:47:57 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][130/312] eta 0:01:27 lr 0.003950 time 0.5214 (0.4807) model_time 0.5212 (0.4676) loss 4.3583 (4.1713) grad_norm 1.1093 (1.9664/0.9658) mem 16099MB [2025-01-17 22:48:01 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][140/312] eta 0:01:22 lr 0.003950 time 0.4333 (0.4807) model_time 0.4327 (0.4686) loss 4.4467 (4.1563) grad_norm 1.2361 (1.9986/1.0250) mem 16099MB [2025-01-17 22:48:06 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][150/312] eta 0:01:17 lr 0.003950 time 0.4425 (0.4804) model_time 0.4423 (0.4690) loss 4.9217 (4.1802) grad_norm 1.2920 (1.9722/1.0017) mem 16099MB [2025-01-17 22:48:11 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][160/312] eta 0:01:12 lr 0.003950 time 0.4374 (0.4796) model_time 0.4372 (0.4689) loss 4.3891 (4.1866) grad_norm 2.9045 (1.9506/0.9817) mem 16099MB [2025-01-17 22:48:16 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][170/312] eta 0:01:07 lr 0.003950 time 0.4631 (0.4785) model_time 0.4630 (0.4684) loss 4.7490 (4.2078) grad_norm 1.4690 (1.9474/0.9651) mem 16099MB [2025-01-17 22:48:20 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][180/312] eta 0:01:03 lr 0.003950 time 0.4427 (0.4778) model_time 0.4425 (0.4682) loss 3.7985 (4.2066) grad_norm 1.1803 (1.9711/0.9775) mem 16099MB [2025-01-17 22:48:25 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][190/312] eta 0:00:58 lr 0.003950 time 0.4369 (0.4767) model_time 0.4367 (0.4676) loss 3.6039 (4.2008) grad_norm 1.4708 (1.9654/0.9682) mem 16099MB [2025-01-17 22:48:29 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][200/312] eta 0:00:53 lr 0.003949 time 0.4641 (0.4757) model_time 0.4636 (0.4671) loss 4.6162 (4.1820) grad_norm 2.7666 (1.9476/0.9526) mem 16099MB [2025-01-17 22:48:34 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][210/312] eta 0:00:48 lr 0.003949 time 0.4435 (0.4748) model_time 0.4433 (0.4666) loss 5.2368 (4.1826) grad_norm 1.9950 (1.9471/0.9372) mem 16099MB [2025-01-17 22:48:38 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][220/312] eta 0:00:43 lr 0.003949 time 0.4382 (0.4743) model_time 0.4377 (0.4664) loss 4.0679 (4.1681) grad_norm 1.3683 (1.9468/0.9330) mem 16099MB [2025-01-17 22:48:43 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][230/312] eta 0:00:38 lr 0.003949 time 0.4465 (0.4734) model_time 0.4460 (0.4658) loss 3.2330 (4.1752) grad_norm 1.1104 (1.9449/0.9348) mem 16099MB [2025-01-17 22:48:48 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][240/312] eta 0:00:34 lr 0.003949 time 0.4509 (0.4726) model_time 0.4508 (0.4653) loss 4.7588 (4.1920) grad_norm 0.9567 (1.9308/0.9315) mem 16099MB [2025-01-17 22:48:52 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][250/312] eta 0:00:29 lr 0.003949 time 0.4546 (0.4718) model_time 0.4544 (0.4648) loss 4.5844 (4.1915) grad_norm 1.5412 (1.9567/0.9467) mem 16099MB [2025-01-17 22:48:57 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][260/312] eta 0:00:24 lr 0.003948 time 0.4479 (0.4712) model_time 0.4474 (0.4645) loss 3.0989 (4.1856) grad_norm 3.8485 (1.9594/0.9428) mem 16099MB [2025-01-17 22:49:01 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][270/312] eta 0:00:19 lr 0.003948 time 0.4486 (0.4707) model_time 0.4483 (0.4642) loss 3.3391 (4.1854) grad_norm 1.3865 (1.9492/0.9307) mem 16099MB [2025-01-17 22:49:06 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][280/312] eta 0:00:15 lr 0.003948 time 0.4625 (0.4704) model_time 0.4623 (0.4641) loss 3.1009 (4.1834) grad_norm 1.4367 (1.9455/0.9188) mem 16099MB [2025-01-17 22:49:10 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][290/312] eta 0:00:10 lr 0.003948 time 0.4392 (0.4696) model_time 0.4390 (0.4635) loss 5.1478 (4.1852) grad_norm 2.8332 (1.9447/0.9148) mem 16099MB [2025-01-17 22:49:15 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][300/312] eta 0:00:05 lr 0.003948 time 0.4354 (0.4694) model_time 0.4353 (0.4635) loss 3.9064 (4.1774) grad_norm 1.5449 (1.9465/0.9177) mem 16099MB [2025-01-17 22:49:19 internimage_t_1k_224] (main.py 510): INFO Train: [21/300][310/312] eta 0:00:00 lr 0.003948 time 0.4367 (0.4684) model_time 0.4366 (0.4627) loss 4.2822 (4.1788) grad_norm 1.0543 (1.9528/0.9178) mem 16099MB [2025-01-17 22:49:20 internimage_t_1k_224] (main.py 519): INFO EPOCH 21 training takes 0:02:26 [2025-01-17 22:49:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_21.pth saving...... [2025-01-17 22:49:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_21.pth saved !!! [2025-01-17 22:49:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.582 (7.582) Loss 1.4432 (1.4432) Acc@1 69.019 (69.019) Acc@5 90.112 (90.112) Mem 16099MB [2025-01-17 22:49:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.028) Loss 2.0390 (1.7066) Acc@1 57.349 (63.761) Acc@5 80.420 (86.361) Mem 16099MB [2025-01-17 22:49:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:21] * Acc@1 64.067 Acc@5 86.546 [2025-01-17 22:49:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 64.1% [2025-01-17 22:49:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:49:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:49:34 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 64.07% [2025-01-17 22:49:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.469 (7.469) Loss 6.8843 (6.8843) Acc@1 0.366 (0.366) Acc@5 1.807 (1.807) Mem 16099MB [2025-01-17 22:49:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.008) Loss 6.7788 (6.7921) Acc@1 0.195 (0.229) Acc@5 0.879 (1.418) Mem 16099MB [2025-01-17 22:49:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:21] * Acc@1 0.336 Acc@5 1.821 [2025-01-17 22:49:45 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.3% [2025-01-17 22:49:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:49:48 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][0/312] eta 0:15:50 lr 0.003948 time 3.0461 (3.0461) model_time 1.5999 (1.5999) loss 4.3007 (4.3007) grad_norm 2.3190 (2.3190/0.0000) mem 16099MB [2025-01-17 22:49:53 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][10/312] eta 0:03:34 lr 0.003948 time 0.5441 (0.7105) model_time 0.5439 (0.5787) loss 4.5719 (4.3518) grad_norm 1.6048 (2.1360/0.8480) mem 16099MB [2025-01-17 22:49:57 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][20/312] eta 0:02:51 lr 0.003947 time 0.4883 (0.5881) model_time 0.4881 (0.5189) loss 3.1490 (4.1810) grad_norm 2.4723 (2.0099/0.7368) mem 16099MB [2025-01-17 22:50:02 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][30/312] eta 0:02:33 lr 0.003947 time 0.4491 (0.5434) model_time 0.4488 (0.4964) loss 4.5135 (4.1801) grad_norm 3.3568 (2.0244/0.7376) mem 16099MB [2025-01-17 22:50:06 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][40/312] eta 0:02:21 lr 0.003947 time 0.4461 (0.5209) model_time 0.4456 (0.4853) loss 3.2853 (4.1387) grad_norm 1.7429 (2.0788/0.8321) mem 16099MB [2025-01-17 22:50:11 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][50/312] eta 0:02:13 lr 0.003947 time 0.4617 (0.5099) model_time 0.4616 (0.4812) loss 4.8900 (4.1536) grad_norm 1.2696 (1.9875/0.8036) mem 16099MB [2025-01-17 22:50:16 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][60/312] eta 0:02:07 lr 0.003947 time 0.4637 (0.5047) model_time 0.4635 (0.4806) loss 3.4750 (4.1297) grad_norm 1.6866 (1.9279/0.7668) mem 16099MB [2025-01-17 22:50:20 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][70/312] eta 0:02:00 lr 0.003947 time 0.4471 (0.4972) model_time 0.4470 (0.4765) loss 3.9722 (4.1645) grad_norm 1.9646 (1.9204/0.8424) mem 16099MB [2025-01-17 22:50:25 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][80/312] eta 0:01:54 lr 0.003946 time 0.4668 (0.4925) model_time 0.4666 (0.4743) loss 3.2094 (4.1329) grad_norm 1.0456 (1.9113/0.8176) mem 16099MB [2025-01-17 22:50:29 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][90/312] eta 0:01:48 lr 0.003946 time 0.4465 (0.4882) model_time 0.4463 (0.4719) loss 3.2604 (4.1114) grad_norm 1.3133 (1.9216/0.8487) mem 16099MB [2025-01-17 22:50:34 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][100/312] eta 0:01:43 lr 0.003946 time 0.4474 (0.4861) model_time 0.4472 (0.4714) loss 4.6136 (4.1275) grad_norm 2.4957 (1.9233/0.8380) mem 16099MB [2025-01-17 22:50:39 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][110/312] eta 0:01:37 lr 0.003946 time 0.4642 (0.4850) model_time 0.4641 (0.4717) loss 3.2207 (4.1288) grad_norm 2.1030 (1.9101/0.8236) mem 16099MB [2025-01-17 22:50:43 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][120/312] eta 0:01:32 lr 0.003946 time 0.4537 (0.4830) model_time 0.4535 (0.4707) loss 4.7770 (4.1376) grad_norm 6.9194 (1.9370/0.9267) mem 16099MB [2025-01-17 22:50:48 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][130/312] eta 0:01:27 lr 0.003946 time 0.4552 (0.4817) model_time 0.4547 (0.4703) loss 3.9147 (4.1276) grad_norm 2.1411 (1.9431/0.9145) mem 16099MB [2025-01-17 22:50:53 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][140/312] eta 0:01:22 lr 0.003946 time 0.4482 (0.4805) model_time 0.4480 (0.4699) loss 3.9111 (4.0959) grad_norm 1.1525 (1.9082/0.8972) mem 16099MB [2025-01-17 22:50:57 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][150/312] eta 0:01:17 lr 0.003945 time 0.4559 (0.4791) model_time 0.4557 (0.4692) loss 4.3800 (4.0947) grad_norm 0.9454 (1.9291/0.9611) mem 16099MB [2025-01-17 22:51:02 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][160/312] eta 0:01:12 lr 0.003945 time 0.4346 (0.4778) model_time 0.4343 (0.4685) loss 2.9920 (4.0967) grad_norm 1.7540 (1.9147/0.9500) mem 16099MB [2025-01-17 22:51:07 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][170/312] eta 0:01:07 lr 0.003945 time 0.5275 (0.4771) model_time 0.5273 (0.4683) loss 4.6330 (4.1053) grad_norm 2.1616 (1.9498/0.9696) mem 16099MB [2025-01-17 22:51:11 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][180/312] eta 0:01:02 lr 0.003945 time 0.4467 (0.4762) model_time 0.4465 (0.4678) loss 4.5908 (4.0982) grad_norm 2.0284 (1.9397/0.9472) mem 16099MB [2025-01-17 22:51:16 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][190/312] eta 0:00:57 lr 0.003945 time 0.4508 (0.4749) model_time 0.4504 (0.4670) loss 3.3511 (4.0949) grad_norm 2.2351 (1.9331/0.9293) mem 16099MB [2025-01-17 22:51:20 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][200/312] eta 0:00:53 lr 0.003945 time 0.4559 (0.4737) model_time 0.4557 (0.4662) loss 4.0031 (4.1080) grad_norm 1.6252 (1.9444/0.9485) mem 16099MB [2025-01-17 22:51:25 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][210/312] eta 0:00:48 lr 0.003944 time 0.4463 (0.4727) model_time 0.4457 (0.4655) loss 3.4905 (4.1020) grad_norm 1.2101 (1.9404/0.9358) mem 16099MB [2025-01-17 22:51:29 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][220/312] eta 0:00:43 lr 0.003944 time 0.4551 (0.4717) model_time 0.4549 (0.4648) loss 4.2176 (4.0929) grad_norm 3.2659 (1.9208/0.9285) mem 16099MB [2025-01-17 22:51:34 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][230/312] eta 0:00:38 lr 0.003944 time 0.4542 (0.4708) model_time 0.4540 (0.4642) loss 3.2593 (4.1024) grad_norm 2.7293 (1.9302/0.9225) mem 16099MB [2025-01-17 22:51:38 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][240/312] eta 0:00:33 lr 0.003944 time 0.4495 (0.4706) model_time 0.4485 (0.4642) loss 4.0183 (4.1061) grad_norm 1.7621 (1.9129/0.9093) mem 16099MB [2025-01-17 22:51:43 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][250/312] eta 0:00:29 lr 0.003944 time 0.4377 (0.4698) model_time 0.4375 (0.4636) loss 4.5260 (4.1032) grad_norm 0.9798 (1.8922/0.8986) mem 16099MB [2025-01-17 22:51:47 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][260/312] eta 0:00:24 lr 0.003944 time 0.4482 (0.4693) model_time 0.4478 (0.4634) loss 4.3659 (4.1024) grad_norm 2.6439 (1.8925/0.8973) mem 16099MB [2025-01-17 22:51:52 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][270/312] eta 0:00:19 lr 0.003944 time 0.4428 (0.4690) model_time 0.4426 (0.4633) loss 3.1633 (4.1082) grad_norm 2.1406 (1.9104/0.9258) mem 16099MB [2025-01-17 22:51:57 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][280/312] eta 0:00:14 lr 0.003943 time 0.4568 (0.4687) model_time 0.4566 (0.4632) loss 4.5248 (4.1075) grad_norm 1.6599 (1.9034/0.9208) mem 16099MB [2025-01-17 22:52:01 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][290/312] eta 0:00:10 lr 0.003943 time 0.5503 (0.4688) model_time 0.5498 (0.4635) loss 4.8054 (4.1270) grad_norm 1.3512 (1.9003/0.9079) mem 16099MB [2025-01-17 22:52:06 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][300/312] eta 0:00:05 lr 0.003943 time 0.4366 (0.4684) model_time 0.4365 (0.4632) loss 4.2305 (4.1387) grad_norm 0.8520 (1.8811/0.9036) mem 16099MB [2025-01-17 22:52:10 internimage_t_1k_224] (main.py 510): INFO Train: [22/300][310/312] eta 0:00:00 lr 0.003943 time 0.5267 (0.4678) model_time 0.5266 (0.4628) loss 4.6004 (4.1450) grad_norm 3.7824 (1.8779/0.9066) mem 16099MB [2025-01-17 22:52:11 internimage_t_1k_224] (main.py 519): INFO EPOCH 22 training takes 0:02:25 [2025-01-17 22:52:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_22.pth saving...... [2025-01-17 22:52:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_22.pth saved !!! [2025-01-17 22:52:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.577 (7.577) Loss 1.3789 (1.3789) Acc@1 70.239 (70.239) Acc@5 89.746 (89.746) Mem 16099MB [2025-01-17 22:52:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.029) Loss 1.9538 (1.6338) Acc@1 58.472 (64.846) Acc@5 82.349 (87.023) Mem 16099MB [2025-01-17 22:52:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:22] * Acc@1 65.023 Acc@5 87.152 [2025-01-17 22:52:23 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 65.0% [2025-01-17 22:52:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:52:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:52:25 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 65.02% [2025-01-17 22:52:32 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.582 (7.582) Loss 6.8711 (6.8711) Acc@1 0.415 (0.415) Acc@5 1.831 (1.831) Mem 16099MB [2025-01-17 22:52:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.024) Loss 6.7558 (6.7818) Acc@1 0.171 (0.237) Acc@5 1.025 (1.529) Mem 16099MB [2025-01-17 22:52:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:22] * Acc@1 0.342 Acc@5 1.917 [2025-01-17 22:52:36 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.3% [2025-01-17 22:52:36 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:52:39 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][0/312] eta 0:14:32 lr 0.003943 time 2.7980 (2.7980) model_time 1.2526 (1.2526) loss 4.0311 (4.0311) grad_norm 2.3634 (2.3634/0.0000) mem 16099MB [2025-01-17 22:52:44 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][10/312] eta 0:03:27 lr 0.003943 time 0.4322 (0.6871) model_time 0.4320 (0.5462) loss 3.1433 (3.7376) grad_norm 1.2126 (1.6821/0.4846) mem 16099MB [2025-01-17 22:52:48 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][20/312] eta 0:02:49 lr 0.003943 time 0.4502 (0.5818) model_time 0.4497 (0.5078) loss 4.9584 (4.0521) grad_norm 3.0853 (1.8733/0.5948) mem 16099MB [2025-01-17 22:52:53 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][30/312] eta 0:02:34 lr 0.003942 time 0.5261 (0.5480) model_time 0.5259 (0.4977) loss 3.5555 (4.0348) grad_norm 1.2432 (1.7745/0.5650) mem 16099MB [2025-01-17 22:52:58 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][40/312] eta 0:02:23 lr 0.003942 time 0.4559 (0.5270) model_time 0.4554 (0.4889) loss 4.8731 (4.0938) grad_norm 3.0900 (1.8119/0.5850) mem 16099MB [2025-01-17 22:53:03 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][50/312] eta 0:02:17 lr 0.003942 time 0.5116 (0.5231) model_time 0.5114 (0.4924) loss 3.7009 (4.1145) grad_norm 0.9091 (1.8605/0.6418) mem 16099MB [2025-01-17 22:53:07 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][60/312] eta 0:02:08 lr 0.003942 time 0.4459 (0.5113) model_time 0.4455 (0.4856) loss 4.2284 (4.1412) grad_norm 3.5482 (1.9762/0.9657) mem 16099MB [2025-01-17 22:53:12 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][70/312] eta 0:02:01 lr 0.003942 time 0.4445 (0.5029) model_time 0.4443 (0.4807) loss 3.2667 (4.1355) grad_norm 0.9369 (1.8885/0.9542) mem 16099MB [2025-01-17 22:53:16 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][80/312] eta 0:01:55 lr 0.003942 time 0.4486 (0.4968) model_time 0.4485 (0.4773) loss 4.7564 (4.1495) grad_norm 1.5396 (1.8615/0.9043) mem 16099MB [2025-01-17 22:53:21 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][90/312] eta 0:01:49 lr 0.003941 time 0.4489 (0.4929) model_time 0.4487 (0.4755) loss 4.4086 (4.1902) grad_norm 1.2469 (1.8903/0.8751) mem 16099MB [2025-01-17 22:53:25 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][100/312] eta 0:01:43 lr 0.003941 time 0.4459 (0.4887) model_time 0.4454 (0.4730) loss 4.9070 (4.2086) grad_norm 1.9780 (1.9020/0.8815) mem 16099MB [2025-01-17 22:53:30 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][110/312] eta 0:01:38 lr 0.003941 time 0.4588 (0.4857) model_time 0.4583 (0.4714) loss 4.5290 (4.1653) grad_norm 1.1190 (1.8773/0.8619) mem 16099MB [2025-01-17 22:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][120/312] eta 0:01:32 lr 0.003941 time 0.4525 (0.4824) model_time 0.4520 (0.4693) loss 4.2670 (4.1641) grad_norm 1.3579 (1.8927/0.8630) mem 16099MB [2025-01-17 22:53:39 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][130/312] eta 0:01:27 lr 0.003941 time 0.4343 (0.4800) model_time 0.4340 (0.4678) loss 3.9658 (4.1772) grad_norm 1.7187 (1.8683/0.8432) mem 16099MB [2025-01-17 22:53:43 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][140/312] eta 0:01:22 lr 0.003941 time 0.4496 (0.4782) model_time 0.4494 (0.4668) loss 3.8582 (4.1877) grad_norm 1.4111 (1.8268/0.8333) mem 16099MB [2025-01-17 22:53:48 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][150/312] eta 0:01:17 lr 0.003940 time 0.4449 (0.4764) model_time 0.4447 (0.4658) loss 3.9011 (4.1772) grad_norm 1.9519 (1.7949/0.8175) mem 16099MB [2025-01-17 22:53:53 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][160/312] eta 0:01:12 lr 0.003940 time 0.4516 (0.4764) model_time 0.4511 (0.4664) loss 4.2654 (4.1660) grad_norm 1.5280 (1.7927/0.8001) mem 16099MB [2025-01-17 22:53:57 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][170/312] eta 0:01:07 lr 0.003940 time 0.4532 (0.4755) model_time 0.4530 (0.4661) loss 5.1567 (4.1883) grad_norm 3.3892 (1.7986/0.7981) mem 16099MB [2025-01-17 22:54:02 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][180/312] eta 0:01:02 lr 0.003940 time 0.4533 (0.4741) model_time 0.4529 (0.4652) loss 5.0257 (4.1822) grad_norm 1.2505 (1.7971/0.7914) mem 16099MB [2025-01-17 22:54:06 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][190/312] eta 0:00:57 lr 0.003940 time 0.4457 (0.4735) model_time 0.4453 (0.4650) loss 3.8665 (4.1795) grad_norm 1.3693 (1.7997/0.7744) mem 16099MB [2025-01-17 22:54:11 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][200/312] eta 0:00:52 lr 0.003940 time 0.4443 (0.4722) model_time 0.4439 (0.4641) loss 5.0392 (4.1835) grad_norm 1.7359 (1.7887/0.7609) mem 16099MB [2025-01-17 22:54:16 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][210/312] eta 0:00:48 lr 0.003939 time 0.4696 (0.4719) model_time 0.4694 (0.4642) loss 5.0030 (4.1830) grad_norm 2.2790 (1.7998/0.7645) mem 16099MB [2025-01-17 22:54:20 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][220/312] eta 0:00:43 lr 0.003939 time 0.4561 (0.4729) model_time 0.4556 (0.4655) loss 4.0481 (4.1760) grad_norm 1.6315 (1.8247/0.7803) mem 16099MB [2025-01-17 22:54:25 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][230/312] eta 0:00:38 lr 0.003939 time 0.4400 (0.4719) model_time 0.4398 (0.4648) loss 4.1187 (4.1593) grad_norm 2.0144 (1.8210/0.7710) mem 16099MB [2025-01-17 22:54:30 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][240/312] eta 0:00:33 lr 0.003939 time 0.5287 (0.4714) model_time 0.5285 (0.4646) loss 4.2741 (4.1591) grad_norm 1.4833 (1.8173/0.7640) mem 16099MB [2025-01-17 22:54:34 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][250/312] eta 0:00:29 lr 0.003939 time 0.4556 (0.4705) model_time 0.4554 (0.4639) loss 4.2330 (4.1622) grad_norm 2.2195 (1.8085/0.7607) mem 16099MB [2025-01-17 22:54:39 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][260/312] eta 0:00:24 lr 0.003939 time 0.4577 (0.4705) model_time 0.4576 (0.4642) loss 3.4705 (4.1516) grad_norm 1.4999 (1.8208/0.7751) mem 16099MB [2025-01-17 22:54:44 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][270/312] eta 0:00:19 lr 0.003938 time 0.5122 (0.4710) model_time 0.5120 (0.4649) loss 5.1852 (4.1475) grad_norm 1.1122 (1.8201/0.7969) mem 16099MB [2025-01-17 22:54:48 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][280/312] eta 0:00:15 lr 0.003938 time 0.4560 (0.4705) model_time 0.4555 (0.4646) loss 2.9801 (4.1437) grad_norm 4.8166 (1.8182/0.8119) mem 16099MB [2025-01-17 22:54:53 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][290/312] eta 0:00:10 lr 0.003938 time 0.4659 (0.4706) model_time 0.4657 (0.4649) loss 5.2397 (4.1536) grad_norm 1.6587 (1.8330/0.8232) mem 16099MB [2025-01-17 22:54:57 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][300/312] eta 0:00:05 lr 0.003938 time 0.4373 (0.4698) model_time 0.4372 (0.4643) loss 4.2490 (4.1540) grad_norm 1.6511 (1.8236/0.8176) mem 16099MB [2025-01-17 22:55:02 internimage_t_1k_224] (main.py 510): INFO Train: [23/300][310/312] eta 0:00:00 lr 0.003938 time 0.4373 (0.4689) model_time 0.4372 (0.4635) loss 3.5448 (4.1535) grad_norm 1.3057 (1.8361/0.8252) mem 16099MB [2025-01-17 22:55:02 internimage_t_1k_224] (main.py 519): INFO EPOCH 23 training takes 0:02:26 [2025-01-17 22:55:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_23.pth saving...... [2025-01-17 22:55:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_23.pth saved !!! [2025-01-17 22:55:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.385 (7.385) Loss 1.3433 (1.3433) Acc@1 69.434 (69.434) Acc@5 90.308 (90.308) Mem 16099MB [2025-01-17 22:55:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.998) Loss 1.9331 (1.5935) Acc@1 58.594 (65.612) Acc@5 82.520 (87.456) Mem 16099MB [2025-01-17 22:55:15 internimage_t_1k_224] (main.py 575): INFO [Epoch:23] * Acc@1 65.679 Acc@5 87.590 [2025-01-17 22:55:15 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 65.7% [2025-01-17 22:55:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:55:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:55:16 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 65.68% [2025-01-17 22:55:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.408 (7.408) Loss 6.8431 (6.8431) Acc@1 0.439 (0.439) Acc@5 1.953 (1.953) Mem 16099MB [2025-01-17 22:55:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.008) Loss 6.7310 (6.7648) Acc@1 0.146 (0.257) Acc@5 1.245 (1.614) Mem 16099MB [2025-01-17 22:55:27 internimage_t_1k_224] (main.py 575): INFO [Epoch:23] * Acc@1 0.374 Acc@5 2.001 [2025-01-17 22:55:27 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:55:27 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:55:30 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][0/312] eta 0:14:54 lr 0.003938 time 2.8659 (2.8659) model_time 1.3794 (1.3794) loss 4.1889 (4.1889) grad_norm 1.1647 (1.1647/0.0000) mem 16099MB [2025-01-17 22:55:35 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][10/312] eta 0:03:29 lr 0.003938 time 0.4532 (0.6935) model_time 0.4530 (0.5579) loss 4.1479 (4.0676) grad_norm 1.1675 (1.2814/0.2882) mem 16099MB [2025-01-17 22:55:40 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][20/312] eta 0:02:51 lr 0.003937 time 0.5463 (0.5866) model_time 0.5461 (0.5155) loss 4.1688 (4.0123) grad_norm 1.3597 (1.2759/0.2497) mem 16099MB [2025-01-17 22:55:44 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][30/312] eta 0:02:35 lr 0.003937 time 0.4446 (0.5524) model_time 0.4442 (0.5041) loss 4.6047 (4.0121) grad_norm 1.1231 (1.6861/0.9584) mem 16099MB [2025-01-17 22:55:49 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][40/312] eta 0:02:23 lr 0.003937 time 0.4353 (0.5279) model_time 0.4352 (0.4912) loss 4.3279 (4.0232) grad_norm 3.3327 (1.7847/0.9181) mem 16099MB [2025-01-17 22:55:54 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][50/312] eta 0:02:14 lr 0.003937 time 0.5217 (0.5149) model_time 0.5212 (0.4853) loss 3.7154 (4.0025) grad_norm 1.1994 (1.7464/0.8637) mem 16099MB [2025-01-17 22:55:58 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][60/312] eta 0:02:07 lr 0.003937 time 0.4533 (0.5059) model_time 0.4528 (0.4811) loss 4.7673 (4.0578) grad_norm 0.9327 (1.6386/0.8307) mem 16099MB [2025-01-17 22:56:03 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][70/312] eta 0:02:01 lr 0.003937 time 0.4307 (0.5002) model_time 0.4306 (0.4788) loss 4.1982 (4.0143) grad_norm 4.9706 (1.6756/0.8885) mem 16099MB [2025-01-17 22:56:07 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][80/312] eta 0:01:54 lr 0.003936 time 0.4547 (0.4940) model_time 0.4542 (0.4752) loss 4.4081 (3.9836) grad_norm 1.3587 (1.7118/0.8771) mem 16099MB [2025-01-17 22:56:12 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][90/312] eta 0:01:48 lr 0.003936 time 0.4421 (0.4892) model_time 0.4419 (0.4725) loss 4.3741 (3.9994) grad_norm 0.9554 (1.6556/0.8487) mem 16099MB [2025-01-17 22:56:16 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][100/312] eta 0:01:42 lr 0.003936 time 0.4412 (0.4856) model_time 0.4410 (0.4705) loss 2.9169 (4.0156) grad_norm 1.3161 (1.6518/0.8129) mem 16099MB [2025-01-17 22:56:21 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][110/312] eta 0:01:37 lr 0.003936 time 0.4497 (0.4832) model_time 0.4492 (0.4694) loss 4.3732 (4.0163) grad_norm 0.9232 (1.6462/0.7907) mem 16099MB [2025-01-17 22:56:25 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][120/312] eta 0:01:32 lr 0.003936 time 0.4623 (0.4805) model_time 0.4621 (0.4679) loss 3.6254 (4.0301) grad_norm 1.8252 (1.7098/0.8090) mem 16099MB [2025-01-17 22:56:30 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][130/312] eta 0:01:27 lr 0.003936 time 0.4536 (0.4798) model_time 0.4534 (0.4681) loss 4.8365 (4.0317) grad_norm 1.3521 (1.7137/0.7922) mem 16099MB [2025-01-17 22:56:35 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][140/312] eta 0:01:22 lr 0.003935 time 0.5490 (0.4784) model_time 0.5488 (0.4675) loss 4.2526 (4.0428) grad_norm 1.1363 (1.6891/0.7764) mem 16099MB [2025-01-17 22:56:39 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][150/312] eta 0:01:17 lr 0.003935 time 0.4628 (0.4782) model_time 0.4623 (0.4680) loss 4.3920 (4.0458) grad_norm 4.2391 (1.6857/0.7875) mem 16099MB [2025-01-17 22:56:45 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][160/312] eta 0:01:13 lr 0.003935 time 0.4402 (0.4803) model_time 0.4401 (0.4707) loss 4.0546 (4.0524) grad_norm 2.2767 (1.7240/0.8018) mem 16099MB [2025-01-17 22:56:49 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][170/312] eta 0:01:07 lr 0.003935 time 0.4510 (0.4786) model_time 0.4506 (0.4695) loss 4.3828 (4.0566) grad_norm 1.7317 (1.7396/0.8000) mem 16099MB [2025-01-17 22:56:54 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][180/312] eta 0:01:03 lr 0.003935 time 0.4416 (0.4776) model_time 0.4411 (0.4690) loss 4.5067 (4.0768) grad_norm 1.4525 (1.7125/0.7865) mem 16099MB [2025-01-17 22:56:58 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][190/312] eta 0:00:58 lr 0.003935 time 0.4503 (0.4769) model_time 0.4498 (0.4688) loss 4.4851 (4.0643) grad_norm 1.9911 (1.7086/0.7735) mem 16099MB [2025-01-17 22:57:03 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][200/312] eta 0:00:53 lr 0.003934 time 0.4501 (0.4757) model_time 0.4500 (0.4679) loss 4.8150 (4.0698) grad_norm 2.1836 (1.6999/0.7613) mem 16099MB [2025-01-17 22:57:08 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][210/312] eta 0:00:48 lr 0.003934 time 0.4378 (0.4752) model_time 0.4372 (0.4678) loss 4.0616 (4.0812) grad_norm 1.8165 (1.6921/0.7464) mem 16099MB [2025-01-17 22:57:12 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][220/312] eta 0:00:43 lr 0.003934 time 0.4475 (0.4743) model_time 0.4470 (0.4671) loss 4.2168 (4.0979) grad_norm 3.6347 (1.7147/0.7596) mem 16099MB [2025-01-17 22:57:17 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][230/312] eta 0:00:38 lr 0.003934 time 0.4500 (0.4736) model_time 0.4498 (0.4668) loss 2.9304 (4.0790) grad_norm 2.8242 (1.7474/0.7879) mem 16099MB [2025-01-17 22:57:21 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][240/312] eta 0:00:34 lr 0.003934 time 0.4473 (0.4729) model_time 0.4471 (0.4663) loss 4.2731 (4.0689) grad_norm 7.1201 (1.7687/0.8639) mem 16099MB [2025-01-17 22:57:26 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][250/312] eta 0:00:29 lr 0.003934 time 0.4324 (0.4729) model_time 0.4320 (0.4665) loss 4.4581 (4.0712) grad_norm 1.6784 (1.7660/0.8555) mem 16099MB [2025-01-17 22:57:31 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][260/312] eta 0:00:24 lr 0.003933 time 0.4472 (0.4726) model_time 0.4467 (0.4665) loss 3.7367 (4.0684) grad_norm 1.5827 (1.7480/0.8462) mem 16099MB [2025-01-17 22:57:35 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][270/312] eta 0:00:19 lr 0.003933 time 0.4420 (0.4722) model_time 0.4415 (0.4663) loss 4.1073 (4.0677) grad_norm 1.6639 (1.7735/0.8975) mem 16099MB [2025-01-17 22:57:40 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][280/312] eta 0:00:15 lr 0.003933 time 0.4479 (0.4717) model_time 0.4474 (0.4660) loss 3.7497 (4.0640) grad_norm 1.2975 (1.7701/0.8907) mem 16099MB [2025-01-17 22:57:44 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][290/312] eta 0:00:10 lr 0.003933 time 0.4486 (0.4716) model_time 0.4484 (0.4661) loss 3.5224 (4.0638) grad_norm 1.7255 (1.7656/0.8788) mem 16099MB [2025-01-17 22:57:49 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][300/312] eta 0:00:05 lr 0.003933 time 0.4386 (0.4717) model_time 0.4386 (0.4664) loss 4.8391 (4.0684) grad_norm 1.0805 (1.7527/0.8710) mem 16099MB [2025-01-17 22:57:54 internimage_t_1k_224] (main.py 510): INFO Train: [24/300][310/312] eta 0:00:00 lr 0.003933 time 0.4374 (0.4712) model_time 0.4373 (0.4660) loss 2.5728 (4.0678) grad_norm 1.2738 (1.7614/0.8704) mem 16099MB [2025-01-17 22:57:54 internimage_t_1k_224] (main.py 519): INFO EPOCH 24 training takes 0:02:26 [2025-01-17 22:57:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_24.pth saving...... [2025-01-17 22:57:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_24.pth saved !!! [2025-01-17 22:58:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.278 (7.278) Loss 1.3624 (1.3624) Acc@1 69.995 (69.995) Acc@5 90.796 (90.796) Mem 16099MB [2025-01-17 22:58:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.999) Loss 1.8611 (1.5601) Acc@1 60.425 (66.448) Acc@5 84.058 (88.079) Mem 16099MB [2025-01-17 22:58:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:24] * Acc@1 66.605 Acc@5 88.112 [2025-01-17 22:58:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 66.6% [2025-01-17 22:58:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 22:58:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 22:58:08 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 66.60% [2025-01-17 22:58:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.763 (7.763) Loss 6.8081 (6.8081) Acc@1 0.269 (0.269) Acc@5 2.246 (2.246) Mem 16099MB [2025-01-17 22:58:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.045) Loss 6.7072 (6.7428) Acc@1 0.269 (0.277) Acc@5 1.392 (1.722) Mem 16099MB [2025-01-17 22:58:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:24] * Acc@1 0.406 Acc@5 2.123 [2025-01-17 22:58:19 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 22:58:19 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 22:58:22 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][0/312] eta 0:14:19 lr 0.003933 time 2.7557 (2.7557) model_time 0.8872 (0.8872) loss 4.9897 (4.9897) grad_norm 0.9110 (0.9110/0.0000) mem 16099MB [2025-01-17 22:58:27 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][10/312] eta 0:03:26 lr 0.003932 time 0.4370 (0.6824) model_time 0.4368 (0.5122) loss 4.4179 (4.2123) grad_norm 1.2008 (1.7306/0.6222) mem 16099MB [2025-01-17 22:58:31 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][20/312] eta 0:02:48 lr 0.003932 time 0.4403 (0.5784) model_time 0.4401 (0.4890) loss 4.2621 (4.2075) grad_norm 1.6825 (1.6939/0.5492) mem 16099MB [2025-01-17 22:58:36 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][30/312] eta 0:02:31 lr 0.003932 time 0.4390 (0.5372) model_time 0.4388 (0.4766) loss 3.4068 (4.0995) grad_norm 2.5976 (2.0615/0.9276) mem 16099MB [2025-01-17 22:58:40 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][40/312] eta 0:02:20 lr 0.003932 time 0.4521 (0.5169) model_time 0.4519 (0.4710) loss 4.9615 (4.0838) grad_norm 1.2959 (1.8992/0.8779) mem 16099MB [2025-01-17 22:58:45 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][50/312] eta 0:02:12 lr 0.003932 time 0.4533 (0.5040) model_time 0.4528 (0.4670) loss 3.1090 (4.1292) grad_norm 1.3799 (1.8915/0.8426) mem 16099MB [2025-01-17 22:58:50 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][60/312] eta 0:02:05 lr 0.003931 time 0.4772 (0.4963) model_time 0.4770 (0.4653) loss 3.8679 (4.1014) grad_norm 2.4422 (1.8589/0.8080) mem 16099MB [2025-01-17 22:58:54 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][70/312] eta 0:01:58 lr 0.003931 time 0.4474 (0.4913) model_time 0.4472 (0.4646) loss 4.1489 (4.1292) grad_norm 2.4748 (1.8357/0.7674) mem 16099MB [2025-01-17 22:58:59 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][80/312] eta 0:01:52 lr 0.003931 time 0.4598 (0.4870) model_time 0.4596 (0.4635) loss 3.9934 (4.1176) grad_norm 1.1498 (1.8317/0.7617) mem 16099MB [2025-01-17 22:59:03 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][90/312] eta 0:01:47 lr 0.003931 time 0.4708 (0.4831) model_time 0.4703 (0.4622) loss 4.1265 (4.1093) grad_norm 1.8339 (1.8120/0.7321) mem 16099MB [2025-01-17 22:59:08 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][100/312] eta 0:01:41 lr 0.003931 time 0.4555 (0.4809) model_time 0.4554 (0.4620) loss 4.3364 (4.1134) grad_norm 1.5123 (1.8143/0.7365) mem 16099MB [2025-01-17 22:59:12 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][110/312] eta 0:01:36 lr 0.003931 time 0.4479 (0.4783) model_time 0.4477 (0.4611) loss 3.8356 (4.1289) grad_norm 1.6947 (1.8338/0.7358) mem 16099MB [2025-01-17 22:59:17 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][120/312] eta 0:01:31 lr 0.003930 time 0.4464 (0.4776) model_time 0.4463 (0.4618) loss 3.4818 (4.1008) grad_norm 1.7977 (1.8064/0.7175) mem 16099MB [2025-01-17 22:59:22 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][130/312] eta 0:01:27 lr 0.003930 time 0.4619 (0.4785) model_time 0.4614 (0.4639) loss 3.9919 (4.1017) grad_norm 1.8842 (1.7808/0.7024) mem 16099MB [2025-01-17 22:59:27 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][140/312] eta 0:01:22 lr 0.003930 time 0.5122 (0.4794) model_time 0.5120 (0.4658) loss 5.0241 (4.1130) grad_norm 1.0249 (1.7586/0.6842) mem 16099MB [2025-01-17 22:59:32 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][150/312] eta 0:01:17 lr 0.003930 time 0.4410 (0.4785) model_time 0.4405 (0.4657) loss 3.6012 (4.1195) grad_norm 2.2742 (1.8181/0.8497) mem 16099MB [2025-01-17 22:59:36 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][160/312] eta 0:01:12 lr 0.003930 time 0.5252 (0.4783) model_time 0.5250 (0.4663) loss 4.1354 (4.1050) grad_norm 1.8946 (1.8187/0.8331) mem 16099MB [2025-01-17 22:59:41 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][170/312] eta 0:01:07 lr 0.003930 time 0.4468 (0.4768) model_time 0.4463 (0.4655) loss 3.1250 (4.0795) grad_norm 2.3286 (1.8716/0.9499) mem 16099MB [2025-01-17 22:59:45 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][180/312] eta 0:01:02 lr 0.003929 time 0.4626 (0.4755) model_time 0.4624 (0.4648) loss 4.3355 (4.0810) grad_norm 1.2653 (1.8424/0.9319) mem 16099MB [2025-01-17 22:59:50 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][190/312] eta 0:00:57 lr 0.003929 time 0.4621 (0.4743) model_time 0.4616 (0.4641) loss 2.7137 (4.0736) grad_norm 1.8539 (1.8167/0.9174) mem 16099MB [2025-01-17 22:59:54 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][200/312] eta 0:00:52 lr 0.003929 time 0.4616 (0.4731) model_time 0.4614 (0.4634) loss 4.5698 (4.0718) grad_norm 1.2308 (1.7989/0.8994) mem 16099MB [2025-01-17 22:59:59 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][210/312] eta 0:00:48 lr 0.003929 time 0.4569 (0.4725) model_time 0.4564 (0.4633) loss 3.9702 (4.0696) grad_norm 2.6948 (1.8085/0.8931) mem 16099MB [2025-01-17 23:00:04 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][220/312] eta 0:00:43 lr 0.003929 time 0.4775 (0.4723) model_time 0.4770 (0.4635) loss 3.3530 (4.0750) grad_norm 1.2285 (1.7920/0.8768) mem 16099MB [2025-01-17 23:00:08 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][230/312] eta 0:00:38 lr 0.003929 time 0.4514 (0.4715) model_time 0.4509 (0.4631) loss 3.3087 (4.0628) grad_norm 2.4371 (1.7837/0.8621) mem 16099MB [2025-01-17 23:00:13 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][240/312] eta 0:00:33 lr 0.003928 time 0.4565 (0.4707) model_time 0.4560 (0.4626) loss 3.9225 (4.0624) grad_norm 2.0676 (1.7913/0.8548) mem 16099MB [2025-01-17 23:00:17 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][250/312] eta 0:00:29 lr 0.003928 time 0.4477 (0.4701) model_time 0.4475 (0.4622) loss 3.9119 (4.0478) grad_norm 1.0972 (1.7773/0.8446) mem 16099MB [2025-01-17 23:00:22 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][260/312] eta 0:00:24 lr 0.003928 time 0.4508 (0.4694) model_time 0.4506 (0.4619) loss 4.3131 (4.0438) grad_norm 1.6027 (1.7658/0.8310) mem 16099MB [2025-01-17 23:00:26 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][270/312] eta 0:00:19 lr 0.003928 time 0.4554 (0.4691) model_time 0.4549 (0.4618) loss 4.9754 (4.0513) grad_norm 2.4158 (1.7722/0.8347) mem 16099MB [2025-01-17 23:00:31 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][280/312] eta 0:00:14 lr 0.003928 time 0.4514 (0.4684) model_time 0.4512 (0.4614) loss 3.8980 (4.0529) grad_norm 1.3189 (1.7657/0.8246) mem 16099MB [2025-01-17 23:00:36 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][290/312] eta 0:00:10 lr 0.003927 time 0.4425 (0.4682) model_time 0.4423 (0.4614) loss 5.1908 (4.0643) grad_norm 0.9804 (1.8089/1.0290) mem 16099MB [2025-01-17 23:00:40 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][300/312] eta 0:00:05 lr 0.003927 time 0.4365 (0.4683) model_time 0.4364 (0.4617) loss 4.2511 (4.0639) grad_norm 1.8485 (1.8116/1.0152) mem 16099MB [2025-01-17 23:00:45 internimage_t_1k_224] (main.py 510): INFO Train: [25/300][310/312] eta 0:00:00 lr 0.003927 time 0.5174 (0.4683) model_time 0.5173 (0.4619) loss 3.6432 (4.0592) grad_norm 4.9994 (1.8217/1.0378) mem 16099MB [2025-01-17 23:00:45 internimage_t_1k_224] (main.py 519): INFO EPOCH 25 training takes 0:02:26 [2025-01-17 23:00:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_25.pth saving...... [2025-01-17 23:00:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_25.pth saved !!! [2025-01-17 23:00:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.246 (7.246) Loss 1.3358 (1.3358) Acc@1 70.215 (70.215) Acc@5 90.552 (90.552) Mem 16099MB [2025-01-17 23:00:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (0.980) Loss 1.9245 (1.5527) Acc@1 58.325 (66.562) Acc@5 83.130 (88.095) Mem 16099MB [2025-01-17 23:00:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:25] * Acc@1 66.647 Acc@5 88.204 [2025-01-17 23:00:58 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 66.6% [2025-01-17 23:00:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:00:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:00:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 66.65% [2025-01-17 23:01:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.661 (7.661) Loss 6.7560 (6.7560) Acc@1 0.366 (0.366) Acc@5 2.832 (2.832) Mem 16099MB [2025-01-17 23:01:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.028) Loss 6.6888 (6.7163) Acc@1 0.269 (0.291) Acc@5 1.440 (1.900) Mem 16099MB [2025-01-17 23:01:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:25] * Acc@1 0.426 Acc@5 2.313 [2025-01-17 23:01:10 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.4% [2025-01-17 23:01:10 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 23:01:13 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][0/312] eta 0:15:38 lr 0.003927 time 3.0079 (3.0079) model_time 1.4263 (1.4263) loss 4.4505 (4.4505) grad_norm 1.7987 (1.7987/0.0000) mem 16099MB [2025-01-17 23:01:18 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][10/312] eta 0:03:30 lr 0.003927 time 0.4636 (0.6978) model_time 0.4634 (0.5537) loss 4.2584 (4.0641) grad_norm 1.7071 (1.5955/0.4547) mem 16099MB [2025-01-17 23:01:23 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][20/312] eta 0:02:51 lr 0.003927 time 0.4336 (0.5858) model_time 0.4334 (0.5101) loss 3.1073 (4.0102) grad_norm 2.7222 (1.7620/0.4941) mem 16099MB [2025-01-17 23:01:27 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][30/312] eta 0:02:33 lr 0.003927 time 0.4524 (0.5429) model_time 0.4520 (0.4916) loss 4.0358 (4.0303) grad_norm 1.9719 (1.6489/0.4917) mem 16099MB [2025-01-17 23:01:32 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][40/312] eta 0:02:23 lr 0.003926 time 0.4571 (0.5258) model_time 0.4569 (0.4869) loss 3.0105 (4.0000) grad_norm 1.0252 (1.6789/0.5536) mem 16099MB [2025-01-17 23:01:37 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][50/312] eta 0:02:14 lr 0.003926 time 0.4556 (0.5135) model_time 0.4554 (0.4822) loss 3.0621 (3.9950) grad_norm 1.6535 (1.6180/0.5318) mem 16099MB [2025-01-17 23:01:41 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][60/312] eta 0:02:06 lr 0.003926 time 0.4466 (0.5032) model_time 0.4464 (0.4769) loss 3.0272 (4.0104) grad_norm 1.1725 (1.7099/0.6415) mem 16099MB [2025-01-17 23:01:46 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][70/312] eta 0:02:00 lr 0.003926 time 0.4330 (0.4964) model_time 0.4328 (0.4738) loss 3.2700 (4.0230) grad_norm 2.1777 (1.6984/0.6189) mem 16099MB [2025-01-17 23:01:50 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][80/312] eta 0:01:53 lr 0.003926 time 0.4462 (0.4911) model_time 0.4460 (0.4712) loss 4.1931 (4.0236) grad_norm 1.1446 (1.7114/0.6555) mem 16099MB [2025-01-17 23:01:55 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][90/312] eta 0:01:48 lr 0.003925 time 0.4516 (0.4891) model_time 0.4514 (0.4714) loss 4.3622 (4.0224) grad_norm 1.7763 (1.7310/0.6689) mem 16099MB [2025-01-17 23:02:00 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][100/312] eta 0:01:43 lr 0.003925 time 0.5285 (0.4869) model_time 0.5283 (0.4709) loss 2.9556 (4.0321) grad_norm 1.4686 (1.7547/0.6710) mem 16099MB [2025-01-17 23:02:04 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][110/312] eta 0:01:37 lr 0.003925 time 0.4500 (0.4837) model_time 0.4499 (0.4691) loss 3.9610 (4.0342) grad_norm 1.4799 (1.7399/0.6569) mem 16099MB [2025-01-17 23:02:09 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][120/312] eta 0:01:32 lr 0.003925 time 0.4567 (0.4823) model_time 0.4562 (0.4688) loss 3.4167 (4.0061) grad_norm 2.2797 (1.7505/0.6767) mem 16099MB [2025-01-17 23:02:14 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][130/312] eta 0:01:27 lr 0.003925 time 0.4538 (0.4831) model_time 0.4537 (0.4707) loss 2.9035 (4.0069) grad_norm 1.0967 (1.7474/0.6628) mem 16099MB [2025-01-17 23:02:18 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][140/312] eta 0:01:22 lr 0.003925 time 0.5432 (0.4818) model_time 0.5431 (0.4702) loss 4.5951 (4.0087) grad_norm 1.2373 (1.7199/0.6500) mem 16099MB [2025-01-17 23:02:23 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][150/312] eta 0:01:17 lr 0.003924 time 0.4410 (0.4801) model_time 0.4405 (0.4693) loss 4.4225 (4.0294) grad_norm 2.5971 (1.7355/0.6467) mem 16099MB [2025-01-17 23:02:27 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][160/312] eta 0:01:12 lr 0.003924 time 0.4461 (0.4788) model_time 0.4459 (0.4687) loss 4.1412 (4.0443) grad_norm 1.0927 (1.7122/0.6408) mem 16099MB [2025-01-17 23:02:32 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][170/312] eta 0:01:07 lr 0.003924 time 0.4489 (0.4778) model_time 0.4484 (0.4682) loss 4.4974 (4.0495) grad_norm 1.6052 (1.6996/0.6298) mem 16099MB [2025-01-17 23:02:37 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][180/312] eta 0:01:02 lr 0.003924 time 0.4447 (0.4770) model_time 0.4445 (0.4679) loss 4.5427 (4.0628) grad_norm 2.1954 (1.7330/0.6566) mem 16099MB [2025-01-17 23:02:41 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][190/312] eta 0:00:58 lr 0.003924 time 0.4428 (0.4757) model_time 0.4426 (0.4671) loss 3.3383 (4.0507) grad_norm 3.1316 (1.7278/0.6591) mem 16099MB [2025-01-17 23:02:46 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][200/312] eta 0:00:53 lr 0.003923 time 0.4577 (0.4746) model_time 0.4576 (0.4664) loss 4.1016 (4.0476) grad_norm 1.2750 (1.7311/0.6583) mem 16099MB [2025-01-17 23:02:50 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][210/312] eta 0:00:48 lr 0.003923 time 0.4477 (0.4740) model_time 0.4475 (0.4662) loss 5.0359 (4.0456) grad_norm 1.0164 (1.7042/0.6559) mem 16099MB [2025-01-17 23:02:55 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][220/312] eta 0:00:43 lr 0.003923 time 0.4457 (0.4732) model_time 0.4455 (0.4657) loss 3.7072 (4.0367) grad_norm 1.1621 (1.7420/0.7317) mem 16099MB [2025-01-17 23:03:00 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][230/312] eta 0:00:38 lr 0.003923 time 0.4398 (0.4724) model_time 0.4396 (0.4652) loss 4.6945 (4.0469) grad_norm 2.1551 (1.7405/0.7245) mem 16099MB [2025-01-17 23:03:04 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][240/312] eta 0:00:33 lr 0.003923 time 0.4414 (0.4715) model_time 0.4410 (0.4645) loss 4.4460 (4.0416) grad_norm 1.4287 (1.7330/0.7150) mem 16099MB [2025-01-17 23:03:09 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][250/312] eta 0:00:29 lr 0.003923 time 0.4441 (0.4711) model_time 0.4439 (0.4644) loss 5.0931 (4.0518) grad_norm 1.5748 (1.7492/0.7420) mem 16099MB [2025-01-17 23:03:13 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][260/312] eta 0:00:24 lr 0.003922 time 0.4533 (0.4709) model_time 0.4528 (0.4644) loss 4.1052 (4.0444) grad_norm 1.2294 (1.7318/0.7356) mem 16099MB [2025-01-17 23:03:18 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][270/312] eta 0:00:19 lr 0.003922 time 0.5519 (0.4710) model_time 0.5517 (0.4648) loss 3.8995 (4.0446) grad_norm 1.2747 (1.7173/0.7274) mem 16099MB [2025-01-17 23:03:23 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][280/312] eta 0:00:15 lr 0.003922 time 0.4451 (0.4708) model_time 0.4449 (0.4648) loss 3.7096 (4.0525) grad_norm 1.7421 (1.7327/0.7348) mem 16099MB [2025-01-17 23:03:27 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][290/312] eta 0:00:10 lr 0.003922 time 0.4515 (0.4704) model_time 0.4509 (0.4646) loss 4.8434 (4.0536) grad_norm 1.1286 (1.7289/0.7264) mem 16099MB [2025-01-17 23:03:32 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][300/312] eta 0:00:05 lr 0.003922 time 0.4369 (0.4703) model_time 0.4368 (0.4646) loss 3.5441 (4.0543) grad_norm 1.0640 (1.7139/0.7218) mem 16099MB [2025-01-17 23:03:36 internimage_t_1k_224] (main.py 510): INFO Train: [26/300][310/312] eta 0:00:00 lr 0.003921 time 0.4388 (0.4697) model_time 0.4387 (0.4643) loss 4.1847 (4.0447) grad_norm 2.2228 (1.7085/0.7222) mem 16099MB [2025-01-17 23:03:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 26 training takes 0:02:26 [2025-01-17 23:03:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_26.pth saving...... [2025-01-17 23:03:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_26.pth saved !!! [2025-01-17 23:03:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.488 (7.488) Loss 1.2502 (1.2502) Acc@1 71.265 (71.265) Acc@5 91.602 (91.602) Mem 16099MB [2025-01-17 23:03:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.018) Loss 1.7521 (1.4315) Acc@1 60.815 (67.623) Acc@5 83.643 (88.900) Mem 16099MB [2025-01-17 23:03:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:26] * Acc@1 67.724 Acc@5 88.944 [2025-01-17 23:03:49 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 67.7% [2025-01-17 23:03:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:03:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:03:51 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 67.72% [2025-01-17 23:03:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.996 (7.996) Loss 6.7016 (6.7016) Acc@1 0.464 (0.464) Acc@5 2.808 (2.808) Mem 16099MB [2025-01-17 23:04:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.052) Loss 6.6725 (6.6891) Acc@1 0.464 (0.304) Acc@5 1.514 (1.982) Mem 16099MB [2025-01-17 23:04:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:26] * Acc@1 0.468 Acc@5 2.431 [2025-01-17 23:04:02 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.5% [2025-01-17 23:04:02 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 23:04:05 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][0/312] eta 0:14:48 lr 0.003921 time 2.8488 (2.8488) model_time 1.3147 (1.3147) loss 3.9307 (3.9307) grad_norm 0.9216 (0.9216/0.0000) mem 16099MB [2025-01-17 23:04:10 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][10/312] eta 0:03:28 lr 0.003921 time 0.4539 (0.6896) model_time 0.4536 (0.5499) loss 3.3403 (3.8107) grad_norm 4.0186 (1.6722/0.8351) mem 16099MB [2025-01-17 23:04:15 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][20/312] eta 0:02:49 lr 0.003921 time 0.4511 (0.5814) model_time 0.4509 (0.5081) loss 4.3701 (4.0605) grad_norm 0.8495 (2.1676/1.3994) mem 16099MB [2025-01-17 23:04:19 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][30/312] eta 0:02:34 lr 0.003921 time 0.5165 (0.5492) model_time 0.5164 (0.4993) loss 4.1618 (4.1098) grad_norm 0.9591 (1.9026/1.2322) mem 16099MB [2025-01-17 23:04:24 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][40/312] eta 0:02:24 lr 0.003921 time 0.4494 (0.5297) model_time 0.4490 (0.4920) loss 3.4020 (4.1089) grad_norm 0.9823 (1.8577/1.1097) mem 16099MB [2025-01-17 23:04:29 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][50/312] eta 0:02:15 lr 0.003920 time 0.4639 (0.5189) model_time 0.4634 (0.4885) loss 5.0187 (4.0507) grad_norm 1.4906 (1.7029/1.0539) mem 16099MB [2025-01-17 23:04:33 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][60/312] eta 0:02:08 lr 0.003920 time 0.4481 (0.5082) model_time 0.4477 (0.4827) loss 3.8276 (4.0056) grad_norm 1.6441 (1.6229/0.9858) mem 16099MB [2025-01-17 23:04:38 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][70/312] eta 0:02:01 lr 0.003920 time 0.4549 (0.5002) model_time 0.4547 (0.4783) loss 4.2124 (4.0493) grad_norm 1.8182 (1.6474/0.9341) mem 16099MB [2025-01-17 23:04:43 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][80/312] eta 0:01:55 lr 0.003920 time 0.4461 (0.4957) model_time 0.4456 (0.4764) loss 4.1148 (4.0632) grad_norm 1.3532 (1.6538/0.9026) mem 16099MB [2025-01-17 23:04:47 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][90/312] eta 0:01:49 lr 0.003920 time 0.4495 (0.4935) model_time 0.4491 (0.4762) loss 3.6238 (4.0712) grad_norm 1.9409 (1.7483/1.0349) mem 16099MB [2025-01-17 23:04:52 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][100/312] eta 0:01:43 lr 0.003920 time 0.4717 (0.4900) model_time 0.4713 (0.4744) loss 4.4233 (4.0613) grad_norm 1.4566 (1.7029/0.9959) mem 16099MB [2025-01-17 23:04:56 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][110/312] eta 0:01:38 lr 0.003919 time 0.4494 (0.4867) model_time 0.4492 (0.4725) loss 3.4834 (4.0586) grad_norm 1.1481 (1.6886/0.9660) mem 16099MB [2025-01-17 23:05:01 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][120/312] eta 0:01:33 lr 0.003919 time 0.4489 (0.4846) model_time 0.4485 (0.4716) loss 3.2870 (4.0687) grad_norm 2.1571 (1.6947/0.9469) mem 16099MB [2025-01-17 23:05:06 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][130/312] eta 0:01:27 lr 0.003919 time 0.4467 (0.4820) model_time 0.4464 (0.4699) loss 3.3974 (4.0827) grad_norm 2.3339 (1.7333/0.9903) mem 16099MB [2025-01-17 23:05:10 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][140/312] eta 0:01:22 lr 0.003919 time 0.4434 (0.4801) model_time 0.4429 (0.4689) loss 4.3219 (4.0825) grad_norm 1.0344 (1.6979/0.9675) mem 16099MB [2025-01-17 23:05:15 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][150/312] eta 0:01:17 lr 0.003919 time 0.5458 (0.4795) model_time 0.5456 (0.4690) loss 4.5092 (4.0733) grad_norm 1.0210 (1.6881/0.9435) mem 16099MB [2025-01-17 23:05:20 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][160/312] eta 0:01:12 lr 0.003918 time 0.4410 (0.4794) model_time 0.4405 (0.4695) loss 2.8563 (4.0512) grad_norm 1.1410 (1.6811/0.9202) mem 16099MB [2025-01-17 23:05:24 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][170/312] eta 0:01:07 lr 0.003918 time 0.4364 (0.4788) model_time 0.4362 (0.4694) loss 4.6991 (4.0732) grad_norm 1.1432 (1.6763/0.8990) mem 16099MB [2025-01-17 23:05:29 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][180/312] eta 0:01:03 lr 0.003918 time 0.4512 (0.4773) model_time 0.4509 (0.4684) loss 4.8142 (4.0803) grad_norm 1.5128 (1.6849/0.8920) mem 16099MB [2025-01-17 23:05:33 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][190/312] eta 0:00:58 lr 0.003918 time 0.4392 (0.4760) model_time 0.4391 (0.4675) loss 3.9303 (4.0730) grad_norm 1.4745 (1.7158/0.9192) mem 16099MB [2025-01-17 23:05:38 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][200/312] eta 0:00:53 lr 0.003918 time 0.4562 (0.4754) model_time 0.4560 (0.4674) loss 3.1316 (4.0736) grad_norm 3.2434 (1.7136/0.9064) mem 16099MB [2025-01-17 23:05:43 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][210/312] eta 0:00:48 lr 0.003917 time 0.4506 (0.4755) model_time 0.4504 (0.4678) loss 2.8803 (4.0611) grad_norm 1.0354 (1.7106/0.8987) mem 16099MB [2025-01-17 23:05:47 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][220/312] eta 0:00:43 lr 0.003917 time 0.4457 (0.4748) model_time 0.4454 (0.4675) loss 4.1883 (4.0685) grad_norm 1.9695 (1.7196/0.8933) mem 16099MB [2025-01-17 23:05:52 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][230/312] eta 0:00:38 lr 0.003917 time 0.4511 (0.4742) model_time 0.4508 (0.4672) loss 4.2359 (4.0694) grad_norm 2.1721 (1.7193/0.8805) mem 16099MB [2025-01-17 23:05:56 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][240/312] eta 0:00:34 lr 0.003917 time 0.4669 (0.4735) model_time 0.4665 (0.4667) loss 2.8618 (4.0559) grad_norm 1.3424 (1.7196/0.8692) mem 16099MB [2025-01-17 23:06:01 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][250/312] eta 0:00:29 lr 0.003917 time 0.4433 (0.4728) model_time 0.4428 (0.4664) loss 4.1459 (4.0555) grad_norm 1.0197 (1.7278/0.8689) mem 16099MB [2025-01-17 23:06:06 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][260/312] eta 0:00:24 lr 0.003916 time 0.4535 (0.4728) model_time 0.4531 (0.4666) loss 3.1260 (4.0392) grad_norm 0.9550 (1.7118/0.8629) mem 16099MB [2025-01-17 23:06:11 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][270/312] eta 0:00:19 lr 0.003916 time 0.4561 (0.4729) model_time 0.4560 (0.4669) loss 3.4208 (4.0341) grad_norm 3.3969 (1.7261/0.8688) mem 16099MB [2025-01-17 23:06:15 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][280/312] eta 0:00:15 lr 0.003916 time 0.4472 (0.4723) model_time 0.4470 (0.4665) loss 4.1560 (4.0407) grad_norm 1.6384 (1.7325/0.8616) mem 16099MB [2025-01-17 23:06:20 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][290/312] eta 0:00:10 lr 0.003916 time 0.4437 (0.4716) model_time 0.4435 (0.4660) loss 3.9857 (4.0349) grad_norm 1.9851 (1.7231/0.8516) mem 16099MB [2025-01-17 23:06:24 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][300/312] eta 0:00:05 lr 0.003916 time 0.4370 (0.4710) model_time 0.4369 (0.4656) loss 4.4764 (4.0368) grad_norm 1.1897 (1.7217/0.8423) mem 16099MB [2025-01-17 23:06:29 internimage_t_1k_224] (main.py 510): INFO Train: [27/300][310/312] eta 0:00:00 lr 0.003916 time 0.4378 (0.4701) model_time 0.4377 (0.4648) loss 3.4925 (4.0363) grad_norm 1.5134 (1.7122/0.8330) mem 16099MB [2025-01-17 23:06:29 internimage_t_1k_224] (main.py 519): INFO EPOCH 27 training takes 0:02:26 [2025-01-17 23:06:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_27.pth saving...... [2025-01-17 23:06:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_27.pth saved !!! [2025-01-17 23:06:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.335 (7.335) Loss 1.2469 (1.2469) Acc@1 72.925 (72.925) Acc@5 92.310 (92.310) Mem 16099MB [2025-01-17 23:06:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.984) Loss 1.7994 (1.4876) Acc@1 61.597 (68.151) Acc@5 84.009 (88.936) Mem 16099MB [2025-01-17 23:06:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:27] * Acc@1 68.166 Acc@5 89.042 [2025-01-17 23:06:41 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 68.2% [2025-01-17 23:06:42 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:06:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:06:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 68.17% [2025-01-17 23:06:50 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.416 (7.416) Loss 6.6485 (6.6485) Acc@1 0.537 (0.537) Acc@5 3.174 (3.174) Mem 16099MB [2025-01-17 23:06:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.002) Loss 6.6488 (6.6576) Acc@1 0.562 (0.364) Acc@5 1.855 (2.293) Mem 16099MB [2025-01-17 23:06:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:27] * Acc@1 0.544 Acc@5 2.757 [2025-01-17 23:06:54 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.5% [2025-01-17 23:06:54 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.58% [2025-01-17 23:06:57 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][0/312] eta 0:14:38 lr 0.003915 time 2.8149 (2.8149) model_time 1.3528 (1.3528) loss 5.0111 (5.0111) grad_norm 0.8461 (0.8461/0.0000) mem 16099MB [2025-01-17 23:07:01 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][10/312] eta 0:03:26 lr 0.003915 time 0.4443 (0.6827) model_time 0.4441 (0.5494) loss 4.3431 (4.2309) grad_norm 1.5023 (1.9031/0.8852) mem 16099MB [2025-01-17 23:07:06 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][20/312] eta 0:02:47 lr 0.003915 time 0.4453 (0.5727) model_time 0.4451 (0.5027) loss 4.3634 (4.1963) grad_norm 1.6864 (1.7447/0.7045) mem 16099MB [2025-01-17 23:07:11 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][30/312] eta 0:02:31 lr 0.003915 time 0.4546 (0.5390) model_time 0.4544 (0.4914) loss 4.9454 (4.1747) grad_norm 3.8086 (1.8571/0.8182) mem 16099MB [2025-01-17 23:07:15 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][40/312] eta 0:02:20 lr 0.003915 time 0.4645 (0.5182) model_time 0.4643 (0.4822) loss 3.7056 (4.1577) grad_norm 1.4056 (1.8417/0.7621) mem 16099MB [2025-01-17 23:07:20 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][50/312] eta 0:02:12 lr 0.003915 time 0.4558 (0.5076) model_time 0.4556 (0.4786) loss 4.8280 (4.1390) grad_norm 1.0287 (1.7303/0.7395) mem 16099MB [2025-01-17 23:07:24 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][60/312] eta 0:02:05 lr 0.003914 time 0.4427 (0.4995) model_time 0.4426 (0.4752) loss 3.2056 (4.1247) grad_norm 1.0993 (1.7207/0.7309) mem 16099MB [2025-01-17 23:07:29 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][70/312] eta 0:01:59 lr 0.003914 time 0.4584 (0.4942) model_time 0.4579 (0.4732) loss 3.6587 (4.0877) grad_norm 1.1499 (1.6791/0.7076) mem 16099MB [2025-01-17 23:07:33 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][80/312] eta 0:01:53 lr 0.003914 time 0.4737 (0.4892) model_time 0.4736 (0.4708) loss 4.3416 (4.0796) grad_norm 3.1523 (1.6815/0.6933) mem 16099MB [2025-01-17 23:07:38 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][90/312] eta 0:01:47 lr 0.003914 time 0.4462 (0.4848) model_time 0.4460 (0.4683) loss 4.2613 (4.0786) grad_norm 1.7520 (1.7169/0.7170) mem 16099MB [2025-01-17 23:07:42 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][100/312] eta 0:01:42 lr 0.003914 time 0.4748 (0.4819) model_time 0.4746 (0.4670) loss 4.3268 (4.0700) grad_norm 0.9844 (1.6950/0.6916) mem 16099MB [2025-01-17 23:07:47 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][110/312] eta 0:01:37 lr 0.003913 time 0.4515 (0.4811) model_time 0.4513 (0.4676) loss 4.4020 (4.0883) grad_norm 1.2913 (1.6675/0.6707) mem 16099MB [2025-01-17 23:07:52 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][120/312] eta 0:01:32 lr 0.003913 time 0.5347 (0.4793) model_time 0.5345 (0.4669) loss 4.0406 (4.0696) grad_norm 4.0969 (1.7375/0.7286) mem 16099MB [2025-01-17 23:07:56 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][130/312] eta 0:01:26 lr 0.003913 time 0.4431 (0.4778) model_time 0.4429 (0.4662) loss 2.7672 (4.0522) grad_norm 2.0355 (1.7715/0.7717) mem 16099MB [2025-01-17 23:08:01 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][140/312] eta 0:01:22 lr 0.003913 time 0.4559 (0.4772) model_time 0.4557 (0.4665) loss 2.5401 (4.0435) grad_norm 2.2480 (1.7512/0.7552) mem 16099MB [2025-01-17 23:08:06 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][150/312] eta 0:01:17 lr 0.003913 time 0.5380 (0.4785) model_time 0.5378 (0.4685) loss 3.5963 (4.0405) grad_norm 2.4917 (1.7679/0.7583) mem 16099MB [2025-01-17 23:08:11 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][160/312] eta 0:01:12 lr 0.003912 time 0.4498 (0.4776) model_time 0.4493 (0.4681) loss 4.3828 (4.0305) grad_norm 1.0811 (1.7661/0.7497) mem 16099MB [2025-01-17 23:08:15 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][170/312] eta 0:01:07 lr 0.003912 time 0.4459 (0.4767) model_time 0.4457 (0.4678) loss 3.8058 (4.0207) grad_norm 0.7205 (1.7371/0.7460) mem 16099MB [2025-01-17 23:08:20 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][180/312] eta 0:01:02 lr 0.003912 time 0.5340 (0.4759) model_time 0.5338 (0.4675) loss 2.7918 (4.0308) grad_norm 1.1474 (1.7151/0.7323) mem 16099MB [2025-01-17 23:08:24 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][190/312] eta 0:00:57 lr 0.003912 time 0.4421 (0.4748) model_time 0.4419 (0.4667) loss 4.5312 (4.0357) grad_norm 2.4433 (1.7042/0.7227) mem 16099MB [2025-01-17 23:08:29 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][200/312] eta 0:00:53 lr 0.003912 time 0.4457 (0.4736) model_time 0.4455 (0.4659) loss 4.5154 (4.0452) grad_norm 0.9958 (1.6960/0.7281) mem 16099MB [2025-01-17 23:08:34 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][210/312] eta 0:00:48 lr 0.003911 time 0.4511 (0.4729) model_time 0.4509 (0.4656) loss 3.8805 (4.0331) grad_norm 1.4600 (1.6768/0.7175) mem 16099MB [2025-01-17 23:08:38 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][220/312] eta 0:00:43 lr 0.003911 time 0.4374 (0.4721) model_time 0.4372 (0.4651) loss 4.4303 (4.0278) grad_norm 1.7352 (1.7123/0.8724) mem 16099MB [2025-01-17 23:08:43 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][230/312] eta 0:00:38 lr 0.003911 time 0.4514 (0.4720) model_time 0.4512 (0.4653) loss 4.4826 (4.0482) grad_norm 1.2239 (1.7180/0.8678) mem 16099MB [2025-01-17 23:08:47 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][240/312] eta 0:00:33 lr 0.003911 time 0.4343 (0.4717) model_time 0.4339 (0.4653) loss 3.2303 (4.0397) grad_norm 2.3745 (1.6981/0.8595) mem 16099MB [2025-01-17 23:08:52 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][250/312] eta 0:00:29 lr 0.003911 time 0.4692 (0.4713) model_time 0.4690 (0.4651) loss 5.0605 (4.0403) grad_norm 2.3887 (1.6943/0.8657) mem 16099MB [2025-01-17 23:08:57 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][260/312] eta 0:00:24 lr 0.003910 time 0.4388 (0.4707) model_time 0.4386 (0.4647) loss 3.8018 (4.0360) grad_norm 1.4046 (1.6735/0.8566) mem 16099MB [2025-01-17 23:09:01 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][270/312] eta 0:00:19 lr 0.003910 time 0.4432 (0.4706) model_time 0.4430 (0.4648) loss 4.3530 (4.0170) grad_norm 1.1205 (1.6663/0.8438) mem 16099MB [2025-01-17 23:09:06 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][280/312] eta 0:00:15 lr 0.003910 time 0.4843 (0.4703) model_time 0.4841 (0.4647) loss 4.6995 (4.0107) grad_norm 1.3124 (1.6730/0.8356) mem 16099MB [2025-01-17 23:09:11 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][290/312] eta 0:00:10 lr 0.003910 time 0.4451 (0.4701) model_time 0.4449 (0.4647) loss 4.4602 (4.0195) grad_norm 2.3907 (1.6722/0.8297) mem 16099MB [2025-01-17 23:09:15 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][300/312] eta 0:00:05 lr 0.003910 time 0.4437 (0.4699) model_time 0.4435 (0.4647) loss 3.7463 (4.0193) grad_norm 3.7678 (1.6809/0.8302) mem 16099MB [2025-01-17 23:09:20 internimage_t_1k_224] (main.py 510): INFO Train: [28/300][310/312] eta 0:00:00 lr 0.003909 time 0.4387 (0.4698) model_time 0.4386 (0.4647) loss 4.4854 (4.0114) grad_norm 1.9731 (1.6883/0.8420) mem 16099MB [2025-01-17 23:09:20 internimage_t_1k_224] (main.py 519): INFO EPOCH 28 training takes 0:02:26 [2025-01-17 23:09:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_28.pth saving...... [2025-01-17 23:09:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_28.pth saved !!! [2025-01-17 23:09:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.448 (7.448) Loss 1.2700 (1.2700) Acc@1 73.022 (73.022) Acc@5 91.577 (91.577) Mem 16099MB [2025-01-17 23:09:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.006) Loss 1.8037 (1.4649) Acc@1 60.669 (68.535) Acc@5 84.814 (89.120) Mem 16099MB [2025-01-17 23:09:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:28] * Acc@1 68.684 Acc@5 89.233 [2025-01-17 23:09:33 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 68.7% [2025-01-17 23:09:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:09:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:09:34 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 68.68% [2025-01-17 23:09:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.209 (7.209) Loss 6.6059 (6.6059) Acc@1 0.513 (0.513) Acc@5 3.149 (3.149) Mem 16099MB [2025-01-17 23:09:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.975) Loss 6.6211 (6.6206) Acc@1 0.732 (0.471) Acc@5 2.271 (2.750) Mem 16099MB [2025-01-17 23:09:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:28] * Acc@1 0.662 Acc@5 3.221 [2025-01-17 23:09:45 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.7% [2025-01-17 23:09:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:09:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:09:46 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.66% [2025-01-17 23:09:48 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][0/312] eta 0:10:47 lr 0.003909 time 2.0745 (2.0745) model_time 0.4649 (0.4649) loss 3.3681 (3.3681) grad_norm 1.5253 (1.5253/0.0000) mem 16099MB [2025-01-17 23:09:53 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][10/312] eta 0:03:09 lr 0.003909 time 0.5517 (0.6272) model_time 0.5516 (0.4806) loss 3.0197 (3.8613) grad_norm 2.0404 (1.6114/0.3226) mem 16099MB [2025-01-17 23:09:58 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][20/312] eta 0:02:38 lr 0.003909 time 0.4643 (0.5431) model_time 0.4641 (0.4661) loss 3.2095 (3.8873) grad_norm 2.0014 (1.9855/1.1193) mem 16099MB [2025-01-17 23:10:02 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][30/312] eta 0:02:25 lr 0.003909 time 0.4462 (0.5142) model_time 0.4455 (0.4620) loss 3.3619 (3.9337) grad_norm 1.5060 (1.7945/0.9848) mem 16099MB [2025-01-17 23:10:07 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][40/312] eta 0:02:15 lr 0.003909 time 0.4482 (0.4986) model_time 0.4480 (0.4590) loss 4.1282 (3.9460) grad_norm 0.8674 (1.6583/0.9107) mem 16099MB [2025-01-17 23:10:11 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][50/312] eta 0:02:08 lr 0.003908 time 0.4468 (0.4898) model_time 0.4463 (0.4579) loss 4.4457 (3.9468) grad_norm 1.6013 (1.8177/1.0036) mem 16099MB [2025-01-17 23:10:16 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][60/312] eta 0:02:02 lr 0.003908 time 0.4478 (0.4864) model_time 0.4471 (0.4596) loss 4.1281 (3.9940) grad_norm 1.6069 (1.7790/0.9487) mem 16099MB [2025-01-17 23:10:20 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][70/312] eta 0:01:56 lr 0.003908 time 0.4574 (0.4816) model_time 0.4569 (0.4585) loss 3.5068 (3.9412) grad_norm 1.6688 (1.7359/0.8903) mem 16099MB [2025-01-17 23:10:25 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][80/312] eta 0:01:50 lr 0.003908 time 0.4542 (0.4777) model_time 0.4540 (0.4574) loss 3.7295 (3.9408) grad_norm 0.8053 (1.6713/0.8545) mem 16099MB [2025-01-17 23:10:29 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][90/312] eta 0:01:45 lr 0.003908 time 0.4615 (0.4763) model_time 0.4610 (0.4583) loss 3.8124 (3.9357) grad_norm 1.2190 (1.6265/0.8195) mem 16099MB [2025-01-17 23:10:34 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][100/312] eta 0:01:40 lr 0.003907 time 0.4456 (0.4738) model_time 0.4454 (0.4575) loss 2.6127 (3.9310) grad_norm 1.6089 (1.6446/0.8056) mem 16099MB [2025-01-17 23:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][110/312] eta 0:01:35 lr 0.003907 time 0.4614 (0.4732) model_time 0.4612 (0.4583) loss 2.6233 (3.9087) grad_norm 0.7195 (1.6559/0.8182) mem 16099MB [2025-01-17 23:10:43 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][120/312] eta 0:01:30 lr 0.003907 time 0.6092 (0.4734) model_time 0.6091 (0.4597) loss 2.8975 (3.9226) grad_norm 1.3356 (1.6621/0.8007) mem 16099MB [2025-01-17 23:10:48 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][130/312] eta 0:01:26 lr 0.003907 time 0.4475 (0.4734) model_time 0.4474 (0.4608) loss 3.7040 (3.9046) grad_norm 1.5238 (1.6288/0.7823) mem 16099MB [2025-01-17 23:10:53 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][140/312] eta 0:01:21 lr 0.003907 time 0.4809 (0.4745) model_time 0.4804 (0.4627) loss 4.4106 (3.9034) grad_norm 1.2085 (1.6511/0.7792) mem 16099MB [2025-01-17 23:10:58 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][150/312] eta 0:01:16 lr 0.003906 time 0.4543 (0.4733) model_time 0.4541 (0.4623) loss 3.7085 (3.9167) grad_norm 2.2523 (1.6502/0.7630) mem 16099MB [2025-01-17 23:11:02 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][160/312] eta 0:01:11 lr 0.003906 time 0.4522 (0.4732) model_time 0.4518 (0.4629) loss 4.6222 (3.9123) grad_norm 1.6736 (1.6572/0.7582) mem 16099MB [2025-01-17 23:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][170/312] eta 0:01:07 lr 0.003906 time 0.4411 (0.4720) model_time 0.4403 (0.4622) loss 4.6433 (3.9261) grad_norm 2.2520 (1.6382/0.7509) mem 16099MB [2025-01-17 23:11:11 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][180/312] eta 0:01:02 lr 0.003906 time 0.4426 (0.4707) model_time 0.4424 (0.4614) loss 3.5667 (3.9288) grad_norm 3.3550 (1.6620/0.7684) mem 16099MB [2025-01-17 23:11:16 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][190/312] eta 0:00:57 lr 0.003906 time 0.4515 (0.4698) model_time 0.4513 (0.4609) loss 4.2857 (3.9277) grad_norm 2.2431 (1.6677/0.7583) mem 16099MB [2025-01-17 23:11:20 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][200/312] eta 0:00:52 lr 0.003905 time 0.4380 (0.4689) model_time 0.4376 (0.4605) loss 4.1633 (3.9141) grad_norm 2.9022 (1.6693/0.7531) mem 16099MB [2025-01-17 23:11:25 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][210/312] eta 0:00:47 lr 0.003905 time 0.5591 (0.4685) model_time 0.5586 (0.4605) loss 4.0842 (3.9187) grad_norm 0.6084 (1.6811/0.7963) mem 16099MB [2025-01-17 23:11:30 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][220/312] eta 0:00:43 lr 0.003905 time 0.4541 (0.4680) model_time 0.4539 (0.4603) loss 3.3533 (3.9304) grad_norm 0.9353 (1.6653/0.7849) mem 16099MB [2025-01-17 23:11:34 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][230/312] eta 0:00:38 lr 0.003905 time 0.4427 (0.4683) model_time 0.4426 (0.4610) loss 4.9111 (3.9395) grad_norm 1.0046 (1.6908/0.8052) mem 16099MB [2025-01-17 23:11:39 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][240/312] eta 0:00:33 lr 0.003905 time 0.4481 (0.4680) model_time 0.4476 (0.4609) loss 4.2110 (3.9404) grad_norm 1.5241 (1.6709/0.7956) mem 16099MB [2025-01-17 23:11:44 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][250/312] eta 0:00:28 lr 0.003904 time 0.4423 (0.4677) model_time 0.4418 (0.4609) loss 4.3651 (3.9319) grad_norm 1.6323 (1.6581/0.7854) mem 16099MB [2025-01-17 23:11:48 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][260/312] eta 0:00:24 lr 0.003904 time 0.4437 (0.4673) model_time 0.4432 (0.4608) loss 4.4743 (3.9432) grad_norm 1.0772 (1.6707/0.7892) mem 16099MB [2025-01-17 23:11:53 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][270/312] eta 0:00:19 lr 0.003904 time 0.4532 (0.4671) model_time 0.4526 (0.4608) loss 4.9622 (3.9373) grad_norm 1.4515 (1.6745/0.7900) mem 16099MB [2025-01-17 23:11:57 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][280/312] eta 0:00:14 lr 0.003904 time 0.4458 (0.4670) model_time 0.4453 (0.4609) loss 3.7507 (3.9305) grad_norm 1.0058 (1.6613/0.7823) mem 16099MB [2025-01-17 23:12:02 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][290/312] eta 0:00:10 lr 0.003904 time 0.4523 (0.4667) model_time 0.4518 (0.4608) loss 3.9931 (3.9277) grad_norm 1.0996 (1.6517/0.7719) mem 16099MB [2025-01-17 23:12:06 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][300/312] eta 0:00:05 lr 0.003903 time 0.4382 (0.4664) model_time 0.4381 (0.4607) loss 3.3852 (3.9245) grad_norm 1.0847 (1.6423/0.7699) mem 16099MB [2025-01-17 23:12:11 internimage_t_1k_224] (main.py 510): INFO Train: [29/300][310/312] eta 0:00:00 lr 0.003903 time 0.4383 (0.4659) model_time 0.4382 (0.4604) loss 4.2049 (3.9284) grad_norm 1.4502 (1.6456/0.7760) mem 16099MB [2025-01-17 23:12:11 internimage_t_1k_224] (main.py 519): INFO EPOCH 29 training takes 0:02:25 [2025-01-17 23:12:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_29.pth saving...... [2025-01-17 23:12:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_29.pth saved !!! [2025-01-17 23:12:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.348 (7.348) Loss 1.2407 (1.2407) Acc@1 72.070 (72.070) Acc@5 91.699 (91.699) Mem 16099MB [2025-01-17 23:12:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.994) Loss 1.6839 (1.4401) Acc@1 63.647 (68.896) Acc@5 85.889 (89.216) Mem 16099MB [2025-01-17 23:12:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:29] * Acc@1 68.864 Acc@5 89.249 [2025-01-17 23:12:24 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 68.9% [2025-01-17 23:12:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:12:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:12:25 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 68.86% [2025-01-17 23:12:32 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.433 (7.433) Loss 6.5593 (6.5593) Acc@1 0.586 (0.586) Acc@5 3.687 (3.687) Mem 16099MB [2025-01-17 23:12:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.001) Loss 6.5824 (6.5727) Acc@1 0.952 (0.621) Acc@5 2.881 (3.309) Mem 16099MB [2025-01-17 23:12:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:29] * Acc@1 0.842 Acc@5 3.779 [2025-01-17 23:12:36 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 0.8% [2025-01-17 23:12:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:12:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:12:37 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 0.84% [2025-01-17 23:12:40 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][0/312] eta 0:12:03 lr 0.003903 time 2.3199 (2.3199) model_time 0.4813 (0.4813) loss 4.6200 (4.6200) grad_norm 2.5794 (2.5794/0.0000) mem 16099MB [2025-01-17 23:12:44 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][10/312] eta 0:03:11 lr 0.003903 time 0.4345 (0.6330) model_time 0.4341 (0.4654) loss 4.1864 (4.2343) grad_norm 1.0032 (1.7097/0.5895) mem 16099MB [2025-01-17 23:12:49 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][20/312] eta 0:02:39 lr 0.003903 time 0.4407 (0.5476) model_time 0.4406 (0.4596) loss 5.0877 (4.0847) grad_norm 3.7700 (1.7624/0.7333) mem 16099MB [2025-01-17 23:12:53 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][30/312] eta 0:02:26 lr 0.003902 time 0.4778 (0.5210) model_time 0.4776 (0.4613) loss 4.5285 (4.0710) grad_norm 1.6296 (1.6978/0.6906) mem 16099MB [2025-01-17 23:12:58 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][40/312] eta 0:02:19 lr 0.003902 time 0.4480 (0.5113) model_time 0.4475 (0.4661) loss 3.9849 (4.0177) grad_norm 1.6004 (1.6679/0.6667) mem 16099MB [2025-01-17 23:13:03 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][50/312] eta 0:02:11 lr 0.003902 time 0.4476 (0.5005) model_time 0.4474 (0.4641) loss 4.3305 (4.0484) grad_norm 1.8126 (1.6945/0.7380) mem 16099MB [2025-01-17 23:13:07 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][60/312] eta 0:02:04 lr 0.003902 time 0.4457 (0.4929) model_time 0.4452 (0.4623) loss 4.1969 (4.0766) grad_norm 2.1972 (1.6740/0.7031) mem 16099MB [2025-01-17 23:13:12 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][70/312] eta 0:01:58 lr 0.003902 time 0.4822 (0.4883) model_time 0.4820 (0.4620) loss 4.4765 (4.0908) grad_norm 1.2859 (1.6333/0.6844) mem 16099MB [2025-01-17 23:13:17 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][80/312] eta 0:01:52 lr 0.003901 time 0.4519 (0.4844) model_time 0.4514 (0.4613) loss 4.4982 (4.0625) grad_norm 1.8010 (1.5884/0.6599) mem 16099MB [2025-01-17 23:13:21 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][90/312] eta 0:01:46 lr 0.003901 time 0.4461 (0.4813) model_time 0.4459 (0.4607) loss 3.6140 (4.0617) grad_norm 2.7436 (1.6463/0.7289) mem 16099MB [2025-01-17 23:13:26 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][100/312] eta 0:01:41 lr 0.003901 time 0.4477 (0.4784) model_time 0.4476 (0.4598) loss 3.3398 (4.0287) grad_norm 0.9910 (1.6182/0.7093) mem 16099MB [2025-01-17 23:13:30 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][110/312] eta 0:01:36 lr 0.003901 time 0.4523 (0.4785) model_time 0.4521 (0.4616) loss 4.1740 (4.0408) grad_norm 1.1570 (1.6080/0.6840) mem 16099MB [2025-01-17 23:13:35 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][120/312] eta 0:01:31 lr 0.003901 time 0.4484 (0.4762) model_time 0.4482 (0.4606) loss 4.0620 (4.0527) grad_norm 4.6667 (1.6317/0.7262) mem 16099MB [2025-01-17 23:13:40 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][130/312] eta 0:01:26 lr 0.003900 time 0.4427 (0.4756) model_time 0.4422 (0.4612) loss 2.9728 (4.0544) grad_norm 2.1087 (1.6580/0.7283) mem 16099MB [2025-01-17 23:13:44 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][140/312] eta 0:01:21 lr 0.003900 time 0.4416 (0.4743) model_time 0.4414 (0.4608) loss 3.6011 (4.0490) grad_norm 1.7574 (1.6620/0.7432) mem 16099MB [2025-01-17 23:13:49 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][150/312] eta 0:01:16 lr 0.003900 time 0.4468 (0.4742) model_time 0.4464 (0.4616) loss 3.7190 (4.0019) grad_norm 1.9113 (1.6374/0.7279) mem 16099MB [2025-01-17 23:13:54 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][160/312] eta 0:01:11 lr 0.003900 time 0.5537 (0.4734) model_time 0.5535 (0.4616) loss 4.1360 (3.9933) grad_norm 2.3946 (1.6348/0.7377) mem 16099MB [2025-01-17 23:13:58 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][170/312] eta 0:01:07 lr 0.003900 time 0.4475 (0.4719) model_time 0.4470 (0.4607) loss 3.8036 (3.9925) grad_norm 1.9895 (1.6254/0.7241) mem 16099MB [2025-01-17 23:14:03 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][180/312] eta 0:01:02 lr 0.003899 time 0.4447 (0.4712) model_time 0.4445 (0.4606) loss 4.2952 (4.0036) grad_norm 0.9390 (1.6045/0.7121) mem 16099MB [2025-01-17 23:14:07 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][190/312] eta 0:00:57 lr 0.003899 time 0.4652 (0.4706) model_time 0.4647 (0.4606) loss 4.2510 (3.9948) grad_norm 0.9522 (1.5922/0.7035) mem 16099MB [2025-01-17 23:14:12 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][200/312] eta 0:00:52 lr 0.003899 time 0.4538 (0.4706) model_time 0.4536 (0.4610) loss 2.5517 (3.9966) grad_norm 1.9721 (1.6049/0.6957) mem 16099MB [2025-01-17 23:14:17 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][210/312] eta 0:00:47 lr 0.003899 time 0.4432 (0.4701) model_time 0.4427 (0.4610) loss 3.8090 (3.9955) grad_norm 1.2652 (1.6157/0.6985) mem 16099MB [2025-01-17 23:14:21 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][220/312] eta 0:00:43 lr 0.003899 time 0.4520 (0.4693) model_time 0.4515 (0.4606) loss 3.4862 (3.9912) grad_norm 1.9900 (1.6050/0.6914) mem 16099MB [2025-01-17 23:14:26 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][230/312] eta 0:00:38 lr 0.003898 time 0.4506 (0.4686) model_time 0.4504 (0.4603) loss 4.3579 (3.9917) grad_norm 1.2388 (1.6134/0.6875) mem 16099MB [2025-01-17 23:14:30 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][240/312] eta 0:00:33 lr 0.003898 time 0.4458 (0.4682) model_time 0.4453 (0.4602) loss 4.6950 (3.9866) grad_norm 1.6215 (1.6461/0.7263) mem 16099MB [2025-01-17 23:14:35 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][250/312] eta 0:00:29 lr 0.003898 time 0.4422 (0.4679) model_time 0.4417 (0.4602) loss 4.4396 (3.9862) grad_norm 1.5923 (1.6349/0.7209) mem 16099MB [2025-01-17 23:14:40 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][260/312] eta 0:00:24 lr 0.003898 time 0.4550 (0.4681) model_time 0.4545 (0.4606) loss 4.4187 (3.9747) grad_norm 1.7427 (1.6192/0.7150) mem 16099MB [2025-01-17 23:14:44 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][270/312] eta 0:00:19 lr 0.003897 time 0.4448 (0.4681) model_time 0.4446 (0.4609) loss 4.2682 (3.9797) grad_norm 1.3849 (1.6286/0.7162) mem 16099MB [2025-01-17 23:14:49 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][280/312] eta 0:00:14 lr 0.003897 time 0.4489 (0.4687) model_time 0.4484 (0.4617) loss 3.1081 (3.9610) grad_norm 1.6118 (1.6191/0.7090) mem 16099MB [2025-01-17 23:14:54 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][290/312] eta 0:00:10 lr 0.003897 time 0.4709 (0.4686) model_time 0.4704 (0.4619) loss 4.4716 (3.9641) grad_norm 0.8589 (1.6031/0.7057) mem 16099MB [2025-01-17 23:14:58 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][300/312] eta 0:00:05 lr 0.003897 time 0.4375 (0.4684) model_time 0.4374 (0.4619) loss 4.8800 (3.9674) grad_norm 1.5097 (1.6182/0.7716) mem 16099MB [2025-01-17 23:15:03 internimage_t_1k_224] (main.py 510): INFO Train: [30/300][310/312] eta 0:00:00 lr 0.003897 time 0.4498 (0.4676) model_time 0.4497 (0.4613) loss 4.3693 (3.9757) grad_norm 2.7255 (1.6087/0.7736) mem 16099MB [2025-01-17 23:15:03 internimage_t_1k_224] (main.py 519): INFO EPOCH 30 training takes 0:02:25 [2025-01-17 23:15:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_30.pth saving...... [2025-01-17 23:15:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_30.pth saved !!! [2025-01-17 23:15:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.556 (7.556) Loss 1.2428 (1.2428) Acc@1 73.413 (73.413) Acc@5 92.383 (92.383) Mem 16099MB [2025-01-17 23:15:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.020) Loss 1.7079 (1.4265) Acc@1 63.647 (69.254) Acc@5 85.547 (89.837) Mem 16099MB [2025-01-17 23:15:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:30] * Acc@1 69.308 Acc@5 89.921 [2025-01-17 23:15:16 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 69.3% [2025-01-17 23:15:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:15:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:15:17 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 69.31% [2025-01-17 23:15:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.414 (7.414) Loss 6.5335 (6.5335) Acc@1 0.513 (0.513) Acc@5 3.882 (3.882) Mem 16099MB [2025-01-17 23:15:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.015) Loss 6.5271 (6.5157) Acc@1 1.221 (0.828) Acc@5 3.735 (4.013) Mem 16099MB [2025-01-17 23:15:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:30] * Acc@1 1.056 Acc@5 4.505 [2025-01-17 23:15:28 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 1.1% [2025-01-17 23:15:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:15:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:15:29 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 1.06% [2025-01-17 23:15:31 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][0/312] eta 0:09:51 lr 0.003897 time 1.8946 (1.8946) model_time 0.4738 (0.4738) loss 3.3379 (3.3379) grad_norm 1.4382 (1.4382/0.0000) mem 16099MB [2025-01-17 23:15:36 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][10/312] eta 0:03:03 lr 0.003896 time 0.4502 (0.6069) model_time 0.4500 (0.4774) loss 4.4960 (4.0548) grad_norm 1.9056 (1.6538/0.4087) mem 16099MB [2025-01-17 23:15:41 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][20/312] eta 0:02:35 lr 0.003896 time 0.4554 (0.5336) model_time 0.4553 (0.4656) loss 3.9278 (3.9684) grad_norm 0.9889 (1.7801/0.6191) mem 16099MB [2025-01-17 23:15:45 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][30/312] eta 0:02:23 lr 0.003896 time 0.4657 (0.5078) model_time 0.4652 (0.4617) loss 3.9725 (4.0127) grad_norm 0.8812 (1.7784/0.6691) mem 16099MB [2025-01-17 23:15:50 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][40/312] eta 0:02:14 lr 0.003896 time 0.4675 (0.4956) model_time 0.4672 (0.4606) loss 3.9959 (4.0577) grad_norm 0.8356 (1.6215/0.6542) mem 16099MB [2025-01-17 23:15:54 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][50/312] eta 0:02:07 lr 0.003896 time 0.4525 (0.4872) model_time 0.4521 (0.4590) loss 4.2860 (3.9774) grad_norm 1.3237 (1.5472/0.6194) mem 16099MB [2025-01-17 23:15:59 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][60/312] eta 0:02:01 lr 0.003895 time 0.4444 (0.4828) model_time 0.4440 (0.4591) loss 4.1632 (3.9974) grad_norm 1.5459 (1.4823/0.5901) mem 16099MB [2025-01-17 23:16:03 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][70/312] eta 0:01:55 lr 0.003895 time 0.4523 (0.4784) model_time 0.4521 (0.4581) loss 3.3572 (3.9789) grad_norm 2.4369 (1.5595/0.6624) mem 16099MB [2025-01-17 23:16:08 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][80/312] eta 0:01:50 lr 0.003895 time 0.4494 (0.4764) model_time 0.4489 (0.4585) loss 2.8238 (3.9557) grad_norm 0.9679 (1.5525/0.6496) mem 16099MB [2025-01-17 23:16:13 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][90/312] eta 0:01:45 lr 0.003895 time 0.4489 (0.4751) model_time 0.4487 (0.4591) loss 4.1673 (3.9578) grad_norm 1.0520 (1.5341/0.6281) mem 16099MB [2025-01-17 23:16:17 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][100/312] eta 0:01:40 lr 0.003894 time 0.4478 (0.4729) model_time 0.4473 (0.4584) loss 4.1767 (3.9321) grad_norm 1.3999 (1.6131/0.7697) mem 16099MB [2025-01-17 23:16:22 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][110/312] eta 0:01:35 lr 0.003894 time 0.4495 (0.4718) model_time 0.4493 (0.4587) loss 4.2431 (3.9321) grad_norm 0.9554 (1.5934/0.7453) mem 16099MB [2025-01-17 23:16:26 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][120/312] eta 0:01:30 lr 0.003894 time 0.4476 (0.4717) model_time 0.4474 (0.4596) loss 3.3512 (3.9483) grad_norm 0.8766 (1.5920/0.7336) mem 16099MB [2025-01-17 23:16:31 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][130/312] eta 0:01:25 lr 0.003894 time 0.4619 (0.4706) model_time 0.4614 (0.4593) loss 2.8234 (3.9467) grad_norm 1.7322 (1.5769/0.7177) mem 16099MB [2025-01-17 23:16:35 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][140/312] eta 0:01:20 lr 0.003894 time 0.4601 (0.4691) model_time 0.4596 (0.4587) loss 2.9703 (3.9388) grad_norm 0.8266 (1.5708/0.7351) mem 16099MB [2025-01-17 23:16:40 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][150/312] eta 0:01:16 lr 0.003893 time 0.4401 (0.4703) model_time 0.4399 (0.4605) loss 2.9968 (3.9383) grad_norm 0.8524 (1.5521/0.7187) mem 16099MB [2025-01-17 23:16:45 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][160/312] eta 0:01:11 lr 0.003893 time 0.4714 (0.4705) model_time 0.4709 (0.4613) loss 4.2692 (3.9315) grad_norm 1.7211 (1.5404/0.7126) mem 16099MB [2025-01-17 23:16:50 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][170/312] eta 0:01:06 lr 0.003893 time 0.4633 (0.4702) model_time 0.4631 (0.4615) loss 3.5246 (3.9358) grad_norm 3.2052 (1.5527/0.7123) mem 16099MB [2025-01-17 23:16:54 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][180/312] eta 0:01:01 lr 0.003893 time 0.4505 (0.4692) model_time 0.4499 (0.4609) loss 3.2793 (3.9160) grad_norm 1.5062 (1.5664/0.7083) mem 16099MB [2025-01-17 23:16:59 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][190/312] eta 0:00:57 lr 0.003893 time 0.4505 (0.4696) model_time 0.4504 (0.4618) loss 4.1829 (3.9072) grad_norm 0.9472 (1.5502/0.6993) mem 16099MB [2025-01-17 23:17:04 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][200/312] eta 0:00:52 lr 0.003892 time 0.4515 (0.4686) model_time 0.4510 (0.4612) loss 3.0065 (3.9052) grad_norm 1.9313 (1.5924/0.8481) mem 16099MB [2025-01-17 23:17:08 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][210/312] eta 0:00:47 lr 0.003892 time 0.5745 (0.4692) model_time 0.5740 (0.4620) loss 4.1972 (3.9093) grad_norm 1.1983 (1.5962/0.8310) mem 16099MB [2025-01-17 23:17:13 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][220/312] eta 0:00:43 lr 0.003892 time 0.4570 (0.4685) model_time 0.4569 (0.4617) loss 3.4355 (3.9169) grad_norm 2.9250 (1.5949/0.8181) mem 16099MB [2025-01-17 23:17:17 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][230/312] eta 0:00:38 lr 0.003892 time 0.4515 (0.4680) model_time 0.4514 (0.4615) loss 3.6058 (3.9073) grad_norm 1.6066 (1.5943/0.8084) mem 16099MB [2025-01-17 23:17:22 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][240/312] eta 0:00:33 lr 0.003891 time 0.5475 (0.4681) model_time 0.5471 (0.4618) loss 4.7357 (3.9119) grad_norm 1.4450 (1.5834/0.7960) mem 16099MB [2025-01-17 23:17:27 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][250/312] eta 0:00:29 lr 0.003891 time 0.4410 (0.4681) model_time 0.4408 (0.4620) loss 4.2038 (3.9131) grad_norm 1.4872 (1.5775/0.7866) mem 16099MB [2025-01-17 23:17:31 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][260/312] eta 0:00:24 lr 0.003891 time 0.4515 (0.4675) model_time 0.4513 (0.4617) loss 4.2087 (3.9170) grad_norm 2.3280 (1.5820/0.7761) mem 16099MB [2025-01-17 23:17:36 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][270/312] eta 0:00:19 lr 0.003891 time 0.4485 (0.4668) model_time 0.4483 (0.4611) loss 4.0234 (3.9156) grad_norm 1.0180 (1.6426/1.0544) mem 16099MB [2025-01-17 23:17:40 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][280/312] eta 0:00:14 lr 0.003891 time 0.4428 (0.4665) model_time 0.4423 (0.4611) loss 4.0203 (3.9164) grad_norm 1.5007 (1.6406/1.0425) mem 16099MB [2025-01-17 23:17:45 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][290/312] eta 0:00:10 lr 0.003890 time 0.4495 (0.4664) model_time 0.4490 (0.4611) loss 3.7788 (3.9081) grad_norm 1.1698 (1.6395/1.0303) mem 16099MB [2025-01-17 23:17:50 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][300/312] eta 0:00:05 lr 0.003890 time 0.4438 (0.4659) model_time 0.4437 (0.4607) loss 2.4848 (3.9098) grad_norm 1.3094 (1.6249/1.0175) mem 16099MB [2025-01-17 23:17:54 internimage_t_1k_224] (main.py 510): INFO Train: [31/300][310/312] eta 0:00:00 lr 0.003890 time 0.4450 (0.4652) model_time 0.4449 (0.4601) loss 4.3361 (3.9173) grad_norm 0.8836 (1.6146/1.0170) mem 16099MB [2025-01-17 23:17:54 internimage_t_1k_224] (main.py 519): INFO EPOCH 31 training takes 0:02:25 [2025-01-17 23:17:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_31.pth saving...... [2025-01-17 23:17:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_31.pth saved !!! [2025-01-17 23:18:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.634 (7.634) Loss 1.1454 (1.1454) Acc@1 73.706 (73.706) Acc@5 92.651 (92.651) Mem 16099MB [2025-01-17 23:18:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.031) Loss 1.6211 (1.3650) Acc@1 63.159 (69.609) Acc@5 85.767 (89.870) Mem 16099MB [2025-01-17 23:18:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:31] * Acc@1 69.556 Acc@5 89.959 [2025-01-17 23:18:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 69.6% [2025-01-17 23:18:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:18:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:18:08 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 69.56% [2025-01-17 23:18:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.475 (7.475) Loss 6.5150 (6.5150) Acc@1 0.537 (0.537) Acc@5 3.833 (3.833) Mem 16099MB [2025-01-17 23:18:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.993) Loss 6.4545 (6.4482) Acc@1 1.709 (1.110) Acc@5 4.761 (4.987) Mem 16099MB [2025-01-17 23:18:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:31] * Acc@1 1.362 Acc@5 5.462 [2025-01-17 23:18:19 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 1.4% [2025-01-17 23:18:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:18:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:18:21 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 1.36% [2025-01-17 23:18:22 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][0/312] eta 0:09:13 lr 0.003890 time 1.7725 (1.7725) model_time 0.4752 (0.4752) loss 3.2836 (3.2836) grad_norm 1.5914 (1.5914/0.0000) mem 16099MB [2025-01-17 23:18:27 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][10/312] eta 0:03:03 lr 0.003890 time 0.4516 (0.6086) model_time 0.4514 (0.4779) loss 3.0996 (3.6874) grad_norm 1.2787 (2.2556/0.9340) mem 16099MB [2025-01-17 23:18:32 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][20/312] eta 0:02:37 lr 0.003889 time 0.4560 (0.5397) model_time 0.4559 (0.4711) loss 4.7051 (3.7758) grad_norm 1.7769 (2.3329/1.0550) mem 16099MB [2025-01-17 23:18:37 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][30/312] eta 0:02:25 lr 0.003889 time 0.4511 (0.5148) model_time 0.4509 (0.4682) loss 4.1641 (3.8858) grad_norm 0.8833 (1.9301/1.0557) mem 16099MB [2025-01-17 23:18:41 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][40/312] eta 0:02:15 lr 0.003889 time 0.4522 (0.4999) model_time 0.4520 (0.4646) loss 4.1880 (3.9181) grad_norm 1.7582 (1.7934/0.9701) mem 16099MB [2025-01-17 23:18:46 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][50/312] eta 0:02:08 lr 0.003889 time 0.4639 (0.4906) model_time 0.4637 (0.4621) loss 4.2988 (3.9726) grad_norm 1.1223 (1.6732/0.9094) mem 16099MB [2025-01-17 23:18:50 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][60/312] eta 0:02:02 lr 0.003889 time 0.5356 (0.4858) model_time 0.5355 (0.4619) loss 3.6133 (3.9740) grad_norm 2.8063 (1.6437/0.8686) mem 16099MB [2025-01-17 23:18:55 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][70/312] eta 0:01:56 lr 0.003888 time 0.4455 (0.4809) model_time 0.4453 (0.4603) loss 4.8295 (3.9701) grad_norm 1.9532 (1.6743/0.8444) mem 16099MB [2025-01-17 23:18:59 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][80/312] eta 0:01:51 lr 0.003888 time 0.4493 (0.4786) model_time 0.4490 (0.4605) loss 4.2267 (3.9894) grad_norm 1.0173 (1.6768/0.8280) mem 16099MB [2025-01-17 23:19:04 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][90/312] eta 0:01:45 lr 0.003888 time 0.5392 (0.4767) model_time 0.5390 (0.4605) loss 4.8158 (3.9888) grad_norm 0.9112 (1.6537/0.7945) mem 16099MB [2025-01-17 23:19:09 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][100/312] eta 0:01:40 lr 0.003888 time 0.4518 (0.4744) model_time 0.4516 (0.4599) loss 3.5449 (3.9928) grad_norm 0.7691 (1.6198/0.7674) mem 16099MB [2025-01-17 23:19:13 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][110/312] eta 0:01:35 lr 0.003887 time 0.4610 (0.4735) model_time 0.4605 (0.4602) loss 4.5637 (3.9882) grad_norm 1.5720 (1.5946/0.7415) mem 16099MB [2025-01-17 23:19:18 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][120/312] eta 0:01:30 lr 0.003887 time 0.5412 (0.4738) model_time 0.5410 (0.4616) loss 4.0664 (3.9690) grad_norm 0.9681 (1.6257/0.7948) mem 16099MB [2025-01-17 23:19:23 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][130/312] eta 0:01:26 lr 0.003887 time 0.4457 (0.4740) model_time 0.4452 (0.4627) loss 4.1737 (3.9872) grad_norm 0.9811 (1.6325/0.8302) mem 16099MB [2025-01-17 23:19:28 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][140/312] eta 0:01:21 lr 0.003887 time 0.5652 (0.4748) model_time 0.5650 (0.4642) loss 4.3404 (3.9905) grad_norm 0.8759 (1.6261/0.8214) mem 16099MB [2025-01-17 23:19:32 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][150/312] eta 0:01:16 lr 0.003887 time 0.4569 (0.4733) model_time 0.4564 (0.4634) loss 4.0288 (3.9809) grad_norm 1.1949 (1.6135/0.8002) mem 16099MB [2025-01-17 23:19:37 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][160/312] eta 0:01:11 lr 0.003886 time 0.4648 (0.4719) model_time 0.4646 (0.4626) loss 4.9048 (3.9728) grad_norm 0.9745 (1.5892/0.7845) mem 16099MB [2025-01-17 23:19:41 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][170/312] eta 0:01:06 lr 0.003886 time 0.4466 (0.4709) model_time 0.4461 (0.4622) loss 2.8924 (3.9653) grad_norm 1.5622 (1.6020/0.7764) mem 16099MB [2025-01-17 23:19:46 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][180/312] eta 0:01:02 lr 0.003886 time 0.4632 (0.4706) model_time 0.4627 (0.4623) loss 4.3887 (3.9471) grad_norm 1.4614 (1.6383/0.7914) mem 16099MB [2025-01-17 23:19:50 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][190/312] eta 0:00:57 lr 0.003886 time 0.4487 (0.4696) model_time 0.4482 (0.4617) loss 5.0620 (3.9613) grad_norm 1.1615 (1.6357/0.7775) mem 16099MB [2025-01-17 23:19:55 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][200/312] eta 0:00:52 lr 0.003885 time 0.4555 (0.4692) model_time 0.4548 (0.4616) loss 4.3923 (3.9575) grad_norm 1.6946 (1.6073/0.7699) mem 16099MB [2025-01-17 23:20:00 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][210/312] eta 0:00:47 lr 0.003885 time 0.4519 (0.4689) model_time 0.4517 (0.4617) loss 3.4960 (3.9576) grad_norm 1.3882 (1.5960/0.7666) mem 16099MB [2025-01-17 23:20:04 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][220/312] eta 0:00:43 lr 0.003885 time 0.4373 (0.4682) model_time 0.4368 (0.4613) loss 3.7704 (3.9658) grad_norm 2.3102 (1.5925/0.7579) mem 16099MB [2025-01-17 23:20:09 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][230/312] eta 0:00:38 lr 0.003885 time 0.4495 (0.4679) model_time 0.4490 (0.4613) loss 2.9920 (3.9594) grad_norm 1.3729 (1.5817/0.7463) mem 16099MB [2025-01-17 23:20:13 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][240/312] eta 0:00:33 lr 0.003885 time 0.4786 (0.4674) model_time 0.4784 (0.4610) loss 4.1268 (3.9513) grad_norm 1.0953 (1.5697/0.7366) mem 16099MB [2025-01-17 23:20:18 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][250/312] eta 0:00:28 lr 0.003884 time 0.4452 (0.4670) model_time 0.4447 (0.4609) loss 4.0762 (3.9411) grad_norm 1.2007 (1.5969/0.7730) mem 16099MB [2025-01-17 23:20:23 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][260/312] eta 0:00:24 lr 0.003884 time 0.4613 (0.4673) model_time 0.4609 (0.4614) loss 4.9064 (3.9432) grad_norm 1.1262 (1.6190/0.7976) mem 16099MB [2025-01-17 23:20:27 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][270/312] eta 0:00:19 lr 0.003884 time 0.4503 (0.4667) model_time 0.4501 (0.4610) loss 4.1612 (3.9618) grad_norm 0.9469 (1.6162/0.7917) mem 16099MB [2025-01-17 23:20:32 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][280/312] eta 0:00:14 lr 0.003884 time 0.4464 (0.4661) model_time 0.4459 (0.4606) loss 5.0041 (3.9715) grad_norm 1.3737 (1.6080/0.7799) mem 16099MB [2025-01-17 23:20:36 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][290/312] eta 0:00:10 lr 0.003883 time 0.4614 (0.4659) model_time 0.4612 (0.4605) loss 3.2192 (3.9537) grad_norm 2.3124 (1.6267/0.8017) mem 16099MB [2025-01-17 23:20:41 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][300/312] eta 0:00:05 lr 0.003883 time 0.4364 (0.4659) model_time 0.4363 (0.4607) loss 4.5121 (3.9578) grad_norm 1.3314 (1.6377/0.8021) mem 16099MB [2025-01-17 23:20:46 internimage_t_1k_224] (main.py 510): INFO Train: [32/300][310/312] eta 0:00:00 lr 0.003883 time 0.5123 (0.4663) model_time 0.5122 (0.4612) loss 3.3668 (3.9561) grad_norm 2.4622 (1.6266/0.7873) mem 16099MB [2025-01-17 23:20:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 32 training takes 0:02:25 [2025-01-17 23:20:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_32.pth saving...... [2025-01-17 23:20:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_32.pth saved !!! [2025-01-17 23:20:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.468 (7.468) Loss 1.2168 (1.2168) Acc@1 73.608 (73.608) Acc@5 92.749 (92.749) Mem 16099MB [2025-01-17 23:20:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.002) Loss 1.7459 (1.4430) Acc@1 63.281 (69.735) Acc@5 85.742 (89.935) Mem 16099MB [2025-01-17 23:20:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:32] * Acc@1 69.786 Acc@5 90.079 [2025-01-17 23:20:58 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 69.8% [2025-01-17 23:20:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:21:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:21:00 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 69.79% [2025-01-17 23:21:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.265 (7.265) Loss 6.4937 (6.4937) Acc@1 0.610 (0.610) Acc@5 3.882 (3.882) Mem 16099MB [2025-01-17 23:21:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.992) Loss 6.3693 (6.3743) Acc@1 2.124 (1.523) Acc@5 6.055 (6.146) Mem 16099MB [2025-01-17 23:21:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:32] * Acc@1 1.781 Acc@5 6.654 [2025-01-17 23:21:11 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 1.8% [2025-01-17 23:21:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:21:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:21:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 1.78% [2025-01-17 23:21:14 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][0/312] eta 0:10:45 lr 0.003883 time 2.0684 (2.0684) model_time 0.7207 (0.7207) loss 3.8166 (3.8166) grad_norm 1.1774 (1.1774/0.0000) mem 16099MB [2025-01-17 23:21:19 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][10/312] eta 0:03:04 lr 0.003883 time 0.4706 (0.6122) model_time 0.4705 (0.4893) loss 4.6334 (4.2675) grad_norm 1.3663 (1.1746/0.2900) mem 16099MB [2025-01-17 23:21:23 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][20/312] eta 0:02:37 lr 0.003882 time 0.4490 (0.5389) model_time 0.4488 (0.4744) loss 4.2171 (3.9154) grad_norm 1.4660 (1.3344/0.3877) mem 16099MB [2025-01-17 23:21:28 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][30/312] eta 0:02:24 lr 0.003882 time 0.4502 (0.5116) model_time 0.4500 (0.4678) loss 4.1018 (3.8677) grad_norm 1.2006 (1.3900/0.5163) mem 16099MB [2025-01-17 23:21:32 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][40/312] eta 0:02:15 lr 0.003882 time 0.4527 (0.4982) model_time 0.4522 (0.4649) loss 4.2407 (3.8666) grad_norm 1.1364 (1.3456/0.4679) mem 16099MB [2025-01-17 23:21:37 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][50/312] eta 0:02:09 lr 0.003882 time 0.4393 (0.4927) model_time 0.4390 (0.4659) loss 3.8209 (3.9023) grad_norm 1.3369 (1.3991/0.4709) mem 16099MB [2025-01-17 23:21:42 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][60/312] eta 0:02:03 lr 0.003882 time 0.4647 (0.4883) model_time 0.4642 (0.4658) loss 4.1956 (3.9156) grad_norm 2.3269 (1.5644/0.7336) mem 16099MB [2025-01-17 23:21:46 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][70/312] eta 0:01:57 lr 0.003881 time 0.4584 (0.4844) model_time 0.4582 (0.4651) loss 4.8396 (3.9116) grad_norm 1.4474 (1.5413/0.7019) mem 16099MB [2025-01-17 23:21:51 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][80/312] eta 0:01:51 lr 0.003881 time 0.4427 (0.4824) model_time 0.4424 (0.4654) loss 3.3206 (3.8755) grad_norm 1.4096 (1.5182/0.6720) mem 16099MB [2025-01-17 23:21:56 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][90/312] eta 0:01:46 lr 0.003881 time 0.4429 (0.4817) model_time 0.4424 (0.4665) loss 3.1669 (3.8418) grad_norm 2.0157 (1.5226/0.6409) mem 16099MB [2025-01-17 23:22:00 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][100/312] eta 0:01:41 lr 0.003881 time 0.4346 (0.4788) model_time 0.4340 (0.4651) loss 3.4487 (3.8635) grad_norm 1.6380 (1.5406/0.6283) mem 16099MB [2025-01-17 23:22:05 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][110/312] eta 0:01:36 lr 0.003880 time 0.4435 (0.4782) model_time 0.4430 (0.4657) loss 3.4383 (3.8455) grad_norm 1.0365 (1.5596/0.6561) mem 16099MB [2025-01-17 23:22:09 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][120/312] eta 0:01:31 lr 0.003880 time 0.4476 (0.4767) model_time 0.4471 (0.4652) loss 3.3577 (3.8618) grad_norm 1.6060 (1.5350/0.6460) mem 16099MB [2025-01-17 23:22:14 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][130/312] eta 0:01:26 lr 0.003880 time 0.4511 (0.4756) model_time 0.4509 (0.4649) loss 3.3061 (3.8575) grad_norm 1.3250 (1.5339/0.6300) mem 16099MB [2025-01-17 23:22:19 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][140/312] eta 0:01:21 lr 0.003880 time 0.4311 (0.4740) model_time 0.4309 (0.4641) loss 3.4600 (3.8460) grad_norm 1.2842 (1.5937/0.7885) mem 16099MB [2025-01-17 23:22:23 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][150/312] eta 0:01:16 lr 0.003880 time 0.4549 (0.4736) model_time 0.4544 (0.4643) loss 3.9055 (3.8477) grad_norm 1.1531 (1.5875/0.7713) mem 16099MB [2025-01-17 23:22:28 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][160/312] eta 0:01:11 lr 0.003879 time 0.4574 (0.4723) model_time 0.4572 (0.4635) loss 2.6332 (3.8498) grad_norm 1.0710 (1.5541/0.7616) mem 16099MB [2025-01-17 23:22:32 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][170/312] eta 0:01:06 lr 0.003879 time 0.4547 (0.4711) model_time 0.4542 (0.4628) loss 4.2273 (3.8422) grad_norm 3.5823 (1.5470/0.7616) mem 16099MB [2025-01-17 23:22:37 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][180/312] eta 0:01:02 lr 0.003879 time 0.4655 (0.4701) model_time 0.4650 (0.4622) loss 4.2068 (3.8630) grad_norm 1.9191 (1.6134/0.8537) mem 16099MB [2025-01-17 23:22:41 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][190/312] eta 0:00:57 lr 0.003879 time 0.4537 (0.4693) model_time 0.4532 (0.4619) loss 4.2225 (3.8683) grad_norm 0.7749 (1.6055/0.8371) mem 16099MB [2025-01-17 23:22:46 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][200/312] eta 0:00:52 lr 0.003878 time 0.4467 (0.4683) model_time 0.4465 (0.4612) loss 2.8208 (3.8592) grad_norm 4.1177 (1.6125/0.8445) mem 16099MB [2025-01-17 23:22:50 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][210/312] eta 0:00:47 lr 0.003878 time 0.4820 (0.4676) model_time 0.4815 (0.4608) loss 4.0210 (3.8741) grad_norm 1.6821 (1.5984/0.8327) mem 16099MB [2025-01-17 23:22:55 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][220/312] eta 0:00:42 lr 0.003878 time 0.4476 (0.4670) model_time 0.4472 (0.4605) loss 3.7197 (3.8744) grad_norm 3.4015 (1.6192/0.8348) mem 16099MB [2025-01-17 23:23:00 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][230/312] eta 0:00:38 lr 0.003878 time 0.4412 (0.4670) model_time 0.4407 (0.4608) loss 3.7924 (3.8720) grad_norm 0.9531 (1.6240/0.8279) mem 16099MB [2025-01-17 23:23:04 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][240/312] eta 0:00:33 lr 0.003877 time 0.4478 (0.4665) model_time 0.4473 (0.4605) loss 4.6591 (3.8733) grad_norm 2.7746 (1.6375/0.8256) mem 16099MB [2025-01-17 23:23:09 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][250/312] eta 0:00:28 lr 0.003877 time 0.4481 (0.4667) model_time 0.4479 (0.4609) loss 3.5659 (3.8681) grad_norm 2.0583 (1.6423/0.8141) mem 16099MB [2025-01-17 23:23:14 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][260/312] eta 0:00:24 lr 0.003877 time 0.4461 (0.4665) model_time 0.4456 (0.4610) loss 3.7854 (3.8735) grad_norm 0.9275 (1.6272/0.8032) mem 16099MB [2025-01-17 23:23:18 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][270/312] eta 0:00:19 lr 0.003877 time 0.4520 (0.4662) model_time 0.4515 (0.4608) loss 2.6347 (3.8543) grad_norm 1.0276 (1.6208/0.7925) mem 16099MB [2025-01-17 23:23:23 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][280/312] eta 0:00:14 lr 0.003877 time 0.4473 (0.4670) model_time 0.4470 (0.4618) loss 4.0199 (3.8557) grad_norm 2.3989 (1.6185/0.7855) mem 16099MB [2025-01-17 23:23:28 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][290/312] eta 0:00:10 lr 0.003876 time 0.4441 (0.4667) model_time 0.4436 (0.4617) loss 3.6501 (3.8621) grad_norm 1.6250 (1.6079/0.7764) mem 16099MB [2025-01-17 23:23:32 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][300/312] eta 0:00:05 lr 0.003876 time 0.4369 (0.4661) model_time 0.4368 (0.4612) loss 2.8587 (3.8507) grad_norm 1.3145 (1.6086/0.7708) mem 16099MB [2025-01-17 23:23:37 internimage_t_1k_224] (main.py 510): INFO Train: [33/300][310/312] eta 0:00:00 lr 0.003876 time 0.4382 (0.4655) model_time 0.4380 (0.4607) loss 4.1209 (3.8466) grad_norm 1.3726 (1.6249/0.7745) mem 16099MB [2025-01-17 23:23:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 33 training takes 0:02:25 [2025-01-17 23:23:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_33.pth saving...... [2025-01-17 23:23:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_33.pth saved !!! [2025-01-17 23:23:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.626 (7.626) Loss 1.1632 (1.1632) Acc@1 74.438 (74.438) Acc@5 93.042 (93.042) Mem 16099MB [2025-01-17 23:23:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.007) Loss 1.6866 (1.4097) Acc@1 64.282 (69.804) Acc@5 85.962 (89.970) Mem 16099MB [2025-01-17 23:23:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:33] * Acc@1 69.896 Acc@5 90.099 [2025-01-17 23:23:49 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 69.9% [2025-01-17 23:23:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:23:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:23:51 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 69.90% [2025-01-17 23:23:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.491 (7.491) Loss 6.4580 (6.4580) Acc@1 0.806 (0.806) Acc@5 4.492 (4.492) Mem 16099MB [2025-01-17 23:24:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.995) Loss 6.2729 (6.2881) Acc@1 2.808 (2.089) Acc@5 7.788 (7.659) Mem 16099MB [2025-01-17 23:24:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:33] * Acc@1 2.343 Acc@5 8.189 [2025-01-17 23:24:02 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 2.3% [2025-01-17 23:24:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:24:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:24:03 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 2.34% [2025-01-17 23:24:06 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][0/312] eta 0:12:58 lr 0.003876 time 2.4937 (2.4937) model_time 0.4806 (0.4806) loss 4.1404 (4.1404) grad_norm 1.4115 (1.4115/0.0000) mem 16099MB [2025-01-17 23:24:10 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][10/312] eta 0:03:19 lr 0.003876 time 0.4438 (0.6596) model_time 0.4434 (0.4762) loss 3.6687 (3.8055) grad_norm 1.5425 (1.2229/0.2948) mem 16099MB [2025-01-17 23:24:15 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][20/312] eta 0:02:44 lr 0.003875 time 0.4419 (0.5619) model_time 0.4418 (0.4656) loss 4.5017 (3.7850) grad_norm 0.9350 (1.2057/0.3495) mem 16099MB [2025-01-17 23:24:20 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][30/312] eta 0:02:31 lr 0.003875 time 0.4402 (0.5374) model_time 0.4397 (0.4720) loss 3.6593 (3.9442) grad_norm 1.5604 (1.3547/0.4797) mem 16099MB [2025-01-17 23:24:24 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][40/312] eta 0:02:21 lr 0.003875 time 0.4499 (0.5220) model_time 0.4497 (0.4725) loss 4.3546 (3.8959) grad_norm 0.7888 (1.4324/0.5463) mem 16099MB [2025-01-17 23:24:29 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][50/312] eta 0:02:13 lr 0.003875 time 0.4420 (0.5106) model_time 0.4417 (0.4708) loss 3.5547 (3.8413) grad_norm 1.8755 (1.4748/0.5573) mem 16099MB [2025-01-17 23:24:34 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][60/312] eta 0:02:06 lr 0.003874 time 0.4486 (0.5025) model_time 0.4484 (0.4691) loss 3.8662 (3.8500) grad_norm 2.0130 (1.5334/0.5582) mem 16099MB [2025-01-17 23:24:38 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][70/312] eta 0:02:00 lr 0.003874 time 0.4977 (0.4959) model_time 0.4974 (0.4672) loss 4.1318 (3.8494) grad_norm 1.2029 (1.6244/0.7710) mem 16099MB [2025-01-17 23:24:43 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][80/312] eta 0:01:53 lr 0.003874 time 0.4489 (0.4904) model_time 0.4487 (0.4651) loss 4.4505 (3.9022) grad_norm 1.0069 (1.5560/0.7481) mem 16099MB [2025-01-17 23:24:47 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][90/312] eta 0:01:48 lr 0.003874 time 0.4567 (0.4872) model_time 0.4565 (0.4647) loss 4.1460 (3.9070) grad_norm 4.1420 (1.5666/0.7642) mem 16099MB [2025-01-17 23:24:52 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][100/312] eta 0:01:42 lr 0.003873 time 0.4538 (0.4851) model_time 0.4536 (0.4648) loss 3.4074 (3.9085) grad_norm 2.0595 (1.6716/1.0665) mem 16099MB [2025-01-17 23:24:57 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][110/312] eta 0:01:37 lr 0.003873 time 0.4465 (0.4823) model_time 0.4463 (0.4638) loss 2.8554 (3.8953) grad_norm 1.3094 (1.6481/1.0317) mem 16099MB [2025-01-17 23:25:01 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][120/312] eta 0:01:32 lr 0.003873 time 0.4637 (0.4805) model_time 0.4635 (0.4635) loss 4.1881 (3.8803) grad_norm 1.4619 (1.6161/0.9953) mem 16099MB [2025-01-17 23:25:06 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][130/312] eta 0:01:27 lr 0.003873 time 0.4463 (0.4798) model_time 0.4462 (0.4640) loss 4.8199 (3.9014) grad_norm 1.6331 (1.5895/0.9654) mem 16099MB [2025-01-17 23:25:11 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][140/312] eta 0:01:22 lr 0.003873 time 0.4402 (0.4783) model_time 0.4398 (0.4637) loss 3.5080 (3.8986) grad_norm 2.5965 (1.5958/0.9430) mem 16099MB [2025-01-17 23:25:15 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][150/312] eta 0:01:17 lr 0.003872 time 0.4516 (0.4770) model_time 0.4515 (0.4633) loss 2.8530 (3.8988) grad_norm 2.2243 (1.6046/0.9263) mem 16099MB [2025-01-17 23:25:20 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][160/312] eta 0:01:12 lr 0.003872 time 0.4454 (0.4767) model_time 0.4452 (0.4639) loss 4.0694 (3.8912) grad_norm 2.6456 (1.6088/0.9135) mem 16099MB [2025-01-17 23:25:24 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][170/312] eta 0:01:07 lr 0.003872 time 0.4491 (0.4753) model_time 0.4490 (0.4632) loss 3.7944 (3.8826) grad_norm 2.7116 (1.6079/0.8942) mem 16099MB [2025-01-17 23:25:29 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][180/312] eta 0:01:02 lr 0.003872 time 0.4734 (0.4751) model_time 0.4730 (0.4636) loss 4.2321 (3.8920) grad_norm 0.9687 (1.6356/0.9110) mem 16099MB [2025-01-17 23:25:34 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][190/312] eta 0:00:57 lr 0.003871 time 0.4440 (0.4738) model_time 0.4438 (0.4629) loss 3.0368 (3.8703) grad_norm 1.3244 (1.6367/0.9005) mem 16099MB [2025-01-17 23:25:38 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][200/312] eta 0:00:52 lr 0.003871 time 0.4481 (0.4730) model_time 0.4479 (0.4626) loss 3.9642 (3.8713) grad_norm 0.7937 (1.6094/0.8874) mem 16099MB [2025-01-17 23:25:43 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][210/312] eta 0:00:48 lr 0.003871 time 0.4463 (0.4733) model_time 0.4461 (0.4634) loss 3.9871 (3.8717) grad_norm 1.8866 (1.5990/0.8730) mem 16099MB [2025-01-17 23:25:47 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][220/312] eta 0:00:43 lr 0.003871 time 0.4505 (0.4723) model_time 0.4503 (0.4628) loss 3.2524 (3.8614) grad_norm 1.6988 (1.6020/0.8584) mem 16099MB [2025-01-17 23:25:52 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][230/312] eta 0:00:38 lr 0.003870 time 0.4457 (0.4714) model_time 0.4455 (0.4623) loss 4.3119 (3.8686) grad_norm 2.0462 (1.6044/0.8427) mem 16099MB [2025-01-17 23:25:57 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][240/312] eta 0:00:33 lr 0.003870 time 0.4573 (0.4707) model_time 0.4572 (0.4620) loss 4.5538 (3.8711) grad_norm 2.3642 (1.6087/0.8465) mem 16099MB [2025-01-17 23:26:01 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][250/312] eta 0:00:29 lr 0.003870 time 0.4552 (0.4706) model_time 0.4551 (0.4622) loss 4.2659 (3.8728) grad_norm 0.8413 (1.6177/0.8615) mem 16099MB [2025-01-17 23:26:06 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][260/312] eta 0:00:24 lr 0.003870 time 0.4460 (0.4706) model_time 0.4455 (0.4625) loss 3.8687 (3.8816) grad_norm 1.1095 (1.6060/0.8504) mem 16099MB [2025-01-17 23:26:11 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][270/312] eta 0:00:19 lr 0.003869 time 0.4397 (0.4713) model_time 0.4392 (0.4635) loss 4.8288 (3.8809) grad_norm 1.9341 (1.5951/0.8383) mem 16099MB [2025-01-17 23:26:15 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][280/312] eta 0:00:15 lr 0.003869 time 0.4525 (0.4709) model_time 0.4521 (0.4634) loss 4.1817 (3.8835) grad_norm 2.3341 (1.6270/0.8828) mem 16099MB [2025-01-17 23:26:20 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][290/312] eta 0:00:10 lr 0.003869 time 0.4479 (0.4709) model_time 0.4477 (0.4636) loss 3.6776 (3.8801) grad_norm 1.0118 (1.6187/0.8728) mem 16099MB [2025-01-17 23:26:25 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][300/312] eta 0:00:05 lr 0.003869 time 0.4377 (0.4705) model_time 0.4377 (0.4635) loss 3.7002 (3.8809) grad_norm 1.1075 (1.6206/0.8794) mem 16099MB [2025-01-17 23:26:29 internimage_t_1k_224] (main.py 510): INFO Train: [34/300][310/312] eta 0:00:00 lr 0.003869 time 0.4386 (0.4696) model_time 0.4385 (0.4627) loss 4.2967 (3.8702) grad_norm 1.5919 (1.6313/0.8774) mem 16099MB [2025-01-17 23:26:30 internimage_t_1k_224] (main.py 519): INFO EPOCH 34 training takes 0:02:26 [2025-01-17 23:26:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_34.pth saving...... [2025-01-17 23:26:31 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_34.pth saved !!! [2025-01-17 23:26:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.412 (7.412) Loss 1.1737 (1.1737) Acc@1 74.194 (74.194) Acc@5 92.944 (92.944) Mem 16099MB [2025-01-17 23:26:42 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.997) Loss 1.6200 (1.3718) Acc@1 64.575 (70.408) Acc@5 87.305 (90.403) Mem 16099MB [2025-01-17 23:26:42 internimage_t_1k_224] (main.py 575): INFO [Epoch:34] * Acc@1 70.435 Acc@5 90.497 [2025-01-17 23:26:42 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 70.4% [2025-01-17 23:26:42 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:26:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:26:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 70.44% [2025-01-17 23:26:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.447 (7.447) Loss 6.4060 (6.4060) Acc@1 1.196 (1.196) Acc@5 5.151 (5.151) Mem 16099MB [2025-01-17 23:26:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.004) Loss 6.1650 (6.1886) Acc@1 3.809 (2.805) Acc@5 9.619 (9.513) Mem 16099MB [2025-01-17 23:26:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:34] * Acc@1 3.057 Acc@5 10.045 [2025-01-17 23:26:54 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 3.1% [2025-01-17 23:26:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:26:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:26:55 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 3.06% [2025-01-17 23:26:58 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][0/312] eta 0:10:38 lr 0.003868 time 2.0464 (2.0464) model_time 0.4769 (0.4769) loss 3.2503 (3.2503) grad_norm 1.4748 (1.4748/0.0000) mem 16099MB [2025-01-17 23:27:02 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][10/312] eta 0:03:07 lr 0.003868 time 0.4418 (0.6216) model_time 0.4413 (0.4786) loss 3.1233 (3.7748) grad_norm 1.8837 (1.2901/0.2760) mem 16099MB [2025-01-17 23:27:07 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][20/312] eta 0:02:39 lr 0.003868 time 0.4494 (0.5455) model_time 0.4490 (0.4704) loss 3.7616 (3.7906) grad_norm 1.2655 (1.5115/0.7334) mem 16099MB [2025-01-17 23:27:12 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][30/312] eta 0:02:26 lr 0.003868 time 0.5017 (0.5193) model_time 0.5016 (0.4683) loss 4.3311 (3.8947) grad_norm 1.1540 (1.6268/0.7511) mem 16099MB [2025-01-17 23:27:16 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][40/312] eta 0:02:17 lr 0.003868 time 0.4476 (0.5038) model_time 0.4474 (0.4652) loss 4.1216 (3.8553) grad_norm 1.3427 (1.6764/0.8162) mem 16099MB [2025-01-17 23:27:21 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][50/312] eta 0:02:09 lr 0.003867 time 0.4592 (0.4942) model_time 0.4591 (0.4631) loss 2.8615 (3.8832) grad_norm 1.1735 (1.5812/0.7623) mem 16099MB [2025-01-17 23:27:25 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][60/312] eta 0:02:03 lr 0.003867 time 0.4758 (0.4892) model_time 0.4754 (0.4631) loss 4.1027 (3.9055) grad_norm 1.5625 (1.5938/0.7480) mem 16099MB [2025-01-17 23:27:30 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][70/312] eta 0:01:57 lr 0.003867 time 0.4602 (0.4849) model_time 0.4597 (0.4625) loss 2.6918 (3.8603) grad_norm 2.1465 (1.6131/0.7280) mem 16099MB [2025-01-17 23:27:34 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][80/312] eta 0:01:51 lr 0.003867 time 0.4497 (0.4809) model_time 0.4495 (0.4612) loss 4.0407 (3.8739) grad_norm 2.3470 (1.6217/0.7161) mem 16099MB [2025-01-17 23:27:39 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][90/312] eta 0:01:46 lr 0.003866 time 0.4543 (0.4794) model_time 0.4542 (0.4618) loss 4.1107 (3.8940) grad_norm 0.9320 (1.6255/0.6988) mem 16099MB [2025-01-17 23:27:44 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][100/312] eta 0:01:41 lr 0.003866 time 0.4501 (0.4797) model_time 0.4497 (0.4638) loss 3.5291 (3.9144) grad_norm 1.1400 (1.6028/0.6771) mem 16099MB [2025-01-17 23:27:49 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][110/312] eta 0:01:36 lr 0.003866 time 0.5258 (0.4789) model_time 0.5257 (0.4644) loss 4.3282 (3.9160) grad_norm 1.8824 (1.6424/0.6968) mem 16099MB [2025-01-17 23:27:53 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][120/312] eta 0:01:31 lr 0.003866 time 0.5348 (0.4782) model_time 0.5347 (0.4649) loss 3.8865 (3.8948) grad_norm 0.9048 (1.6475/0.6959) mem 16099MB [2025-01-17 23:27:58 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][130/312] eta 0:01:26 lr 0.003865 time 0.4451 (0.4761) model_time 0.4450 (0.4638) loss 3.2294 (3.9063) grad_norm 1.8532 (1.6604/0.7162) mem 16099MB [2025-01-17 23:28:03 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][140/312] eta 0:01:21 lr 0.003865 time 0.5039 (0.4759) model_time 0.5034 (0.4644) loss 4.0991 (3.8986) grad_norm 1.4039 (1.6697/0.7165) mem 16099MB [2025-01-17 23:28:07 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][150/312] eta 0:01:17 lr 0.003865 time 0.4549 (0.4764) model_time 0.4548 (0.4657) loss 4.3588 (3.9073) grad_norm 2.4940 (1.6655/0.7036) mem 16099MB [2025-01-17 23:28:12 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][160/312] eta 0:01:12 lr 0.003865 time 0.4865 (0.4764) model_time 0.4863 (0.4663) loss 3.2911 (3.8910) grad_norm 1.6004 (1.6792/0.7046) mem 16099MB [2025-01-17 23:28:17 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][170/312] eta 0:01:07 lr 0.003864 time 0.4754 (0.4756) model_time 0.4752 (0.4661) loss 4.1903 (3.8815) grad_norm 2.1646 (1.6778/0.6922) mem 16099MB [2025-01-17 23:28:21 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][180/312] eta 0:01:02 lr 0.003864 time 0.4519 (0.4750) model_time 0.4518 (0.4660) loss 3.0738 (3.8864) grad_norm 1.5174 (1.6516/0.6905) mem 16099MB [2025-01-17 23:28:26 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][190/312] eta 0:00:57 lr 0.003864 time 0.4406 (0.4740) model_time 0.4402 (0.4654) loss 3.4497 (3.8762) grad_norm 3.3173 (1.6439/0.6893) mem 16099MB [2025-01-17 23:28:31 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][200/312] eta 0:00:52 lr 0.003864 time 0.4631 (0.4730) model_time 0.4627 (0.4648) loss 4.0170 (3.8674) grad_norm 2.2579 (1.6702/0.7096) mem 16099MB [2025-01-17 23:28:35 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][210/312] eta 0:00:48 lr 0.003863 time 0.4454 (0.4725) model_time 0.4452 (0.4647) loss 4.5860 (3.8768) grad_norm 1.3353 (1.6748/0.7066) mem 16099MB [2025-01-17 23:28:40 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][220/312] eta 0:00:43 lr 0.003863 time 0.4556 (0.4717) model_time 0.4554 (0.4643) loss 3.5669 (3.8694) grad_norm 1.0594 (1.6695/0.7140) mem 16099MB [2025-01-17 23:28:44 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][230/312] eta 0:00:38 lr 0.003863 time 0.4436 (0.4718) model_time 0.4434 (0.4647) loss 4.2818 (3.8815) grad_norm 1.7161 (1.6520/0.7099) mem 16099MB [2025-01-17 23:28:49 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][240/312] eta 0:00:33 lr 0.003863 time 0.4445 (0.4713) model_time 0.4444 (0.4644) loss 3.9171 (3.8774) grad_norm 1.4238 (1.6556/0.7034) mem 16099MB [2025-01-17 23:28:54 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][250/312] eta 0:00:29 lr 0.003862 time 0.4609 (0.4710) model_time 0.4608 (0.4644) loss 4.1761 (3.8766) grad_norm 1.7778 (1.6426/0.6959) mem 16099MB [2025-01-17 23:28:58 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][260/312] eta 0:00:24 lr 0.003862 time 0.4465 (0.4709) model_time 0.4463 (0.4646) loss 2.8789 (3.8722) grad_norm 1.9313 (1.6286/0.6882) mem 16099MB [2025-01-17 23:29:03 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][270/312] eta 0:00:19 lr 0.003862 time 0.4391 (0.4704) model_time 0.4386 (0.4643) loss 4.0451 (3.8655) grad_norm 1.0109 (1.6336/0.6947) mem 16099MB [2025-01-17 23:29:08 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][280/312] eta 0:00:15 lr 0.003862 time 0.4421 (0.4703) model_time 0.4419 (0.4643) loss 4.8747 (3.8711) grad_norm 1.2624 (1.6377/0.6978) mem 16099MB [2025-01-17 23:29:12 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][290/312] eta 0:00:10 lr 0.003861 time 0.4526 (0.4705) model_time 0.4524 (0.4647) loss 4.2240 (3.8638) grad_norm 1.1379 (1.6291/0.6919) mem 16099MB [2025-01-17 23:29:17 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][300/312] eta 0:00:05 lr 0.003861 time 0.4364 (0.4697) model_time 0.4364 (0.4642) loss 3.3721 (3.8668) grad_norm 1.7088 (1.6272/0.6852) mem 16099MB [2025-01-17 23:29:22 internimage_t_1k_224] (main.py 510): INFO Train: [35/300][310/312] eta 0:00:00 lr 0.003861 time 0.4395 (0.4695) model_time 0.4394 (0.4641) loss 4.7507 (3.8731) grad_norm 1.6071 (1.6460/0.6845) mem 16099MB [2025-01-17 23:29:22 internimage_t_1k_224] (main.py 519): INFO EPOCH 35 training takes 0:02:26 [2025-01-17 23:29:22 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_35.pth saving...... [2025-01-17 23:29:23 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_35.pth saved !!! [2025-01-17 23:29:31 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.238 (8.238) Loss 1.2177 (1.2177) Acc@1 74.023 (74.023) Acc@5 92.627 (92.627) Mem 16099MB [2025-01-17 23:29:35 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.102) Loss 1.6782 (1.4006) Acc@1 64.966 (70.790) Acc@5 87.109 (90.514) Mem 16099MB [2025-01-17 23:29:35 internimage_t_1k_224] (main.py 575): INFO [Epoch:35] * Acc@1 70.859 Acc@5 90.629 [2025-01-17 23:29:35 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 70.9% [2025-01-17 23:29:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:29:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:29:37 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 70.86% [2025-01-17 23:29:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.576 (8.576) Loss 6.3369 (6.3369) Acc@1 1.514 (1.514) Acc@5 6.323 (6.323) Mem 16099MB [2025-01-17 23:29:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.166) Loss 6.0387 (6.0696) Acc@1 5.249 (3.860) Acc@5 12.012 (11.774) Mem 16099MB [2025-01-17 23:29:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:35] * Acc@1 4.099 Acc@5 12.312 [2025-01-17 23:29:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 4.1% [2025-01-17 23:29:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:29:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:29:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 4.10% [2025-01-17 23:29:53 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][0/312] eta 0:11:03 lr 0.003861 time 2.1274 (2.1274) model_time 0.5202 (0.5202) loss 4.1483 (4.1483) grad_norm 1.3081 (1.3081/0.0000) mem 16099MB [2025-01-17 23:29:58 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][10/312] eta 0:03:13 lr 0.003861 time 0.4414 (0.6398) model_time 0.4412 (0.4934) loss 4.2057 (3.7266) grad_norm 1.1364 (1.4080/0.5248) mem 16099MB [2025-01-17 23:30:03 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][20/312] eta 0:02:43 lr 0.003860 time 0.4480 (0.5591) model_time 0.4478 (0.4823) loss 3.6956 (3.7156) grad_norm 1.3268 (1.5569/0.7897) mem 16099MB [2025-01-17 23:30:07 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][30/312] eta 0:02:31 lr 0.003860 time 0.7413 (0.5387) model_time 0.7409 (0.4865) loss 2.6886 (3.7075) grad_norm 1.2696 (1.6746/0.9204) mem 16099MB [2025-01-17 23:30:12 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][40/312] eta 0:02:21 lr 0.003860 time 0.4477 (0.5188) model_time 0.4473 (0.4790) loss 4.7035 (3.7441) grad_norm 1.1402 (1.6269/0.8406) mem 16099MB [2025-01-17 23:30:17 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][50/312] eta 0:02:13 lr 0.003860 time 0.4541 (0.5081) model_time 0.4536 (0.4760) loss 3.9392 (3.7029) grad_norm 1.7039 (1.5986/0.7998) mem 16099MB [2025-01-17 23:30:21 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][60/312] eta 0:02:05 lr 0.003859 time 0.4523 (0.4999) model_time 0.4521 (0.4730) loss 4.1498 (3.7550) grad_norm 0.9375 (1.6360/0.8288) mem 16099MB [2025-01-17 23:30:26 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][70/312] eta 0:01:59 lr 0.003859 time 0.4492 (0.4953) model_time 0.4490 (0.4721) loss 4.2360 (3.7775) grad_norm 0.9636 (1.6929/0.8256) mem 16099MB [2025-01-17 23:30:31 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][80/312] eta 0:01:54 lr 0.003859 time 0.4437 (0.4916) model_time 0.4431 (0.4712) loss 3.6979 (3.7780) grad_norm 1.4497 (1.6719/0.7849) mem 16099MB [2025-01-17 23:30:35 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][90/312] eta 0:01:48 lr 0.003859 time 0.4481 (0.4875) model_time 0.4477 (0.4693) loss 4.4034 (3.7841) grad_norm 2.4804 (1.6914/0.7708) mem 16099MB [2025-01-17 23:30:40 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][100/312] eta 0:01:42 lr 0.003859 time 0.4477 (0.4849) model_time 0.4475 (0.4685) loss 4.1902 (3.7837) grad_norm 2.4951 (1.6734/0.7515) mem 16099MB [2025-01-17 23:30:44 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][110/312] eta 0:01:37 lr 0.003858 time 0.4575 (0.4828) model_time 0.4571 (0.4678) loss 4.2851 (3.8084) grad_norm 1.7772 (1.6595/0.7276) mem 16099MB [2025-01-17 23:30:49 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][120/312] eta 0:01:32 lr 0.003858 time 0.5371 (0.4818) model_time 0.5367 (0.4681) loss 2.6746 (3.8243) grad_norm 3.0363 (1.6778/0.7440) mem 16099MB [2025-01-17 23:30:54 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][130/312] eta 0:01:27 lr 0.003858 time 0.4830 (0.4814) model_time 0.4829 (0.4687) loss 4.0915 (3.8279) grad_norm 1.0300 (1.6619/0.7298) mem 16099MB [2025-01-17 23:30:59 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][140/312] eta 0:01:22 lr 0.003858 time 0.4509 (0.4824) model_time 0.4508 (0.4706) loss 4.5095 (3.8384) grad_norm 1.3756 (1.6601/0.7227) mem 16099MB [2025-01-17 23:31:03 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][150/312] eta 0:01:17 lr 0.003857 time 0.4532 (0.4810) model_time 0.4528 (0.4699) loss 3.1653 (3.8387) grad_norm 1.6381 (1.6431/0.7068) mem 16099MB [2025-01-17 23:31:08 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][160/312] eta 0:01:12 lr 0.003857 time 0.4458 (0.4798) model_time 0.4454 (0.4693) loss 4.0561 (3.8325) grad_norm 0.9508 (1.6718/0.7469) mem 16099MB [2025-01-17 23:31:13 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][170/312] eta 0:01:08 lr 0.003857 time 0.4497 (0.4789) model_time 0.4495 (0.4690) loss 2.8446 (3.8278) grad_norm 1.1081 (1.6501/0.7351) mem 16099MB [2025-01-17 23:31:17 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][180/312] eta 0:01:03 lr 0.003857 time 0.4555 (0.4775) model_time 0.4551 (0.4682) loss 4.1593 (3.8213) grad_norm 1.8449 (1.6544/0.7369) mem 16099MB [2025-01-17 23:31:22 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][190/312] eta 0:00:58 lr 0.003856 time 0.4461 (0.4765) model_time 0.4457 (0.4677) loss 2.9868 (3.8387) grad_norm 2.7572 (1.6494/0.7270) mem 16099MB [2025-01-17 23:31:26 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][200/312] eta 0:00:53 lr 0.003856 time 0.4910 (0.4756) model_time 0.4906 (0.4671) loss 4.7530 (3.8413) grad_norm 2.6244 (1.6484/0.7225) mem 16099MB [2025-01-17 23:31:31 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][210/312] eta 0:00:48 lr 0.003856 time 0.4517 (0.4747) model_time 0.4516 (0.4666) loss 3.4140 (3.8377) grad_norm 1.4682 (1.6683/0.7443) mem 16099MB [2025-01-17 23:31:35 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][220/312] eta 0:00:43 lr 0.003856 time 0.4493 (0.4738) model_time 0.4489 (0.4660) loss 2.6760 (3.8424) grad_norm 1.1974 (1.6409/0.7389) mem 16099MB [2025-01-17 23:31:40 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][230/312] eta 0:00:38 lr 0.003855 time 0.4977 (0.4731) model_time 0.4975 (0.4657) loss 4.2520 (3.8512) grad_norm 2.4189 (1.6512/0.7330) mem 16099MB [2025-01-17 23:31:45 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][240/312] eta 0:00:34 lr 0.003855 time 0.4389 (0.4732) model_time 0.4384 (0.4661) loss 4.6801 (3.8517) grad_norm 1.0609 (1.6541/0.7295) mem 16099MB [2025-01-17 23:31:50 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][250/312] eta 0:00:29 lr 0.003855 time 0.4401 (0.4739) model_time 0.4396 (0.4670) loss 4.8162 (3.8555) grad_norm 2.1203 (1.6534/0.7263) mem 16099MB [2025-01-17 23:31:54 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][260/312] eta 0:00:24 lr 0.003855 time 0.4525 (0.4733) model_time 0.4521 (0.4667) loss 3.9901 (3.8619) grad_norm 1.1184 (1.6639/0.7379) mem 16099MB [2025-01-17 23:31:59 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][270/312] eta 0:00:19 lr 0.003854 time 0.4739 (0.4731) model_time 0.4738 (0.4668) loss 4.2911 (3.8794) grad_norm 1.0091 (1.6601/0.7313) mem 16099MB [2025-01-17 23:32:04 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][280/312] eta 0:00:15 lr 0.003854 time 0.4527 (0.4723) model_time 0.4525 (0.4662) loss 4.1931 (3.8841) grad_norm 0.9145 (1.6471/0.7264) mem 16099MB [2025-01-17 23:32:08 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][290/312] eta 0:00:10 lr 0.003854 time 0.4427 (0.4723) model_time 0.4426 (0.4663) loss 4.2334 (3.8746) grad_norm 1.1013 (1.6408/0.7248) mem 16099MB [2025-01-17 23:32:13 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][300/312] eta 0:00:05 lr 0.003854 time 0.4383 (0.4719) model_time 0.4383 (0.4661) loss 4.4941 (3.8673) grad_norm 0.8212 (1.6346/0.7230) mem 16099MB [2025-01-17 23:32:18 internimage_t_1k_224] (main.py 510): INFO Train: [36/300][310/312] eta 0:00:00 lr 0.003853 time 0.5473 (0.4722) model_time 0.5472 (0.4667) loss 3.3442 (3.8714) grad_norm 0.9256 (1.6509/0.7219) mem 16099MB [2025-01-17 23:32:18 internimage_t_1k_224] (main.py 519): INFO EPOCH 36 training takes 0:02:27 [2025-01-17 23:32:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_36.pth saving...... [2025-01-17 23:32:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_36.pth saved !!! [2025-01-17 23:32:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.771 (7.771) Loss 1.2131 (1.2131) Acc@1 74.927 (74.927) Acc@5 93.579 (93.579) Mem 16099MB [2025-01-17 23:32:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.051) Loss 1.7161 (1.4149) Acc@1 64.209 (70.972) Acc@5 86.450 (90.785) Mem 16099MB [2025-01-17 23:32:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:36] * Acc@1 71.053 Acc@5 90.875 [2025-01-17 23:32:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 71.1% [2025-01-17 23:32:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:32:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:32:32 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 71.05% [2025-01-17 23:32:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.867 (7.867) Loss 6.2523 (6.2523) Acc@1 2.246 (2.246) Acc@5 7.593 (7.593) Mem 16099MB [2025-01-17 23:32:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.046) Loss 5.9117 (5.9482) Acc@1 6.250 (4.974) Acc@5 14.429 (14.180) Mem 16099MB [2025-01-17 23:32:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:36] * Acc@1 5.222 Acc@5 14.701 [2025-01-17 23:32:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 5.2% [2025-01-17 23:32:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:32:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:32:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 5.22% [2025-01-17 23:32:47 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][0/312] eta 0:11:25 lr 0.003853 time 2.1959 (2.1959) model_time 0.4701 (0.4701) loss 4.5974 (4.5974) grad_norm 2.2811 (2.2811/0.0000) mem 16099MB [2025-01-17 23:32:52 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][10/312] eta 0:03:11 lr 0.003853 time 0.4519 (0.6355) model_time 0.4514 (0.4784) loss 3.1748 (4.0355) grad_norm 0.7191 (1.4864/0.5283) mem 16099MB [2025-01-17 23:32:57 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][20/312] eta 0:02:41 lr 0.003853 time 0.4602 (0.5517) model_time 0.4598 (0.4692) loss 3.9787 (3.8439) grad_norm 1.1937 (1.6948/0.9435) mem 16099MB [2025-01-17 23:33:02 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][30/312] eta 0:02:27 lr 0.003852 time 0.4527 (0.5247) model_time 0.4525 (0.4687) loss 3.6779 (3.8101) grad_norm 1.8687 (1.6296/0.7931) mem 16099MB [2025-01-17 23:33:06 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][40/312] eta 0:02:19 lr 0.003852 time 0.4575 (0.5145) model_time 0.4574 (0.4721) loss 4.0890 (3.7191) grad_norm 1.5899 (1.5266/0.7303) mem 16099MB [2025-01-17 23:33:11 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][50/312] eta 0:02:12 lr 0.003852 time 0.4402 (0.5046) model_time 0.4401 (0.4704) loss 2.5770 (3.7199) grad_norm 0.6650 (1.4927/0.6725) mem 16099MB [2025-01-17 23:33:16 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][60/312] eta 0:02:05 lr 0.003852 time 0.4504 (0.4982) model_time 0.4500 (0.4696) loss 3.8769 (3.7585) grad_norm 1.5752 (1.6249/0.9518) mem 16099MB [2025-01-17 23:33:20 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][70/312] eta 0:01:58 lr 0.003851 time 0.4532 (0.4917) model_time 0.4528 (0.4671) loss 3.8587 (3.7615) grad_norm 1.6929 (1.6784/1.0197) mem 16099MB [2025-01-17 23:33:25 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][80/312] eta 0:01:53 lr 0.003851 time 0.4558 (0.4876) model_time 0.4554 (0.4660) loss 4.0402 (3.7364) grad_norm 2.6546 (1.6321/0.9806) mem 16099MB [2025-01-17 23:33:29 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][90/312] eta 0:01:47 lr 0.003851 time 0.4410 (0.4840) model_time 0.4409 (0.4647) loss 4.3194 (3.7447) grad_norm 0.8195 (1.6538/0.9693) mem 16099MB [2025-01-17 23:33:34 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][100/312] eta 0:01:42 lr 0.003851 time 0.4531 (0.4834) model_time 0.4527 (0.4660) loss 3.0773 (3.7642) grad_norm 1.6221 (1.6486/0.9389) mem 16099MB [2025-01-17 23:33:39 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][110/312] eta 0:01:37 lr 0.003850 time 0.4554 (0.4808) model_time 0.4550 (0.4649) loss 4.2074 (3.7673) grad_norm 1.2205 (1.6131/0.9164) mem 16099MB [2025-01-17 23:33:43 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][120/312] eta 0:01:31 lr 0.003850 time 0.4605 (0.4789) model_time 0.4601 (0.4643) loss 4.8379 (3.8126) grad_norm 0.8086 (1.5854/0.8859) mem 16099MB [2025-01-17 23:33:48 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][130/312] eta 0:01:26 lr 0.003850 time 0.4494 (0.4772) model_time 0.4493 (0.4637) loss 4.4580 (3.7990) grad_norm 0.9957 (1.5462/0.8632) mem 16099MB [2025-01-17 23:33:52 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][140/312] eta 0:01:21 lr 0.003850 time 0.4445 (0.4766) model_time 0.4444 (0.4640) loss 3.1424 (3.7984) grad_norm 1.9602 (1.5334/0.8380) mem 16099MB [2025-01-17 23:33:57 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][150/312] eta 0:01:17 lr 0.003849 time 0.4518 (0.4763) model_time 0.4517 (0.4645) loss 3.5041 (3.8028) grad_norm 1.1675 (1.5535/0.8252) mem 16099MB [2025-01-17 23:34:02 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][160/312] eta 0:01:12 lr 0.003849 time 0.4529 (0.4755) model_time 0.4524 (0.4644) loss 3.4322 (3.8035) grad_norm 1.9871 (1.5619/0.8155) mem 16099MB [2025-01-17 23:34:07 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][170/312] eta 0:01:07 lr 0.003849 time 0.4512 (0.4755) model_time 0.4511 (0.4651) loss 3.0950 (3.7994) grad_norm 3.0096 (1.5641/0.8064) mem 16099MB [2025-01-17 23:34:11 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][180/312] eta 0:01:02 lr 0.003849 time 0.4505 (0.4744) model_time 0.4500 (0.4645) loss 3.5196 (3.7776) grad_norm 2.9513 (1.6109/0.8417) mem 16099MB [2025-01-17 23:34:16 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][190/312] eta 0:00:57 lr 0.003848 time 0.4485 (0.4731) model_time 0.4483 (0.4637) loss 4.0140 (3.7759) grad_norm 0.8312 (1.6138/0.8358) mem 16099MB [2025-01-17 23:34:21 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][200/312] eta 0:00:53 lr 0.003848 time 0.4651 (0.4747) model_time 0.4649 (0.4658) loss 4.6269 (3.7813) grad_norm 2.3741 (1.6186/0.8345) mem 16099MB [2025-01-17 23:34:25 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][210/312] eta 0:00:48 lr 0.003848 time 0.4597 (0.4738) model_time 0.4592 (0.4653) loss 3.2766 (3.7687) grad_norm 1.0967 (1.6018/0.8236) mem 16099MB [2025-01-17 23:34:30 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][220/312] eta 0:00:43 lr 0.003848 time 0.4558 (0.4731) model_time 0.4556 (0.4649) loss 4.1271 (3.7748) grad_norm 0.7000 (1.6067/0.8272) mem 16099MB [2025-01-17 23:34:34 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][230/312] eta 0:00:38 lr 0.003847 time 0.4471 (0.4720) model_time 0.4467 (0.4642) loss 4.3711 (3.7718) grad_norm 2.7762 (1.6334/0.8525) mem 16099MB [2025-01-17 23:34:39 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][240/312] eta 0:00:33 lr 0.003847 time 0.4441 (0.4719) model_time 0.4436 (0.4644) loss 4.2216 (3.7790) grad_norm 2.1173 (1.6257/0.8393) mem 16099MB [2025-01-17 23:34:44 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][250/312] eta 0:00:29 lr 0.003847 time 0.4468 (0.4716) model_time 0.4464 (0.4643) loss 3.8725 (3.7750) grad_norm 1.2854 (1.6155/0.8256) mem 16099MB [2025-01-17 23:34:48 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][260/312] eta 0:00:24 lr 0.003847 time 0.4505 (0.4715) model_time 0.4501 (0.4645) loss 4.5896 (3.7797) grad_norm 1.9226 (1.6185/0.8198) mem 16099MB [2025-01-17 23:34:53 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][270/312] eta 0:00:19 lr 0.003846 time 0.4676 (0.4716) model_time 0.4675 (0.4649) loss 3.9548 (3.7894) grad_norm 1.2266 (1.6253/0.8329) mem 16099MB [2025-01-17 23:34:58 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][280/312] eta 0:00:15 lr 0.003846 time 0.4422 (0.4712) model_time 0.4420 (0.4647) loss 2.7515 (3.7918) grad_norm 1.6927 (1.6209/0.8237) mem 16099MB [2025-01-17 23:35:03 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][290/312] eta 0:00:10 lr 0.003846 time 0.4522 (0.4716) model_time 0.4520 (0.4653) loss 3.8919 (3.7875) grad_norm 1.0769 (1.5998/0.8181) mem 16099MB [2025-01-17 23:35:07 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][300/312] eta 0:00:05 lr 0.003846 time 0.4397 (0.4711) model_time 0.4396 (0.4650) loss 4.4512 (3.7880) grad_norm 1.0399 (1.6031/0.8220) mem 16099MB [2025-01-17 23:35:11 internimage_t_1k_224] (main.py 510): INFO Train: [37/300][310/312] eta 0:00:00 lr 0.003845 time 0.4411 (0.4700) model_time 0.4409 (0.4641) loss 4.4954 (3.7983) grad_norm 1.6899 (1.6135/0.8284) mem 16099MB [2025-01-17 23:35:12 internimage_t_1k_224] (main.py 519): INFO EPOCH 37 training takes 0:02:26 [2025-01-17 23:35:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_37.pth saving...... [2025-01-17 23:35:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_37.pth saved !!! [2025-01-17 23:35:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.090 (8.090) Loss 1.0954 (1.0954) Acc@1 75.903 (75.903) Acc@5 93.433 (93.433) Mem 16099MB [2025-01-17 23:35:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.070) Loss 1.6163 (1.3284) Acc@1 64.502 (70.941) Acc@5 87.109 (90.687) Mem 16099MB [2025-01-17 23:35:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:37] * Acc@1 70.881 Acc@5 90.759 [2025-01-17 23:35:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 70.9% [2025-01-17 23:35:25 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 71.05% [2025-01-17 23:35:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.583 (8.583) Loss 6.1544 (6.1544) Acc@1 3.125 (3.125) Acc@5 9.644 (9.644) Mem 16099MB [2025-01-17 23:35:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.159) Loss 5.7755 (5.8141) Acc@1 7.471 (6.248) Acc@5 16.553 (16.855) Mem 16099MB [2025-01-17 23:35:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:37] * Acc@1 6.436 Acc@5 17.362 [2025-01-17 23:35:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 6.4% [2025-01-17 23:35:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:35:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:35:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 6.44% [2025-01-17 23:35:42 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][0/312] eta 0:13:06 lr 0.003845 time 2.5206 (2.5206) model_time 0.4760 (0.4760) loss 3.0415 (3.0415) grad_norm 1.8864 (1.8864/0.0000) mem 16099MB [2025-01-17 23:35:46 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][10/312] eta 0:03:16 lr 0.003845 time 0.4563 (0.6504) model_time 0.4562 (0.4643) loss 3.0099 (3.5772) grad_norm 1.2321 (1.3676/0.3825) mem 16099MB [2025-01-17 23:35:51 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][20/312] eta 0:02:44 lr 0.003845 time 0.4615 (0.5640) model_time 0.4614 (0.4664) loss 3.2322 (3.6776) grad_norm 1.8912 (1.5543/0.5773) mem 16099MB [2025-01-17 23:35:56 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][30/312] eta 0:02:31 lr 0.003845 time 0.5322 (0.5359) model_time 0.5321 (0.4697) loss 2.9212 (3.6797) grad_norm 1.2183 (1.4942/0.5204) mem 16099MB [2025-01-17 23:36:00 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][40/312] eta 0:02:20 lr 0.003844 time 0.4472 (0.5166) model_time 0.4467 (0.4665) loss 4.2061 (3.7474) grad_norm 0.7827 (1.3983/0.4944) mem 16099MB [2025-01-17 23:36:05 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][50/312] eta 0:02:13 lr 0.003844 time 0.4486 (0.5096) model_time 0.4485 (0.4693) loss 2.8399 (3.8202) grad_norm 1.8913 (1.3905/0.4698) mem 16099MB [2025-01-17 23:36:10 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][60/312] eta 0:02:06 lr 0.003844 time 0.4575 (0.5016) model_time 0.4573 (0.4678) loss 4.1981 (3.8099) grad_norm 3.2289 (1.3814/0.5090) mem 16099MB [2025-01-17 23:36:15 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][70/312] eta 0:02:00 lr 0.003843 time 0.4526 (0.4972) model_time 0.4521 (0.4681) loss 4.1150 (3.8224) grad_norm 1.7835 (1.4005/0.5109) mem 16099MB [2025-01-17 23:36:19 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][80/312] eta 0:01:54 lr 0.003843 time 0.4589 (0.4933) model_time 0.4584 (0.4677) loss 2.9872 (3.7942) grad_norm 2.8605 (1.4852/0.5817) mem 16099MB [2025-01-17 23:36:24 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][90/312] eta 0:01:48 lr 0.003843 time 0.4413 (0.4902) model_time 0.4411 (0.4674) loss 4.1025 (3.7960) grad_norm 1.1273 (1.4979/0.5779) mem 16099MB [2025-01-17 23:36:28 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][100/312] eta 0:01:43 lr 0.003843 time 0.4650 (0.4867) model_time 0.4648 (0.4661) loss 3.2551 (3.7899) grad_norm 2.1934 (1.5098/0.5645) mem 16099MB [2025-01-17 23:36:33 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][110/312] eta 0:01:38 lr 0.003842 time 0.6028 (0.4862) model_time 0.6026 (0.4674) loss 4.1510 (3.7936) grad_norm 2.3309 (1.5441/0.5618) mem 16099MB [2025-01-17 23:36:38 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][120/312] eta 0:01:32 lr 0.003842 time 0.4593 (0.4841) model_time 0.4589 (0.4669) loss 2.9064 (3.7924) grad_norm 1.6164 (1.5519/0.5571) mem 16099MB [2025-01-17 23:36:43 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][130/312] eta 0:01:27 lr 0.003842 time 0.4460 (0.4833) model_time 0.4459 (0.4674) loss 3.6082 (3.7742) grad_norm 1.9949 (1.5440/0.5417) mem 16099MB [2025-01-17 23:36:47 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][140/312] eta 0:01:22 lr 0.003842 time 0.4459 (0.4817) model_time 0.4457 (0.4668) loss 4.4999 (3.7699) grad_norm 1.5742 (1.5446/0.5382) mem 16099MB [2025-01-17 23:36:52 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][150/312] eta 0:01:17 lr 0.003841 time 0.4411 (0.4799) model_time 0.4406 (0.4661) loss 2.6959 (3.7790) grad_norm 3.3294 (1.5643/0.5968) mem 16099MB [2025-01-17 23:36:56 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][160/312] eta 0:01:12 lr 0.003841 time 0.4663 (0.4785) model_time 0.4659 (0.4655) loss 4.2146 (3.7860) grad_norm 2.2299 (1.5598/0.5933) mem 16099MB [2025-01-17 23:37:01 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][170/312] eta 0:01:07 lr 0.003841 time 0.4434 (0.4771) model_time 0.4432 (0.4648) loss 3.8668 (3.7860) grad_norm 0.9475 (1.5298/0.5897) mem 16099MB [2025-01-17 23:37:06 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][180/312] eta 0:01:02 lr 0.003841 time 0.4477 (0.4766) model_time 0.4476 (0.4650) loss 4.0709 (3.7864) grad_norm 2.7824 (1.5373/0.5978) mem 16099MB [2025-01-17 23:37:10 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][190/312] eta 0:00:58 lr 0.003840 time 0.4542 (0.4755) model_time 0.4538 (0.4644) loss 3.3010 (3.7832) grad_norm 0.9181 (1.5319/0.5929) mem 16099MB [2025-01-17 23:37:15 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][200/312] eta 0:00:53 lr 0.003840 time 0.4574 (0.4750) model_time 0.4570 (0.4645) loss 4.4171 (3.7874) grad_norm 1.1638 (1.5669/0.6685) mem 16099MB [2025-01-17 23:37:20 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][210/312] eta 0:00:48 lr 0.003840 time 0.4483 (0.4754) model_time 0.4481 (0.4654) loss 3.2360 (3.7944) grad_norm 0.8706 (1.5545/0.6591) mem 16099MB [2025-01-17 23:37:25 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][220/312] eta 0:00:43 lr 0.003840 time 0.4465 (0.4765) model_time 0.4460 (0.4669) loss 3.2293 (3.8100) grad_norm 0.7386 (1.5469/0.6554) mem 16099MB [2025-01-17 23:37:29 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][230/312] eta 0:00:39 lr 0.003839 time 0.4483 (0.4761) model_time 0.4478 (0.4669) loss 3.7421 (3.8050) grad_norm 3.3715 (1.5911/0.7285) mem 16099MB [2025-01-17 23:37:34 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][240/312] eta 0:00:34 lr 0.003839 time 0.4404 (0.4753) model_time 0.4400 (0.4664) loss 2.9183 (3.7931) grad_norm 1.3910 (1.5880/0.7159) mem 16099MB [2025-01-17 23:37:38 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][250/312] eta 0:00:29 lr 0.003839 time 0.4488 (0.4746) model_time 0.4486 (0.4661) loss 3.5886 (3.7881) grad_norm 0.8351 (1.5785/0.7106) mem 16099MB [2025-01-17 23:37:43 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][260/312] eta 0:00:24 lr 0.003839 time 0.4451 (0.4741) model_time 0.4449 (0.4659) loss 2.6483 (3.7920) grad_norm 1.4325 (1.5723/0.7019) mem 16099MB [2025-01-17 23:37:48 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][270/312] eta 0:00:19 lr 0.003838 time 0.4520 (0.4738) model_time 0.4516 (0.4660) loss 3.2444 (3.7873) grad_norm 1.2577 (1.5561/0.6957) mem 16099MB [2025-01-17 23:37:52 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][280/312] eta 0:00:15 lr 0.003838 time 0.4742 (0.4739) model_time 0.4741 (0.4663) loss 2.9565 (3.7796) grad_norm 3.2182 (1.5508/0.6944) mem 16099MB [2025-01-17 23:37:57 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][290/312] eta 0:00:10 lr 0.003838 time 0.4497 (0.4738) model_time 0.4493 (0.4664) loss 4.2083 (3.7787) grad_norm 1.4120 (1.5467/0.6864) mem 16099MB [2025-01-17 23:38:02 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][300/312] eta 0:00:05 lr 0.003837 time 0.4353 (0.4736) model_time 0.4352 (0.4664) loss 3.9082 (3.7730) grad_norm 1.5141 (1.5360/0.6797) mem 16099MB [2025-01-17 23:38:06 internimage_t_1k_224] (main.py 510): INFO Train: [38/300][310/312] eta 0:00:00 lr 0.003837 time 0.4380 (0.4730) model_time 0.4379 (0.4661) loss 3.8280 (3.7761) grad_norm 3.4526 (1.5783/0.7824) mem 16099MB [2025-01-17 23:38:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 38 training takes 0:02:27 [2025-01-17 23:38:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_38.pth saving...... [2025-01-17 23:38:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_38.pth saved !!! [2025-01-17 23:38:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.084 (7.084) Loss 1.0774 (1.0774) Acc@1 75.171 (75.171) Acc@5 93.164 (93.164) Mem 16099MB [2025-01-17 23:38:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.961) Loss 1.6055 (1.2973) Acc@1 64.966 (71.553) Acc@5 87.695 (91.151) Mem 16099MB [2025-01-17 23:38:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:38] * Acc@1 71.565 Acc@5 91.171 [2025-01-17 23:38:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 71.6% [2025-01-17 23:38:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:38:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:38:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 71.57% [2025-01-17 23:38:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.350 (7.350) Loss 6.0339 (6.0339) Acc@1 4.272 (4.272) Acc@5 11.914 (11.914) Mem 16099MB [2025-01-17 23:38:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.984) Loss 5.6335 (5.6705) Acc@1 8.984 (7.688) Acc@5 19.360 (19.698) Mem 16099MB [2025-01-17 23:38:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:38] * Acc@1 7.829 Acc@5 20.150 [2025-01-17 23:38:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 7.8% [2025-01-17 23:38:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:38:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:38:32 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 7.83% [2025-01-17 23:38:35 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][0/312] eta 0:14:09 lr 0.003837 time 2.7227 (2.7227) model_time 0.4646 (0.4646) loss 3.8782 (3.8782) grad_norm 1.2912 (1.2912/0.0000) mem 16099MB [2025-01-17 23:38:40 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][10/312] eta 0:03:24 lr 0.003837 time 0.4498 (0.6774) model_time 0.4497 (0.4718) loss 4.8635 (3.6542) grad_norm 2.3035 (1.8041/0.6502) mem 16099MB [2025-01-17 23:38:44 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][20/312] eta 0:02:47 lr 0.003837 time 0.4620 (0.5753) model_time 0.4619 (0.4674) loss 2.7670 (3.6078) grad_norm 1.1050 (1.5617/0.5689) mem 16099MB [2025-01-17 23:38:49 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][30/312] eta 0:02:31 lr 0.003836 time 0.4583 (0.5383) model_time 0.4579 (0.4651) loss 2.7401 (3.5868) grad_norm 1.9082 (1.5918/0.5782) mem 16099MB [2025-01-17 23:38:54 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][40/312] eta 0:02:20 lr 0.003836 time 0.4617 (0.5180) model_time 0.4616 (0.4626) loss 2.4253 (3.5684) grad_norm 2.2106 (1.5802/0.5625) mem 16099MB [2025-01-17 23:38:58 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][50/312] eta 0:02:12 lr 0.003836 time 0.4490 (0.5048) model_time 0.4488 (0.4602) loss 3.8978 (3.6074) grad_norm 1.5443 (1.5666/0.5481) mem 16099MB [2025-01-17 23:39:03 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][60/312] eta 0:02:05 lr 0.003836 time 0.5386 (0.4975) model_time 0.5384 (0.4602) loss 4.3071 (3.6334) grad_norm 1.1055 (1.6384/0.7030) mem 16099MB [2025-01-17 23:39:07 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][70/312] eta 0:01:58 lr 0.003835 time 0.4395 (0.4913) model_time 0.4390 (0.4592) loss 2.8796 (3.6593) grad_norm 1.4336 (1.6603/0.6704) mem 16099MB [2025-01-17 23:39:12 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][80/312] eta 0:01:53 lr 0.003835 time 0.4913 (0.4880) model_time 0.4911 (0.4598) loss 4.5399 (3.6780) grad_norm 0.9480 (1.6002/0.6506) mem 16099MB [2025-01-17 23:39:16 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][90/312] eta 0:01:47 lr 0.003835 time 0.4518 (0.4852) model_time 0.4517 (0.4601) loss 3.1551 (3.7041) grad_norm 1.0438 (1.5626/0.6363) mem 16099MB [2025-01-17 23:39:21 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][100/312] eta 0:01:42 lr 0.003835 time 0.4612 (0.4829) model_time 0.4611 (0.4602) loss 3.7708 (3.7414) grad_norm 1.8391 (1.5903/0.6341) mem 16099MB [2025-01-17 23:39:26 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][110/312] eta 0:01:37 lr 0.003834 time 0.4571 (0.4824) model_time 0.4569 (0.4617) loss 3.8246 (3.7153) grad_norm 0.8900 (1.5986/0.6353) mem 16099MB [2025-01-17 23:39:30 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][120/312] eta 0:01:32 lr 0.003834 time 0.4500 (0.4804) model_time 0.4498 (0.4614) loss 3.4401 (3.7462) grad_norm 1.0666 (1.5858/0.6211) mem 16099MB [2025-01-17 23:39:35 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][130/312] eta 0:01:27 lr 0.003834 time 0.4419 (0.4801) model_time 0.4417 (0.4625) loss 4.3613 (3.7578) grad_norm 1.1077 (1.5601/0.6143) mem 16099MB [2025-01-17 23:39:40 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][140/312] eta 0:01:22 lr 0.003833 time 0.4437 (0.4798) model_time 0.4435 (0.4634) loss 4.0767 (3.7629) grad_norm 1.4382 (1.5566/0.6025) mem 16099MB [2025-01-17 23:39:45 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][150/312] eta 0:01:17 lr 0.003833 time 0.4526 (0.4788) model_time 0.4521 (0.4636) loss 3.4624 (3.7652) grad_norm 1.9112 (1.5565/0.5923) mem 16099MB [2025-01-17 23:39:49 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][160/312] eta 0:01:12 lr 0.003833 time 0.4429 (0.4789) model_time 0.4427 (0.4646) loss 2.6713 (3.7755) grad_norm 1.2831 (1.6225/0.7014) mem 16099MB [2025-01-17 23:39:54 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][170/312] eta 0:01:07 lr 0.003833 time 0.4500 (0.4775) model_time 0.4498 (0.4640) loss 4.4595 (3.7667) grad_norm 0.8436 (1.6169/0.6960) mem 16099MB [2025-01-17 23:39:59 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][180/312] eta 0:01:02 lr 0.003832 time 0.4410 (0.4763) model_time 0.4408 (0.4635) loss 3.3391 (3.7797) grad_norm 1.1360 (1.5822/0.6927) mem 16099MB [2025-01-17 23:40:03 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][190/312] eta 0:00:57 lr 0.003832 time 0.4643 (0.4751) model_time 0.4639 (0.4630) loss 3.8809 (3.7703) grad_norm 0.8290 (1.6173/0.7355) mem 16099MB [2025-01-17 23:40:08 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][200/312] eta 0:00:53 lr 0.003832 time 0.4494 (0.4740) model_time 0.4490 (0.4624) loss 2.8468 (3.7538) grad_norm 0.9362 (1.5996/0.7282) mem 16099MB [2025-01-17 23:40:12 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][210/312] eta 0:00:48 lr 0.003832 time 0.4632 (0.4731) model_time 0.4631 (0.4621) loss 4.3490 (3.7466) grad_norm 1.1208 (1.5792/0.7203) mem 16099MB [2025-01-17 23:40:17 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][220/312] eta 0:00:43 lr 0.003831 time 0.4473 (0.4727) model_time 0.4471 (0.4622) loss 2.9135 (3.7475) grad_norm 1.8051 (1.5874/0.7122) mem 16099MB [2025-01-17 23:40:21 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][230/312] eta 0:00:38 lr 0.003831 time 0.4471 (0.4725) model_time 0.4469 (0.4624) loss 3.9581 (3.7401) grad_norm 1.3811 (1.5763/0.7008) mem 16099MB [2025-01-17 23:40:26 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][240/312] eta 0:00:34 lr 0.003831 time 0.4441 (0.4731) model_time 0.4439 (0.4634) loss 4.6701 (3.7483) grad_norm 1.7066 (1.5757/0.6916) mem 16099MB [2025-01-17 23:40:31 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][250/312] eta 0:00:29 lr 0.003830 time 0.4514 (0.4728) model_time 0.4510 (0.4635) loss 4.6125 (3.7384) grad_norm 3.0949 (1.5865/0.6949) mem 16099MB [2025-01-17 23:40:36 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][260/312] eta 0:00:24 lr 0.003830 time 0.4882 (0.4726) model_time 0.4880 (0.4636) loss 3.8468 (3.7388) grad_norm 1.7172 (1.5941/0.7032) mem 16099MB [2025-01-17 23:40:40 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][270/312] eta 0:00:19 lr 0.003830 time 0.4599 (0.4719) model_time 0.4597 (0.4632) loss 3.7648 (3.7296) grad_norm 3.5282 (1.5857/0.7064) mem 16099MB [2025-01-17 23:40:45 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][280/312] eta 0:00:15 lr 0.003830 time 0.4499 (0.4715) model_time 0.4497 (0.4631) loss 3.9113 (3.7300) grad_norm 1.9826 (1.5902/0.7200) mem 16099MB [2025-01-17 23:40:49 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][290/312] eta 0:00:10 lr 0.003829 time 0.4512 (0.4712) model_time 0.4507 (0.4631) loss 4.2288 (3.7257) grad_norm 1.2310 (1.5939/0.7178) mem 16099MB [2025-01-17 23:40:54 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][300/312] eta 0:00:05 lr 0.003829 time 0.4380 (0.4708) model_time 0.4379 (0.4630) loss 3.9347 (3.7317) grad_norm 1.2544 (1.6114/0.7293) mem 16099MB [2025-01-17 23:40:58 internimage_t_1k_224] (main.py 510): INFO Train: [39/300][310/312] eta 0:00:00 lr 0.003829 time 0.4395 (0.4698) model_time 0.4394 (0.4622) loss 3.5106 (3.7305) grad_norm 1.5424 (1.6006/0.7257) mem 16099MB [2025-01-17 23:40:59 internimage_t_1k_224] (main.py 519): INFO EPOCH 39 training takes 0:02:26 [2025-01-17 23:40:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_39.pth saving...... [2025-01-17 23:41:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_39.pth saved !!! [2025-01-17 23:41:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.378 (7.378) Loss 1.0974 (1.0974) Acc@1 75.220 (75.220) Acc@5 93.481 (93.481) Mem 16099MB [2025-01-17 23:41:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.990) Loss 1.5445 (1.2793) Acc@1 65.967 (72.024) Acc@5 87.915 (91.244) Mem 16099MB [2025-01-17 23:41:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:39] * Acc@1 72.113 Acc@5 91.291 [2025-01-17 23:41:11 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.1% [2025-01-17 23:41:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:41:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:41:12 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.11% [2025-01-17 23:41:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.425 (7.425) Loss 5.8929 (5.8929) Acc@1 5.420 (5.420) Acc@5 14.844 (14.844) Mem 16099MB [2025-01-17 23:41:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.009) Loss 5.4787 (5.5097) Acc@1 10.718 (9.504) Acc@5 22.437 (22.967) Mem 16099MB [2025-01-17 23:41:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:39] * Acc@1 9.595 Acc@5 23.375 [2025-01-17 23:41:24 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 9.6% [2025-01-17 23:41:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:41:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:41:25 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 9.59% [2025-01-17 23:41:28 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][0/312] eta 0:13:06 lr 0.003829 time 2.5212 (2.5212) model_time 0.4697 (0.4697) loss 3.4227 (3.4227) grad_norm 1.1687 (1.1687/0.0000) mem 16099MB [2025-01-17 23:41:32 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][10/312] eta 0:03:15 lr 0.003829 time 0.4573 (0.6478) model_time 0.4569 (0.4610) loss 3.1196 (3.6311) grad_norm 1.8092 (1.6500/0.9845) mem 16099MB [2025-01-17 23:41:37 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][20/312] eta 0:02:48 lr 0.003828 time 0.4408 (0.5785) model_time 0.4407 (0.4805) loss 4.1033 (3.7685) grad_norm 1.2167 (1.5049/0.7722) mem 16099MB [2025-01-17 23:41:42 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][30/312] eta 0:02:32 lr 0.003828 time 0.4501 (0.5409) model_time 0.4496 (0.4744) loss 4.1579 (3.7880) grad_norm 1.5230 (1.5955/0.7218) mem 16099MB [2025-01-17 23:41:46 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][40/312] eta 0:02:22 lr 0.003828 time 0.4498 (0.5222) model_time 0.4494 (0.4719) loss 4.1480 (3.8398) grad_norm 1.4192 (1.6965/0.8254) mem 16099MB [2025-01-17 23:41:51 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][50/312] eta 0:02:15 lr 0.003827 time 0.4409 (0.5158) model_time 0.4407 (0.4753) loss 3.2228 (3.8498) grad_norm 1.1558 (1.7080/0.8064) mem 16099MB [2025-01-17 23:41:56 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][60/312] eta 0:02:08 lr 0.003827 time 0.5548 (0.5117) model_time 0.5547 (0.4778) loss 4.6797 (3.8115) grad_norm 0.9806 (1.6469/0.7779) mem 16099MB [2025-01-17 23:42:01 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][70/312] eta 0:02:02 lr 0.003827 time 0.4497 (0.5049) model_time 0.4495 (0.4757) loss 4.0574 (3.8056) grad_norm 0.7808 (1.6026/0.7500) mem 16099MB [2025-01-17 23:42:05 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][80/312] eta 0:01:55 lr 0.003827 time 0.4597 (0.4994) model_time 0.4592 (0.4737) loss 3.0172 (3.7835) grad_norm 1.3974 (1.5682/0.7227) mem 16099MB [2025-01-17 23:42:10 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][90/312] eta 0:01:50 lr 0.003826 time 0.5120 (0.4961) model_time 0.5118 (0.4733) loss 3.7793 (3.7691) grad_norm 1.1448 (1.6213/0.7720) mem 16099MB [2025-01-17 23:42:15 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][100/312] eta 0:01:44 lr 0.003826 time 0.4602 (0.4917) model_time 0.4600 (0.4711) loss 3.3123 (3.7913) grad_norm 1.5137 (1.6114/0.7471) mem 16099MB [2025-01-17 23:42:19 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][110/312] eta 0:01:38 lr 0.003826 time 0.4502 (0.4891) model_time 0.4498 (0.4703) loss 4.1519 (3.8150) grad_norm 1.3330 (1.5961/0.7237) mem 16099MB [2025-01-17 23:42:24 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][120/312] eta 0:01:33 lr 0.003826 time 0.4484 (0.4875) model_time 0.4483 (0.4702) loss 4.4141 (3.8063) grad_norm 1.9925 (1.5672/0.7064) mem 16099MB [2025-01-17 23:42:29 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][130/312] eta 0:01:28 lr 0.003825 time 0.4440 (0.4876) model_time 0.4438 (0.4716) loss 3.7338 (3.7879) grad_norm 1.1758 (1.5766/0.6939) mem 16099MB [2025-01-17 23:42:34 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][140/312] eta 0:01:23 lr 0.003825 time 0.4467 (0.4873) model_time 0.4465 (0.4724) loss 3.5771 (3.7958) grad_norm 1.5179 (1.6284/0.8401) mem 16099MB [2025-01-17 23:42:38 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][150/312] eta 0:01:18 lr 0.003825 time 0.4642 (0.4855) model_time 0.4640 (0.4716) loss 4.1630 (3.7975) grad_norm 0.9007 (1.6535/0.8535) mem 16099MB [2025-01-17 23:42:43 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][160/312] eta 0:01:13 lr 0.003824 time 0.4862 (0.4844) model_time 0.4857 (0.4713) loss 4.2017 (3.7917) grad_norm 1.6088 (1.6662/0.8432) mem 16099MB [2025-01-17 23:42:48 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][170/312] eta 0:01:08 lr 0.003824 time 0.4526 (0.4826) model_time 0.4524 (0.4702) loss 3.7992 (3.7918) grad_norm 2.2646 (1.6552/0.8262) mem 16099MB [2025-01-17 23:42:52 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][180/312] eta 0:01:03 lr 0.003824 time 0.4665 (0.4810) model_time 0.4663 (0.4693) loss 3.9757 (3.7962) grad_norm 1.4743 (1.6475/0.8108) mem 16099MB [2025-01-17 23:42:57 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][190/312] eta 0:00:58 lr 0.003824 time 0.4730 (0.4796) model_time 0.4726 (0.4685) loss 4.1341 (3.7992) grad_norm 1.4715 (1.6285/0.7939) mem 16099MB [2025-01-17 23:43:01 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][200/312] eta 0:00:53 lr 0.003823 time 0.4425 (0.4791) model_time 0.4423 (0.4686) loss 4.1022 (3.8074) grad_norm 1.2165 (1.6367/0.7943) mem 16099MB [2025-01-17 23:43:06 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][210/312] eta 0:00:48 lr 0.003823 time 0.4702 (0.4791) model_time 0.4697 (0.4690) loss 4.4447 (3.8111) grad_norm 1.2005 (1.6308/0.7821) mem 16099MB [2025-01-17 23:43:11 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][220/312] eta 0:00:43 lr 0.003823 time 0.4421 (0.4778) model_time 0.4419 (0.4681) loss 3.8745 (3.8127) grad_norm 1.8563 (1.6285/0.7680) mem 16099MB [2025-01-17 23:43:15 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][230/312] eta 0:00:39 lr 0.003823 time 0.4515 (0.4778) model_time 0.4514 (0.4686) loss 4.1467 (3.8107) grad_norm 1.0903 (1.6181/0.7583) mem 16099MB [2025-01-17 23:43:20 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][240/312] eta 0:00:34 lr 0.003822 time 0.4389 (0.4768) model_time 0.4388 (0.4680) loss 4.7054 (3.8211) grad_norm 1.7961 (1.6290/0.7550) mem 16099MB [2025-01-17 23:43:25 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][250/312] eta 0:00:29 lr 0.003822 time 0.4500 (0.4762) model_time 0.4496 (0.4677) loss 3.2089 (3.8258) grad_norm 1.6206 (1.6282/0.7454) mem 16099MB [2025-01-17 23:43:30 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][260/312] eta 0:00:24 lr 0.003822 time 0.4494 (0.4775) model_time 0.4493 (0.4693) loss 4.8322 (3.8274) grad_norm 2.3255 (1.6318/0.7451) mem 16099MB [2025-01-17 23:43:34 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][270/312] eta 0:00:20 lr 0.003821 time 0.4472 (0.4765) model_time 0.4468 (0.4686) loss 3.3108 (3.8126) grad_norm 0.8298 (1.6161/0.7383) mem 16099MB [2025-01-17 23:43:39 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][280/312] eta 0:00:15 lr 0.003821 time 0.4543 (0.4760) model_time 0.4541 (0.4683) loss 2.9705 (3.8114) grad_norm 0.8656 (1.6240/0.7394) mem 16099MB [2025-01-17 23:43:43 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][290/312] eta 0:00:10 lr 0.003821 time 0.4467 (0.4760) model_time 0.4462 (0.4686) loss 4.6567 (3.8231) grad_norm 5.6459 (1.6407/0.7846) mem 16099MB [2025-01-17 23:43:48 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][300/312] eta 0:00:05 lr 0.003821 time 0.4400 (0.4759) model_time 0.4399 (0.4688) loss 3.4798 (3.8158) grad_norm 1.6010 (1.6289/0.7794) mem 16099MB [2025-01-17 23:43:53 internimage_t_1k_224] (main.py 510): INFO Train: [40/300][310/312] eta 0:00:00 lr 0.003820 time 0.4379 (0.4750) model_time 0.4378 (0.4681) loss 3.7569 (3.8105) grad_norm 1.7443 (1.6375/0.7762) mem 16099MB [2025-01-17 23:43:53 internimage_t_1k_224] (main.py 519): INFO EPOCH 40 training takes 0:02:28 [2025-01-17 23:43:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_40.pth saving...... [2025-01-17 23:43:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_40.pth saved !!! [2025-01-17 23:44:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.461 (7.461) Loss 1.0806 (1.0806) Acc@1 76.270 (76.270) Acc@5 93.970 (93.970) Mem 16099MB [2025-01-17 23:44:05 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.993) Loss 1.5459 (1.3037) Acc@1 67.114 (71.970) Acc@5 87.964 (91.093) Mem 16099MB [2025-01-17 23:44:05 internimage_t_1k_224] (main.py 575): INFO [Epoch:40] * Acc@1 72.025 Acc@5 91.127 [2025-01-17 23:44:05 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.0% [2025-01-17 23:44:05 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.11% [2025-01-17 23:44:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.344 (8.344) Loss 5.7388 (5.7388) Acc@1 7.056 (7.056) Acc@5 17.993 (17.993) Mem 16099MB [2025-01-17 23:44:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.125) Loss 5.3253 (5.3405) Acc@1 12.354 (11.430) Acc@5 25.366 (26.367) Mem 16099MB [2025-01-17 23:44:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:40] * Acc@1 11.486 Acc@5 26.747 [2025-01-17 23:44:18 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 11.5% [2025-01-17 23:44:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:44:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:44:19 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 11.49% [2025-01-17 23:44:22 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][0/312] eta 0:12:25 lr 0.003820 time 2.3894 (2.3894) model_time 0.4821 (0.4821) loss 3.1449 (3.1449) grad_norm 2.0047 (2.0047/0.0000) mem 16099MB [2025-01-17 23:44:26 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][10/312] eta 0:03:12 lr 0.003820 time 0.4798 (0.6378) model_time 0.4796 (0.4641) loss 2.7254 (3.5382) grad_norm 2.6743 (1.7679/0.6261) mem 16099MB [2025-01-17 23:44:31 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][20/312] eta 0:02:42 lr 0.003820 time 0.4563 (0.5553) model_time 0.4559 (0.4641) loss 3.9963 (3.7288) grad_norm 1.0818 (1.6132/0.6070) mem 16099MB [2025-01-17 23:44:36 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][30/312] eta 0:02:28 lr 0.003819 time 0.4469 (0.5252) model_time 0.4465 (0.4634) loss 3.7497 (3.7251) grad_norm 2.5353 (1.5018/0.5971) mem 16099MB [2025-01-17 23:44:40 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][40/312] eta 0:02:18 lr 0.003819 time 0.4580 (0.5095) model_time 0.4578 (0.4627) loss 4.6024 (3.7847) grad_norm 1.4064 (1.6795/0.8875) mem 16099MB [2025-01-17 23:44:45 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][50/312] eta 0:02:10 lr 0.003819 time 0.4498 (0.4992) model_time 0.4494 (0.4614) loss 3.6751 (3.7378) grad_norm 1.8353 (1.6813/0.8394) mem 16099MB [2025-01-17 23:44:49 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][60/312] eta 0:02:04 lr 0.003819 time 0.4548 (0.4933) model_time 0.4544 (0.4616) loss 4.3825 (3.7883) grad_norm 1.4431 (1.6765/0.7883) mem 16099MB [2025-01-17 23:44:54 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][70/312] eta 0:01:57 lr 0.003818 time 0.4520 (0.4875) model_time 0.4516 (0.4603) loss 3.4757 (3.7355) grad_norm 1.1030 (1.6733/0.7644) mem 16099MB [2025-01-17 23:44:59 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][80/312] eta 0:01:52 lr 0.003818 time 0.5356 (0.4841) model_time 0.5354 (0.4602) loss 3.4167 (3.7653) grad_norm 1.9561 (1.6780/0.7650) mem 16099MB [2025-01-17 23:45:03 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][90/312] eta 0:01:46 lr 0.003818 time 0.4695 (0.4813) model_time 0.4690 (0.4600) loss 4.1443 (3.7615) grad_norm 1.3486 (1.6934/0.7868) mem 16099MB [2025-01-17 23:45:08 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][100/312] eta 0:01:41 lr 0.003818 time 0.4532 (0.4799) model_time 0.4528 (0.4606) loss 4.1973 (3.7635) grad_norm 2.0485 (1.7031/0.7710) mem 16099MB [2025-01-17 23:45:12 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][110/312] eta 0:01:36 lr 0.003817 time 0.4675 (0.4790) model_time 0.4673 (0.4614) loss 4.6291 (3.7804) grad_norm 0.9048 (1.6616/0.7512) mem 16099MB [2025-01-17 23:45:17 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][120/312] eta 0:01:31 lr 0.003817 time 0.4572 (0.4788) model_time 0.4570 (0.4627) loss 4.6387 (3.7968) grad_norm 1.7885 (1.6737/0.7542) mem 16099MB [2025-01-17 23:45:22 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][130/312] eta 0:01:26 lr 0.003817 time 0.4494 (0.4778) model_time 0.4489 (0.4629) loss 4.1432 (3.8201) grad_norm 1.9362 (1.6407/0.7407) mem 16099MB [2025-01-17 23:45:27 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][140/312] eta 0:01:22 lr 0.003816 time 0.4418 (0.4771) model_time 0.4414 (0.4631) loss 3.6578 (3.7982) grad_norm 2.3093 (1.6324/0.7305) mem 16099MB [2025-01-17 23:45:31 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][150/312] eta 0:01:17 lr 0.003816 time 0.4561 (0.4772) model_time 0.4560 (0.4641) loss 4.6007 (3.8025) grad_norm 1.3242 (1.6434/0.7305) mem 16099MB [2025-01-17 23:45:36 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][160/312] eta 0:01:12 lr 0.003816 time 0.4630 (0.4775) model_time 0.4629 (0.4652) loss 3.7113 (3.7955) grad_norm 0.8966 (1.6408/0.7304) mem 16099MB [2025-01-17 23:45:41 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][170/312] eta 0:01:07 lr 0.003816 time 0.4501 (0.4764) model_time 0.4497 (0.4648) loss 4.0212 (3.8013) grad_norm 1.3733 (1.6389/0.7260) mem 16099MB [2025-01-17 23:45:45 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][180/312] eta 0:01:02 lr 0.003815 time 0.4621 (0.4750) model_time 0.4619 (0.4640) loss 3.9605 (3.7999) grad_norm 0.9530 (1.6188/0.7177) mem 16099MB [2025-01-17 23:45:50 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][190/312] eta 0:00:57 lr 0.003815 time 0.4413 (0.4737) model_time 0.4407 (0.4633) loss 3.0928 (3.7848) grad_norm 1.4092 (1.6115/0.7089) mem 16099MB [2025-01-17 23:45:54 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][200/312] eta 0:00:52 lr 0.003815 time 0.4593 (0.4727) model_time 0.4591 (0.4628) loss 4.6946 (3.7766) grad_norm 1.5060 (1.6183/0.7015) mem 16099MB [2025-01-17 23:45:59 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][210/312] eta 0:00:48 lr 0.003814 time 0.4566 (0.4731) model_time 0.4561 (0.4636) loss 3.1903 (3.7630) grad_norm 1.6826 (1.6193/0.6907) mem 16099MB [2025-01-17 23:46:04 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][220/312] eta 0:00:43 lr 0.003814 time 0.4574 (0.4727) model_time 0.4569 (0.4637) loss 2.7392 (3.7765) grad_norm 1.6662 (1.6339/0.6917) mem 16099MB [2025-01-17 23:46:08 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][230/312] eta 0:00:38 lr 0.003814 time 0.4674 (0.4723) model_time 0.4672 (0.4636) loss 4.5722 (3.7976) grad_norm 1.8640 (1.6267/0.6843) mem 16099MB [2025-01-17 23:46:13 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][240/312] eta 0:00:33 lr 0.003814 time 0.4426 (0.4718) model_time 0.4422 (0.4635) loss 4.9187 (3.7988) grad_norm 1.7427 (1.6240/0.6866) mem 16099MB [2025-01-17 23:46:18 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][250/312] eta 0:00:29 lr 0.003813 time 0.4483 (0.4716) model_time 0.4481 (0.4635) loss 4.7799 (3.8046) grad_norm 1.1887 (1.6080/0.6790) mem 16099MB [2025-01-17 23:46:22 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][260/312] eta 0:00:24 lr 0.003813 time 0.4320 (0.4711) model_time 0.4319 (0.4634) loss 3.5620 (3.8088) grad_norm 1.8032 (1.6209/0.6772) mem 16099MB [2025-01-17 23:46:27 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][270/312] eta 0:00:19 lr 0.003813 time 0.4570 (0.4704) model_time 0.4566 (0.4630) loss 4.7324 (3.8077) grad_norm 1.3813 (1.6261/0.6902) mem 16099MB [2025-01-17 23:46:31 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][280/312] eta 0:00:15 lr 0.003812 time 0.4508 (0.4703) model_time 0.4506 (0.4631) loss 2.6348 (3.7972) grad_norm 1.6674 (1.6299/0.6837) mem 16099MB [2025-01-17 23:46:36 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][290/312] eta 0:00:10 lr 0.003812 time 0.4541 (0.4703) model_time 0.4537 (0.4633) loss 4.3953 (3.7898) grad_norm 0.8406 (1.6197/0.6819) mem 16099MB [2025-01-17 23:46:41 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][300/312] eta 0:00:05 lr 0.003812 time 0.4382 (0.4699) model_time 0.4381 (0.4632) loss 3.6798 (3.7954) grad_norm 0.7671 (1.6155/0.6780) mem 16099MB [2025-01-17 23:46:45 internimage_t_1k_224] (main.py 510): INFO Train: [41/300][310/312] eta 0:00:00 lr 0.003812 time 0.4384 (0.4690) model_time 0.4383 (0.4625) loss 4.5506 (3.8018) grad_norm 1.7156 (1.6233/0.6798) mem 16099MB [2025-01-17 23:46:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 41 training takes 0:02:26 [2025-01-17 23:46:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_41.pth saving...... [2025-01-17 23:46:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_41.pth saved !!! [2025-01-17 23:46:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.376 (7.376) Loss 1.1207 (1.1207) Acc@1 75.317 (75.317) Acc@5 93.213 (93.213) Mem 16099MB [2025-01-17 23:46:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (0.996) Loss 1.5442 (1.2850) Acc@1 65.820 (72.290) Acc@5 88.403 (91.324) Mem 16099MB [2025-01-17 23:46:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:41] * Acc@1 72.321 Acc@5 91.359 [2025-01-17 23:46:58 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.3% [2025-01-17 23:46:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:46:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:46:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.32% [2025-01-17 23:47:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.373 (7.373) Loss 5.5763 (5.5763) Acc@1 9.155 (9.155) Acc@5 21.362 (21.362) Mem 16099MB [2025-01-17 23:47:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.004) Loss 5.1657 (5.1638) Acc@1 14.062 (13.676) Acc@5 28.662 (30.032) Mem 16099MB [2025-01-17 23:47:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:41] * Acc@1 13.744 Acc@5 30.422 [2025-01-17 23:47:10 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 13.7% [2025-01-17 23:47:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:47:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:47:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 13.74% [2025-01-17 23:47:15 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][0/312] eta 0:15:52 lr 0.003812 time 3.0514 (3.0514) model_time 0.4623 (0.4623) loss 4.8071 (4.8071) grad_norm 1.9909 (1.9909/0.0000) mem 16099MB [2025-01-17 23:47:19 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][10/312] eta 0:03:31 lr 0.003811 time 0.4578 (0.6991) model_time 0.4577 (0.4635) loss 3.6881 (3.6808) grad_norm 1.2268 (1.2991/0.3193) mem 16099MB [2025-01-17 23:47:24 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][20/312] eta 0:02:51 lr 0.003811 time 0.5449 (0.5859) model_time 0.5448 (0.4623) loss 4.7225 (3.7642) grad_norm 2.4835 (1.6905/0.7362) mem 16099MB [2025-01-17 23:47:29 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][30/312] eta 0:02:35 lr 0.003811 time 0.4491 (0.5510) model_time 0.4490 (0.4672) loss 3.8115 (3.7154) grad_norm 0.9441 (1.6710/0.6731) mem 16099MB [2025-01-17 23:47:33 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][40/312] eta 0:02:24 lr 0.003810 time 0.4458 (0.5295) model_time 0.4456 (0.4661) loss 4.1878 (3.7465) grad_norm 5.5162 (1.8124/0.9599) mem 16099MB [2025-01-17 23:47:38 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][50/312] eta 0:02:14 lr 0.003810 time 0.4481 (0.5147) model_time 0.4479 (0.4636) loss 3.5918 (3.8318) grad_norm 1.3234 (1.8004/0.9042) mem 16099MB [2025-01-17 23:47:43 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][60/312] eta 0:02:07 lr 0.003810 time 0.4560 (0.5068) model_time 0.4555 (0.4640) loss 3.9459 (3.7724) grad_norm 1.3900 (1.7116/0.8817) mem 16099MB [2025-01-17 23:47:47 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][70/312] eta 0:02:00 lr 0.003810 time 0.4493 (0.4992) model_time 0.4491 (0.4624) loss 4.7923 (3.7666) grad_norm 1.4464 (1.6501/0.8388) mem 16099MB [2025-01-17 23:47:52 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][80/312] eta 0:01:55 lr 0.003809 time 0.4391 (0.4974) model_time 0.4387 (0.4651) loss 3.7362 (3.7870) grad_norm 1.7578 (1.6396/0.8132) mem 16099MB [2025-01-17 23:47:57 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][90/312] eta 0:01:49 lr 0.003809 time 0.4493 (0.4938) model_time 0.4492 (0.4650) loss 3.4741 (3.7547) grad_norm 1.2130 (1.6164/0.7900) mem 16099MB [2025-01-17 23:48:01 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][100/312] eta 0:01:44 lr 0.003809 time 0.4409 (0.4911) model_time 0.4405 (0.4651) loss 3.4584 (3.7479) grad_norm 1.3869 (1.6642/0.7901) mem 16099MB [2025-01-17 23:48:06 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][110/312] eta 0:01:38 lr 0.003808 time 0.4628 (0.4877) model_time 0.4626 (0.4641) loss 3.9545 (3.7911) grad_norm 1.1634 (1.6521/0.7632) mem 16099MB [2025-01-17 23:48:11 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][120/312] eta 0:01:33 lr 0.003808 time 0.4531 (0.4864) model_time 0.4529 (0.4647) loss 3.8353 (3.7938) grad_norm 2.4331 (1.6296/0.7468) mem 16099MB [2025-01-17 23:48:15 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][130/312] eta 0:01:28 lr 0.003808 time 0.5659 (0.4855) model_time 0.5655 (0.4654) loss 3.3618 (3.7910) grad_norm 1.1384 (1.6151/0.7250) mem 16099MB [2025-01-17 23:48:20 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][140/312] eta 0:01:23 lr 0.003808 time 0.4431 (0.4848) model_time 0.4430 (0.4661) loss 3.6405 (3.7644) grad_norm 1.0185 (1.5978/0.7066) mem 16099MB [2025-01-17 23:48:25 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][150/312] eta 0:01:18 lr 0.003807 time 0.4724 (0.4842) model_time 0.4722 (0.4667) loss 3.8252 (3.7671) grad_norm 1.1326 (1.5832/0.6962) mem 16099MB [2025-01-17 23:48:30 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][160/312] eta 0:01:13 lr 0.003807 time 0.5474 (0.4829) model_time 0.5472 (0.4664) loss 4.2139 (3.7688) grad_norm 1.0288 (1.5528/0.6906) mem 16099MB [2025-01-17 23:48:34 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][170/312] eta 0:01:08 lr 0.003807 time 0.4518 (0.4815) model_time 0.4517 (0.4660) loss 3.3750 (3.7538) grad_norm 1.4628 (1.5663/0.6996) mem 16099MB [2025-01-17 23:48:39 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][180/312] eta 0:01:03 lr 0.003806 time 0.4522 (0.4800) model_time 0.4520 (0.4654) loss 2.5705 (3.7528) grad_norm 1.2886 (1.6015/0.7495) mem 16099MB [2025-01-17 23:48:43 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][190/312] eta 0:00:58 lr 0.003806 time 0.4433 (0.4785) model_time 0.4431 (0.4646) loss 2.8997 (3.7646) grad_norm 0.7676 (1.5763/0.7408) mem 16099MB [2025-01-17 23:48:48 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][200/312] eta 0:00:53 lr 0.003806 time 0.4475 (0.4782) model_time 0.4470 (0.4650) loss 3.0008 (3.7489) grad_norm 1.7826 (1.5557/0.7313) mem 16099MB [2025-01-17 23:48:53 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][210/312] eta 0:00:48 lr 0.003806 time 0.4496 (0.4775) model_time 0.4495 (0.4649) loss 4.2707 (3.7341) grad_norm 5.1319 (1.5726/0.7617) mem 16099MB [2025-01-17 23:48:57 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][220/312] eta 0:00:43 lr 0.003805 time 0.4564 (0.4766) model_time 0.4562 (0.4646) loss 4.0422 (3.7376) grad_norm 1.0996 (1.5969/0.7727) mem 16099MB [2025-01-17 23:49:02 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][230/312] eta 0:00:39 lr 0.003805 time 0.4542 (0.4766) model_time 0.4540 (0.4651) loss 4.4059 (3.7361) grad_norm 1.7567 (1.6168/0.7729) mem 16099MB [2025-01-17 23:49:06 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][240/312] eta 0:00:34 lr 0.003805 time 0.4421 (0.4760) model_time 0.4419 (0.4650) loss 4.3089 (3.7375) grad_norm 3.0281 (1.6257/0.7675) mem 16099MB [2025-01-17 23:49:11 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][250/312] eta 0:00:29 lr 0.003804 time 0.4515 (0.4752) model_time 0.4510 (0.4645) loss 4.0542 (3.7420) grad_norm 1.8677 (1.6082/0.7610) mem 16099MB [2025-01-17 23:49:16 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][260/312] eta 0:00:24 lr 0.003804 time 0.4994 (0.4749) model_time 0.4992 (0.4647) loss 3.9119 (3.7410) grad_norm 0.9929 (1.5998/0.7543) mem 16099MB [2025-01-17 23:49:20 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][270/312] eta 0:00:19 lr 0.003804 time 0.4852 (0.4748) model_time 0.4851 (0.4650) loss 4.2091 (3.7529) grad_norm 0.9917 (1.5907/0.7515) mem 16099MB [2025-01-17 23:49:25 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][280/312] eta 0:00:15 lr 0.003804 time 0.4818 (0.4744) model_time 0.4816 (0.4649) loss 3.1393 (3.7590) grad_norm 0.9233 (1.5851/0.7500) mem 16099MB [2025-01-17 23:49:30 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][290/312] eta 0:00:10 lr 0.003803 time 0.4672 (0.4741) model_time 0.4669 (0.4648) loss 3.3040 (3.7528) grad_norm 2.4811 (1.6071/0.7705) mem 16099MB [2025-01-17 23:49:34 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][300/312] eta 0:00:05 lr 0.003803 time 0.4317 (0.4732) model_time 0.4316 (0.4642) loss 3.4192 (3.7344) grad_norm 2.2185 (1.6037/0.7637) mem 16099MB [2025-01-17 23:49:39 internimage_t_1k_224] (main.py 510): INFO Train: [42/300][310/312] eta 0:00:00 lr 0.003803 time 0.4373 (0.4730) model_time 0.4372 (0.4644) loss 4.7477 (3.7345) grad_norm 1.2026 (1.6124/0.7670) mem 16099MB [2025-01-17 23:49:39 internimage_t_1k_224] (main.py 519): INFO EPOCH 42 training takes 0:02:27 [2025-01-17 23:49:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_42.pth saving...... [2025-01-17 23:49:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_42.pth saved !!! [2025-01-17 23:49:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.742 (7.742) Loss 1.0368 (1.0368) Acc@1 76.733 (76.733) Acc@5 93.970 (93.970) Mem 16099MB [2025-01-17 23:49:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.030) Loss 1.5062 (1.2484) Acc@1 65.601 (72.232) Acc@5 87.964 (91.335) Mem 16099MB [2025-01-17 23:49:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:42] * Acc@1 72.285 Acc@5 91.377 [2025-01-17 23:49:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.3% [2025-01-17 23:49:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.32% [2025-01-17 23:50:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.429 (8.429) Loss 5.3990 (5.3990) Acc@1 11.377 (11.377) Acc@5 24.414 (24.414) Mem 16099MB [2025-01-17 23:50:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.129) Loss 5.0055 (4.9836) Acc@1 15.771 (16.025) Acc@5 32.251 (33.638) Mem 16099MB [2025-01-17 23:50:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:42] * Acc@1 16.051 Acc@5 33.977 [2025-01-17 23:50:04 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 16.1% [2025-01-17 23:50:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:50:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:50:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 16.05% [2025-01-17 23:50:08 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][0/312] eta 0:12:07 lr 0.003803 time 2.3318 (2.3318) model_time 0.4802 (0.4802) loss 3.7970 (3.7970) grad_norm 1.1130 (1.1130/0.0000) mem 16099MB [2025-01-17 23:50:13 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][10/312] eta 0:03:17 lr 0.003802 time 0.5502 (0.6549) model_time 0.5500 (0.4863) loss 4.1620 (3.5619) grad_norm 0.7840 (1.4564/0.5081) mem 16099MB [2025-01-17 23:50:18 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][20/312] eta 0:02:44 lr 0.003802 time 0.4652 (0.5620) model_time 0.4650 (0.4735) loss 4.5003 (3.8503) grad_norm 2.1193 (1.5765/0.4945) mem 16099MB [2025-01-17 23:50:23 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][30/312] eta 0:02:31 lr 0.003802 time 0.4463 (0.5374) model_time 0.4462 (0.4774) loss 3.6900 (3.8637) grad_norm 2.1237 (1.5604/0.4937) mem 16099MB [2025-01-17 23:50:27 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][40/312] eta 0:02:20 lr 0.003801 time 0.4509 (0.5165) model_time 0.4507 (0.4711) loss 3.3096 (3.8091) grad_norm 1.8278 (1.6435/0.5543) mem 16099MB [2025-01-17 23:50:32 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][50/312] eta 0:02:12 lr 0.003801 time 0.4556 (0.5067) model_time 0.4555 (0.4701) loss 4.1492 (3.8168) grad_norm 1.1516 (1.5483/0.5510) mem 16099MB [2025-01-17 23:50:36 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][60/312] eta 0:02:06 lr 0.003801 time 0.5230 (0.5005) model_time 0.5229 (0.4698) loss 3.4125 (3.7734) grad_norm 1.0113 (1.4596/0.5481) mem 16099MB [2025-01-17 23:50:41 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][70/312] eta 0:01:59 lr 0.003801 time 0.4957 (0.4945) model_time 0.4955 (0.4681) loss 3.6916 (3.7408) grad_norm 1.4529 (1.4134/0.5319) mem 16099MB [2025-01-17 23:50:46 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][80/312] eta 0:01:54 lr 0.003800 time 0.4429 (0.4916) model_time 0.4428 (0.4684) loss 3.6321 (3.7630) grad_norm 1.3263 (1.4830/0.6600) mem 16099MB [2025-01-17 23:50:50 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][90/312] eta 0:01:48 lr 0.003800 time 0.4789 (0.4876) model_time 0.4788 (0.4670) loss 4.1728 (3.7604) grad_norm 1.7544 (1.4997/0.6356) mem 16099MB [2025-01-17 23:50:55 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][100/312] eta 0:01:43 lr 0.003800 time 0.4600 (0.4862) model_time 0.4596 (0.4676) loss 3.8094 (3.7522) grad_norm 1.0528 (1.4775/0.6176) mem 16099MB [2025-01-17 23:51:00 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][110/312] eta 0:01:37 lr 0.003799 time 0.4521 (0.4836) model_time 0.4517 (0.4666) loss 3.6388 (3.6857) grad_norm 0.9856 (1.4860/0.6528) mem 16099MB [2025-01-17 23:51:04 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][120/312] eta 0:01:32 lr 0.003799 time 0.4551 (0.4828) model_time 0.4549 (0.4672) loss 4.0970 (3.6982) grad_norm 1.4209 (1.5179/0.6581) mem 16099MB [2025-01-17 23:51:09 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][130/312] eta 0:01:27 lr 0.003799 time 0.4396 (0.4811) model_time 0.4394 (0.4666) loss 4.0533 (3.6884) grad_norm 0.7567 (1.5475/0.6826) mem 16099MB [2025-01-17 23:51:14 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][140/312] eta 0:01:22 lr 0.003799 time 0.4535 (0.4798) model_time 0.4534 (0.4664) loss 2.6333 (3.6953) grad_norm 1.3991 (1.5678/0.7124) mem 16099MB [2025-01-17 23:51:18 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][150/312] eta 0:01:17 lr 0.003798 time 0.4442 (0.4793) model_time 0.4437 (0.4667) loss 3.6885 (3.6821) grad_norm 0.6709 (1.5492/0.6983) mem 16099MB [2025-01-17 23:51:23 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][160/312] eta 0:01:12 lr 0.003798 time 0.4500 (0.4779) model_time 0.4498 (0.4660) loss 4.5155 (3.6920) grad_norm 1.0732 (1.5360/0.6870) mem 16099MB [2025-01-17 23:51:27 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][170/312] eta 0:01:07 lr 0.003798 time 0.4561 (0.4769) model_time 0.4560 (0.4658) loss 4.1208 (3.6884) grad_norm 1.7433 (1.5448/0.6960) mem 16099MB [2025-01-17 23:51:32 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][180/312] eta 0:01:02 lr 0.003797 time 0.4663 (0.4762) model_time 0.4658 (0.4656) loss 4.2888 (3.6769) grad_norm 0.7806 (1.5399/0.6952) mem 16099MB [2025-01-17 23:51:37 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][190/312] eta 0:00:58 lr 0.003797 time 0.4742 (0.4760) model_time 0.4737 (0.4659) loss 3.1527 (3.6729) grad_norm 2.3094 (1.5375/0.6871) mem 16099MB [2025-01-17 23:51:41 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][200/312] eta 0:00:53 lr 0.003797 time 0.4545 (0.4750) model_time 0.4540 (0.4655) loss 3.0157 (3.6809) grad_norm 2.0005 (1.5810/0.7392) mem 16099MB [2025-01-17 23:51:46 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][210/312] eta 0:00:48 lr 0.003797 time 0.4528 (0.4745) model_time 0.4526 (0.4654) loss 4.4797 (3.6886) grad_norm 2.3031 (1.5885/0.7404) mem 16099MB [2025-01-17 23:51:51 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][220/312] eta 0:00:43 lr 0.003796 time 0.4554 (0.4742) model_time 0.4550 (0.4655) loss 4.3025 (3.6831) grad_norm 1.1339 (1.5729/0.7296) mem 16099MB [2025-01-17 23:51:55 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][230/312] eta 0:00:38 lr 0.003796 time 0.4577 (0.4736) model_time 0.4573 (0.4652) loss 4.0270 (3.6660) grad_norm 1.6162 (1.5612/0.7191) mem 16099MB [2025-01-17 23:52:00 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][240/312] eta 0:00:34 lr 0.003796 time 0.4480 (0.4737) model_time 0.4475 (0.4656) loss 3.9477 (3.6507) grad_norm 1.2653 (1.5495/0.7075) mem 16099MB [2025-01-17 23:52:05 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][250/312] eta 0:00:29 lr 0.003795 time 0.4445 (0.4732) model_time 0.4443 (0.4655) loss 4.2095 (3.6562) grad_norm 1.0645 (1.5496/0.6995) mem 16099MB [2025-01-17 23:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][260/312] eta 0:00:24 lr 0.003795 time 0.4592 (0.4729) model_time 0.4590 (0.4654) loss 3.1152 (3.6624) grad_norm 0.8924 (1.5522/0.6921) mem 16099MB [2025-01-17 23:52:14 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][270/312] eta 0:00:19 lr 0.003795 time 0.4431 (0.4726) model_time 0.4430 (0.4654) loss 2.6447 (3.6682) grad_norm 1.1942 (1.5688/0.7014) mem 16099MB [2025-01-17 23:52:19 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][280/312] eta 0:00:15 lr 0.003794 time 0.4559 (0.4721) model_time 0.4557 (0.4651) loss 3.9516 (3.6683) grad_norm 1.9057 (1.5538/0.6957) mem 16099MB [2025-01-17 23:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][290/312] eta 0:00:10 lr 0.003794 time 0.4424 (0.4716) model_time 0.4420 (0.4649) loss 3.1032 (3.6669) grad_norm 1.2904 (1.5498/0.6865) mem 16099MB [2025-01-17 23:52:28 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][300/312] eta 0:00:05 lr 0.003794 time 0.4366 (0.4709) model_time 0.4365 (0.4644) loss 4.1339 (3.6755) grad_norm 3.2277 (1.5520/0.6858) mem 16099MB [2025-01-17 23:52:32 internimage_t_1k_224] (main.py 510): INFO Train: [43/300][310/312] eta 0:00:00 lr 0.003794 time 0.4374 (0.4699) model_time 0.4373 (0.4636) loss 3.9951 (3.6791) grad_norm 1.8441 (1.5880/0.7381) mem 16099MB [2025-01-17 23:52:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 43 training takes 0:02:26 [2025-01-17 23:52:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_43.pth saving...... [2025-01-17 23:52:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_43.pth saved !!! [2025-01-17 23:52:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.462 (7.462) Loss 1.0631 (1.0631) Acc@1 75.757 (75.757) Acc@5 93.896 (93.896) Mem 16099MB [2025-01-17 23:52:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.002) Loss 1.5552 (1.2622) Acc@1 66.553 (72.388) Acc@5 87.378 (91.524) Mem 16099MB [2025-01-17 23:52:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:43] * Acc@1 72.453 Acc@5 91.635 [2025-01-17 23:52:45 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.5% [2025-01-17 23:52:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:52:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:52:46 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.45% [2025-01-17 23:52:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.668 (7.668) Loss 5.2077 (5.2077) Acc@1 13.794 (13.794) Acc@5 29.102 (29.102) Mem 16099MB [2025-01-17 23:52:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.011) Loss 4.8420 (4.7975) Acc@1 18.115 (18.650) Acc@5 35.425 (37.447) Mem 16099MB [2025-01-17 23:52:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:43] * Acc@1 18.662 Acc@5 37.714 [2025-01-17 23:52:57 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 18.7% [2025-01-17 23:52:57 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:52:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:52:59 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 18.66% [2025-01-17 23:53:02 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][0/312] eta 0:13:57 lr 0.003794 time 2.6841 (2.6841) model_time 0.4599 (0.4599) loss 3.6708 (3.6708) grad_norm 1.1750 (1.1750/0.0000) mem 16099MB [2025-01-17 23:53:06 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][10/312] eta 0:03:25 lr 0.003793 time 0.4392 (0.6789) model_time 0.4391 (0.4763) loss 3.6225 (3.6686) grad_norm 1.8139 (1.3655/0.2952) mem 16099MB [2025-01-17 23:53:11 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][20/312] eta 0:02:47 lr 0.003793 time 0.4420 (0.5719) model_time 0.4416 (0.4657) loss 3.5299 (3.7833) grad_norm 2.0426 (1.4404/0.4749) mem 16099MB [2025-01-17 23:53:16 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][30/312] eta 0:02:31 lr 0.003793 time 0.4581 (0.5370) model_time 0.4576 (0.4649) loss 4.3548 (3.8062) grad_norm 0.9646 (1.5638/0.6609) mem 16099MB [2025-01-17 23:53:20 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][40/312] eta 0:02:21 lr 0.003792 time 0.4463 (0.5196) model_time 0.4458 (0.4650) loss 3.5950 (3.8084) grad_norm 1.5391 (1.5938/0.7359) mem 16099MB [2025-01-17 23:53:25 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][50/312] eta 0:02:13 lr 0.003792 time 0.4469 (0.5082) model_time 0.4468 (0.4642) loss 4.4013 (3.8654) grad_norm 1.3734 (1.6227/0.7109) mem 16099MB [2025-01-17 23:53:29 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][60/312] eta 0:02:06 lr 0.003792 time 0.4484 (0.5020) model_time 0.4483 (0.4652) loss 5.0000 (3.8492) grad_norm 1.7347 (1.5756/0.6766) mem 16099MB [2025-01-17 23:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][70/312] eta 0:01:59 lr 0.003791 time 0.4557 (0.4949) model_time 0.4553 (0.4632) loss 4.7122 (3.8427) grad_norm 1.3363 (1.5947/0.7147) mem 16099MB [2025-01-17 23:53:39 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][80/312] eta 0:01:54 lr 0.003791 time 0.5617 (0.4927) model_time 0.5613 (0.4648) loss 2.5780 (3.7933) grad_norm 2.7143 (1.6283/0.7714) mem 16099MB [2025-01-17 23:53:43 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][90/312] eta 0:01:48 lr 0.003791 time 0.4550 (0.4905) model_time 0.4549 (0.4656) loss 3.7564 (3.7756) grad_norm 1.9616 (1.6034/0.7468) mem 16099MB [2025-01-17 23:53:48 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][100/312] eta 0:01:43 lr 0.003791 time 0.4501 (0.4869) model_time 0.4497 (0.4645) loss 3.5274 (3.7557) grad_norm 2.0916 (1.5777/0.7185) mem 16099MB [2025-01-17 23:53:53 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][110/312] eta 0:01:37 lr 0.003790 time 0.4486 (0.4845) model_time 0.4481 (0.4641) loss 3.9314 (3.7518) grad_norm 1.0580 (1.5851/0.7387) mem 16099MB [2025-01-17 23:53:57 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][120/312] eta 0:01:32 lr 0.003790 time 0.4479 (0.4843) model_time 0.4477 (0.4655) loss 3.8254 (3.7484) grad_norm 1.4570 (1.6327/0.8143) mem 16099MB [2025-01-17 23:54:02 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][130/312] eta 0:01:28 lr 0.003790 time 0.5401 (0.4847) model_time 0.5400 (0.4673) loss 3.5305 (3.7661) grad_norm 0.5990 (1.6020/0.8000) mem 16099MB [2025-01-17 23:54:07 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][140/312] eta 0:01:23 lr 0.003789 time 0.4475 (0.4832) model_time 0.4470 (0.4670) loss 4.6103 (3.7600) grad_norm 0.7576 (1.5813/0.7846) mem 16099MB [2025-01-17 23:54:12 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][150/312] eta 0:01:18 lr 0.003789 time 0.4452 (0.4832) model_time 0.4450 (0.4680) loss 4.1673 (3.7564) grad_norm 0.8963 (1.5644/0.7688) mem 16099MB [2025-01-17 23:54:17 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][160/312] eta 0:01:13 lr 0.003789 time 0.4414 (0.4823) model_time 0.4408 (0.4681) loss 4.1204 (3.7518) grad_norm 1.2206 (1.5734/0.7690) mem 16099MB [2025-01-17 23:54:21 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][170/312] eta 0:01:08 lr 0.003788 time 0.4487 (0.4805) model_time 0.4485 (0.4671) loss 3.8803 (3.7644) grad_norm 1.2928 (1.5658/0.7569) mem 16099MB [2025-01-17 23:54:26 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][180/312] eta 0:01:03 lr 0.003788 time 0.4595 (0.4790) model_time 0.4594 (0.4663) loss 3.9154 (3.7537) grad_norm 1.5104 (1.5904/0.7545) mem 16099MB [2025-01-17 23:54:30 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][190/312] eta 0:00:58 lr 0.003788 time 0.4517 (0.4785) model_time 0.4515 (0.4665) loss 2.6723 (3.7462) grad_norm 0.8123 (1.5591/0.7475) mem 16099MB [2025-01-17 23:54:35 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][200/312] eta 0:00:53 lr 0.003788 time 0.4560 (0.4772) model_time 0.4555 (0.4658) loss 3.7803 (3.7383) grad_norm 0.9219 (1.5405/0.7358) mem 16099MB [2025-01-17 23:54:39 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][210/312] eta 0:00:48 lr 0.003787 time 0.4434 (0.4765) model_time 0.4432 (0.4655) loss 4.2607 (3.7346) grad_norm 1.6435 (1.5397/0.7290) mem 16099MB [2025-01-17 23:54:44 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][220/312] eta 0:00:43 lr 0.003787 time 0.4419 (0.4758) model_time 0.4414 (0.4653) loss 3.8418 (3.7312) grad_norm 1.6280 (1.5258/0.7195) mem 16099MB [2025-01-17 23:54:49 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][230/312] eta 0:00:38 lr 0.003787 time 0.4473 (0.4753) model_time 0.4468 (0.4652) loss 3.4764 (3.7261) grad_norm 1.8313 (1.5157/0.7081) mem 16099MB [2025-01-17 23:54:53 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][240/312] eta 0:00:34 lr 0.003786 time 0.4593 (0.4747) model_time 0.4589 (0.4651) loss 4.1612 (3.7276) grad_norm 1.5145 (1.5620/0.7643) mem 16099MB [2025-01-17 23:54:58 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][250/312] eta 0:00:29 lr 0.003786 time 0.4526 (0.4743) model_time 0.4525 (0.4650) loss 3.8431 (3.7174) grad_norm 1.7262 (1.5550/0.7522) mem 16099MB [2025-01-17 23:55:03 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][260/312] eta 0:00:24 lr 0.003786 time 0.4402 (0.4739) model_time 0.4400 (0.4650) loss 3.8099 (3.7241) grad_norm 1.5554 (1.5706/0.7702) mem 16099MB [2025-01-17 23:55:07 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][270/312] eta 0:00:19 lr 0.003785 time 0.4466 (0.4731) model_time 0.4461 (0.4645) loss 4.2059 (3.7399) grad_norm 1.9180 (1.5593/0.7642) mem 16099MB [2025-01-17 23:55:12 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][280/312] eta 0:00:15 lr 0.003785 time 0.4501 (0.4732) model_time 0.4497 (0.4649) loss 4.0539 (3.7434) grad_norm 3.3251 (1.5582/0.7641) mem 16099MB [2025-01-17 23:55:17 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][290/312] eta 0:00:10 lr 0.003785 time 0.4550 (0.4731) model_time 0.4548 (0.4651) loss 4.5260 (3.7500) grad_norm 0.9138 (1.5578/0.7610) mem 16099MB [2025-01-17 23:55:21 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][300/312] eta 0:00:05 lr 0.003785 time 0.4380 (0.4727) model_time 0.4378 (0.4649) loss 3.3686 (3.7488) grad_norm 1.2432 (1.5553/0.7574) mem 16099MB [2025-01-17 23:55:26 internimage_t_1k_224] (main.py 510): INFO Train: [44/300][310/312] eta 0:00:00 lr 0.003784 time 0.4404 (0.4720) model_time 0.4403 (0.4645) loss 3.2808 (3.7494) grad_norm 0.9604 (1.5495/0.7592) mem 16099MB [2025-01-17 23:55:26 internimage_t_1k_224] (main.py 519): INFO EPOCH 44 training takes 0:02:27 [2025-01-17 23:55:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_44.pth saving...... [2025-01-17 23:55:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_44.pth saved !!! [2025-01-17 23:55:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.411 (7.411) Loss 1.0556 (1.0556) Acc@1 77.075 (77.075) Acc@5 94.409 (94.409) Mem 16099MB [2025-01-17 23:55:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.982) Loss 1.5533 (1.2684) Acc@1 65.332 (72.363) Acc@5 87.622 (91.526) Mem 16099MB [2025-01-17 23:55:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:44] * Acc@1 72.465 Acc@5 91.609 [2025-01-17 23:55:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.5% [2025-01-17 23:55:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:55:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:55:39 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.46% [2025-01-17 23:55:47 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.297 (7.297) Loss 4.9978 (4.9978) Acc@1 16.943 (16.943) Acc@5 33.740 (33.740) Mem 16099MB [2025-01-17 23:55:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.982) Loss 4.6744 (4.6073) Acc@1 20.581 (21.444) Acc@5 38.379 (41.269) Mem 16099MB [2025-01-17 23:55:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:44] * Acc@1 21.379 Acc@5 41.585 [2025-01-17 23:55:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 21.4% [2025-01-17 23:55:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:55:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:55:52 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 21.38% [2025-01-17 23:55:54 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][0/312] eta 0:13:04 lr 0.003784 time 2.5138 (2.5138) model_time 0.5013 (0.5013) loss 2.6869 (2.6869) grad_norm 1.2465 (1.2465/0.0000) mem 16099MB [2025-01-17 23:55:59 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][10/312] eta 0:03:16 lr 0.003784 time 0.4511 (0.6498) model_time 0.4509 (0.4665) loss 3.9295 (3.6615) grad_norm 0.9744 (1.3170/0.2834) mem 16099MB [2025-01-17 23:56:03 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][20/312] eta 0:02:44 lr 0.003784 time 0.4493 (0.5628) model_time 0.4492 (0.4666) loss 4.0323 (3.6114) grad_norm 4.0512 (1.6577/0.8603) mem 16099MB [2025-01-17 23:56:08 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][30/312] eta 0:02:30 lr 0.003783 time 0.4678 (0.5328) model_time 0.4676 (0.4676) loss 4.1338 (3.7597) grad_norm 1.5123 (1.8064/1.1966) mem 16099MB [2025-01-17 23:56:13 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][40/312] eta 0:02:19 lr 0.003783 time 0.4526 (0.5135) model_time 0.4521 (0.4641) loss 4.5319 (3.7797) grad_norm 0.9873 (1.8854/1.3668) mem 16099MB [2025-01-17 23:56:17 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][50/312] eta 0:02:12 lr 0.003783 time 0.4511 (0.5056) model_time 0.4507 (0.4658) loss 3.5758 (3.8247) grad_norm 1.8778 (1.8051/1.2472) mem 16099MB [2025-01-17 23:56:22 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][60/312] eta 0:02:05 lr 0.003782 time 0.4543 (0.4988) model_time 0.4541 (0.4655) loss 2.6177 (3.7992) grad_norm 1.6345 (1.7092/1.1651) mem 16099MB [2025-01-17 23:56:27 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][70/312] eta 0:01:59 lr 0.003782 time 0.4436 (0.4933) model_time 0.4434 (0.4646) loss 4.4637 (3.7693) grad_norm 0.8571 (1.6535/1.0957) mem 16099MB [2025-01-17 23:56:31 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][80/312] eta 0:01:53 lr 0.003782 time 0.5735 (0.4902) model_time 0.5731 (0.4650) loss 3.0538 (3.7421) grad_norm 1.0179 (1.6377/1.0352) mem 16099MB [2025-01-17 23:56:36 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][90/312] eta 0:01:48 lr 0.003781 time 0.4524 (0.4875) model_time 0.4520 (0.4651) loss 2.8756 (3.7476) grad_norm 1.3471 (1.6831/1.0324) mem 16099MB [2025-01-17 23:56:41 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][100/312] eta 0:01:43 lr 0.003781 time 0.5432 (0.4863) model_time 0.5430 (0.4660) loss 3.8259 (3.7476) grad_norm 1.6786 (1.7098/1.0131) mem 16099MB [2025-01-17 23:56:45 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][110/312] eta 0:01:37 lr 0.003781 time 0.4481 (0.4844) model_time 0.4479 (0.4659) loss 2.7772 (3.7667) grad_norm 1.5042 (1.7049/0.9777) mem 16099MB [2025-01-17 23:56:50 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][120/312] eta 0:01:32 lr 0.003781 time 0.5398 (0.4830) model_time 0.5397 (0.4660) loss 2.7874 (3.7583) grad_norm 1.0140 (1.6583/0.9503) mem 16099MB [2025-01-17 23:56:55 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][130/312] eta 0:01:27 lr 0.003780 time 0.4496 (0.4829) model_time 0.4495 (0.4672) loss 2.4072 (3.7498) grad_norm 1.8889 (1.6676/0.9346) mem 16099MB [2025-01-17 23:57:00 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][140/312] eta 0:01:22 lr 0.003780 time 0.4622 (0.4819) model_time 0.4620 (0.4673) loss 2.4103 (3.7391) grad_norm 1.2548 (1.6564/0.9095) mem 16099MB [2025-01-17 23:57:04 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][150/312] eta 0:01:17 lr 0.003780 time 0.4509 (0.4806) model_time 0.4507 (0.4670) loss 4.1243 (3.7574) grad_norm 0.8641 (1.6387/0.8880) mem 16099MB [2025-01-17 23:57:09 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][160/312] eta 0:01:12 lr 0.003779 time 0.4486 (0.4798) model_time 0.4484 (0.4670) loss 3.5113 (3.7695) grad_norm 1.6111 (1.6456/0.8770) mem 16099MB [2025-01-17 23:57:13 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][170/312] eta 0:01:07 lr 0.003779 time 0.4481 (0.4785) model_time 0.4476 (0.4664) loss 3.7249 (3.7351) grad_norm 1.4754 (1.6178/0.8610) mem 16099MB [2025-01-17 23:57:18 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][180/312] eta 0:01:03 lr 0.003779 time 0.4489 (0.4783) model_time 0.4487 (0.4669) loss 3.8114 (3.7219) grad_norm 1.6637 (1.6059/0.8411) mem 16099MB [2025-01-17 23:57:23 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][190/312] eta 0:00:58 lr 0.003778 time 0.4506 (0.4778) model_time 0.4505 (0.4669) loss 4.0375 (3.7167) grad_norm 1.4026 (1.6613/0.9357) mem 16099MB [2025-01-17 23:57:28 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][200/312] eta 0:00:53 lr 0.003778 time 0.4385 (0.4769) model_time 0.4383 (0.4665) loss 4.0895 (3.7216) grad_norm 2.3090 (1.6672/0.9263) mem 16099MB [2025-01-17 23:57:32 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][210/312] eta 0:00:48 lr 0.003778 time 0.4453 (0.4762) model_time 0.4449 (0.4664) loss 3.7459 (3.7268) grad_norm 1.2623 (1.6518/0.9092) mem 16099MB [2025-01-17 23:57:37 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][220/312] eta 0:00:43 lr 0.003778 time 0.4409 (0.4756) model_time 0.4408 (0.4662) loss 4.0183 (3.7247) grad_norm 1.0290 (1.6369/0.8948) mem 16099MB [2025-01-17 23:57:41 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][230/312] eta 0:00:38 lr 0.003777 time 0.4412 (0.4749) model_time 0.4408 (0.4659) loss 4.3887 (3.7245) grad_norm 1.1853 (1.6269/0.8787) mem 16099MB [2025-01-17 23:57:46 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][240/312] eta 0:00:34 lr 0.003777 time 0.4676 (0.4744) model_time 0.4675 (0.4657) loss 3.0175 (3.7231) grad_norm 1.2915 (1.6225/0.8667) mem 16099MB [2025-01-17 23:57:51 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][250/312] eta 0:00:29 lr 0.003777 time 0.4452 (0.4735) model_time 0.4448 (0.4652) loss 4.5168 (3.7301) grad_norm 1.6692 (1.6107/0.8544) mem 16099MB [2025-01-17 23:57:55 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][260/312] eta 0:00:24 lr 0.003776 time 0.4436 (0.4730) model_time 0.4434 (0.4650) loss 4.0716 (3.7274) grad_norm 0.9925 (1.5953/0.8419) mem 16099MB [2025-01-17 23:58:00 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][270/312] eta 0:00:19 lr 0.003776 time 0.4496 (0.4736) model_time 0.4494 (0.4659) loss 2.8302 (3.7202) grad_norm 2.8290 (1.6305/0.8951) mem 16099MB [2025-01-17 23:58:05 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][280/312] eta 0:00:15 lr 0.003776 time 0.4562 (0.4741) model_time 0.4558 (0.4665) loss 3.7900 (3.7253) grad_norm 1.0620 (1.6252/0.8850) mem 16099MB [2025-01-17 23:58:10 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][290/312] eta 0:00:10 lr 0.003775 time 0.4417 (0.4737) model_time 0.4412 (0.4664) loss 3.8509 (3.7238) grad_norm 2.0891 (1.6116/0.8759) mem 16099MB [2025-01-17 23:58:14 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][300/312] eta 0:00:05 lr 0.003775 time 0.4392 (0.4731) model_time 0.4391 (0.4660) loss 3.8804 (3.7237) grad_norm 1.9738 (1.6025/0.8668) mem 16099MB [2025-01-17 23:58:19 internimage_t_1k_224] (main.py 510): INFO Train: [45/300][310/312] eta 0:00:00 lr 0.003775 time 0.4368 (0.4724) model_time 0.4367 (0.4656) loss 3.9336 (3.7260) grad_norm 1.0312 (1.6112/0.8747) mem 16099MB [2025-01-17 23:58:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 45 training takes 0:02:27 [2025-01-17 23:58:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_45.pth saving...... [2025-01-17 23:58:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_45.pth saved !!! [2025-01-17 23:58:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.302 (7.302) Loss 1.0799 (1.0799) Acc@1 76.636 (76.636) Acc@5 94.263 (94.263) Mem 16099MB [2025-01-17 23:58:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.990) Loss 1.5890 (1.3071) Acc@1 66.357 (72.692) Acc@5 88.721 (91.542) Mem 16099MB [2025-01-17 23:58:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:45] * Acc@1 72.765 Acc@5 91.663 [2025-01-17 23:58:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.8% [2025-01-17 23:58:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-17 23:58:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-17 23:58:32 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.76% [2025-01-17 23:58:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.465 (7.465) Loss 4.7744 (4.7744) Acc@1 20.312 (20.312) Acc@5 38.818 (38.818) Mem 16099MB [2025-01-17 23:58:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.994) Loss 4.5023 (4.4117) Acc@1 23.315 (24.390) Acc@5 41.602 (45.268) Mem 16099MB [2025-01-17 23:58:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:45] * Acc@1 24.308 Acc@5 45.569 [2025-01-17 23:58:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 24.3% [2025-01-17 23:58:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-17 23:58:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-17 23:58:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 24.31% [2025-01-17 23:58:48 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][0/312] eta 0:14:27 lr 0.003775 time 2.7807 (2.7807) model_time 0.4778 (0.4778) loss 3.6529 (3.6529) grad_norm 1.0162 (1.0162/0.0000) mem 16099MB [2025-01-17 23:58:53 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][10/312] eta 0:03:28 lr 0.003774 time 0.4628 (0.6893) model_time 0.4623 (0.4796) loss 4.0746 (3.6344) grad_norm 1.1565 (1.3357/0.5421) mem 16099MB [2025-01-17 23:58:57 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][20/312] eta 0:02:48 lr 0.003774 time 0.4704 (0.5778) model_time 0.4703 (0.4678) loss 3.2180 (3.6782) grad_norm 3.0986 (1.3827/0.5909) mem 16099MB [2025-01-17 23:59:02 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][30/312] eta 0:02:33 lr 0.003774 time 0.4582 (0.5447) model_time 0.4580 (0.4701) loss 4.2207 (3.7368) grad_norm 3.4510 (1.7241/0.9506) mem 16099MB [2025-01-17 23:59:06 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][40/312] eta 0:02:22 lr 0.003773 time 0.4399 (0.5224) model_time 0.4395 (0.4659) loss 3.5068 (3.7364) grad_norm 1.6030 (1.6417/0.8641) mem 16099MB [2025-01-17 23:59:11 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][50/312] eta 0:02:14 lr 0.003773 time 0.5384 (0.5135) model_time 0.5383 (0.4680) loss 4.0236 (3.8053) grad_norm 1.2439 (1.6002/0.7908) mem 16099MB [2025-01-17 23:59:16 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][60/312] eta 0:02:07 lr 0.003773 time 0.4393 (0.5051) model_time 0.4388 (0.4670) loss 3.5932 (3.8093) grad_norm 1.2878 (1.5954/0.7389) mem 16099MB [2025-01-17 23:59:20 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][70/312] eta 0:02:00 lr 0.003773 time 0.4672 (0.4992) model_time 0.4667 (0.4664) loss 4.4683 (3.7940) grad_norm 2.4353 (1.7224/0.8797) mem 16099MB [2025-01-17 23:59:25 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][80/312] eta 0:01:54 lr 0.003772 time 0.4586 (0.4938) model_time 0.4581 (0.4651) loss 3.7269 (3.8074) grad_norm 1.2219 (1.7205/0.8618) mem 16099MB [2025-01-17 23:59:30 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][90/312] eta 0:01:49 lr 0.003772 time 0.4478 (0.4913) model_time 0.4477 (0.4656) loss 2.9921 (3.7878) grad_norm 2.2188 (1.6769/0.8388) mem 16099MB [2025-01-17 23:59:34 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][100/312] eta 0:01:43 lr 0.003772 time 0.4922 (0.4890) model_time 0.4920 (0.4658) loss 4.4841 (3.7919) grad_norm 1.9083 (1.6814/0.8193) mem 16099MB [2025-01-17 23:59:39 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][110/312] eta 0:01:38 lr 0.003771 time 0.4493 (0.4867) model_time 0.4488 (0.4655) loss 4.0164 (3.7964) grad_norm 2.3712 (1.6871/0.8207) mem 16099MB [2025-01-17 23:59:44 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][120/312] eta 0:01:33 lr 0.003771 time 0.4595 (0.4853) model_time 0.4591 (0.4658) loss 4.1775 (3.8326) grad_norm 1.4725 (1.6904/0.8066) mem 16099MB [2025-01-17 23:59:48 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][130/312] eta 0:01:28 lr 0.003771 time 0.4499 (0.4837) model_time 0.4495 (0.4656) loss 3.8615 (3.8196) grad_norm 1.0732 (1.6504/0.7905) mem 16099MB [2025-01-17 23:59:53 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][140/312] eta 0:01:23 lr 0.003770 time 0.4430 (0.4831) model_time 0.4428 (0.4663) loss 2.7112 (3.8316) grad_norm 1.5594 (1.6310/0.7722) mem 16099MB [2025-01-17 23:59:58 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][150/312] eta 0:01:18 lr 0.003770 time 0.4469 (0.4816) model_time 0.4465 (0.4659) loss 2.7099 (3.8206) grad_norm 2.9518 (1.6303/0.7646) mem 16099MB [2025-01-18 00:00:02 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][160/312] eta 0:01:13 lr 0.003770 time 0.4411 (0.4812) model_time 0.4407 (0.4664) loss 3.6459 (3.8163) grad_norm 2.5462 (1.6377/0.7600) mem 16099MB [2025-01-18 00:00:07 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][170/312] eta 0:01:08 lr 0.003769 time 0.4451 (0.4797) model_time 0.4449 (0.4658) loss 2.9983 (3.8263) grad_norm 2.8830 (1.6681/0.7700) mem 16099MB [2025-01-18 00:00:12 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][180/312] eta 0:01:03 lr 0.003769 time 0.4484 (0.4784) model_time 0.4479 (0.4653) loss 3.3907 (3.8259) grad_norm 0.6828 (1.6393/0.7677) mem 16099MB [2025-01-18 00:00:16 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][190/312] eta 0:00:58 lr 0.003769 time 0.4527 (0.4777) model_time 0.4525 (0.4652) loss 4.3824 (3.8258) grad_norm 1.9703 (1.6267/0.7588) mem 16099MB [2025-01-18 00:00:21 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][200/312] eta 0:00:53 lr 0.003768 time 0.4471 (0.4771) model_time 0.4467 (0.4652) loss 4.6943 (3.8242) grad_norm 1.2365 (1.6353/0.7644) mem 16099MB [2025-01-18 00:00:26 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][210/312] eta 0:00:48 lr 0.003768 time 0.4476 (0.4762) model_time 0.4471 (0.4649) loss 2.4700 (3.8145) grad_norm 1.6886 (1.6439/0.7562) mem 16099MB [2025-01-18 00:00:30 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][220/312] eta 0:00:43 lr 0.003768 time 0.4526 (0.4767) model_time 0.4522 (0.4658) loss 4.4675 (3.8104) grad_norm 1.1702 (1.6320/0.7461) mem 16099MB [2025-01-18 00:00:35 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][230/312] eta 0:00:39 lr 0.003768 time 0.4474 (0.4758) model_time 0.4472 (0.4654) loss 4.2140 (3.8096) grad_norm 1.8838 (1.6221/0.7384) mem 16099MB [2025-01-18 00:00:40 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][240/312] eta 0:00:34 lr 0.003767 time 0.4637 (0.4755) model_time 0.4632 (0.4656) loss 3.7223 (3.8081) grad_norm 0.6622 (1.6199/0.7331) mem 16099MB [2025-01-18 00:00:44 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][250/312] eta 0:00:29 lr 0.003767 time 0.4626 (0.4749) model_time 0.4622 (0.4653) loss 3.9721 (3.8092) grad_norm 1.7187 (1.6073/0.7255) mem 16099MB [2025-01-18 00:00:49 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][260/312] eta 0:00:24 lr 0.003767 time 0.4524 (0.4744) model_time 0.4519 (0.4651) loss 4.4895 (3.8234) grad_norm 2.8527 (1.6068/0.7189) mem 16099MB [2025-01-18 00:00:54 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][270/312] eta 0:00:19 lr 0.003766 time 0.4550 (0.4743) model_time 0.4546 (0.4654) loss 3.3689 (3.8204) grad_norm 2.4000 (1.6514/0.7753) mem 16099MB [2025-01-18 00:00:58 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][280/312] eta 0:00:15 lr 0.003766 time 0.4511 (0.4739) model_time 0.4509 (0.4653) loss 2.5895 (3.8145) grad_norm 0.8619 (1.6440/0.7727) mem 16099MB [2025-01-18 00:01:03 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][290/312] eta 0:00:10 lr 0.003766 time 0.4425 (0.4732) model_time 0.4420 (0.4649) loss 4.5522 (3.8082) grad_norm 0.9858 (1.6225/0.7683) mem 16099MB [2025-01-18 00:01:07 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][300/312] eta 0:00:05 lr 0.003765 time 0.4378 (0.4724) model_time 0.4377 (0.4643) loss 4.6073 (3.8001) grad_norm 0.8513 (1.6127/0.7599) mem 16099MB [2025-01-18 00:01:12 internimage_t_1k_224] (main.py 510): INFO Train: [46/300][310/312] eta 0:00:00 lr 0.003765 time 0.4374 (0.4716) model_time 0.4373 (0.4638) loss 2.7086 (3.7973) grad_norm 1.0259 (1.6207/0.7637) mem 16099MB [2025-01-18 00:01:12 internimage_t_1k_224] (main.py 519): INFO EPOCH 46 training takes 0:02:27 [2025-01-18 00:01:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_46.pth saving...... [2025-01-18 00:01:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_46.pth saved !!! [2025-01-18 00:01:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.430 (7.430) Loss 1.0510 (1.0510) Acc@1 76.538 (76.538) Acc@5 93.408 (93.408) Mem 16099MB [2025-01-18 00:01:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.989) Loss 1.5113 (1.2382) Acc@1 66.943 (72.614) Acc@5 88.257 (91.564) Mem 16099MB [2025-01-18 00:01:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:46] * Acc@1 72.679 Acc@5 91.653 [2025-01-18 00:01:24 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.7% [2025-01-18 00:01:24 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.76% [2025-01-18 00:01:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.195 (8.195) Loss 4.5596 (4.5596) Acc@1 23.389 (23.389) Acc@5 43.262 (43.262) Mem 16099MB [2025-01-18 00:01:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.103) Loss 4.3389 (4.2249) Acc@1 25.464 (27.271) Acc@5 44.653 (48.919) Mem 16099MB [2025-01-18 00:01:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:46] * Acc@1 27.147 Acc@5 49.230 [2025-01-18 00:01:37 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 27.1% [2025-01-18 00:01:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:01:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:01:38 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 27.15% [2025-01-18 00:01:41 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][0/312] eta 0:14:32 lr 0.003765 time 2.7969 (2.7969) model_time 0.4626 (0.4626) loss 3.9322 (3.9322) grad_norm 2.3908 (2.3908/0.0000) mem 16099MB [2025-01-18 00:01:46 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][10/312] eta 0:03:26 lr 0.003765 time 0.4901 (0.6834) model_time 0.4899 (0.4709) loss 3.6913 (3.6323) grad_norm 2.6274 (2.0421/0.5985) mem 16099MB [2025-01-18 00:01:50 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][20/312] eta 0:02:50 lr 0.003764 time 0.4532 (0.5823) model_time 0.4530 (0.4709) loss 3.5647 (3.5172) grad_norm 1.0014 (1.7189/0.6146) mem 16099MB [2025-01-18 00:01:55 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][30/312] eta 0:02:34 lr 0.003764 time 0.4504 (0.5461) model_time 0.4502 (0.4705) loss 2.5956 (3.4002) grad_norm 0.8833 (1.5257/0.5851) mem 16099MB [2025-01-18 00:02:00 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][40/312] eta 0:02:23 lr 0.003764 time 0.4517 (0.5261) model_time 0.4512 (0.4688) loss 3.9956 (3.4383) grad_norm 0.9667 (1.4982/0.5522) mem 16099MB [2025-01-18 00:02:04 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][50/312] eta 0:02:14 lr 0.003763 time 0.4581 (0.5140) model_time 0.4579 (0.4679) loss 4.1892 (3.4805) grad_norm 1.1177 (1.5115/0.5366) mem 16099MB [2025-01-18 00:02:09 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][60/312] eta 0:02:07 lr 0.003763 time 0.5347 (0.5068) model_time 0.5346 (0.4682) loss 4.3467 (3.4790) grad_norm 2.0492 (1.5753/0.6179) mem 16099MB [2025-01-18 00:02:14 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][70/312] eta 0:02:00 lr 0.003763 time 0.4512 (0.4994) model_time 0.4510 (0.4661) loss 3.7756 (3.4985) grad_norm 1.8209 (1.5905/0.5928) mem 16099MB [2025-01-18 00:02:18 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][80/312] eta 0:01:54 lr 0.003762 time 0.4562 (0.4940) model_time 0.4557 (0.4649) loss 4.1459 (3.5307) grad_norm 1.0096 (1.5909/0.6077) mem 16099MB [2025-01-18 00:02:23 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][90/312] eta 0:01:48 lr 0.003762 time 0.4567 (0.4899) model_time 0.4563 (0.4639) loss 4.0372 (3.5457) grad_norm 1.8390 (1.5630/0.5921) mem 16099MB [2025-01-18 00:02:27 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][100/312] eta 0:01:43 lr 0.003762 time 0.4641 (0.4871) model_time 0.4634 (0.4637) loss 3.9829 (3.5482) grad_norm 1.0425 (1.5381/0.5803) mem 16099MB [2025-01-18 00:02:32 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][110/312] eta 0:01:38 lr 0.003762 time 0.4565 (0.4857) model_time 0.4561 (0.4643) loss 3.7675 (3.5386) grad_norm 1.1714 (1.5369/0.5660) mem 16099MB [2025-01-18 00:02:37 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][120/312] eta 0:01:32 lr 0.003761 time 0.4492 (0.4840) model_time 0.4490 (0.4644) loss 3.7259 (3.5421) grad_norm 1.1348 (1.5506/0.5936) mem 16099MB [2025-01-18 00:02:42 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][130/312] eta 0:01:28 lr 0.003761 time 0.4419 (0.4846) model_time 0.4415 (0.4664) loss 3.4277 (3.5773) grad_norm 1.3444 (1.5525/0.5860) mem 16099MB [2025-01-18 00:02:46 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][140/312] eta 0:01:23 lr 0.003761 time 0.4414 (0.4842) model_time 0.4412 (0.4672) loss 3.8570 (3.5949) grad_norm 1.8938 (1.5874/0.6496) mem 16099MB [2025-01-18 00:02:51 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][150/312] eta 0:01:18 lr 0.003760 time 0.7305 (0.4842) model_time 0.7300 (0.4684) loss 3.6368 (3.6008) grad_norm 0.7220 (1.5859/0.6468) mem 16099MB [2025-01-18 00:02:56 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][160/312] eta 0:01:13 lr 0.003760 time 0.4522 (0.4823) model_time 0.4521 (0.4674) loss 3.2446 (3.5842) grad_norm 1.5488 (1.5736/0.6380) mem 16099MB [2025-01-18 00:03:01 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][170/312] eta 0:01:08 lr 0.003760 time 0.4521 (0.4818) model_time 0.4517 (0.4678) loss 4.6244 (3.6101) grad_norm 0.5628 (1.5679/0.6330) mem 16099MB [2025-01-18 00:03:05 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][180/312] eta 0:01:03 lr 0.003759 time 0.4480 (0.4804) model_time 0.4476 (0.4671) loss 4.3652 (3.6231) grad_norm 1.5268 (1.5478/0.6288) mem 16099MB [2025-01-18 00:03:10 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][190/312] eta 0:00:58 lr 0.003759 time 0.4624 (0.4800) model_time 0.4622 (0.4674) loss 3.5800 (3.6235) grad_norm 0.7850 (1.5339/0.6244) mem 16099MB [2025-01-18 00:03:14 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][200/312] eta 0:00:53 lr 0.003759 time 0.4433 (0.4790) model_time 0.4432 (0.4670) loss 4.2987 (3.6369) grad_norm 1.7723 (1.5370/0.6331) mem 16099MB [2025-01-18 00:03:19 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][210/312] eta 0:00:48 lr 0.003758 time 0.4530 (0.4790) model_time 0.4529 (0.4675) loss 3.8476 (3.6410) grad_norm 2.8298 (1.5720/0.7097) mem 16099MB [2025-01-18 00:03:24 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][220/312] eta 0:00:44 lr 0.003758 time 0.4489 (0.4784) model_time 0.4484 (0.4675) loss 3.1317 (3.6433) grad_norm 1.2127 (1.5663/0.7006) mem 16099MB [2025-01-18 00:03:28 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][230/312] eta 0:00:39 lr 0.003758 time 0.4466 (0.4774) model_time 0.4461 (0.4669) loss 3.3457 (3.6453) grad_norm 1.6099 (1.5648/0.6956) mem 16099MB [2025-01-18 00:03:33 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][240/312] eta 0:00:34 lr 0.003757 time 0.4763 (0.4765) model_time 0.4759 (0.4665) loss 4.2210 (3.6494) grad_norm 1.1332 (1.5581/0.6867) mem 16099MB [2025-01-18 00:03:38 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][250/312] eta 0:00:29 lr 0.003757 time 0.4386 (0.4768) model_time 0.4384 (0.4671) loss 3.9379 (3.6638) grad_norm 0.8762 (1.5465/0.6781) mem 16099MB [2025-01-18 00:03:43 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][260/312] eta 0:00:24 lr 0.003757 time 0.4456 (0.4765) model_time 0.4451 (0.4672) loss 3.8918 (3.6620) grad_norm 1.0500 (1.5413/0.6710) mem 16099MB [2025-01-18 00:03:47 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][270/312] eta 0:00:20 lr 0.003756 time 0.4479 (0.4763) model_time 0.4475 (0.4673) loss 4.5289 (3.6546) grad_norm 3.5043 (1.5755/0.7285) mem 16099MB [2025-01-18 00:03:52 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][280/312] eta 0:00:15 lr 0.003756 time 0.4487 (0.4756) model_time 0.4486 (0.4669) loss 3.1924 (3.6595) grad_norm 1.2346 (1.5823/0.7371) mem 16099MB [2025-01-18 00:03:57 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][290/312] eta 0:00:10 lr 0.003756 time 0.4548 (0.4756) model_time 0.4544 (0.4671) loss 3.3082 (3.6645) grad_norm 1.4757 (1.5672/0.7301) mem 16099MB [2025-01-18 00:04:01 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][300/312] eta 0:00:05 lr 0.003755 time 0.4376 (0.4747) model_time 0.4375 (0.4666) loss 3.7425 (3.6676) grad_norm 2.2844 (1.5506/0.7256) mem 16099MB [2025-01-18 00:04:06 internimage_t_1k_224] (main.py 510): INFO Train: [47/300][310/312] eta 0:00:00 lr 0.003755 time 0.4376 (0.4740) model_time 0.4375 (0.4662) loss 3.9348 (3.6614) grad_norm 4.0730 (1.5355/0.7388) mem 16099MB [2025-01-18 00:04:06 internimage_t_1k_224] (main.py 519): INFO EPOCH 47 training takes 0:02:27 [2025-01-18 00:04:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_47.pth saving...... [2025-01-18 00:04:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_47.pth saved !!! [2025-01-18 00:04:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.618 (7.618) Loss 1.0674 (1.0674) Acc@1 76.025 (76.025) Acc@5 93.457 (93.457) Mem 16099MB [2025-01-18 00:04:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.993) Loss 1.5443 (1.2652) Acc@1 66.284 (72.496) Acc@5 87.817 (91.502) Mem 16099MB [2025-01-18 00:04:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:47] * Acc@1 72.641 Acc@5 91.583 [2025-01-18 00:04:18 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 72.6% [2025-01-18 00:04:18 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 72.76% [2025-01-18 00:04:26 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.132 (8.132) Loss 4.3413 (4.3413) Acc@1 26.514 (26.514) Acc@5 47.705 (47.705) Mem 16099MB [2025-01-18 00:04:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.089) Loss 4.1802 (4.0409) Acc@1 27.393 (30.027) Acc@5 47.778 (52.472) Mem 16099MB [2025-01-18 00:04:30 internimage_t_1k_224] (main.py 575): INFO [Epoch:47] * Acc@1 29.934 Acc@5 52.739 [2025-01-18 00:04:30 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 29.9% [2025-01-18 00:04:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:04:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:04:32 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 29.93% [2025-01-18 00:04:34 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][0/312] eta 0:11:18 lr 0.003755 time 2.1762 (2.1762) model_time 0.4883 (0.4883) loss 3.4607 (3.4607) grad_norm 2.4255 (2.4255/0.0000) mem 16099MB [2025-01-18 00:04:39 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][10/312] eta 0:03:04 lr 0.003755 time 0.4441 (0.6121) model_time 0.4440 (0.4584) loss 2.5605 (3.8037) grad_norm 1.0623 (1.8749/0.8174) mem 16099MB [2025-01-18 00:04:44 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][20/312] eta 0:02:41 lr 0.003754 time 0.4589 (0.5526) model_time 0.4588 (0.4719) loss 4.4359 (3.7456) grad_norm 1.1398 (1.7763/0.7070) mem 16099MB [2025-01-18 00:04:48 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][30/312] eta 0:02:27 lr 0.003754 time 0.4703 (0.5241) model_time 0.4702 (0.4694) loss 4.2952 (3.8290) grad_norm 1.3240 (1.6212/0.6564) mem 16099MB [2025-01-18 00:04:53 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][40/312] eta 0:02:18 lr 0.003754 time 0.4509 (0.5085) model_time 0.4505 (0.4670) loss 4.1361 (3.8067) grad_norm 1.4398 (1.6015/0.6164) mem 16099MB [2025-01-18 00:04:57 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][50/312] eta 0:02:10 lr 0.003753 time 0.4394 (0.4986) model_time 0.4392 (0.4651) loss 3.1095 (3.7771) grad_norm 1.1114 (1.5821/0.6135) mem 16099MB [2025-01-18 00:05:02 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][60/312] eta 0:02:04 lr 0.003753 time 0.5463 (0.4931) model_time 0.5461 (0.4651) loss 3.3292 (3.7705) grad_norm 1.2537 (1.5250/0.6089) mem 16099MB [2025-01-18 00:05:07 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][70/312] eta 0:01:58 lr 0.003753 time 0.4635 (0.4880) model_time 0.4633 (0.4639) loss 2.8692 (3.7391) grad_norm 3.5027 (1.5656/0.6897) mem 16099MB [2025-01-18 00:05:11 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][80/312] eta 0:01:52 lr 0.003753 time 0.5307 (0.4852) model_time 0.5303 (0.4640) loss 3.1259 (3.7245) grad_norm 0.6712 (1.5838/0.7226) mem 16099MB [2025-01-18 00:05:16 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][90/312] eta 0:01:47 lr 0.003752 time 0.4462 (0.4830) model_time 0.4460 (0.4640) loss 4.2109 (3.6903) grad_norm 2.3564 (1.5676/0.6989) mem 16099MB [2025-01-18 00:05:21 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][100/312] eta 0:01:42 lr 0.003752 time 0.4493 (0.4816) model_time 0.4491 (0.4645) loss 4.1659 (3.7005) grad_norm 2.1739 (1.6181/0.7346) mem 16099MB [2025-01-18 00:05:25 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][110/312] eta 0:01:37 lr 0.003752 time 0.4650 (0.4828) model_time 0.4648 (0.4672) loss 2.4117 (3.6903) grad_norm 3.2298 (1.6739/0.7763) mem 16099MB [2025-01-18 00:05:30 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][120/312] eta 0:01:32 lr 0.003751 time 0.4563 (0.4817) model_time 0.4558 (0.4674) loss 4.2724 (3.7196) grad_norm 1.0432 (1.6725/0.7773) mem 16099MB [2025-01-18 00:05:35 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][130/312] eta 0:01:27 lr 0.003751 time 0.4851 (0.4821) model_time 0.4847 (0.4688) loss 4.1345 (3.6973) grad_norm 1.1267 (1.6687/0.7865) mem 16099MB [2025-01-18 00:05:40 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][140/312] eta 0:01:22 lr 0.003751 time 0.4586 (0.4807) model_time 0.4582 (0.4683) loss 4.0594 (3.7137) grad_norm 1.4808 (1.6536/0.7651) mem 16099MB [2025-01-18 00:05:44 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][150/312] eta 0:01:17 lr 0.003750 time 0.4429 (0.4798) model_time 0.4427 (0.4682) loss 4.4653 (3.7128) grad_norm 1.0074 (1.6246/0.7514) mem 16099MB [2025-01-18 00:05:49 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][160/312] eta 0:01:13 lr 0.003750 time 0.7243 (0.4815) model_time 0.7239 (0.4706) loss 4.6045 (3.6960) grad_norm 2.1534 (1.6615/0.8651) mem 16099MB [2025-01-18 00:05:54 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][170/312] eta 0:01:08 lr 0.003750 time 0.4533 (0.4807) model_time 0.4528 (0.4705) loss 4.6514 (3.7094) grad_norm 1.1243 (1.6412/0.8460) mem 16099MB [2025-01-18 00:05:59 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][180/312] eta 0:01:03 lr 0.003749 time 0.4644 (0.4792) model_time 0.4639 (0.4695) loss 4.2252 (3.7214) grad_norm 1.3193 (1.6210/0.8327) mem 16099MB [2025-01-18 00:06:03 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][190/312] eta 0:00:58 lr 0.003749 time 0.4403 (0.4794) model_time 0.4399 (0.4702) loss 3.7654 (3.7194) grad_norm 1.2971 (1.6009/0.8167) mem 16099MB [2025-01-18 00:06:08 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][200/312] eta 0:00:53 lr 0.003749 time 0.4604 (0.4788) model_time 0.4603 (0.4700) loss 3.6307 (3.7210) grad_norm 0.8590 (1.5714/0.8088) mem 16099MB [2025-01-18 00:06:13 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][210/312] eta 0:00:48 lr 0.003748 time 0.4508 (0.4775) model_time 0.4506 (0.4691) loss 4.1276 (3.7265) grad_norm 0.8859 (1.5820/0.8118) mem 16099MB [2025-01-18 00:06:17 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][220/312] eta 0:00:43 lr 0.003748 time 0.4571 (0.4768) model_time 0.4566 (0.4687) loss 3.4113 (3.7167) grad_norm 1.5112 (1.5920/0.8200) mem 16099MB [2025-01-18 00:06:22 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][230/312] eta 0:00:39 lr 0.003748 time 0.4452 (0.4762) model_time 0.4448 (0.4685) loss 3.2436 (3.7141) grad_norm 0.9554 (1.6085/0.8179) mem 16099MB [2025-01-18 00:06:27 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][240/312] eta 0:00:34 lr 0.003747 time 0.4712 (0.4765) model_time 0.4710 (0.4691) loss 3.1447 (3.7100) grad_norm 1.8612 (1.6031/0.8039) mem 16099MB [2025-01-18 00:06:31 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][250/312] eta 0:00:29 lr 0.003747 time 0.4492 (0.4756) model_time 0.4490 (0.4685) loss 4.7212 (3.7158) grad_norm 2.4435 (1.6213/0.8299) mem 16099MB [2025-01-18 00:06:36 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][260/312] eta 0:00:24 lr 0.003747 time 0.4623 (0.4751) model_time 0.4619 (0.4683) loss 4.0638 (3.7158) grad_norm 1.3766 (1.6280/0.8343) mem 16099MB [2025-01-18 00:06:40 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][270/312] eta 0:00:19 lr 0.003746 time 0.4415 (0.4745) model_time 0.4411 (0.4679) loss 4.7668 (3.7177) grad_norm 1.2772 (1.6155/0.8242) mem 16099MB [2025-01-18 00:06:45 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][280/312] eta 0:00:15 lr 0.003746 time 0.4531 (0.4738) model_time 0.4527 (0.4674) loss 3.2424 (3.7161) grad_norm 0.9206 (1.5998/0.8163) mem 16099MB [2025-01-18 00:06:50 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][290/312] eta 0:00:10 lr 0.003746 time 0.4412 (0.4737) model_time 0.4408 (0.4675) loss 3.2664 (3.7159) grad_norm 0.8668 (1.5981/0.8173) mem 16099MB [2025-01-18 00:06:54 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][300/312] eta 0:00:05 lr 0.003745 time 0.4372 (0.4731) model_time 0.4371 (0.4671) loss 4.6498 (3.7214) grad_norm 2.0002 (1.5931/0.8134) mem 16099MB [2025-01-18 00:06:59 internimage_t_1k_224] (main.py 510): INFO Train: [48/300][310/312] eta 0:00:00 lr 0.003745 time 0.4375 (0.4721) model_time 0.4374 (0.4663) loss 3.9769 (3.7184) grad_norm 3.6800 (1.5946/0.8206) mem 16099MB [2025-01-18 00:06:59 internimage_t_1k_224] (main.py 519): INFO EPOCH 48 training takes 0:02:27 [2025-01-18 00:06:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_48.pth saving...... [2025-01-18 00:07:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_48.pth saved !!! [2025-01-18 00:07:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.237 (7.237) Loss 1.1160 (1.1160) Acc@1 75.806 (75.806) Acc@5 94.165 (94.165) Mem 16099MB [2025-01-18 00:07:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.982) Loss 1.5301 (1.2677) Acc@1 66.675 (73.140) Acc@5 88.721 (91.950) Mem 16099MB [2025-01-18 00:07:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:48] * Acc@1 73.185 Acc@5 92.029 [2025-01-18 00:07:11 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 73.2% [2025-01-18 00:07:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:07:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:07:13 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 73.18% [2025-01-18 00:07:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.349 (7.349) Loss 4.1256 (4.1256) Acc@1 29.639 (29.639) Acc@5 51.611 (51.611) Mem 16099MB [2025-01-18 00:07:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.982) Loss 4.0301 (3.8668) Acc@1 29.370 (32.706) Acc@5 50.439 (55.546) Mem 16099MB [2025-01-18 00:07:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:48] * Acc@1 32.618 Acc@5 55.782 [2025-01-18 00:07:23 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 32.6% [2025-01-18 00:07:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:07:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:07:25 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 32.62% [2025-01-18 00:07:27 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][0/312] eta 0:14:10 lr 0.003745 time 2.7258 (2.7258) model_time 0.4720 (0.4720) loss 4.0385 (4.0385) grad_norm 0.9938 (0.9938/0.0000) mem 16099MB [2025-01-18 00:07:32 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][10/312] eta 0:03:20 lr 0.003745 time 0.4760 (0.6631) model_time 0.4756 (0.4579) loss 3.0043 (3.9148) grad_norm 2.0415 (2.1316/1.1842) mem 16099MB [2025-01-18 00:07:37 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][20/312] eta 0:02:47 lr 0.003744 time 0.4652 (0.5733) model_time 0.4651 (0.4657) loss 2.7587 (3.6585) grad_norm 0.9178 (1.6345/1.0075) mem 16099MB [2025-01-18 00:07:41 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][30/312] eta 0:02:32 lr 0.003744 time 0.4520 (0.5391) model_time 0.4518 (0.4661) loss 2.2956 (3.6640) grad_norm 1.0099 (1.4365/0.8856) mem 16099MB [2025-01-18 00:07:46 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][40/312] eta 0:02:21 lr 0.003744 time 0.4447 (0.5206) model_time 0.4445 (0.4653) loss 3.8686 (3.6067) grad_norm 1.2167 (1.6438/1.0334) mem 16099MB [2025-01-18 00:07:51 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][50/312] eta 0:02:13 lr 0.003743 time 0.4533 (0.5097) model_time 0.4529 (0.4652) loss 3.2503 (3.6045) grad_norm 0.9895 (1.6032/0.9433) mem 16099MB [2025-01-18 00:07:55 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][60/312] eta 0:02:06 lr 0.003743 time 0.4956 (0.5026) model_time 0.4954 (0.4653) loss 2.6983 (3.6033) grad_norm 1.4949 (1.6025/0.8863) mem 16099MB [2025-01-18 00:08:00 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][70/312] eta 0:02:00 lr 0.003743 time 0.4516 (0.4966) model_time 0.4514 (0.4645) loss 3.6763 (3.6742) grad_norm 0.9448 (1.5596/0.8517) mem 16099MB [2025-01-18 00:08:05 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][80/312] eta 0:01:54 lr 0.003742 time 0.4531 (0.4939) model_time 0.4529 (0.4657) loss 3.7727 (3.6761) grad_norm 0.8583 (1.5630/0.8424) mem 16099MB [2025-01-18 00:08:09 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][90/312] eta 0:01:49 lr 0.003742 time 0.4482 (0.4914) model_time 0.4477 (0.4663) loss 2.7834 (3.7053) grad_norm 1.6528 (1.5584/0.8061) mem 16099MB [2025-01-18 00:08:14 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][100/312] eta 0:01:43 lr 0.003742 time 0.4542 (0.4895) model_time 0.4540 (0.4668) loss 3.1328 (3.6980) grad_norm 1.6718 (1.5601/0.7954) mem 16099MB [2025-01-18 00:08:19 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][110/312] eta 0:01:38 lr 0.003741 time 0.4423 (0.4878) model_time 0.4419 (0.4672) loss 4.5107 (3.6681) grad_norm 0.8820 (1.5316/0.7670) mem 16099MB [2025-01-18 00:08:24 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][120/312] eta 0:01:33 lr 0.003741 time 0.4666 (0.4865) model_time 0.4664 (0.4675) loss 3.9817 (3.6680) grad_norm 1.9213 (1.5088/0.7448) mem 16099MB [2025-01-18 00:08:28 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][130/312] eta 0:01:28 lr 0.003741 time 0.4489 (0.4852) model_time 0.4488 (0.4676) loss 4.6246 (3.6817) grad_norm 2.3142 (1.5250/0.7500) mem 16099MB [2025-01-18 00:08:33 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][140/312] eta 0:01:23 lr 0.003740 time 0.4476 (0.4844) model_time 0.4472 (0.4680) loss 3.9018 (3.6678) grad_norm 2.3490 (1.5435/0.7363) mem 16099MB [2025-01-18 00:08:38 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][150/312] eta 0:01:18 lr 0.003740 time 0.4501 (0.4828) model_time 0.4500 (0.4675) loss 3.5330 (3.6722) grad_norm 1.4620 (1.5373/0.7229) mem 16099MB [2025-01-18 00:08:42 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][160/312] eta 0:01:13 lr 0.003740 time 0.4432 (0.4817) model_time 0.4431 (0.4674) loss 3.9876 (3.6806) grad_norm 1.6138 (1.5403/0.7093) mem 16099MB [2025-01-18 00:08:47 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][170/312] eta 0:01:08 lr 0.003739 time 0.4397 (0.4799) model_time 0.4392 (0.4663) loss 2.8317 (3.6630) grad_norm 1.3955 (1.5450/0.6949) mem 16099MB [2025-01-18 00:08:51 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][180/312] eta 0:01:03 lr 0.003739 time 0.4656 (0.4784) model_time 0.4652 (0.4656) loss 3.2095 (3.6590) grad_norm 0.9570 (1.5356/0.6868) mem 16099MB [2025-01-18 00:08:56 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][190/312] eta 0:00:58 lr 0.003739 time 0.4548 (0.4783) model_time 0.4547 (0.4661) loss 2.8829 (3.6520) grad_norm 3.7594 (1.5365/0.7186) mem 16099MB [2025-01-18 00:09:01 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][200/312] eta 0:00:53 lr 0.003738 time 0.4446 (0.4778) model_time 0.4442 (0.4662) loss 4.2815 (3.6631) grad_norm 1.3669 (1.5380/0.7050) mem 16099MB [2025-01-18 00:09:05 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][210/312] eta 0:00:48 lr 0.003738 time 0.4570 (0.4772) model_time 0.4568 (0.4661) loss 4.0063 (3.6775) grad_norm 1.9788 (1.5276/0.6976) mem 16099MB [2025-01-18 00:09:10 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][220/312] eta 0:00:43 lr 0.003738 time 0.4531 (0.4763) model_time 0.4526 (0.4658) loss 2.9301 (3.6731) grad_norm 2.5173 (1.5524/0.7187) mem 16099MB [2025-01-18 00:09:15 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][230/312] eta 0:00:38 lr 0.003737 time 0.4483 (0.4754) model_time 0.4478 (0.4653) loss 3.9772 (3.6756) grad_norm 2.1973 (1.5606/0.7163) mem 16099MB [2025-01-18 00:09:20 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][240/312] eta 0:00:34 lr 0.003737 time 0.5360 (0.4763) model_time 0.5353 (0.4666) loss 3.0928 (3.6850) grad_norm 1.2090 (1.5577/0.7058) mem 16099MB [2025-01-18 00:09:24 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][250/312] eta 0:00:29 lr 0.003737 time 0.4421 (0.4756) model_time 0.4419 (0.4663) loss 2.5904 (3.6819) grad_norm 1.1663 (1.5493/0.6995) mem 16099MB [2025-01-18 00:09:29 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][260/312] eta 0:00:24 lr 0.003736 time 0.4449 (0.4759) model_time 0.4447 (0.4668) loss 3.3566 (3.6848) grad_norm 1.0051 (1.5825/0.7444) mem 16099MB [2025-01-18 00:09:34 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][270/312] eta 0:00:19 lr 0.003736 time 0.4522 (0.4754) model_time 0.4518 (0.4667) loss 2.9338 (3.6840) grad_norm 1.1895 (1.5595/0.7406) mem 16099MB [2025-01-18 00:09:38 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][280/312] eta 0:00:15 lr 0.003736 time 0.4509 (0.4746) model_time 0.4507 (0.4662) loss 4.0815 (3.6957) grad_norm 1.2178 (1.5658/0.7438) mem 16099MB [2025-01-18 00:09:43 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][290/312] eta 0:00:10 lr 0.003735 time 0.4502 (0.4750) model_time 0.4496 (0.4669) loss 3.9901 (3.7022) grad_norm 1.2722 (1.5680/0.7462) mem 16099MB [2025-01-18 00:09:48 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][300/312] eta 0:00:05 lr 0.003735 time 0.4381 (0.4745) model_time 0.4380 (0.4666) loss 3.7004 (3.6932) grad_norm 1.2627 (1.5607/0.7419) mem 16099MB [2025-01-18 00:09:52 internimage_t_1k_224] (main.py 510): INFO Train: [49/300][310/312] eta 0:00:00 lr 0.003735 time 0.4402 (0.4737) model_time 0.4401 (0.4660) loss 4.0509 (3.6849) grad_norm 1.4844 (1.5643/0.7449) mem 16099MB [2025-01-18 00:09:53 internimage_t_1k_224] (main.py 519): INFO EPOCH 49 training takes 0:02:27 [2025-01-18 00:09:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_49.pth saving...... [2025-01-18 00:09:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_49.pth saved !!! [2025-01-18 00:10:01 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.225 (7.225) Loss 1.0885 (1.0885) Acc@1 76.660 (76.660) Acc@5 93.652 (93.652) Mem 16099MB [2025-01-18 00:10:05 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.988) Loss 1.4850 (1.2400) Acc@1 66.479 (73.158) Acc@5 88.696 (91.979) Mem 16099MB [2025-01-18 00:10:05 internimage_t_1k_224] (main.py 575): INFO [Epoch:49] * Acc@1 73.215 Acc@5 92.071 [2025-01-18 00:10:05 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 73.2% [2025-01-18 00:10:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:10:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:10:06 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 73.21% [2025-01-18 00:10:13 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.477 (7.477) Loss 3.9161 (3.9161) Acc@1 33.350 (33.350) Acc@5 55.078 (55.078) Mem 16099MB [2025-01-18 00:10:17 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.010) Loss 3.8838 (3.6997) Acc@1 31.396 (35.436) Acc@5 53.418 (58.612) Mem 16099MB [2025-01-18 00:10:17 internimage_t_1k_224] (main.py 575): INFO [Epoch:49] * Acc@1 35.329 Acc@5 58.847 [2025-01-18 00:10:17 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 35.3% [2025-01-18 00:10:17 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:10:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:10:19 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 35.33% [2025-01-18 00:10:21 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][0/312] eta 0:12:26 lr 0.003735 time 2.3941 (2.3941) model_time 0.4792 (0.4792) loss 3.4854 (3.4854) grad_norm 1.0018 (1.0018/0.0000) mem 16099MB [2025-01-18 00:10:26 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][10/312] eta 0:03:10 lr 0.003734 time 0.4574 (0.6322) model_time 0.4568 (0.4576) loss 2.8630 (3.6737) grad_norm 1.1287 (1.2243/0.2493) mem 16099MB [2025-01-18 00:10:30 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][20/312] eta 0:02:39 lr 0.003734 time 0.4491 (0.5477) model_time 0.4487 (0.4561) loss 4.6000 (3.7797) grad_norm 1.2288 (1.2591/0.3905) mem 16099MB [2025-01-18 00:10:35 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][30/312] eta 0:02:26 lr 0.003734 time 0.4397 (0.5192) model_time 0.4396 (0.4570) loss 3.8827 (3.8298) grad_norm 0.9223 (1.2238/0.3755) mem 16099MB [2025-01-18 00:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][40/312] eta 0:02:16 lr 0.003733 time 0.4476 (0.5029) model_time 0.4475 (0.4558) loss 4.6684 (3.7864) grad_norm 0.9893 (1.1483/0.3579) mem 16099MB [2025-01-18 00:10:44 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][50/312] eta 0:02:10 lr 0.003733 time 0.4442 (0.4993) model_time 0.4436 (0.4614) loss 3.3211 (3.6985) grad_norm 1.5316 (1.1980/0.3926) mem 16099MB [2025-01-18 00:10:49 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][60/312] eta 0:02:03 lr 0.003733 time 0.4567 (0.4906) model_time 0.4565 (0.4588) loss 3.8434 (3.7429) grad_norm 1.8811 (1.2493/0.4046) mem 16099MB [2025-01-18 00:10:53 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][70/312] eta 0:01:58 lr 0.003732 time 0.4437 (0.4903) model_time 0.4435 (0.4629) loss 4.2458 (3.7608) grad_norm 2.1974 (1.4625/0.7557) mem 16099MB [2025-01-18 00:10:58 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][80/312] eta 0:01:53 lr 0.003732 time 0.4511 (0.4896) model_time 0.4506 (0.4656) loss 3.2896 (3.7734) grad_norm 2.1586 (1.5294/0.7575) mem 16099MB [2025-01-18 00:11:03 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][90/312] eta 0:01:47 lr 0.003732 time 0.4495 (0.4857) model_time 0.4493 (0.4642) loss 3.3475 (3.7436) grad_norm 1.5449 (1.5506/0.7517) mem 16099MB [2025-01-18 00:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][100/312] eta 0:01:42 lr 0.003731 time 0.4518 (0.4831) model_time 0.4516 (0.4637) loss 3.8714 (3.7445) grad_norm 2.2131 (1.5759/0.7432) mem 16099MB [2025-01-18 00:11:12 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][110/312] eta 0:01:37 lr 0.003731 time 0.4865 (0.4811) model_time 0.4863 (0.4635) loss 3.8132 (3.7590) grad_norm 2.5142 (1.6233/0.7643) mem 16099MB [2025-01-18 00:11:17 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][120/312] eta 0:01:32 lr 0.003731 time 0.4589 (0.4796) model_time 0.4588 (0.4634) loss 3.5994 (3.7812) grad_norm 1.3997 (1.7090/0.8525) mem 16099MB [2025-01-18 00:11:21 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][130/312] eta 0:01:27 lr 0.003730 time 0.4393 (0.4786) model_time 0.4392 (0.4636) loss 3.1790 (3.7660) grad_norm 1.6451 (1.7062/0.8208) mem 16099MB [2025-01-18 00:11:26 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][140/312] eta 0:01:22 lr 0.003730 time 0.5296 (0.4786) model_time 0.5295 (0.4646) loss 2.9984 (3.7776) grad_norm 1.7527 (1.7036/0.7969) mem 16099MB [2025-01-18 00:11:31 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][150/312] eta 0:01:17 lr 0.003730 time 0.4690 (0.4773) model_time 0.4686 (0.4643) loss 3.6501 (3.7968) grad_norm 1.4388 (1.7062/0.7819) mem 16099MB [2025-01-18 00:11:35 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][160/312] eta 0:01:12 lr 0.003729 time 0.4444 (0.4764) model_time 0.4440 (0.4642) loss 3.7872 (3.7995) grad_norm 1.8009 (1.6831/0.7650) mem 16099MB [2025-01-18 00:11:40 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][170/312] eta 0:01:07 lr 0.003729 time 0.4568 (0.4750) model_time 0.4563 (0.4635) loss 4.6150 (3.7955) grad_norm 2.8805 (1.6886/0.7616) mem 16099MB [2025-01-18 00:11:44 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][180/312] eta 0:01:02 lr 0.003729 time 0.4412 (0.4744) model_time 0.4408 (0.4634) loss 4.2115 (3.7854) grad_norm 3.4430 (1.7175/0.8085) mem 16099MB [2025-01-18 00:11:49 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][190/312] eta 0:00:57 lr 0.003728 time 0.4550 (0.4733) model_time 0.4546 (0.4629) loss 2.5451 (3.7814) grad_norm 1.8733 (1.7830/0.8957) mem 16099MB [2025-01-18 00:11:54 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][200/312] eta 0:00:52 lr 0.003728 time 0.4422 (0.4722) model_time 0.4418 (0.4623) loss 4.2832 (3.7984) grad_norm 3.4547 (1.8720/1.0933) mem 16099MB [2025-01-18 00:11:58 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][210/312] eta 0:00:48 lr 0.003728 time 0.4412 (0.4722) model_time 0.4408 (0.4627) loss 3.4912 (3.8072) grad_norm 2.2097 (1.9226/1.0976) mem 16099MB [2025-01-18 00:12:03 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][220/312] eta 0:00:43 lr 0.003727 time 0.4494 (0.4715) model_time 0.4489 (0.4624) loss 4.1367 (3.8446) grad_norm 5.2359 (2.0940/1.4997) mem 16099MB [2025-01-18 00:12:08 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][230/312] eta 0:00:38 lr 0.003727 time 0.4703 (0.4720) model_time 0.4701 (0.4633) loss 4.5325 (3.8950) grad_norm 1.9735 (2.1624/1.5318) mem 16099MB [2025-01-18 00:12:12 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][240/312] eta 0:00:33 lr 0.003727 time 0.4428 (0.4715) model_time 0.4424 (0.4632) loss 4.9611 (3.9317) grad_norm 6.2692 (2.1711/1.5272) mem 16099MB [2025-01-18 00:12:17 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][250/312] eta 0:00:29 lr 0.003726 time 0.4572 (0.4710) model_time 0.4568 (0.4630) loss 3.4141 (3.9507) grad_norm 1.6275 (2.1791/1.5088) mem 16099MB [2025-01-18 00:12:21 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][260/312] eta 0:00:24 lr 0.003726 time 0.4512 (0.4703) model_time 0.4508 (0.4625) loss 4.0302 (3.9740) grad_norm 1.6270 (2.1679/1.4840) mem 16099MB [2025-01-18 00:12:26 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][270/312] eta 0:00:19 lr 0.003726 time 0.4526 (0.4696) model_time 0.4525 (0.4622) loss 4.3108 (3.9839) grad_norm 1.4481 (2.1450/1.4619) mem 16099MB [2025-01-18 00:12:30 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][280/312] eta 0:00:15 lr 0.003725 time 0.4457 (0.4691) model_time 0.4455 (0.4619) loss 5.0667 (3.9978) grad_norm 0.8567 (2.1204/1.4465) mem 16099MB [2025-01-18 00:12:35 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][290/312] eta 0:00:10 lr 0.003725 time 0.4400 (0.4688) model_time 0.4398 (0.4619) loss 4.5482 (3.9986) grad_norm 2.5618 (2.1005/1.4283) mem 16099MB [2025-01-18 00:12:40 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][300/312] eta 0:00:05 lr 0.003725 time 0.4362 (0.4683) model_time 0.4362 (0.4616) loss 3.6690 (4.0006) grad_norm 2.0708 (2.1053/1.4149) mem 16099MB [2025-01-18 00:12:44 internimage_t_1k_224] (main.py 510): INFO Train: [50/300][310/312] eta 0:00:00 lr 0.003724 time 0.4408 (0.4680) model_time 0.4407 (0.4615) loss 3.0746 (3.9946) grad_norm 1.9460 (2.0998/1.4072) mem 16099MB [2025-01-18 00:12:45 internimage_t_1k_224] (main.py 519): INFO EPOCH 50 training takes 0:02:26 [2025-01-18 00:12:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_50.pth saving...... [2025-01-18 00:12:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_50.pth saved !!! [2025-01-18 00:12:53 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.394 (7.394) Loss 1.2151 (1.2151) Acc@1 75.220 (75.220) Acc@5 92.847 (92.847) Mem 16099MB [2025-01-18 00:12:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.996) Loss 1.6910 (1.3977) Acc@1 64.697 (71.382) Acc@5 87.256 (90.654) Mem 16099MB [2025-01-18 00:12:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:50] * Acc@1 71.345 Acc@5 90.751 [2025-01-18 00:12:57 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 71.3% [2025-01-18 00:12:57 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 73.21% [2025-01-18 00:13:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.143 (8.143) Loss 3.6917 (3.6917) Acc@1 36.353 (36.353) Acc@5 59.253 (59.253) Mem 16099MB [2025-01-18 00:13:09 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.092) Loss 3.7269 (3.5218) Acc@1 33.789 (38.252) Acc@5 56.787 (61.854) Mem 16099MB [2025-01-18 00:13:09 internimage_t_1k_224] (main.py 575): INFO [Epoch:50] * Acc@1 38.170 Acc@5 62.050 [2025-01-18 00:13:09 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 38.2% [2025-01-18 00:13:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:13:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:13:11 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 38.17% [2025-01-18 00:13:13 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][0/312] eta 0:13:07 lr 0.003724 time 2.5233 (2.5233) model_time 0.4845 (0.4845) loss 4.1782 (4.1782) grad_norm 1.3258 (1.3258/0.0000) mem 16099MB [2025-01-18 00:13:18 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][10/312] eta 0:03:16 lr 0.003724 time 0.4511 (0.6512) model_time 0.4510 (0.4655) loss 4.8634 (3.8959) grad_norm 2.8704 (1.7518/0.7388) mem 16099MB [2025-01-18 00:13:22 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][20/312] eta 0:02:43 lr 0.003724 time 0.4405 (0.5610) model_time 0.4403 (0.4636) loss 3.3540 (3.6251) grad_norm 1.6230 (1.7366/0.6957) mem 16099MB [2025-01-18 00:13:27 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][30/312] eta 0:02:31 lr 0.003723 time 0.4405 (0.5361) model_time 0.4401 (0.4700) loss 4.5108 (3.7062) grad_norm 1.5743 (1.7359/0.7590) mem 16099MB [2025-01-18 00:13:32 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][40/312] eta 0:02:21 lr 0.003723 time 0.4382 (0.5186) model_time 0.4381 (0.4685) loss 3.6413 (3.6916) grad_norm 1.6292 (1.7175/0.7362) mem 16099MB [2025-01-18 00:13:36 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][50/312] eta 0:02:12 lr 0.003723 time 0.4540 (0.5062) model_time 0.4538 (0.4659) loss 4.7516 (3.7235) grad_norm 1.2905 (1.6705/0.6807) mem 16099MB [2025-01-18 00:13:41 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][60/312] eta 0:02:05 lr 0.003722 time 0.4567 (0.4973) model_time 0.4563 (0.4635) loss 4.0290 (3.7264) grad_norm 0.7730 (1.5860/0.6628) mem 16099MB [2025-01-18 00:13:46 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][70/312] eta 0:01:58 lr 0.003722 time 0.4494 (0.4917) model_time 0.4493 (0.4626) loss 2.7876 (3.7173) grad_norm 0.9291 (1.5349/0.6387) mem 16099MB [2025-01-18 00:13:50 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][80/312] eta 0:01:53 lr 0.003722 time 0.4477 (0.4879) model_time 0.4473 (0.4624) loss 3.8454 (3.6981) grad_norm 1.0279 (1.4992/0.6180) mem 16099MB [2025-01-18 00:13:55 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][90/312] eta 0:01:47 lr 0.003721 time 0.5528 (0.4861) model_time 0.5526 (0.4633) loss 4.3666 (3.7235) grad_norm 4.3903 (1.5405/0.6778) mem 16099MB [2025-01-18 00:14:00 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][100/312] eta 0:01:43 lr 0.003721 time 0.4475 (0.4867) model_time 0.4474 (0.4662) loss 3.6719 (3.7167) grad_norm 1.4183 (1.5887/0.7238) mem 16099MB [2025-01-18 00:14:04 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][110/312] eta 0:01:37 lr 0.003721 time 0.4469 (0.4849) model_time 0.4467 (0.4662) loss 2.9787 (3.7317) grad_norm 0.7019 (1.6324/0.7699) mem 16099MB [2025-01-18 00:14:09 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][120/312] eta 0:01:32 lr 0.003720 time 0.4529 (0.4839) model_time 0.4525 (0.4667) loss 4.1630 (3.7248) grad_norm 1.1240 (1.5870/0.7565) mem 16099MB [2025-01-18 00:14:14 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][130/312] eta 0:01:27 lr 0.003720 time 0.4549 (0.4825) model_time 0.4547 (0.4665) loss 3.4328 (3.7298) grad_norm 0.6808 (1.5763/0.7491) mem 16099MB [2025-01-18 00:14:18 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][140/312] eta 0:01:22 lr 0.003720 time 0.4528 (0.4803) model_time 0.4523 (0.4655) loss 2.8774 (3.7277) grad_norm 0.8815 (1.5820/0.7490) mem 16099MB [2025-01-18 00:14:23 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][150/312] eta 0:01:17 lr 0.003719 time 0.4462 (0.4787) model_time 0.4458 (0.4649) loss 4.3680 (3.7242) grad_norm 1.0825 (1.5619/0.7374) mem 16099MB [2025-01-18 00:14:28 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][160/312] eta 0:01:12 lr 0.003719 time 0.4593 (0.4799) model_time 0.4589 (0.4668) loss 4.1255 (3.7287) grad_norm 2.7243 (1.6262/0.8045) mem 16099MB [2025-01-18 00:14:32 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][170/312] eta 0:01:07 lr 0.003718 time 0.4619 (0.4782) model_time 0.4618 (0.4659) loss 4.7717 (3.7458) grad_norm 0.7016 (1.6034/0.7958) mem 16099MB [2025-01-18 00:14:37 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][180/312] eta 0:01:02 lr 0.003718 time 0.4973 (0.4771) model_time 0.4971 (0.4655) loss 2.9325 (3.7394) grad_norm 1.0641 (1.5918/0.7799) mem 16099MB [2025-01-18 00:14:42 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][190/312] eta 0:00:58 lr 0.003718 time 0.4424 (0.4761) model_time 0.4422 (0.4650) loss 3.7747 (3.7281) grad_norm 1.6867 (1.5941/0.7693) mem 16099MB [2025-01-18 00:14:46 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][200/312] eta 0:00:53 lr 0.003717 time 0.4440 (0.4754) model_time 0.4436 (0.4649) loss 3.2680 (3.7258) grad_norm 0.7502 (1.5632/0.7640) mem 16099MB [2025-01-18 00:14:51 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][210/312] eta 0:00:48 lr 0.003717 time 0.4524 (0.4743) model_time 0.4523 (0.4643) loss 2.5002 (3.7253) grad_norm 1.0696 (1.5347/0.7575) mem 16099MB [2025-01-18 00:14:55 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][220/312] eta 0:00:43 lr 0.003717 time 0.4442 (0.4734) model_time 0.4441 (0.4639) loss 3.3405 (3.7221) grad_norm 0.9960 (1.5565/0.7990) mem 16099MB [2025-01-18 00:15:00 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][230/312] eta 0:00:38 lr 0.003716 time 0.4620 (0.4732) model_time 0.4619 (0.4640) loss 2.9642 (3.7269) grad_norm 1.6574 (1.5796/0.8226) mem 16099MB [2025-01-18 00:15:05 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][240/312] eta 0:00:34 lr 0.003716 time 0.4396 (0.4731) model_time 0.4391 (0.4643) loss 3.2450 (3.7355) grad_norm 1.6885 (1.5692/0.8091) mem 16099MB [2025-01-18 00:15:09 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][250/312] eta 0:00:29 lr 0.003716 time 0.4478 (0.4731) model_time 0.4477 (0.4646) loss 2.6169 (3.7311) grad_norm 1.0977 (1.5563/0.7991) mem 16099MB [2025-01-18 00:15:14 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][260/312] eta 0:00:24 lr 0.003715 time 0.4757 (0.4728) model_time 0.4753 (0.4646) loss 3.8578 (3.7310) grad_norm 2.2621 (1.5610/0.7985) mem 16099MB [2025-01-18 00:15:19 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][270/312] eta 0:00:19 lr 0.003715 time 0.4388 (0.4721) model_time 0.4386 (0.4642) loss 3.5762 (3.7172) grad_norm 1.4656 (1.5418/0.7919) mem 16099MB [2025-01-18 00:15:24 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][280/312] eta 0:00:15 lr 0.003715 time 0.4561 (0.4730) model_time 0.4555 (0.4654) loss 4.0163 (3.7185) grad_norm 1.1770 (1.5370/0.7816) mem 16099MB [2025-01-18 00:15:28 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][290/312] eta 0:00:10 lr 0.003714 time 0.4452 (0.4731) model_time 0.4450 (0.4657) loss 4.4374 (3.7266) grad_norm 1.8700 (1.5464/0.7787) mem 16099MB [2025-01-18 00:15:33 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][300/312] eta 0:00:05 lr 0.003714 time 0.4381 (0.4723) model_time 0.4381 (0.4651) loss 2.8526 (3.7289) grad_norm 1.0942 (1.5490/0.7756) mem 16099MB [2025-01-18 00:15:37 internimage_t_1k_224] (main.py 510): INFO Train: [51/300][310/312] eta 0:00:00 lr 0.003714 time 0.4389 (0.4714) model_time 0.4388 (0.4645) loss 3.9805 (3.7253) grad_norm 1.2653 (1.5389/0.7657) mem 16099MB [2025-01-18 00:15:38 internimage_t_1k_224] (main.py 519): INFO EPOCH 51 training takes 0:02:27 [2025-01-18 00:15:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_51.pth saving...... [2025-01-18 00:15:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_51.pth saved !!! [2025-01-18 00:15:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.187 (7.187) Loss 1.0537 (1.0537) Acc@1 76.953 (76.953) Acc@5 94.141 (94.141) Mem 16099MB [2025-01-18 00:15:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.978) Loss 1.5057 (1.2449) Acc@1 67.334 (73.184) Acc@5 88.403 (91.915) Mem 16099MB [2025-01-18 00:15:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:51] * Acc@1 73.071 Acc@5 91.905 [2025-01-18 00:15:50 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 73.1% [2025-01-18 00:15:50 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 73.21% [2025-01-18 00:15:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.132 (8.132) Loss 3.4775 (3.4775) Acc@1 39.551 (39.551) Acc@5 63.525 (63.525) Mem 16099MB [2025-01-18 00:16:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.095) Loss 3.5704 (3.3476) Acc@1 35.889 (40.831) Acc@5 60.010 (65.006) Mem 16099MB [2025-01-18 00:16:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:51] * Acc@1 40.751 Acc@5 65.195 [2025-01-18 00:16:02 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 40.8% [2025-01-18 00:16:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:16:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:16:03 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 40.75% [2025-01-18 00:16:06 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][0/312] eta 0:13:37 lr 0.003714 time 2.6207 (2.6207) model_time 0.4606 (0.4606) loss 3.8953 (3.8953) grad_norm 1.0420 (1.0420/0.0000) mem 16099MB [2025-01-18 00:16:11 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][10/312] eta 0:03:16 lr 0.003713 time 0.4521 (0.6519) model_time 0.4520 (0.4552) loss 2.8383 (3.6804) grad_norm 3.0162 (1.5616/0.6466) mem 16099MB [2025-01-18 00:16:15 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][20/312] eta 0:02:43 lr 0.003713 time 0.5326 (0.5612) model_time 0.5325 (0.4581) loss 4.4877 (3.6348) grad_norm 1.5977 (1.6323/0.7416) mem 16099MB [2025-01-18 00:16:20 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][30/312] eta 0:02:30 lr 0.003713 time 0.4487 (0.5336) model_time 0.4485 (0.4637) loss 3.5167 (3.6253) grad_norm 1.0927 (1.6326/0.6726) mem 16099MB [2025-01-18 00:16:25 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][40/312] eta 0:02:22 lr 0.003712 time 0.4427 (0.5229) model_time 0.4426 (0.4699) loss 4.2733 (3.6663) grad_norm 0.8951 (1.6170/0.6264) mem 16099MB [2025-01-18 00:16:30 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][50/312] eta 0:02:13 lr 0.003712 time 0.4481 (0.5107) model_time 0.4480 (0.4681) loss 4.2915 (3.6234) grad_norm 2.4445 (1.5703/0.6279) mem 16099MB [2025-01-18 00:16:34 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][60/312] eta 0:02:06 lr 0.003712 time 0.4657 (0.5016) model_time 0.4655 (0.4659) loss 3.3703 (3.6391) grad_norm 3.9711 (1.6039/0.6896) mem 16099MB [2025-01-18 00:16:39 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][70/312] eta 0:01:59 lr 0.003711 time 0.4505 (0.4947) model_time 0.4503 (0.4639) loss 4.0728 (3.6445) grad_norm 2.4418 (1.6234/0.6813) mem 16099MB [2025-01-18 00:16:43 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][80/312] eta 0:01:54 lr 0.003711 time 0.5344 (0.4920) model_time 0.5339 (0.4650) loss 3.7405 (3.6218) grad_norm 1.1451 (1.6913/0.8430) mem 16099MB [2025-01-18 00:16:48 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][90/312] eta 0:01:48 lr 0.003711 time 0.4418 (0.4873) model_time 0.4416 (0.4632) loss 4.8216 (3.6495) grad_norm 0.7029 (1.6448/0.8280) mem 16099MB [2025-01-18 00:16:52 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][100/312] eta 0:01:42 lr 0.003710 time 0.4501 (0.4849) model_time 0.4497 (0.4632) loss 3.4538 (3.6621) grad_norm 1.0992 (1.5908/0.8119) mem 16099MB [2025-01-18 00:16:57 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][110/312] eta 0:01:37 lr 0.003710 time 0.4584 (0.4840) model_time 0.4579 (0.4641) loss 4.3843 (3.6589) grad_norm 0.9879 (1.5462/0.7899) mem 16099MB [2025-01-18 00:17:02 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][120/312] eta 0:01:32 lr 0.003709 time 0.4606 (0.4814) model_time 0.4602 (0.4632) loss 3.0068 (3.6466) grad_norm 1.8251 (1.5274/0.7618) mem 16099MB [2025-01-18 00:17:06 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][130/312] eta 0:01:27 lr 0.003709 time 0.4732 (0.4798) model_time 0.4731 (0.4629) loss 2.4804 (3.6283) grad_norm 0.8576 (1.4935/0.7459) mem 16099MB [2025-01-18 00:17:11 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][140/312] eta 0:01:22 lr 0.003709 time 0.4477 (0.4783) model_time 0.4475 (0.4627) loss 3.8096 (3.6291) grad_norm 1.5349 (1.4922/0.7309) mem 16099MB [2025-01-18 00:17:16 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][150/312] eta 0:01:17 lr 0.003708 time 0.4527 (0.4804) model_time 0.4525 (0.4657) loss 4.2435 (3.6289) grad_norm 1.0222 (1.5012/0.7231) mem 16099MB [2025-01-18 00:17:21 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][160/312] eta 0:01:12 lr 0.003708 time 0.4484 (0.4785) model_time 0.4480 (0.4647) loss 3.7289 (3.6246) grad_norm 3.6917 (1.5168/0.7420) mem 16099MB [2025-01-18 00:17:25 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][170/312] eta 0:01:07 lr 0.003708 time 0.4399 (0.4768) model_time 0.4397 (0.4638) loss 4.0448 (3.6369) grad_norm 0.8238 (1.5076/0.7339) mem 16099MB [2025-01-18 00:17:30 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][180/312] eta 0:01:02 lr 0.003707 time 0.4638 (0.4756) model_time 0.4633 (0.4633) loss 3.4042 (3.6336) grad_norm 1.0711 (1.5167/0.7322) mem 16099MB [2025-01-18 00:17:34 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][190/312] eta 0:00:57 lr 0.003707 time 0.4453 (0.4748) model_time 0.4451 (0.4632) loss 3.9317 (3.6422) grad_norm 4.7431 (1.5310/0.7675) mem 16099MB [2025-01-18 00:17:39 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][200/312] eta 0:00:53 lr 0.003707 time 0.4464 (0.4772) model_time 0.4459 (0.4661) loss 4.0691 (3.6353) grad_norm 0.9803 (1.5397/0.7610) mem 16099MB [2025-01-18 00:17:44 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][210/312] eta 0:00:48 lr 0.003706 time 0.4533 (0.4772) model_time 0.4529 (0.4666) loss 4.8050 (3.6341) grad_norm 0.8059 (1.5164/0.7510) mem 16099MB [2025-01-18 00:17:49 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][220/312] eta 0:00:43 lr 0.003706 time 0.4462 (0.4770) model_time 0.4460 (0.4669) loss 4.6156 (3.6609) grad_norm 0.7376 (1.5024/0.7406) mem 16099MB [2025-01-18 00:17:53 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][230/312] eta 0:00:39 lr 0.003706 time 0.4694 (0.4761) model_time 0.4692 (0.4664) loss 3.5184 (3.6471) grad_norm 1.5224 (1.5011/0.7307) mem 16099MB [2025-01-18 00:17:58 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][240/312] eta 0:00:34 lr 0.003705 time 0.4494 (0.4751) model_time 0.4490 (0.4658) loss 3.6471 (3.6434) grad_norm 2.4868 (1.4869/0.7259) mem 16099MB [2025-01-18 00:18:03 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][250/312] eta 0:00:29 lr 0.003705 time 0.4504 (0.4741) model_time 0.4499 (0.4651) loss 3.5519 (3.6487) grad_norm 1.1700 (1.4986/0.7432) mem 16099MB [2025-01-18 00:18:07 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][260/312] eta 0:00:24 lr 0.003705 time 0.4464 (0.4738) model_time 0.4459 (0.4652) loss 4.6469 (3.6478) grad_norm 1.4231 (1.5172/0.7561) mem 16099MB [2025-01-18 00:18:12 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][270/312] eta 0:00:19 lr 0.003704 time 0.4474 (0.4733) model_time 0.4472 (0.4650) loss 4.4481 (3.6462) grad_norm 0.7608 (1.5047/0.7470) mem 16099MB [2025-01-18 00:18:16 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][280/312] eta 0:00:15 lr 0.003704 time 0.4503 (0.4728) model_time 0.4501 (0.4647) loss 4.3076 (3.6594) grad_norm 1.3605 (1.4902/0.7405) mem 16099MB [2025-01-18 00:18:21 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][290/312] eta 0:00:10 lr 0.003704 time 0.4589 (0.4723) model_time 0.4585 (0.4646) loss 3.7540 (3.6656) grad_norm 1.0339 (1.4781/0.7338) mem 16099MB [2025-01-18 00:18:25 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][300/312] eta 0:00:05 lr 0.003703 time 0.4385 (0.4716) model_time 0.4384 (0.4641) loss 4.0262 (3.6605) grad_norm 2.0858 (1.4733/0.7273) mem 16099MB [2025-01-18 00:18:30 internimage_t_1k_224] (main.py 510): INFO Train: [52/300][310/312] eta 0:00:00 lr 0.003703 time 0.4369 (0.4706) model_time 0.4368 (0.4633) loss 3.6507 (3.6558) grad_norm 1.7165 (1.4768/0.7334) mem 16099MB [2025-01-18 00:18:30 internimage_t_1k_224] (main.py 519): INFO EPOCH 52 training takes 0:02:26 [2025-01-18 00:18:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_52.pth saving...... [2025-01-18 00:18:31 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_52.pth saved !!! [2025-01-18 00:18:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.538 (7.538) Loss 1.0053 (1.0053) Acc@1 77.319 (77.319) Acc@5 94.263 (94.263) Mem 16099MB [2025-01-18 00:18:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.014) Loss 1.4719 (1.1947) Acc@1 67.358 (73.509) Acc@5 88.574 (91.850) Mem 16099MB [2025-01-18 00:18:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:52] * Acc@1 73.532 Acc@5 91.939 [2025-01-18 00:18:43 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 73.5% [2025-01-18 00:18:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:18:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:18:44 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 73.53% [2025-01-18 00:18:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.509 (7.509) Loss 3.2939 (3.2939) Acc@1 42.310 (42.310) Acc@5 66.870 (66.870) Mem 16099MB [2025-01-18 00:18:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.015) Loss 3.4406 (3.2015) Acc@1 37.598 (43.277) Acc@5 62.524 (67.489) Mem 16099MB [2025-01-18 00:18:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:52] * Acc@1 43.206 Acc@5 67.684 [2025-01-18 00:18:55 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 43.2% [2025-01-18 00:18:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:18:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:18:57 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 43.21% [2025-01-18 00:18:59 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][0/312] eta 0:12:58 lr 0.003703 time 2.4942 (2.4942) model_time 0.5905 (0.5905) loss 3.6645 (3.6645) grad_norm 1.7624 (1.7624/0.0000) mem 16099MB [2025-01-18 00:19:04 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][10/312] eta 0:03:17 lr 0.003702 time 0.4425 (0.6542) model_time 0.4420 (0.4807) loss 2.7203 (3.5501) grad_norm 1.0634 (1.1040/0.3190) mem 16099MB [2025-01-18 00:19:09 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][20/312] eta 0:02:44 lr 0.003702 time 0.4432 (0.5649) model_time 0.4431 (0.4739) loss 3.5728 (3.4343) grad_norm 1.5022 (1.3681/0.4641) mem 16099MB [2025-01-18 00:19:13 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][30/312] eta 0:02:29 lr 0.003702 time 0.4387 (0.5286) model_time 0.4385 (0.4669) loss 3.5953 (3.5044) grad_norm 1.1771 (1.4074/0.4819) mem 16099MB [2025-01-18 00:19:18 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][40/312] eta 0:02:19 lr 0.003701 time 0.4597 (0.5110) model_time 0.4595 (0.4642) loss 4.1602 (3.5341) grad_norm 3.7126 (1.4454/0.5754) mem 16099MB [2025-01-18 00:19:22 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][50/312] eta 0:02:11 lr 0.003701 time 0.4492 (0.5010) model_time 0.4488 (0.4633) loss 3.8729 (3.6274) grad_norm 1.4085 (1.5551/0.7203) mem 16099MB [2025-01-18 00:19:27 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][60/312] eta 0:02:04 lr 0.003701 time 0.4405 (0.4934) model_time 0.4404 (0.4618) loss 2.5207 (3.5944) grad_norm 0.8480 (1.5624/0.6989) mem 16099MB [2025-01-18 00:19:31 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][70/312] eta 0:01:57 lr 0.003700 time 0.4580 (0.4875) model_time 0.4579 (0.4603) loss 3.6532 (3.5927) grad_norm 2.2536 (1.6053/0.7005) mem 16099MB [2025-01-18 00:19:36 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][80/312] eta 0:01:52 lr 0.003700 time 0.4512 (0.4843) model_time 0.4507 (0.4604) loss 4.0147 (3.5903) grad_norm 1.0429 (1.5602/0.6828) mem 16099MB [2025-01-18 00:19:41 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][90/312] eta 0:01:47 lr 0.003700 time 0.4968 (0.4825) model_time 0.4964 (0.4612) loss 4.0751 (3.5901) grad_norm 0.9473 (1.5257/0.6646) mem 16099MB [2025-01-18 00:19:45 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][100/312] eta 0:01:41 lr 0.003699 time 0.4707 (0.4798) model_time 0.4703 (0.4606) loss 3.3077 (3.5964) grad_norm 1.6571 (1.5211/0.6776) mem 16099MB [2025-01-18 00:19:50 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][110/312] eta 0:01:36 lr 0.003699 time 0.4519 (0.4789) model_time 0.4515 (0.4614) loss 3.8535 (3.6079) grad_norm 1.1096 (1.4727/0.6711) mem 16099MB [2025-01-18 00:19:55 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][120/312] eta 0:01:31 lr 0.003699 time 0.5439 (0.4788) model_time 0.5438 (0.4627) loss 3.3577 (3.6003) grad_norm 1.4396 (1.4733/0.6675) mem 16099MB [2025-01-18 00:20:00 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][130/312] eta 0:01:27 lr 0.003698 time 0.4471 (0.4807) model_time 0.4469 (0.4658) loss 4.0147 (3.6034) grad_norm 1.7499 (1.5318/0.7407) mem 16099MB [2025-01-18 00:20:04 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][140/312] eta 0:01:22 lr 0.003698 time 0.4401 (0.4788) model_time 0.4396 (0.4649) loss 3.4256 (3.5960) grad_norm 1.2161 (1.5464/0.7730) mem 16099MB [2025-01-18 00:20:09 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][150/312] eta 0:01:17 lr 0.003698 time 0.5297 (0.4780) model_time 0.5295 (0.4650) loss 3.3535 (3.6071) grad_norm 0.9695 (1.5144/0.7613) mem 16099MB [2025-01-18 00:20:13 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][160/312] eta 0:01:12 lr 0.003697 time 0.4472 (0.4768) model_time 0.4470 (0.4646) loss 3.7311 (3.6250) grad_norm 1.5832 (1.4952/0.7448) mem 16099MB [2025-01-18 00:20:18 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][170/312] eta 0:01:07 lr 0.003697 time 0.4417 (0.4761) model_time 0.4412 (0.4646) loss 4.2908 (3.6471) grad_norm 0.8280 (1.4772/0.7307) mem 16099MB [2025-01-18 00:20:23 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][180/312] eta 0:01:02 lr 0.003696 time 0.4530 (0.4754) model_time 0.4529 (0.4645) loss 3.9381 (3.6482) grad_norm 2.4203 (1.5081/0.7647) mem 16099MB [2025-01-18 00:20:27 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][190/312] eta 0:00:57 lr 0.003696 time 0.4513 (0.4741) model_time 0.4511 (0.4637) loss 4.1936 (3.6340) grad_norm 1.3400 (1.4937/0.7526) mem 16099MB [2025-01-18 00:20:32 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][200/312] eta 0:00:53 lr 0.003696 time 0.5256 (0.4733) model_time 0.5252 (0.4635) loss 3.5305 (3.6310) grad_norm 1.2371 (1.4931/0.7538) mem 16099MB [2025-01-18 00:20:37 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][210/312] eta 0:00:48 lr 0.003695 time 0.4396 (0.4733) model_time 0.4392 (0.4639) loss 4.7512 (3.6413) grad_norm 1.8214 (1.4895/0.7449) mem 16099MB [2025-01-18 00:20:41 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][220/312] eta 0:00:43 lr 0.003695 time 0.4565 (0.4724) model_time 0.4563 (0.4634) loss 3.9673 (3.6521) grad_norm 0.7758 (1.4756/0.7333) mem 16099MB [2025-01-18 00:20:46 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][230/312] eta 0:00:38 lr 0.003695 time 0.4475 (0.4720) model_time 0.4470 (0.4633) loss 3.4140 (3.6624) grad_norm 1.6153 (1.5364/0.8376) mem 16099MB [2025-01-18 00:20:50 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][240/312] eta 0:00:33 lr 0.003694 time 0.4385 (0.4720) model_time 0.4383 (0.4637) loss 3.9752 (3.6785) grad_norm 0.7874 (1.5417/0.8313) mem 16099MB [2025-01-18 00:20:55 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][250/312] eta 0:00:29 lr 0.003694 time 0.4493 (0.4718) model_time 0.4492 (0.4639) loss 3.6750 (3.6674) grad_norm 1.0631 (1.5293/0.8204) mem 16099MB [2025-01-18 00:21:00 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][260/312] eta 0:00:24 lr 0.003694 time 0.4494 (0.4712) model_time 0.4493 (0.4635) loss 3.4646 (3.6540) grad_norm 1.1998 (1.5234/0.8107) mem 16099MB [2025-01-18 00:21:04 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][270/312] eta 0:00:19 lr 0.003693 time 0.4499 (0.4705) model_time 0.4495 (0.4631) loss 4.4332 (3.6546) grad_norm 2.2069 (1.5294/0.8007) mem 16099MB [2025-01-18 00:21:09 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][280/312] eta 0:00:15 lr 0.003693 time 0.4472 (0.4703) model_time 0.4468 (0.4631) loss 2.3749 (3.6399) grad_norm 1.0575 (1.5282/0.7902) mem 16099MB [2025-01-18 00:21:13 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][290/312] eta 0:00:10 lr 0.003693 time 0.4409 (0.4700) model_time 0.4405 (0.4631) loss 4.1023 (3.6477) grad_norm 1.3809 (1.5179/0.7805) mem 16099MB [2025-01-18 00:21:18 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][300/312] eta 0:00:05 lr 0.003692 time 0.4367 (0.4699) model_time 0.4366 (0.4632) loss 3.8539 (3.6519) grad_norm 1.4645 (1.5197/0.7786) mem 16099MB [2025-01-18 00:21:23 internimage_t_1k_224] (main.py 510): INFO Train: [53/300][310/312] eta 0:00:00 lr 0.003692 time 0.4409 (0.4691) model_time 0.4408 (0.4626) loss 3.3275 (3.6542) grad_norm 1.1713 (1.5302/0.7801) mem 16099MB [2025-01-18 00:21:23 internimage_t_1k_224] (main.py 519): INFO EPOCH 53 training takes 0:02:26 [2025-01-18 00:21:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_53.pth saving...... [2025-01-18 00:21:24 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_53.pth saved !!! [2025-01-18 00:21:31 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.318 (7.318) Loss 1.0532 (1.0532) Acc@1 78.101 (78.101) Acc@5 94.629 (94.629) Mem 16099MB [2025-01-18 00:21:35 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.984) Loss 1.4689 (1.2394) Acc@1 68.140 (73.706) Acc@5 89.111 (92.068) Mem 16099MB [2025-01-18 00:21:35 internimage_t_1k_224] (main.py 575): INFO [Epoch:53] * Acc@1 73.740 Acc@5 92.214 [2025-01-18 00:21:35 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 73.7% [2025-01-18 00:21:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:21:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:21:36 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 73.74% [2025-01-18 00:21:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.462 (7.462) Loss 3.1276 (3.1276) Acc@1 44.971 (44.971) Acc@5 69.409 (69.409) Mem 16099MB [2025-01-18 00:21:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.008) Loss 3.3191 (3.0665) Acc@1 39.697 (45.364) Acc@5 64.990 (69.684) Mem 16099MB [2025-01-18 00:21:48 internimage_t_1k_224] (main.py 575): INFO [Epoch:53] * Acc@1 45.278 Acc@5 69.858 [2025-01-18 00:21:48 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 45.3% [2025-01-18 00:21:48 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:21:49 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:21:49 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 45.28% [2025-01-18 00:21:52 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][0/312] eta 0:13:45 lr 0.003692 time 2.6454 (2.6454) model_time 0.4824 (0.4824) loss 4.5264 (4.5264) grad_norm 1.0944 (1.0944/0.0000) mem 16099MB [2025-01-18 00:21:56 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][10/312] eta 0:03:17 lr 0.003691 time 0.4526 (0.6540) model_time 0.4520 (0.4571) loss 2.3189 (3.4682) grad_norm 0.9323 (1.0037/0.1099) mem 16099MB [2025-01-18 00:22:01 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][20/312] eta 0:02:43 lr 0.003691 time 0.4466 (0.5583) model_time 0.4465 (0.4550) loss 3.5736 (3.6633) grad_norm 1.2312 (1.1332/0.2597) mem 16099MB [2025-01-18 00:22:06 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][30/312] eta 0:02:29 lr 0.003691 time 0.4517 (0.5311) model_time 0.4515 (0.4610) loss 4.4224 (3.6687) grad_norm 2.3310 (1.4081/0.5796) mem 16099MB [2025-01-18 00:22:10 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][40/312] eta 0:02:19 lr 0.003690 time 0.4576 (0.5123) model_time 0.4575 (0.4592) loss 3.1200 (3.6494) grad_norm 2.1378 (1.4560/0.5469) mem 16099MB [2025-01-18 00:22:15 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][50/312] eta 0:02:11 lr 0.003690 time 0.4513 (0.5031) model_time 0.4509 (0.4604) loss 4.2503 (3.6481) grad_norm 1.0310 (1.4425/0.5461) mem 16099MB [2025-01-18 00:22:19 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][60/312] eta 0:02:05 lr 0.003690 time 0.4473 (0.4962) model_time 0.4468 (0.4604) loss 3.0616 (3.5887) grad_norm 0.9657 (1.4436/0.5212) mem 16099MB [2025-01-18 00:22:24 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][70/312] eta 0:01:58 lr 0.003689 time 0.4570 (0.4903) model_time 0.4568 (0.4595) loss 4.1887 (3.6283) grad_norm 1.0052 (1.4371/0.5165) mem 16099MB [2025-01-18 00:22:29 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][80/312] eta 0:01:53 lr 0.003689 time 0.4520 (0.4888) model_time 0.4518 (0.4617) loss 3.1844 (3.6072) grad_norm 0.9290 (1.4511/0.5405) mem 16099MB [2025-01-18 00:22:33 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][90/312] eta 0:01:48 lr 0.003689 time 0.5593 (0.4877) model_time 0.5591 (0.4635) loss 3.8795 (3.5840) grad_norm 0.9689 (1.4205/0.5221) mem 16099MB [2025-01-18 00:22:38 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][100/312] eta 0:01:43 lr 0.003688 time 0.4393 (0.4863) model_time 0.4391 (0.4646) loss 4.1080 (3.6139) grad_norm 1.8443 (1.4737/0.5915) mem 16099MB [2025-01-18 00:22:43 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][110/312] eta 0:01:38 lr 0.003688 time 0.4510 (0.4857) model_time 0.4506 (0.4659) loss 3.0957 (3.6269) grad_norm 1.0005 (1.5463/0.6924) mem 16099MB [2025-01-18 00:22:48 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][120/312] eta 0:01:32 lr 0.003687 time 0.4401 (0.4837) model_time 0.4399 (0.4654) loss 3.2964 (3.6111) grad_norm 1.2318 (1.5530/0.6940) mem 16099MB [2025-01-18 00:22:52 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][130/312] eta 0:01:27 lr 0.003687 time 0.4513 (0.4825) model_time 0.4509 (0.4656) loss 2.4728 (3.6246) grad_norm 0.9521 (1.5042/0.6890) mem 16099MB [2025-01-18 00:22:57 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][140/312] eta 0:01:23 lr 0.003687 time 0.5691 (0.4832) model_time 0.5687 (0.4675) loss 3.0983 (3.6115) grad_norm 1.1033 (1.4731/0.6766) mem 16099MB [2025-01-18 00:23:02 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][150/312] eta 0:01:17 lr 0.003686 time 0.4441 (0.4811) model_time 0.4437 (0.4664) loss 3.4692 (3.6158) grad_norm 1.1264 (1.4737/0.6753) mem 16099MB [2025-01-18 00:23:06 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][160/312] eta 0:01:12 lr 0.003686 time 0.4589 (0.4795) model_time 0.4588 (0.4657) loss 4.5367 (3.6210) grad_norm 1.7871 (1.5143/0.7151) mem 16099MB [2025-01-18 00:23:11 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][170/312] eta 0:01:07 lr 0.003686 time 0.4388 (0.4784) model_time 0.4384 (0.4653) loss 3.7995 (3.6170) grad_norm 1.2384 (1.5358/0.7186) mem 16099MB [2025-01-18 00:23:16 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][180/312] eta 0:01:03 lr 0.003685 time 0.4848 (0.4778) model_time 0.4847 (0.4655) loss 2.3223 (3.5991) grad_norm 0.9776 (1.5174/0.7058) mem 16099MB [2025-01-18 00:23:20 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][190/312] eta 0:00:58 lr 0.003685 time 0.4564 (0.4764) model_time 0.4562 (0.4647) loss 3.7789 (3.5865) grad_norm 1.0325 (1.4962/0.6960) mem 16099MB [2025-01-18 00:23:25 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][200/312] eta 0:00:53 lr 0.003685 time 0.4600 (0.4758) model_time 0.4595 (0.4647) loss 2.4361 (3.5842) grad_norm 0.9361 (1.4724/0.6910) mem 16099MB [2025-01-18 00:23:29 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][210/312] eta 0:00:48 lr 0.003684 time 0.4494 (0.4751) model_time 0.4493 (0.4645) loss 3.8780 (3.5850) grad_norm 0.9708 (1.4717/0.6869) mem 16099MB [2025-01-18 00:23:34 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][220/312] eta 0:00:43 lr 0.003684 time 0.4389 (0.4744) model_time 0.4385 (0.4642) loss 3.0508 (3.5883) grad_norm 1.0200 (1.4562/0.6785) mem 16099MB [2025-01-18 00:23:38 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][230/312] eta 0:00:38 lr 0.003684 time 0.4720 (0.4734) model_time 0.4715 (0.4637) loss 3.1334 (3.5886) grad_norm 1.5708 (1.4732/0.7056) mem 16099MB [2025-01-18 00:23:43 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][240/312] eta 0:00:34 lr 0.003683 time 0.4573 (0.4727) model_time 0.4569 (0.4634) loss 3.3230 (3.6022) grad_norm 0.7905 (1.4609/0.6978) mem 16099MB [2025-01-18 00:23:48 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][250/312] eta 0:00:29 lr 0.003683 time 0.4959 (0.4724) model_time 0.4957 (0.4634) loss 3.7783 (3.6037) grad_norm 2.0139 (1.4607/0.6912) mem 16099MB [2025-01-18 00:23:52 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][260/312] eta 0:00:24 lr 0.003682 time 0.4487 (0.4725) model_time 0.4486 (0.4638) loss 3.9766 (3.6081) grad_norm 1.8240 (1.4796/0.7073) mem 16099MB [2025-01-18 00:23:57 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][270/312] eta 0:00:19 lr 0.003682 time 0.4607 (0.4718) model_time 0.4605 (0.4635) loss 4.1004 (3.6191) grad_norm 1.9287 (1.4761/0.7018) mem 16099MB [2025-01-18 00:24:02 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][280/312] eta 0:00:15 lr 0.003682 time 0.4590 (0.4713) model_time 0.4586 (0.4632) loss 2.5807 (3.6108) grad_norm 1.0288 (1.4709/0.6912) mem 16099MB [2025-01-18 00:24:06 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][290/312] eta 0:00:10 lr 0.003681 time 0.4539 (0.4712) model_time 0.4535 (0.4634) loss 3.9390 (3.6156) grad_norm 1.0465 (1.4696/0.6892) mem 16099MB [2025-01-18 00:24:11 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][300/312] eta 0:00:05 lr 0.003681 time 0.4388 (0.4713) model_time 0.4387 (0.4638) loss 4.3868 (3.6181) grad_norm 1.1072 (1.5094/0.7454) mem 16099MB [2025-01-18 00:24:16 internimage_t_1k_224] (main.py 510): INFO Train: [54/300][310/312] eta 0:00:00 lr 0.003681 time 0.4389 (0.4712) model_time 0.4388 (0.4639) loss 4.3711 (3.6285) grad_norm 1.6934 (1.5211/0.7457) mem 16099MB [2025-01-18 00:24:16 internimage_t_1k_224] (main.py 519): INFO EPOCH 54 training takes 0:02:27 [2025-01-18 00:24:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_54.pth saving...... [2025-01-18 00:24:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_54.pth saved !!! [2025-01-18 00:24:25 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.309 (7.309) Loss 1.0582 (1.0582) Acc@1 78.271 (78.271) Acc@5 94.849 (94.849) Mem 16099MB [2025-01-18 00:24:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.992) Loss 1.4506 (1.2345) Acc@1 69.287 (73.972) Acc@5 88.989 (92.303) Mem 16099MB [2025-01-18 00:24:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:54] * Acc@1 73.952 Acc@5 92.326 [2025-01-18 00:24:28 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.0% [2025-01-18 00:24:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:24:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:24:30 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 73.95% [2025-01-18 00:24:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.091 (7.091) Loss 2.9751 (2.9751) Acc@1 47.729 (47.729) Acc@5 71.875 (71.875) Mem 16099MB [2025-01-18 00:24:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.006) Loss 3.2072 (2.9425) Acc@1 41.406 (47.374) Acc@5 66.870 (71.609) Mem 16099MB [2025-01-18 00:24:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:54] * Acc@1 47.221 Acc@5 71.783 [2025-01-18 00:24:41 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 47.2% [2025-01-18 00:24:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:24:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:24:42 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 47.22% [2025-01-18 00:24:45 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][0/312] eta 0:13:12 lr 0.003681 time 2.5414 (2.5414) model_time 0.4715 (0.4715) loss 4.6898 (4.6898) grad_norm 1.0936 (1.0936/0.0000) mem 16099MB [2025-01-18 00:24:49 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][10/312] eta 0:03:14 lr 0.003680 time 0.4515 (0.6448) model_time 0.4511 (0.4564) loss 3.5983 (3.6793) grad_norm 0.9815 (1.4938/0.7400) mem 16099MB [2025-01-18 00:24:54 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][20/312] eta 0:02:47 lr 0.003680 time 0.5317 (0.5739) model_time 0.5313 (0.4750) loss 2.5424 (3.6060) grad_norm 3.2741 (1.9056/0.9325) mem 16099MB [2025-01-18 00:24:59 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][30/312] eta 0:02:33 lr 0.003679 time 0.4427 (0.5428) model_time 0.4426 (0.4757) loss 3.7987 (3.4913) grad_norm 1.5204 (1.8379/0.8071) mem 16099MB [2025-01-18 00:25:03 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][40/312] eta 0:02:22 lr 0.003679 time 0.4517 (0.5232) model_time 0.4512 (0.4724) loss 3.4225 (3.5432) grad_norm 0.9504 (1.7297/0.7654) mem 16099MB [2025-01-18 00:25:08 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][50/312] eta 0:02:14 lr 0.003679 time 0.4667 (0.5137) model_time 0.4662 (0.4728) loss 3.7916 (3.5735) grad_norm 1.6006 (1.8197/0.8776) mem 16099MB [2025-01-18 00:25:13 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][60/312] eta 0:02:07 lr 0.003678 time 0.4478 (0.5040) model_time 0.4477 (0.4697) loss 4.2746 (3.5860) grad_norm 1.6810 (1.7396/0.8329) mem 16099MB [2025-01-18 00:25:17 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][70/312] eta 0:02:00 lr 0.003678 time 0.4519 (0.4973) model_time 0.4517 (0.4677) loss 3.0117 (3.5673) grad_norm 1.0350 (1.6758/0.8049) mem 16099MB [2025-01-18 00:25:22 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][80/312] eta 0:01:54 lr 0.003678 time 0.4546 (0.4939) model_time 0.4544 (0.4680) loss 3.2406 (3.5866) grad_norm 0.8493 (1.6436/0.7844) mem 16099MB [2025-01-18 00:25:27 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][90/312] eta 0:01:49 lr 0.003677 time 0.4420 (0.4924) model_time 0.4416 (0.4693) loss 3.6218 (3.6142) grad_norm 1.1997 (1.6102/0.7540) mem 16099MB [2025-01-18 00:25:31 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][100/312] eta 0:01:43 lr 0.003677 time 0.4563 (0.4896) model_time 0.4559 (0.4687) loss 4.4199 (3.6329) grad_norm 1.8902 (1.6100/0.7263) mem 16099MB [2025-01-18 00:25:36 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][110/312] eta 0:01:38 lr 0.003677 time 0.4381 (0.4863) model_time 0.4377 (0.4673) loss 2.5376 (3.6278) grad_norm 0.7554 (1.5550/0.7193) mem 16099MB [2025-01-18 00:25:41 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][120/312] eta 0:01:32 lr 0.003676 time 0.4570 (0.4840) model_time 0.4569 (0.4665) loss 3.7085 (3.6042) grad_norm 2.4491 (1.5812/0.7450) mem 16099MB [2025-01-18 00:25:45 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][130/312] eta 0:01:27 lr 0.003676 time 0.4472 (0.4825) model_time 0.4467 (0.4663) loss 3.9726 (3.6311) grad_norm 1.6088 (1.5635/0.7263) mem 16099MB [2025-01-18 00:25:50 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][140/312] eta 0:01:22 lr 0.003675 time 0.4639 (0.4811) model_time 0.4638 (0.4660) loss 3.6027 (3.6265) grad_norm 1.4033 (1.5440/0.7065) mem 16099MB [2025-01-18 00:25:54 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][150/312] eta 0:01:17 lr 0.003675 time 0.4468 (0.4790) model_time 0.4467 (0.4649) loss 3.5654 (3.6314) grad_norm 1.4262 (1.5128/0.6948) mem 16099MB [2025-01-18 00:25:59 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][160/312] eta 0:01:12 lr 0.003675 time 0.5272 (0.4789) model_time 0.5270 (0.4657) loss 4.1337 (3.6350) grad_norm 1.4348 (1.4992/0.6845) mem 16099MB [2025-01-18 00:26:04 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][170/312] eta 0:01:07 lr 0.003674 time 0.4647 (0.4777) model_time 0.4645 (0.4652) loss 3.8624 (3.6383) grad_norm 1.1495 (1.5188/0.6807) mem 16099MB [2025-01-18 00:26:08 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][180/312] eta 0:01:02 lr 0.003674 time 0.4418 (0.4769) model_time 0.4414 (0.4651) loss 2.9636 (3.6325) grad_norm 4.7025 (1.5585/0.7413) mem 16099MB [2025-01-18 00:26:13 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][190/312] eta 0:00:58 lr 0.003674 time 0.4436 (0.4763) model_time 0.4432 (0.4651) loss 4.2393 (3.6281) grad_norm 3.6782 (1.5849/0.7616) mem 16099MB [2025-01-18 00:26:18 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][200/312] eta 0:00:53 lr 0.003673 time 0.4483 (0.4752) model_time 0.4482 (0.4645) loss 3.5320 (3.6279) grad_norm 0.9144 (1.5753/0.7512) mem 16099MB [2025-01-18 00:26:22 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][210/312] eta 0:00:48 lr 0.003673 time 0.7473 (0.4757) model_time 0.7469 (0.4654) loss 4.5290 (3.6316) grad_norm 0.9938 (1.5561/0.7402) mem 16099MB [2025-01-18 00:26:27 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][220/312] eta 0:00:43 lr 0.003673 time 0.4459 (0.4747) model_time 0.4457 (0.4649) loss 2.4128 (3.6139) grad_norm 0.9208 (1.5404/0.7308) mem 16099MB [2025-01-18 00:26:32 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][230/312] eta 0:00:38 lr 0.003672 time 0.4646 (0.4745) model_time 0.4645 (0.4651) loss 4.3482 (3.6165) grad_norm 2.0527 (1.5399/0.7243) mem 16099MB [2025-01-18 00:26:36 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][240/312] eta 0:00:34 lr 0.003672 time 0.5372 (0.4740) model_time 0.5368 (0.4649) loss 3.6375 (3.6213) grad_norm 1.1929 (1.5559/0.7437) mem 16099MB [2025-01-18 00:26:41 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][250/312] eta 0:00:29 lr 0.003671 time 0.5552 (0.4735) model_time 0.5550 (0.4649) loss 3.2433 (3.6230) grad_norm 1.1057 (1.5441/0.7337) mem 16099MB [2025-01-18 00:26:45 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][260/312] eta 0:00:24 lr 0.003671 time 0.4484 (0.4731) model_time 0.4479 (0.4647) loss 4.4634 (3.6284) grad_norm 1.0190 (1.5285/0.7252) mem 16099MB [2025-01-18 00:26:50 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][270/312] eta 0:00:19 lr 0.003671 time 0.4711 (0.4733) model_time 0.4707 (0.4653) loss 4.2253 (3.6308) grad_norm 0.7980 (1.5145/0.7182) mem 16099MB [2025-01-18 00:26:55 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][280/312] eta 0:00:15 lr 0.003670 time 0.4527 (0.4729) model_time 0.4526 (0.4652) loss 3.3812 (3.6341) grad_norm 1.2900 (1.5351/0.7357) mem 16099MB [2025-01-18 00:27:00 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][290/312] eta 0:00:10 lr 0.003670 time 0.4539 (0.4726) model_time 0.4535 (0.4651) loss 2.9491 (3.6231) grad_norm 1.9206 (1.5301/0.7267) mem 16099MB [2025-01-18 00:27:04 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][300/312] eta 0:00:05 lr 0.003670 time 0.4380 (0.4722) model_time 0.4379 (0.4649) loss 3.9556 (3.6160) grad_norm 0.7647 (1.5345/0.7292) mem 16099MB [2025-01-18 00:27:09 internimage_t_1k_224] (main.py 510): INFO Train: [55/300][310/312] eta 0:00:00 lr 0.003669 time 0.4446 (0.4713) model_time 0.4445 (0.4642) loss 4.3713 (3.6234) grad_norm 0.7700 (1.5229/0.7278) mem 16099MB [2025-01-18 00:27:09 internimage_t_1k_224] (main.py 519): INFO EPOCH 55 training takes 0:02:27 [2025-01-18 00:27:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_55.pth saving...... [2025-01-18 00:27:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_55.pth saved !!! [2025-01-18 00:27:18 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.459 (7.459) Loss 1.0143 (1.0143) Acc@1 77.368 (77.368) Acc@5 94.360 (94.360) Mem 16099MB [2025-01-18 00:27:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.979) Loss 1.4428 (1.1940) Acc@1 68.213 (74.268) Acc@5 89.185 (92.516) Mem 16099MB [2025-01-18 00:27:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:55] * Acc@1 74.204 Acc@5 92.586 [2025-01-18 00:27:21 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.2% [2025-01-18 00:27:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:27:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:27:22 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.20% [2025-01-18 00:27:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.388 (7.388) Loss 2.8321 (2.8321) Acc@1 49.756 (49.756) Acc@5 73.804 (73.804) Mem 16099MB [2025-01-18 00:27:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.003) Loss 3.1022 (2.8264) Acc@1 43.091 (49.170) Acc@5 68.188 (73.273) Mem 16099MB [2025-01-18 00:27:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:55] * Acc@1 49.026 Acc@5 73.442 [2025-01-18 00:27:33 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 49.0% [2025-01-18 00:27:34 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:27:35 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:27:35 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 49.03% [2025-01-18 00:27:38 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][0/312] eta 0:15:11 lr 0.003669 time 2.9212 (2.9212) model_time 0.4758 (0.4758) loss 3.2447 (3.2447) grad_norm 1.0441 (1.0441/0.0000) mem 16099MB [2025-01-18 00:27:42 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][10/312] eta 0:03:29 lr 0.003669 time 0.4387 (0.6931) model_time 0.4386 (0.4706) loss 3.7964 (3.5282) grad_norm 4.3414 (1.6885/1.0341) mem 16099MB [2025-01-18 00:27:47 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][20/312] eta 0:02:49 lr 0.003668 time 0.4507 (0.5809) model_time 0.4506 (0.4642) loss 2.5609 (3.5545) grad_norm 1.0967 (1.6311/0.8271) mem 16099MB [2025-01-18 00:27:52 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][30/312] eta 0:02:32 lr 0.003668 time 0.4461 (0.5404) model_time 0.4459 (0.4612) loss 2.6955 (3.4420) grad_norm 1.5365 (1.6637/0.9017) mem 16099MB [2025-01-18 00:27:56 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][40/312] eta 0:02:22 lr 0.003668 time 0.4551 (0.5255) model_time 0.4547 (0.4655) loss 2.7322 (3.4974) grad_norm 0.9990 (1.5814/0.8465) mem 16099MB [2025-01-18 00:28:01 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][50/312] eta 0:02:13 lr 0.003667 time 0.4532 (0.5112) model_time 0.4530 (0.4629) loss 4.3877 (3.5773) grad_norm 1.1052 (1.5478/0.7798) mem 16099MB [2025-01-18 00:28:06 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][60/312] eta 0:02:07 lr 0.003667 time 0.4658 (0.5047) model_time 0.4656 (0.4643) loss 3.0505 (3.5457) grad_norm 0.8192 (1.5341/0.7517) mem 16099MB [2025-01-18 00:28:11 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][70/312] eta 0:02:01 lr 0.003667 time 0.4573 (0.5021) model_time 0.4569 (0.4673) loss 4.2003 (3.5928) grad_norm 1.9451 (1.4957/0.7304) mem 16099MB [2025-01-18 00:28:15 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][80/312] eta 0:01:56 lr 0.003666 time 0.5482 (0.5012) model_time 0.5477 (0.4707) loss 4.6538 (3.5721) grad_norm 1.2797 (1.4809/0.6948) mem 16099MB [2025-01-18 00:28:20 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][90/312] eta 0:01:50 lr 0.003666 time 0.4402 (0.4962) model_time 0.4397 (0.4690) loss 3.0371 (3.5524) grad_norm 1.4583 (1.4438/0.6745) mem 16099MB [2025-01-18 00:28:25 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][100/312] eta 0:01:44 lr 0.003665 time 0.4390 (0.4943) model_time 0.4389 (0.4697) loss 4.1420 (3.5897) grad_norm 5.0458 (1.5105/0.7779) mem 16099MB [2025-01-18 00:28:29 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][110/312] eta 0:01:39 lr 0.003665 time 0.4488 (0.4905) model_time 0.4487 (0.4681) loss 3.8039 (3.5968) grad_norm 0.7998 (1.5541/0.7942) mem 16099MB [2025-01-18 00:28:34 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][120/312] eta 0:01:33 lr 0.003665 time 0.4470 (0.4872) model_time 0.4466 (0.4666) loss 3.8475 (3.6154) grad_norm 1.0465 (1.5571/0.7925) mem 16099MB [2025-01-18 00:28:38 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][130/312] eta 0:01:28 lr 0.003664 time 0.4628 (0.4848) model_time 0.4623 (0.4658) loss 3.7205 (3.6201) grad_norm 1.4304 (1.5382/0.7713) mem 16099MB [2025-01-18 00:28:43 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][140/312] eta 0:01:23 lr 0.003664 time 0.4472 (0.4831) model_time 0.4468 (0.4654) loss 3.9740 (3.6212) grad_norm 1.9646 (1.5412/0.7611) mem 16099MB [2025-01-18 00:28:48 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][150/312] eta 0:01:18 lr 0.003664 time 0.4371 (0.4826) model_time 0.4365 (0.4661) loss 3.9096 (3.6174) grad_norm 2.2175 (1.5756/0.7883) mem 16099MB [2025-01-18 00:28:53 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][160/312] eta 0:01:13 lr 0.003663 time 0.4530 (0.4824) model_time 0.4528 (0.4669) loss 2.5046 (3.6059) grad_norm 1.0895 (1.5468/0.7737) mem 16099MB [2025-01-18 00:28:57 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][170/312] eta 0:01:08 lr 0.003663 time 0.4511 (0.4807) model_time 0.4506 (0.4661) loss 4.0160 (3.6230) grad_norm 1.5532 (1.5293/0.7569) mem 16099MB [2025-01-18 00:29:02 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][180/312] eta 0:01:03 lr 0.003663 time 0.4451 (0.4796) model_time 0.4449 (0.4657) loss 3.9011 (3.6092) grad_norm 0.8780 (1.5381/0.7598) mem 16099MB [2025-01-18 00:29:07 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][190/312] eta 0:00:58 lr 0.003662 time 0.5689 (0.4805) model_time 0.5685 (0.4673) loss 3.7214 (3.6118) grad_norm 1.0895 (1.5602/0.7850) mem 16099MB [2025-01-18 00:29:11 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][200/312] eta 0:00:53 lr 0.003662 time 0.4513 (0.4798) model_time 0.4508 (0.4673) loss 4.2086 (3.6176) grad_norm 0.8037 (1.5611/0.7987) mem 16099MB [2025-01-18 00:29:16 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][210/312] eta 0:00:48 lr 0.003661 time 0.4482 (0.4786) model_time 0.4480 (0.4667) loss 4.5901 (3.6093) grad_norm 0.9343 (1.5381/0.7894) mem 16099MB [2025-01-18 00:29:21 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][220/312] eta 0:00:44 lr 0.003661 time 0.4412 (0.4783) model_time 0.4411 (0.4669) loss 2.4339 (3.5904) grad_norm 0.9694 (1.5210/0.7789) mem 16099MB [2025-01-18 00:29:25 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][230/312] eta 0:00:39 lr 0.003661 time 0.4439 (0.4776) model_time 0.4437 (0.4667) loss 3.8165 (3.5948) grad_norm 0.9396 (1.4992/0.7699) mem 16099MB [2025-01-18 00:29:30 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][240/312] eta 0:00:34 lr 0.003660 time 0.4464 (0.4790) model_time 0.4463 (0.4685) loss 4.4744 (3.5975) grad_norm 1.1157 (1.5186/0.7813) mem 16099MB [2025-01-18 00:29:35 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][250/312] eta 0:00:29 lr 0.003660 time 0.4761 (0.4781) model_time 0.4759 (0.4680) loss 3.6061 (3.5967) grad_norm 1.5783 (1.5098/0.7686) mem 16099MB [2025-01-18 00:29:39 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][260/312] eta 0:00:24 lr 0.003660 time 0.4433 (0.4775) model_time 0.4428 (0.4678) loss 3.4368 (3.5965) grad_norm 1.6041 (1.5038/0.7558) mem 16099MB [2025-01-18 00:29:44 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][270/312] eta 0:00:20 lr 0.003659 time 0.4465 (0.4768) model_time 0.4463 (0.4675) loss 4.5539 (3.6003) grad_norm 1.2616 (1.4995/0.7490) mem 16099MB [2025-01-18 00:29:49 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][280/312] eta 0:00:15 lr 0.003659 time 0.4448 (0.4762) model_time 0.4446 (0.4671) loss 4.6275 (3.6024) grad_norm 0.7228 (1.5209/0.7553) mem 16099MB [2025-01-18 00:29:53 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][290/312] eta 0:00:10 lr 0.003658 time 0.4520 (0.4758) model_time 0.4518 (0.4670) loss 4.0544 (3.6049) grad_norm 1.0067 (1.5131/0.7462) mem 16099MB [2025-01-18 00:29:58 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][300/312] eta 0:00:05 lr 0.003658 time 0.4526 (0.4755) model_time 0.4525 (0.4671) loss 4.2248 (3.6079) grad_norm 0.8207 (1.5072/0.7394) mem 16099MB [2025-01-18 00:30:03 internimage_t_1k_224] (main.py 510): INFO Train: [56/300][310/312] eta 0:00:00 lr 0.003658 time 0.4374 (0.4755) model_time 0.4373 (0.4673) loss 3.3964 (3.6020) grad_norm 1.4915 (1.4862/0.7172) mem 16099MB [2025-01-18 00:30:03 internimage_t_1k_224] (main.py 519): INFO EPOCH 56 training takes 0:02:28 [2025-01-18 00:30:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_56.pth saving...... [2025-01-18 00:30:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_56.pth saved !!! [2025-01-18 00:30:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.570 (7.570) Loss 1.0014 (1.0014) Acc@1 78.027 (78.027) Acc@5 94.995 (94.995) Mem 16099MB [2025-01-18 00:30:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.004) Loss 1.4529 (1.2126) Acc@1 68.701 (73.910) Acc@5 89.282 (92.427) Mem 16099MB [2025-01-18 00:30:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:56] * Acc@1 73.942 Acc@5 92.470 [2025-01-18 00:30:16 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 73.9% [2025-01-18 00:30:16 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.20% [2025-01-18 00:30:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.018 (8.018) Loss 2.6968 (2.6968) Acc@1 51.685 (51.685) Acc@5 75.757 (75.757) Mem 16099MB [2025-01-18 00:30:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.093) Loss 3.0041 (2.7183) Acc@1 44.824 (50.819) Acc@5 69.678 (74.900) Mem 16099MB [2025-01-18 00:30:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:56] * Acc@1 50.732 Acc@5 75.058 [2025-01-18 00:30:28 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 50.7% [2025-01-18 00:30:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:30:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:30:29 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 50.73% [2025-01-18 00:30:31 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][0/312] eta 0:10:44 lr 0.003658 time 2.0645 (2.0645) model_time 0.4955 (0.4955) loss 2.6106 (2.6106) grad_norm 1.5957 (1.5957/0.0000) mem 16099MB [2025-01-18 00:30:36 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][10/312] eta 0:03:09 lr 0.003657 time 0.4472 (0.6279) model_time 0.4470 (0.4621) loss 3.6044 (3.4806) grad_norm 1.5335 (1.4412/0.5906) mem 16099MB [2025-01-18 00:30:41 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][20/312] eta 0:02:39 lr 0.003657 time 0.4758 (0.5454) model_time 0.4755 (0.4584) loss 3.8555 (3.5377) grad_norm 1.1158 (1.7666/0.8595) mem 16099MB [2025-01-18 00:30:45 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][30/312] eta 0:02:25 lr 0.003656 time 0.4780 (0.5165) model_time 0.4775 (0.4574) loss 2.9779 (3.5846) grad_norm 1.0558 (1.7468/0.7819) mem 16099MB [2025-01-18 00:30:50 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][40/312] eta 0:02:16 lr 0.003656 time 0.4538 (0.5006) model_time 0.4536 (0.4558) loss 3.5778 (3.5111) grad_norm 1.7244 (1.6892/0.7145) mem 16099MB [2025-01-18 00:30:54 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][50/312] eta 0:02:08 lr 0.003656 time 0.4530 (0.4913) model_time 0.4527 (0.4553) loss 3.8528 (3.5178) grad_norm 1.2034 (1.5785/0.6929) mem 16099MB [2025-01-18 00:30:59 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][60/312] eta 0:02:02 lr 0.003655 time 0.4474 (0.4859) model_time 0.4470 (0.4557) loss 3.7001 (3.5453) grad_norm 1.3146 (1.5178/0.6687) mem 16099MB [2025-01-18 00:31:04 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][70/312] eta 0:01:57 lr 0.003655 time 0.4564 (0.4836) model_time 0.4562 (0.4575) loss 3.5444 (3.5294) grad_norm 1.0433 (1.5750/0.7367) mem 16099MB [2025-01-18 00:31:08 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][80/312] eta 0:01:51 lr 0.003655 time 0.4635 (0.4802) model_time 0.4633 (0.4573) loss 3.2242 (3.5460) grad_norm 0.9140 (1.5359/0.7083) mem 16099MB [2025-01-18 00:31:13 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][90/312] eta 0:01:46 lr 0.003654 time 0.4565 (0.4780) model_time 0.4563 (0.4576) loss 4.4279 (3.5657) grad_norm 2.9081 (1.5224/0.6954) mem 16099MB [2025-01-18 00:31:17 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][100/312] eta 0:01:41 lr 0.003654 time 0.4611 (0.4769) model_time 0.4609 (0.4585) loss 3.9052 (3.5522) grad_norm 0.6917 (1.5172/0.6859) mem 16099MB [2025-01-18 00:31:22 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][110/312] eta 0:01:36 lr 0.003653 time 0.4597 (0.4754) model_time 0.4595 (0.4586) loss 3.0269 (3.5675) grad_norm 1.4910 (1.4891/0.6652) mem 16099MB [2025-01-18 00:31:27 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][120/312] eta 0:01:31 lr 0.003653 time 0.4555 (0.4755) model_time 0.4553 (0.4601) loss 4.2795 (3.5744) grad_norm 2.4705 (1.5337/0.6876) mem 16099MB [2025-01-18 00:31:32 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][130/312] eta 0:01:27 lr 0.003653 time 0.4829 (0.4799) model_time 0.4827 (0.4656) loss 3.7988 (3.5887) grad_norm 1.1912 (1.5532/0.6873) mem 16099MB [2025-01-18 00:31:37 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][140/312] eta 0:01:22 lr 0.003652 time 0.4449 (0.4803) model_time 0.4447 (0.4670) loss 4.1641 (3.5937) grad_norm 1.2609 (1.5499/0.6719) mem 16099MB [2025-01-18 00:31:42 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][150/312] eta 0:01:17 lr 0.003652 time 0.4445 (0.4789) model_time 0.4443 (0.4665) loss 3.0191 (3.5796) grad_norm 0.6881 (1.5263/0.6746) mem 16099MB [2025-01-18 00:31:47 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][160/312] eta 0:01:12 lr 0.003652 time 0.7237 (0.4800) model_time 0.7235 (0.4683) loss 3.7732 (3.5927) grad_norm 1.5727 (1.5286/0.6693) mem 16099MB [2025-01-18 00:31:51 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][170/312] eta 0:01:08 lr 0.003651 time 0.4414 (0.4790) model_time 0.4413 (0.4680) loss 3.7226 (3.5770) grad_norm 1.8925 (1.5180/0.6589) mem 16099MB [2025-01-18 00:31:56 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][180/312] eta 0:01:03 lr 0.003651 time 0.4530 (0.4780) model_time 0.4528 (0.4675) loss 3.6570 (3.5777) grad_norm 1.0237 (1.5643/0.7110) mem 16099MB [2025-01-18 00:32:01 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][190/312] eta 0:00:58 lr 0.003650 time 0.4471 (0.4778) model_time 0.4466 (0.4679) loss 4.0270 (3.5900) grad_norm 1.0593 (1.5557/0.7043) mem 16099MB [2025-01-18 00:32:05 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][200/312] eta 0:00:53 lr 0.003650 time 0.4508 (0.4765) model_time 0.4506 (0.4671) loss 4.4919 (3.5760) grad_norm 1.5457 (1.5287/0.6990) mem 16099MB [2025-01-18 00:32:10 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][210/312] eta 0:00:48 lr 0.003650 time 0.4483 (0.4754) model_time 0.4482 (0.4664) loss 2.9428 (3.5767) grad_norm 1.8259 (1.5237/0.6925) mem 16099MB [2025-01-18 00:32:14 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][220/312] eta 0:00:43 lr 0.003649 time 0.4556 (0.4743) model_time 0.4552 (0.4657) loss 3.5292 (3.5858) grad_norm 1.0725 (1.5218/0.6897) mem 16099MB [2025-01-18 00:32:19 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][230/312] eta 0:00:38 lr 0.003649 time 0.4483 (0.4734) model_time 0.4481 (0.4651) loss 4.5772 (3.5924) grad_norm 1.5345 (1.5107/0.6773) mem 16099MB [2025-01-18 00:32:23 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][240/312] eta 0:00:34 lr 0.003649 time 0.4787 (0.4738) model_time 0.4785 (0.4659) loss 3.1909 (3.5976) grad_norm 1.4991 (1.5173/0.6797) mem 16099MB [2025-01-18 00:32:28 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][250/312] eta 0:00:29 lr 0.003648 time 0.4526 (0.4729) model_time 0.4524 (0.4653) loss 3.8971 (3.5975) grad_norm 0.8792 (1.5418/0.7206) mem 16099MB [2025-01-18 00:32:33 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][260/312] eta 0:00:24 lr 0.003648 time 0.4536 (0.4726) model_time 0.4534 (0.4653) loss 4.0162 (3.5969) grad_norm 2.0693 (1.5386/0.7159) mem 16099MB [2025-01-18 00:32:37 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][270/312] eta 0:00:19 lr 0.003647 time 0.4528 (0.4722) model_time 0.4526 (0.4651) loss 2.3755 (3.5884) grad_norm 1.2212 (1.5338/0.7080) mem 16099MB [2025-01-18 00:32:42 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][280/312] eta 0:00:15 lr 0.003647 time 0.4364 (0.4716) model_time 0.4362 (0.4647) loss 2.4733 (3.5902) grad_norm 1.4663 (1.5219/0.7005) mem 16099MB [2025-01-18 00:32:46 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][290/312] eta 0:00:10 lr 0.003647 time 0.4641 (0.4711) model_time 0.4636 (0.4644) loss 3.1965 (3.5970) grad_norm 1.3706 (1.5286/0.7263) mem 16099MB [2025-01-18 00:32:51 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][300/312] eta 0:00:05 lr 0.003646 time 0.4365 (0.4706) model_time 0.4364 (0.4641) loss 3.5064 (3.5999) grad_norm 1.7306 (1.5238/0.7219) mem 16099MB [2025-01-18 00:32:56 internimage_t_1k_224] (main.py 510): INFO Train: [57/300][310/312] eta 0:00:00 lr 0.003646 time 0.4421 (0.4706) model_time 0.4420 (0.4644) loss 4.6175 (3.6127) grad_norm 0.8729 (1.5259/0.7185) mem 16099MB [2025-01-18 00:32:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 57 training takes 0:02:26 [2025-01-18 00:32:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_57.pth saving...... [2025-01-18 00:32:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_57.pth saved !!! [2025-01-18 00:33:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.301 (7.301) Loss 0.9645 (0.9645) Acc@1 77.954 (77.954) Acc@5 94.800 (94.800) Mem 16099MB [2025-01-18 00:33:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.988) Loss 1.4389 (1.1896) Acc@1 67.627 (74.077) Acc@5 89.380 (92.225) Mem 16099MB [2025-01-18 00:33:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:57] * Acc@1 74.124 Acc@5 92.318 [2025-01-18 00:33:08 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.1% [2025-01-18 00:33:08 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.20% [2025-01-18 00:33:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.156 (8.156) Loss 2.5692 (2.5692) Acc@1 53.809 (53.809) Acc@5 77.490 (77.490) Mem 16099MB [2025-01-18 00:33:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.096) Loss 2.9114 (2.6163) Acc@1 46.729 (52.577) Acc@5 71.436 (76.325) Mem 16099MB [2025-01-18 00:33:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:57] * Acc@1 52.507 Acc@5 76.472 [2025-01-18 00:33:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 52.5% [2025-01-18 00:33:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:33:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:33:22 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 52.51% [2025-01-18 00:33:24 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][0/312] eta 0:13:19 lr 0.003646 time 2.5615 (2.5615) model_time 0.4767 (0.4767) loss 4.0259 (4.0259) grad_norm 1.1650 (1.1650/0.0000) mem 16099MB [2025-01-18 00:33:29 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][10/312] eta 0:03:17 lr 0.003645 time 0.4497 (0.6536) model_time 0.4496 (0.4635) loss 2.9247 (3.7693) grad_norm 1.4342 (1.1858/0.3614) mem 16099MB [2025-01-18 00:33:33 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][20/312] eta 0:02:43 lr 0.003645 time 0.4562 (0.5586) model_time 0.4560 (0.4589) loss 2.4755 (3.7183) grad_norm 1.1593 (1.2866/0.4231) mem 16099MB [2025-01-18 00:33:38 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][30/312] eta 0:02:29 lr 0.003645 time 0.5392 (0.5306) model_time 0.5390 (0.4629) loss 4.0770 (3.7000) grad_norm 1.4821 (1.4222/0.6082) mem 16099MB [2025-01-18 00:33:43 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][40/312] eta 0:02:20 lr 0.003644 time 0.4492 (0.5163) model_time 0.4487 (0.4650) loss 4.0841 (3.6511) grad_norm 1.3237 (1.5083/0.6586) mem 16099MB [2025-01-18 00:33:47 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][50/312] eta 0:02:12 lr 0.003644 time 0.4810 (0.5043) model_time 0.4806 (0.4630) loss 3.7352 (3.6328) grad_norm 0.9318 (1.6171/0.7215) mem 16099MB [2025-01-18 00:33:52 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][60/312] eta 0:02:05 lr 0.003644 time 0.4358 (0.4989) model_time 0.4353 (0.4643) loss 3.7934 (3.6260) grad_norm 1.3928 (1.5771/0.6816) mem 16099MB [2025-01-18 00:33:57 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][70/312] eta 0:01:59 lr 0.003643 time 0.4438 (0.4939) model_time 0.4436 (0.4642) loss 3.6711 (3.6015) grad_norm 0.7514 (1.5593/0.6598) mem 16099MB [2025-01-18 00:34:01 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][80/312] eta 0:01:53 lr 0.003643 time 0.4559 (0.4898) model_time 0.4557 (0.4636) loss 3.4809 (3.6330) grad_norm 0.6873 (1.6070/0.7552) mem 16099MB [2025-01-18 00:34:06 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][90/312] eta 0:01:47 lr 0.003642 time 0.4541 (0.4862) model_time 0.4536 (0.4628) loss 3.2534 (3.6262) grad_norm 0.8493 (1.5537/0.7315) mem 16099MB [2025-01-18 00:34:11 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][100/312] eta 0:01:42 lr 0.003642 time 0.4426 (0.4835) model_time 0.4424 (0.4624) loss 3.6546 (3.6336) grad_norm 1.9379 (1.5511/0.7019) mem 16099MB [2025-01-18 00:34:16 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][110/312] eta 0:01:37 lr 0.003642 time 0.4450 (0.4848) model_time 0.4448 (0.4656) loss 3.3607 (3.6299) grad_norm 1.3100 (1.5427/0.6844) mem 16099MB [2025-01-18 00:34:20 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][120/312] eta 0:01:32 lr 0.003641 time 0.5463 (0.4834) model_time 0.5461 (0.4658) loss 4.3176 (3.6447) grad_norm 2.6521 (1.5599/0.6903) mem 16099MB [2025-01-18 00:34:25 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][130/312] eta 0:01:28 lr 0.003641 time 0.4382 (0.4836) model_time 0.4381 (0.4673) loss 4.2334 (3.6529) grad_norm 0.9696 (1.5548/0.6745) mem 16099MB [2025-01-18 00:34:30 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][140/312] eta 0:01:22 lr 0.003641 time 0.4543 (0.4824) model_time 0.4541 (0.4672) loss 3.6064 (3.6585) grad_norm 1.3965 (1.5330/0.6673) mem 16099MB [2025-01-18 00:34:34 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][150/312] eta 0:01:17 lr 0.003640 time 0.4638 (0.4809) model_time 0.4636 (0.4667) loss 3.1575 (3.6674) grad_norm 0.9483 (1.5611/0.6713) mem 16099MB [2025-01-18 00:34:39 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][160/312] eta 0:01:12 lr 0.003640 time 0.5343 (0.4796) model_time 0.5341 (0.4663) loss 4.0862 (3.6832) grad_norm 1.7770 (1.5763/0.6862) mem 16099MB [2025-01-18 00:34:44 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][170/312] eta 0:01:08 lr 0.003639 time 0.4623 (0.4792) model_time 0.4618 (0.4666) loss 3.8339 (3.6937) grad_norm 2.2263 (1.5982/0.7064) mem 16099MB [2025-01-18 00:34:48 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][180/312] eta 0:01:03 lr 0.003639 time 0.4744 (0.4778) model_time 0.4742 (0.4659) loss 3.9717 (3.7053) grad_norm 1.4138 (1.5767/0.6956) mem 16099MB [2025-01-18 00:34:53 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][190/312] eta 0:00:58 lr 0.003639 time 0.4806 (0.4764) model_time 0.4804 (0.4651) loss 4.1627 (3.7120) grad_norm 1.8814 (1.5564/0.6869) mem 16099MB [2025-01-18 00:34:57 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][200/312] eta 0:00:53 lr 0.003638 time 0.4623 (0.4756) model_time 0.4621 (0.4649) loss 3.7115 (3.6977) grad_norm 1.2872 (1.5630/0.6965) mem 16099MB [2025-01-18 00:35:02 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][210/312] eta 0:00:48 lr 0.003638 time 0.4645 (0.4747) model_time 0.4643 (0.4645) loss 2.9321 (3.6989) grad_norm 1.8289 (1.5663/0.6881) mem 16099MB [2025-01-18 00:35:07 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][220/312] eta 0:00:43 lr 0.003637 time 0.4467 (0.4744) model_time 0.4462 (0.4646) loss 3.6406 (3.6962) grad_norm 0.8012 (1.5566/0.6793) mem 16099MB [2025-01-18 00:35:11 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][230/312] eta 0:00:38 lr 0.003637 time 0.4734 (0.4737) model_time 0.4732 (0.4643) loss 2.8035 (3.7007) grad_norm 1.5791 (1.5488/0.6681) mem 16099MB [2025-01-18 00:35:16 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][240/312] eta 0:00:34 lr 0.003637 time 0.4489 (0.4730) model_time 0.4487 (0.4640) loss 4.4131 (3.7008) grad_norm 2.7832 (1.5531/0.6662) mem 16099MB [2025-01-18 00:35:20 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][250/312] eta 0:00:29 lr 0.003636 time 0.4775 (0.4729) model_time 0.4771 (0.4642) loss 3.5648 (3.6883) grad_norm 2.0501 (1.5533/0.6700) mem 16099MB [2025-01-18 00:35:25 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][260/312] eta 0:00:24 lr 0.003636 time 0.4515 (0.4723) model_time 0.4513 (0.4640) loss 3.1817 (3.6823) grad_norm 2.3786 (1.5567/0.6698) mem 16099MB [2025-01-18 00:35:30 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][270/312] eta 0:00:19 lr 0.003636 time 0.4618 (0.4716) model_time 0.4614 (0.4635) loss 3.0088 (3.6764) grad_norm 1.9117 (1.5577/0.6634) mem 16099MB [2025-01-18 00:35:35 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][280/312] eta 0:00:15 lr 0.003635 time 0.5604 (0.4731) model_time 0.5601 (0.4653) loss 3.6147 (3.6747) grad_norm 2.7981 (1.5759/0.6781) mem 16099MB [2025-01-18 00:35:39 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][290/312] eta 0:00:10 lr 0.003635 time 0.4486 (0.4726) model_time 0.4481 (0.4650) loss 3.8196 (3.6800) grad_norm 1.2890 (1.5782/0.6760) mem 16099MB [2025-01-18 00:35:44 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][300/312] eta 0:00:05 lr 0.003634 time 0.4327 (0.4728) model_time 0.4326 (0.4655) loss 3.3368 (3.6798) grad_norm 1.0444 (1.5908/0.7007) mem 16099MB [2025-01-18 00:35:49 internimage_t_1k_224] (main.py 510): INFO Train: [58/300][310/312] eta 0:00:00 lr 0.003634 time 0.4404 (0.4723) model_time 0.4403 (0.4652) loss 3.6795 (3.6807) grad_norm 0.8218 (1.6125/0.7281) mem 16099MB [2025-01-18 00:35:49 internimage_t_1k_224] (main.py 519): INFO EPOCH 58 training takes 0:02:27 [2025-01-18 00:35:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_58.pth saving...... [2025-01-18 00:35:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_58.pth saved !!! [2025-01-18 00:35:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.406 (7.406) Loss 1.0082 (1.0082) Acc@1 77.832 (77.832) Acc@5 94.775 (94.775) Mem 16099MB [2025-01-18 00:36:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.987) Loss 1.4297 (1.1951) Acc@1 69.580 (74.574) Acc@5 89.795 (92.483) Mem 16099MB [2025-01-18 00:36:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:58] * Acc@1 74.500 Acc@5 92.490 [2025-01-18 00:36:01 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.5% [2025-01-18 00:36:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:36:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:36:02 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.50% [2025-01-18 00:36:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.545 (7.545) Loss 2.4520 (2.4520) Acc@1 55.713 (55.713) Acc@5 78.979 (78.979) Mem 16099MB [2025-01-18 00:36:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.015) Loss 2.8264 (2.5239) Acc@1 47.803 (53.920) Acc@5 72.656 (77.632) Mem 16099MB [2025-01-18 00:36:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:58] * Acc@1 53.879 Acc@5 77.749 [2025-01-18 00:36:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 53.9% [2025-01-18 00:36:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:36:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:36:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 53.88% [2025-01-18 00:36:17 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][0/312] eta 0:13:03 lr 0.003634 time 2.5105 (2.5105) model_time 0.4543 (0.4543) loss 3.5216 (3.5216) grad_norm 1.0954 (1.0954/0.0000) mem 16099MB [2025-01-18 00:36:22 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][10/312] eta 0:03:16 lr 0.003634 time 0.4465 (0.6498) model_time 0.4463 (0.4626) loss 3.4699 (3.8529) grad_norm 2.3160 (1.5737/1.0787) mem 16099MB [2025-01-18 00:36:27 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][20/312] eta 0:02:44 lr 0.003633 time 0.5471 (0.5634) model_time 0.5466 (0.4652) loss 2.3315 (3.6491) grad_norm 1.0321 (1.7743/1.1379) mem 16099MB [2025-01-18 00:36:31 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][30/312] eta 0:02:29 lr 0.003633 time 0.4495 (0.5289) model_time 0.4493 (0.4622) loss 2.8897 (3.6789) grad_norm 1.2928 (1.5956/0.9922) mem 16099MB [2025-01-18 00:36:36 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][40/312] eta 0:02:19 lr 0.003632 time 0.4518 (0.5118) model_time 0.4516 (0.4613) loss 2.7204 (3.6319) grad_norm 0.9832 (1.5313/0.8945) mem 16099MB [2025-01-18 00:36:41 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][50/312] eta 0:02:11 lr 0.003632 time 0.4455 (0.5011) model_time 0.4451 (0.4604) loss 4.1472 (3.6108) grad_norm 1.2893 (1.4201/0.8377) mem 16099MB [2025-01-18 00:36:45 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][60/312] eta 0:02:05 lr 0.003632 time 0.4377 (0.4973) model_time 0.4375 (0.4632) loss 3.5742 (3.5750) grad_norm 2.3341 (1.4683/0.8432) mem 16099MB [2025-01-18 00:36:50 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][70/312] eta 0:01:59 lr 0.003631 time 0.5375 (0.4926) model_time 0.5374 (0.4632) loss 3.5378 (3.6254) grad_norm 1.2253 (1.4706/0.8077) mem 16099MB [2025-01-18 00:36:54 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][80/312] eta 0:01:53 lr 0.003631 time 0.4435 (0.4879) model_time 0.4433 (0.4621) loss 3.0067 (3.6188) grad_norm 1.4983 (1.4757/0.7671) mem 16099MB [2025-01-18 00:36:59 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][90/312] eta 0:01:47 lr 0.003630 time 0.4373 (0.4838) model_time 0.4369 (0.4608) loss 4.1492 (3.6324) grad_norm 1.6597 (1.4786/0.7361) mem 16099MB [2025-01-18 00:37:04 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][100/312] eta 0:01:41 lr 0.003630 time 0.4485 (0.4806) model_time 0.4480 (0.4598) loss 2.3581 (3.6469) grad_norm 0.8200 (1.4821/0.7155) mem 16099MB [2025-01-18 00:37:08 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][110/312] eta 0:01:36 lr 0.003630 time 0.4544 (0.4781) model_time 0.4543 (0.4592) loss 3.9923 (3.6630) grad_norm 0.9170 (1.4568/0.6934) mem 16099MB [2025-01-18 00:37:13 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][120/312] eta 0:01:31 lr 0.003629 time 0.4499 (0.4761) model_time 0.4494 (0.4587) loss 4.1362 (3.6631) grad_norm 1.7258 (1.4511/0.6712) mem 16099MB [2025-01-18 00:37:17 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][130/312] eta 0:01:26 lr 0.003629 time 0.4615 (0.4743) model_time 0.4610 (0.4582) loss 4.0973 (3.6330) grad_norm 1.0515 (1.5066/0.7109) mem 16099MB [2025-01-18 00:37:22 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][140/312] eta 0:01:22 lr 0.003629 time 0.5491 (0.4782) model_time 0.5486 (0.4632) loss 3.8116 (3.6100) grad_norm 2.1760 (1.5236/0.7082) mem 16099MB [2025-01-18 00:37:27 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][150/312] eta 0:01:17 lr 0.003628 time 0.4826 (0.4770) model_time 0.4821 (0.4630) loss 3.7474 (3.6232) grad_norm 1.0560 (1.5083/0.6981) mem 16099MB [2025-01-18 00:37:32 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][160/312] eta 0:01:12 lr 0.003628 time 0.4506 (0.4759) model_time 0.4501 (0.4627) loss 3.0665 (3.6015) grad_norm 2.4655 (1.5266/0.7022) mem 16099MB [2025-01-18 00:37:36 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][170/312] eta 0:01:07 lr 0.003627 time 0.4472 (0.4749) model_time 0.4468 (0.4624) loss 3.1695 (3.6070) grad_norm 1.1341 (1.5402/0.6952) mem 16099MB [2025-01-18 00:37:41 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][180/312] eta 0:01:02 lr 0.003627 time 0.5363 (0.4741) model_time 0.5360 (0.4623) loss 2.7824 (3.6086) grad_norm 0.9347 (1.5444/0.6960) mem 16099MB [2025-01-18 00:37:45 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][190/312] eta 0:00:57 lr 0.003627 time 0.4639 (0.4730) model_time 0.4637 (0.4618) loss 2.8328 (3.6050) grad_norm 0.9138 (1.5250/0.6853) mem 16099MB [2025-01-18 00:37:50 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][200/312] eta 0:00:52 lr 0.003626 time 0.4531 (0.4730) model_time 0.4530 (0.4624) loss 4.0716 (3.6101) grad_norm 1.8864 (1.5374/0.6845) mem 16099MB [2025-01-18 00:37:55 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][210/312] eta 0:00:48 lr 0.003626 time 0.4467 (0.4724) model_time 0.4466 (0.4623) loss 3.5639 (3.6046) grad_norm 0.9247 (1.5303/0.6747) mem 16099MB [2025-01-18 00:37:59 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][220/312] eta 0:00:43 lr 0.003625 time 0.4458 (0.4719) model_time 0.4452 (0.4622) loss 3.9086 (3.5842) grad_norm 1.0689 (1.5045/0.6704) mem 16099MB [2025-01-18 00:38:04 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][230/312] eta 0:00:38 lr 0.003625 time 0.4425 (0.4719) model_time 0.4424 (0.4626) loss 4.1041 (3.5827) grad_norm 4.1830 (1.5068/0.6846) mem 16099MB [2025-01-18 00:38:09 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][240/312] eta 0:00:33 lr 0.003625 time 0.4478 (0.4718) model_time 0.4476 (0.4629) loss 3.8311 (3.5938) grad_norm 1.7492 (1.5202/0.7064) mem 16099MB [2025-01-18 00:38:13 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][250/312] eta 0:00:29 lr 0.003624 time 0.5417 (0.4714) model_time 0.5415 (0.4628) loss 4.2151 (3.6014) grad_norm 0.9562 (1.5114/0.6987) mem 16099MB [2025-01-18 00:38:18 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][260/312] eta 0:00:24 lr 0.003624 time 0.4641 (0.4709) model_time 0.4636 (0.4627) loss 3.2490 (3.6045) grad_norm 1.2087 (1.4968/0.6925) mem 16099MB [2025-01-18 00:38:22 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][270/312] eta 0:00:19 lr 0.003623 time 0.4621 (0.4704) model_time 0.4619 (0.4625) loss 3.8267 (3.5958) grad_norm 2.7597 (1.5089/0.6926) mem 16099MB [2025-01-18 00:38:27 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][280/312] eta 0:00:15 lr 0.003623 time 0.4400 (0.4698) model_time 0.4398 (0.4622) loss 4.4702 (3.6025) grad_norm 2.0813 (1.5074/0.6868) mem 16099MB [2025-01-18 00:38:32 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][290/312] eta 0:00:10 lr 0.003623 time 0.4478 (0.4698) model_time 0.4476 (0.4623) loss 3.6894 (3.6090) grad_norm 2.7059 (1.5264/0.7013) mem 16099MB [2025-01-18 00:38:36 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][300/312] eta 0:00:05 lr 0.003622 time 0.4381 (0.4697) model_time 0.4380 (0.4625) loss 3.0290 (3.6046) grad_norm 0.8077 (1.5085/0.6991) mem 16099MB [2025-01-18 00:38:41 internimage_t_1k_224] (main.py 510): INFO Train: [59/300][310/312] eta 0:00:00 lr 0.003622 time 0.4407 (0.4693) model_time 0.4406 (0.4624) loss 3.2085 (3.5966) grad_norm 1.7036 (1.5143/0.6966) mem 16099MB [2025-01-18 00:38:41 internimage_t_1k_224] (main.py 519): INFO EPOCH 59 training takes 0:02:26 [2025-01-18 00:38:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_59.pth saving...... [2025-01-18 00:38:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_59.pth saved !!! [2025-01-18 00:38:50 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.405 (7.405) Loss 1.0052 (1.0052) Acc@1 77.002 (77.002) Acc@5 94.751 (94.751) Mem 16099MB [2025-01-18 00:38:53 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.990) Loss 1.4380 (1.2041) Acc@1 69.312 (74.339) Acc@5 89.502 (92.429) Mem 16099MB [2025-01-18 00:38:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:59] * Acc@1 74.302 Acc@5 92.510 [2025-01-18 00:38:54 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.3% [2025-01-18 00:38:54 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.50% [2025-01-18 00:39:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.090 (8.090) Loss 2.3458 (2.3458) Acc@1 56.982 (56.982) Acc@5 80.322 (80.322) Mem 16099MB [2025-01-18 00:39:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.087) Loss 2.7465 (2.4379) Acc@1 48.828 (55.167) Acc@5 73.535 (78.815) Mem 16099MB [2025-01-18 00:39:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:59] * Acc@1 55.128 Acc@5 78.919 [2025-01-18 00:39:06 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 55.1% [2025-01-18 00:39:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:39:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:39:07 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 55.13% [2025-01-18 00:39:09 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][0/312] eta 0:10:22 lr 0.003622 time 1.9938 (1.9938) model_time 0.4794 (0.4794) loss 3.6008 (3.6008) grad_norm 1.1870 (1.1870/0.0000) mem 16099MB [2025-01-18 00:39:14 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][10/312] eta 0:03:04 lr 0.003621 time 0.4578 (0.6122) model_time 0.4573 (0.4742) loss 2.9553 (3.5921) grad_norm 1.0419 (1.3460/0.3042) mem 16099MB [2025-01-18 00:39:18 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][20/312] eta 0:02:38 lr 0.003621 time 0.4707 (0.5419) model_time 0.4705 (0.4694) loss 3.4389 (3.4858) grad_norm 1.7890 (1.3437/0.3079) mem 16099MB [2025-01-18 00:39:23 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][30/312] eta 0:02:25 lr 0.003621 time 0.4619 (0.5150) model_time 0.4617 (0.4658) loss 2.2806 (3.5056) grad_norm 1.3765 (1.3157/0.3612) mem 16099MB [2025-01-18 00:39:27 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][40/312] eta 0:02:16 lr 0.003620 time 0.4484 (0.5005) model_time 0.4482 (0.4632) loss 2.9890 (3.4863) grad_norm 1.4074 (1.3625/0.3661) mem 16099MB [2025-01-18 00:39:32 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][50/312] eta 0:02:09 lr 0.003620 time 0.4620 (0.4950) model_time 0.4618 (0.4649) loss 3.8678 (3.5227) grad_norm 3.1226 (1.6225/0.7207) mem 16099MB [2025-01-18 00:39:37 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][60/312] eta 0:02:03 lr 0.003620 time 0.4460 (0.4893) model_time 0.4459 (0.4641) loss 3.8518 (3.5483) grad_norm 2.9720 (1.6721/0.7158) mem 16099MB [2025-01-18 00:39:41 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][70/312] eta 0:01:57 lr 0.003619 time 0.5484 (0.4859) model_time 0.5482 (0.4642) loss 2.9821 (3.5587) grad_norm 1.7972 (1.6509/0.7084) mem 16099MB [2025-01-18 00:39:46 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][80/312] eta 0:01:51 lr 0.003619 time 0.4498 (0.4821) model_time 0.4496 (0.4630) loss 4.6188 (3.5926) grad_norm 1.0339 (1.6170/0.6924) mem 16099MB [2025-01-18 00:39:51 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][90/312] eta 0:01:46 lr 0.003618 time 0.4551 (0.4790) model_time 0.4549 (0.4620) loss 3.7897 (3.6058) grad_norm 1.1735 (1.5999/0.6800) mem 16099MB [2025-01-18 00:39:55 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][100/312] eta 0:01:41 lr 0.003618 time 0.4577 (0.4779) model_time 0.4575 (0.4625) loss 2.9263 (3.5866) grad_norm 0.7060 (1.5651/0.6687) mem 16099MB [2025-01-18 00:40:00 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][110/312] eta 0:01:36 lr 0.003618 time 0.4391 (0.4773) model_time 0.4389 (0.4633) loss 2.7680 (3.5823) grad_norm 1.8533 (1.5440/0.6519) mem 16099MB [2025-01-18 00:40:05 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][120/312] eta 0:01:31 lr 0.003617 time 0.4499 (0.4772) model_time 0.4497 (0.4643) loss 3.0249 (3.5869) grad_norm 1.2843 (1.4955/0.6471) mem 16099MB [2025-01-18 00:40:09 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][130/312] eta 0:01:26 lr 0.003617 time 0.4412 (0.4765) model_time 0.4410 (0.4645) loss 3.8826 (3.5676) grad_norm 2.1879 (1.5103/0.6381) mem 16099MB [2025-01-18 00:40:14 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][140/312] eta 0:01:22 lr 0.003616 time 0.4512 (0.4770) model_time 0.4507 (0.4659) loss 3.3875 (3.5664) grad_norm 2.7894 (1.5446/0.6691) mem 16099MB [2025-01-18 00:40:19 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][150/312] eta 0:01:17 lr 0.003616 time 0.4526 (0.4756) model_time 0.4521 (0.4651) loss 3.9080 (3.5805) grad_norm 2.9022 (1.5662/0.6766) mem 16099MB [2025-01-18 00:40:23 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][160/312] eta 0:01:12 lr 0.003616 time 0.4541 (0.4746) model_time 0.4537 (0.4648) loss 2.6475 (3.5804) grad_norm 1.1532 (1.5371/0.6710) mem 16099MB [2025-01-18 00:40:28 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][170/312] eta 0:01:07 lr 0.003615 time 0.4652 (0.4748) model_time 0.4650 (0.4656) loss 3.7342 (3.6049) grad_norm 1.5033 (1.5347/0.6614) mem 16099MB [2025-01-18 00:40:33 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][180/312] eta 0:01:02 lr 0.003615 time 0.4447 (0.4741) model_time 0.4445 (0.4653) loss 4.1926 (3.6116) grad_norm 1.4842 (1.5130/0.6524) mem 16099MB [2025-01-18 00:40:37 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][190/312] eta 0:00:57 lr 0.003614 time 0.4491 (0.4731) model_time 0.4489 (0.4648) loss 3.5021 (3.6057) grad_norm 1.7281 (1.5044/0.6410) mem 16099MB [2025-01-18 00:40:42 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][200/312] eta 0:00:52 lr 0.003614 time 0.4475 (0.4723) model_time 0.4470 (0.4644) loss 3.4783 (3.5978) grad_norm 2.1209 (1.5311/0.6731) mem 16099MB [2025-01-18 00:40:46 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][210/312] eta 0:00:48 lr 0.003614 time 0.4464 (0.4716) model_time 0.4462 (0.4640) loss 3.1201 (3.6093) grad_norm 0.6326 (1.5167/0.6636) mem 16099MB [2025-01-18 00:40:51 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][220/312] eta 0:00:43 lr 0.003613 time 0.5577 (0.4711) model_time 0.5573 (0.4639) loss 2.9768 (3.5961) grad_norm 1.7968 (1.5018/0.6549) mem 16099MB [2025-01-18 00:40:56 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][230/312] eta 0:00:38 lr 0.003613 time 0.4551 (0.4707) model_time 0.4550 (0.4637) loss 3.8247 (3.5977) grad_norm 2.2252 (1.5131/0.6517) mem 16099MB [2025-01-18 00:41:00 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][240/312] eta 0:00:33 lr 0.003612 time 0.4779 (0.4700) model_time 0.4777 (0.4633) loss 2.9532 (3.5811) grad_norm 0.9842 (1.5056/0.6447) mem 16099MB [2025-01-18 00:41:05 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][250/312] eta 0:00:29 lr 0.003612 time 0.4481 (0.4699) model_time 0.4478 (0.4635) loss 4.0109 (3.5868) grad_norm 0.8351 (1.4919/0.6378) mem 16099MB [2025-01-18 00:41:10 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][260/312] eta 0:00:24 lr 0.003612 time 0.4333 (0.4699) model_time 0.4330 (0.4637) loss 2.9491 (3.5916) grad_norm 2.3117 (1.5321/0.7312) mem 16099MB [2025-01-18 00:41:14 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][270/312] eta 0:00:19 lr 0.003611 time 0.4418 (0.4696) model_time 0.4413 (0.4636) loss 4.0089 (3.5873) grad_norm 0.8253 (1.5370/0.7328) mem 16099MB [2025-01-18 00:41:19 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][280/312] eta 0:00:15 lr 0.003611 time 0.4575 (0.4700) model_time 0.4573 (0.4642) loss 3.8080 (3.5790) grad_norm 1.5665 (1.5281/0.7232) mem 16099MB [2025-01-18 00:41:24 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][290/312] eta 0:00:10 lr 0.003610 time 0.4462 (0.4701) model_time 0.4460 (0.4645) loss 3.6491 (3.5845) grad_norm 0.9291 (1.5107/0.7176) mem 16099MB [2025-01-18 00:41:28 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][300/312] eta 0:00:05 lr 0.003610 time 0.4345 (0.4694) model_time 0.4343 (0.4640) loss 3.7563 (3.5861) grad_norm 1.0196 (1.5059/0.7122) mem 16099MB [2025-01-18 00:41:33 internimage_t_1k_224] (main.py 510): INFO Train: [60/300][310/312] eta 0:00:00 lr 0.003610 time 0.4385 (0.4687) model_time 0.4384 (0.4634) loss 3.5879 (3.5839) grad_norm 1.9685 (1.5182/0.7176) mem 16099MB [2025-01-18 00:41:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 60 training takes 0:02:26 [2025-01-18 00:41:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_60.pth saving...... [2025-01-18 00:41:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_60.pth saved !!! [2025-01-18 00:41:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.625 (7.625) Loss 0.9531 (0.9531) Acc@1 79.102 (79.102) Acc@5 95.117 (95.117) Mem 16099MB [2025-01-18 00:41:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.998) Loss 1.3971 (1.1608) Acc@1 68.384 (74.223) Acc@5 89.868 (92.611) Mem 16099MB [2025-01-18 00:41:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:60] * Acc@1 74.232 Acc@5 92.708 [2025-01-18 00:41:45 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.2% [2025-01-18 00:41:45 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.50% [2025-01-18 00:41:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.114 (8.114) Loss 2.2480 (2.2480) Acc@1 58.545 (58.545) Acc@5 81.592 (81.592) Mem 16099MB [2025-01-18 00:41:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.092) Loss 2.6714 (2.3582) Acc@1 50.293 (56.425) Acc@5 74.683 (79.909) Mem 16099MB [2025-01-18 00:41:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:60] * Acc@1 56.382 Acc@5 79.988 [2025-01-18 00:41:58 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 56.4% [2025-01-18 00:41:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:41:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:41:59 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 56.38% [2025-01-18 00:42:01 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][0/312] eta 0:10:15 lr 0.003610 time 1.9733 (1.9733) model_time 0.4873 (0.4873) loss 3.8946 (3.8946) grad_norm 1.4929 (1.4929/0.0000) mem 16099MB [2025-01-18 00:42:06 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][10/312] eta 0:03:02 lr 0.003609 time 0.4417 (0.6033) model_time 0.4414 (0.4678) loss 2.5397 (3.3062) grad_norm 4.0396 (2.0624/0.8210) mem 16099MB [2025-01-18 00:42:10 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][20/312] eta 0:02:37 lr 0.003609 time 0.5533 (0.5380) model_time 0.5531 (0.4670) loss 4.0183 (3.4755) grad_norm 0.8884 (1.7965/0.7680) mem 16099MB [2025-01-18 00:42:15 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][30/312] eta 0:02:23 lr 0.003608 time 0.4490 (0.5095) model_time 0.4485 (0.4612) loss 3.6684 (3.5452) grad_norm 1.4245 (1.7139/0.7162) mem 16099MB [2025-01-18 00:42:19 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][40/312] eta 0:02:16 lr 0.003608 time 0.4998 (0.5004) model_time 0.4996 (0.4638) loss 3.2322 (3.6148) grad_norm 1.8801 (1.6065/0.6714) mem 16099MB [2025-01-18 00:42:24 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][50/312] eta 0:02:09 lr 0.003608 time 0.4728 (0.4937) model_time 0.4727 (0.4642) loss 3.7935 (3.6405) grad_norm 0.9988 (1.5055/0.6436) mem 16099MB [2025-01-18 00:42:29 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][60/312] eta 0:02:02 lr 0.003607 time 0.4442 (0.4870) model_time 0.4440 (0.4623) loss 4.3581 (3.5889) grad_norm 1.0351 (1.5645/0.8457) mem 16099MB [2025-01-18 00:42:33 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][70/312] eta 0:01:56 lr 0.003607 time 0.4451 (0.4821) model_time 0.4449 (0.4608) loss 3.8237 (3.6408) grad_norm 1.8067 (1.6523/0.8594) mem 16099MB [2025-01-18 00:42:38 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][80/312] eta 0:01:51 lr 0.003606 time 0.4456 (0.4803) model_time 0.4453 (0.4615) loss 2.6066 (3.6771) grad_norm 0.6862 (1.6311/0.8305) mem 16099MB [2025-01-18 00:42:42 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][90/312] eta 0:01:46 lr 0.003606 time 0.4469 (0.4775) model_time 0.4464 (0.4608) loss 3.2565 (3.6516) grad_norm 1.0915 (1.5959/0.8225) mem 16099MB [2025-01-18 00:42:47 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][100/312] eta 0:01:41 lr 0.003606 time 0.4743 (0.4774) model_time 0.4738 (0.4623) loss 2.0284 (3.6025) grad_norm 0.7956 (1.5378/0.8047) mem 16099MB [2025-01-18 00:42:52 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][110/312] eta 0:01:36 lr 0.003605 time 0.4703 (0.4779) model_time 0.4698 (0.4641) loss 3.8682 (3.5878) grad_norm 1.1076 (1.5050/0.7834) mem 16099MB [2025-01-18 00:42:56 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][120/312] eta 0:01:31 lr 0.003605 time 0.4537 (0.4756) model_time 0.4535 (0.4630) loss 3.3230 (3.5905) grad_norm 1.1838 (1.5303/0.7759) mem 16099MB [2025-01-18 00:43:01 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][130/312] eta 0:01:26 lr 0.003604 time 0.4478 (0.4743) model_time 0.4475 (0.4626) loss 4.0031 (3.5825) grad_norm 1.2806 (1.5324/0.7685) mem 16099MB [2025-01-18 00:43:06 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][140/312] eta 0:01:21 lr 0.003604 time 0.4530 (0.4734) model_time 0.4528 (0.4624) loss 3.3024 (3.6026) grad_norm 2.3472 (1.5683/0.7714) mem 16099MB [2025-01-18 00:43:10 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][150/312] eta 0:01:16 lr 0.003604 time 0.4511 (0.4734) model_time 0.4510 (0.4632) loss 3.7415 (3.6118) grad_norm 1.3016 (1.5402/0.7588) mem 16099MB [2025-01-18 00:43:15 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][160/312] eta 0:01:11 lr 0.003603 time 0.5005 (0.4734) model_time 0.5003 (0.4638) loss 3.7399 (3.6130) grad_norm 1.2317 (1.5041/0.7493) mem 16099MB [2025-01-18 00:43:20 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][170/312] eta 0:01:07 lr 0.003603 time 0.4462 (0.4727) model_time 0.4460 (0.4636) loss 3.9344 (3.6207) grad_norm 2.9032 (1.5167/0.7566) mem 16099MB [2025-01-18 00:43:24 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][180/312] eta 0:01:02 lr 0.003602 time 0.4479 (0.4725) model_time 0.4477 (0.4639) loss 3.3938 (3.6251) grad_norm 1.0060 (1.5210/0.7570) mem 16099MB [2025-01-18 00:43:29 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][190/312] eta 0:00:57 lr 0.003602 time 0.4619 (0.4716) model_time 0.4617 (0.4634) loss 4.0559 (3.6420) grad_norm 1.6056 (1.5323/0.7460) mem 16099MB [2025-01-18 00:43:33 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][200/312] eta 0:00:52 lr 0.003602 time 0.4471 (0.4707) model_time 0.4466 (0.4629) loss 4.5368 (3.6540) grad_norm 2.0135 (1.5369/0.7360) mem 16099MB [2025-01-18 00:43:38 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][210/312] eta 0:00:47 lr 0.003601 time 0.4525 (0.4703) model_time 0.4523 (0.4629) loss 3.4736 (3.6509) grad_norm 2.8532 (1.5316/0.7276) mem 16099MB [2025-01-18 00:43:43 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][220/312] eta 0:00:43 lr 0.003601 time 0.4589 (0.4701) model_time 0.4587 (0.4630) loss 2.8887 (3.6374) grad_norm 2.9479 (1.5516/0.7342) mem 16099MB [2025-01-18 00:43:47 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][230/312] eta 0:00:38 lr 0.003600 time 0.4501 (0.4696) model_time 0.4499 (0.4628) loss 4.0834 (3.6339) grad_norm 1.8792 (1.5452/0.7233) mem 16099MB [2025-01-18 00:43:52 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][240/312] eta 0:00:33 lr 0.003600 time 0.4482 (0.4690) model_time 0.4480 (0.4624) loss 3.3135 (3.6258) grad_norm 1.1484 (1.5241/0.7176) mem 16099MB [2025-01-18 00:43:56 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][250/312] eta 0:00:29 lr 0.003600 time 0.4572 (0.4686) model_time 0.4567 (0.4623) loss 2.6665 (3.6142) grad_norm 2.0940 (1.5411/0.7361) mem 16099MB [2025-01-18 00:44:01 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][260/312] eta 0:00:24 lr 0.003599 time 0.4462 (0.4684) model_time 0.4460 (0.4623) loss 3.7367 (3.6205) grad_norm 1.0872 (1.5446/0.7270) mem 16099MB [2025-01-18 00:44:06 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][270/312] eta 0:00:19 lr 0.003599 time 0.4647 (0.4684) model_time 0.4645 (0.4626) loss 3.9301 (3.6190) grad_norm 1.3570 (1.5455/0.7229) mem 16099MB [2025-01-18 00:44:10 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][280/312] eta 0:00:14 lr 0.003598 time 0.4497 (0.4680) model_time 0.4492 (0.4623) loss 4.7982 (3.6199) grad_norm 1.3317 (1.5322/0.7153) mem 16099MB [2025-01-18 00:44:15 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][290/312] eta 0:00:10 lr 0.003598 time 0.4511 (0.4675) model_time 0.4509 (0.4620) loss 3.9716 (3.6158) grad_norm 1.4580 (1.5375/0.7127) mem 16099MB [2025-01-18 00:44:20 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][300/312] eta 0:00:05 lr 0.003598 time 0.4373 (0.4677) model_time 0.4372 (0.4624) loss 3.3710 (3.6073) grad_norm 0.7641 (1.5206/0.7091) mem 16099MB [2025-01-18 00:44:24 internimage_t_1k_224] (main.py 510): INFO Train: [61/300][310/312] eta 0:00:00 lr 0.003597 time 0.4374 (0.4668) model_time 0.4373 (0.4616) loss 3.9563 (3.6142) grad_norm 0.9314 (1.5289/0.7620) mem 16099MB [2025-01-18 00:44:24 internimage_t_1k_224] (main.py 519): INFO EPOCH 61 training takes 0:02:25 [2025-01-18 00:44:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_61.pth saving...... [2025-01-18 00:44:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_61.pth saved !!! [2025-01-18 00:44:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.557 (7.557) Loss 1.0250 (1.0250) Acc@1 78.589 (78.589) Acc@5 94.531 (94.531) Mem 16099MB [2025-01-18 00:44:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.000) Loss 1.4005 (1.1866) Acc@1 68.896 (74.814) Acc@5 89.966 (92.762) Mem 16099MB [2025-01-18 00:44:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:61] * Acc@1 74.738 Acc@5 92.776 [2025-01-18 00:44:37 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.7% [2025-01-18 00:44:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:44:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:44:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.74% [2025-01-18 00:44:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.504 (7.504) Loss 2.1535 (2.1535) Acc@1 60.059 (60.059) Acc@5 82.959 (82.959) Mem 16099MB [2025-01-18 00:44:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.015) Loss 2.5958 (2.2801) Acc@1 51.611 (57.659) Acc@5 75.684 (80.937) Mem 16099MB [2025-01-18 00:44:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:61] * Acc@1 57.630 Acc@5 81.002 [2025-01-18 00:44:49 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 57.6% [2025-01-18 00:44:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:44:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:44:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 57.63% [2025-01-18 00:44:53 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][0/312] eta 0:10:06 lr 0.003597 time 1.9424 (1.9424) model_time 0.5031 (0.5031) loss 4.0632 (4.0632) grad_norm 0.8603 (0.8603/0.0000) mem 16099MB [2025-01-18 00:44:57 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][10/312] eta 0:03:02 lr 0.003597 time 0.4617 (0.6044) model_time 0.4613 (0.4732) loss 4.0777 (3.6991) grad_norm 0.7537 (0.9969/0.2162) mem 16099MB [2025-01-18 00:45:02 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][20/312] eta 0:02:38 lr 0.003596 time 0.4585 (0.5422) model_time 0.4583 (0.4733) loss 3.6715 (3.7220) grad_norm 0.9770 (1.1827/0.4262) mem 16099MB [2025-01-18 00:45:07 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][30/312] eta 0:02:27 lr 0.003596 time 0.4490 (0.5239) model_time 0.4486 (0.4770) loss 3.9592 (3.5952) grad_norm 2.0556 (1.4014/0.7060) mem 16099MB [2025-01-18 00:45:11 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][40/312] eta 0:02:18 lr 0.003596 time 0.4501 (0.5086) model_time 0.4499 (0.4731) loss 4.1068 (3.5463) grad_norm 2.2756 (1.3968/0.6611) mem 16099MB [2025-01-18 00:45:16 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][50/312] eta 0:02:10 lr 0.003595 time 0.4546 (0.4993) model_time 0.4544 (0.4707) loss 2.6376 (3.4891) grad_norm 1.8692 (1.4950/0.7053) mem 16099MB [2025-01-18 00:45:21 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][60/312] eta 0:02:04 lr 0.003595 time 0.4480 (0.4934) model_time 0.4479 (0.4695) loss 4.3144 (3.5266) grad_norm 1.2217 (1.4755/0.6826) mem 16099MB [2025-01-18 00:45:25 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][70/312] eta 0:01:58 lr 0.003594 time 0.4575 (0.4884) model_time 0.4571 (0.4678) loss 3.1783 (3.5626) grad_norm 0.8730 (1.4600/0.6512) mem 16099MB [2025-01-18 00:45:30 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][80/312] eta 0:01:52 lr 0.003594 time 0.4695 (0.4854) model_time 0.4691 (0.4673) loss 4.3595 (3.6170) grad_norm 1.6403 (1.4820/0.6500) mem 16099MB [2025-01-18 00:45:35 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][90/312] eta 0:01:47 lr 0.003594 time 0.4551 (0.4844) model_time 0.4549 (0.4682) loss 3.4822 (3.6116) grad_norm 1.6064 (1.4844/0.6432) mem 16099MB [2025-01-18 00:45:39 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][100/312] eta 0:01:42 lr 0.003593 time 0.4519 (0.4817) model_time 0.4518 (0.4671) loss 2.5658 (3.6300) grad_norm 2.5546 (1.5026/0.6288) mem 16099MB [2025-01-18 00:45:44 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][110/312] eta 0:01:36 lr 0.003593 time 0.4537 (0.4795) model_time 0.4535 (0.4662) loss 4.0614 (3.6402) grad_norm 1.8509 (1.5414/0.6550) mem 16099MB [2025-01-18 00:45:48 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][120/312] eta 0:01:31 lr 0.003592 time 0.4555 (0.4784) model_time 0.4553 (0.4661) loss 2.8650 (3.6418) grad_norm 1.8096 (1.5305/0.6399) mem 16099MB [2025-01-18 00:45:53 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][130/312] eta 0:01:26 lr 0.003592 time 0.4567 (0.4778) model_time 0.4564 (0.4664) loss 3.4651 (3.6425) grad_norm 1.2809 (1.5554/0.6442) mem 16099MB [2025-01-18 00:45:58 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][140/312] eta 0:01:21 lr 0.003591 time 0.4678 (0.4766) model_time 0.4675 (0.4661) loss 3.6719 (3.6607) grad_norm 2.7898 (1.5893/0.6959) mem 16099MB [2025-01-18 00:46:02 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][150/312] eta 0:01:17 lr 0.003591 time 0.4582 (0.4755) model_time 0.4580 (0.4656) loss 3.9412 (3.6568) grad_norm 1.5155 (1.5640/0.6815) mem 16099MB [2025-01-18 00:46:07 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][160/312] eta 0:01:12 lr 0.003591 time 0.4726 (0.4748) model_time 0.4724 (0.4654) loss 2.6560 (3.6477) grad_norm 1.0710 (1.5421/0.6738) mem 16099MB [2025-01-18 00:46:12 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][170/312] eta 0:01:07 lr 0.003590 time 0.4509 (0.4738) model_time 0.4504 (0.4650) loss 4.0343 (3.6364) grad_norm 0.8139 (1.5387/0.6704) mem 16099MB [2025-01-18 00:46:16 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][180/312] eta 0:01:02 lr 0.003590 time 0.4505 (0.4727) model_time 0.4500 (0.4644) loss 4.0271 (3.6369) grad_norm 1.9311 (1.5429/0.6614) mem 16099MB [2025-01-18 00:46:21 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][190/312] eta 0:00:57 lr 0.003589 time 0.5508 (0.4722) model_time 0.5506 (0.4643) loss 4.4374 (3.6447) grad_norm 0.7912 (1.5378/0.6539) mem 16099MB [2025-01-18 00:46:25 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][200/312] eta 0:00:52 lr 0.003589 time 0.4453 (0.4711) model_time 0.4450 (0.4636) loss 2.9869 (3.6476) grad_norm 1.7041 (1.5463/0.6652) mem 16099MB [2025-01-18 00:46:30 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][210/312] eta 0:00:47 lr 0.003589 time 0.4488 (0.4705) model_time 0.4487 (0.4633) loss 3.8451 (3.6426) grad_norm 1.5395 (1.5445/0.6552) mem 16099MB [2025-01-18 00:46:34 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][220/312] eta 0:00:43 lr 0.003588 time 0.4495 (0.4701) model_time 0.4493 (0.4632) loss 4.4030 (3.6441) grad_norm 0.8524 (1.5288/0.6468) mem 16099MB [2025-01-18 00:46:39 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][230/312] eta 0:00:38 lr 0.003588 time 0.4508 (0.4697) model_time 0.4506 (0.4631) loss 3.7575 (3.6517) grad_norm 1.3625 (1.5309/0.6402) mem 16099MB [2025-01-18 00:46:44 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][240/312] eta 0:00:33 lr 0.003587 time 0.4739 (0.4699) model_time 0.4734 (0.4636) loss 2.5445 (3.6441) grad_norm 1.8563 (1.5261/0.6350) mem 16099MB [2025-01-18 00:46:48 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][250/312] eta 0:00:29 lr 0.003587 time 0.4507 (0.4696) model_time 0.4501 (0.4635) loss 3.7117 (3.6436) grad_norm 1.8855 (1.5220/0.6282) mem 16099MB [2025-01-18 00:46:53 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][260/312] eta 0:00:24 lr 0.003587 time 0.4493 (0.4703) model_time 0.4488 (0.4644) loss 4.0648 (3.6429) grad_norm 2.4798 (1.5574/0.6850) mem 16099MB [2025-01-18 00:46:58 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][270/312] eta 0:00:19 lr 0.003586 time 0.4520 (0.4697) model_time 0.4518 (0.4640) loss 3.4749 (3.6401) grad_norm 0.8488 (1.5512/0.6782) mem 16099MB [2025-01-18 00:47:02 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][280/312] eta 0:00:15 lr 0.003586 time 0.4615 (0.4694) model_time 0.4614 (0.4639) loss 4.6514 (3.6420) grad_norm 1.3473 (1.5422/0.6690) mem 16099MB [2025-01-18 00:47:07 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][290/312] eta 0:00:10 lr 0.003585 time 0.4620 (0.4696) model_time 0.4618 (0.4642) loss 4.0473 (3.6424) grad_norm 3.5059 (1.5387/0.6707) mem 16099MB [2025-01-18 00:47:12 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][300/312] eta 0:00:05 lr 0.003585 time 0.4410 (0.4694) model_time 0.4409 (0.4642) loss 3.2603 (3.6375) grad_norm 1.1657 (1.5500/0.6737) mem 16099MB [2025-01-18 00:47:16 internimage_t_1k_224] (main.py 510): INFO Train: [62/300][310/312] eta 0:00:00 lr 0.003585 time 0.5166 (0.4688) model_time 0.5165 (0.4638) loss 4.2436 (3.6284) grad_norm 0.8780 (1.5668/0.6755) mem 16099MB [2025-01-18 00:47:17 internimage_t_1k_224] (main.py 519): INFO EPOCH 62 training takes 0:02:26 [2025-01-18 00:47:17 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_62.pth saving...... [2025-01-18 00:47:18 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_62.pth saved !!! [2025-01-18 00:47:26 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.535 (7.535) Loss 1.0249 (1.0249) Acc@1 78.247 (78.247) Acc@5 95.117 (95.117) Mem 16099MB [2025-01-18 00:47:29 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.020) Loss 1.4819 (1.2228) Acc@1 68.262 (74.512) Acc@5 88.965 (92.403) Mem 16099MB [2025-01-18 00:47:29 internimage_t_1k_224] (main.py 575): INFO [Epoch:62] * Acc@1 74.546 Acc@5 92.464 [2025-01-18 00:47:29 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.5% [2025-01-18 00:47:29 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.74% [2025-01-18 00:47:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.070 (8.070) Loss 2.0678 (2.0678) Acc@1 61.182 (61.182) Acc@5 83.765 (83.765) Mem 16099MB [2025-01-18 00:47:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.086) Loss 2.5267 (2.2087) Acc@1 52.612 (58.685) Acc@5 76.929 (81.789) Mem 16099MB [2025-01-18 00:47:42 internimage_t_1k_224] (main.py 575): INFO [Epoch:62] * Acc@1 58.675 Acc@5 81.852 [2025-01-18 00:47:42 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 58.7% [2025-01-18 00:47:42 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:47:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:47:43 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 58.68% [2025-01-18 00:47:45 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][0/312] eta 0:09:45 lr 0.003585 time 1.8757 (1.8757) model_time 0.4655 (0.4655) loss 2.7623 (2.7623) grad_norm 2.0770 (2.0770/0.0000) mem 16099MB [2025-01-18 00:47:49 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][10/312] eta 0:03:03 lr 0.003584 time 0.4503 (0.6073) model_time 0.4498 (0.4787) loss 4.0549 (3.4683) grad_norm 1.4157 (1.2251/0.4189) mem 16099MB [2025-01-18 00:47:54 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][20/312] eta 0:02:37 lr 0.003584 time 0.4526 (0.5397) model_time 0.4522 (0.4722) loss 2.8237 (3.5214) grad_norm 1.7372 (1.5504/0.7743) mem 16099MB [2025-01-18 00:47:59 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][30/312] eta 0:02:26 lr 0.003583 time 0.4510 (0.5179) model_time 0.4508 (0.4720) loss 2.2112 (3.5610) grad_norm 0.8836 (1.5226/0.7219) mem 16099MB [2025-01-18 00:48:03 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][40/312] eta 0:02:17 lr 0.003583 time 0.4473 (0.5037) model_time 0.4472 (0.4690) loss 3.9155 (3.5781) grad_norm 1.0402 (1.5540/0.7674) mem 16099MB [2025-01-18 00:48:08 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][50/312] eta 0:02:09 lr 0.003582 time 0.4486 (0.4957) model_time 0.4484 (0.4677) loss 3.9315 (3.6235) grad_norm 1.1741 (1.4820/0.7109) mem 16099MB [2025-01-18 00:48:13 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][60/312] eta 0:02:03 lr 0.003582 time 0.5421 (0.4899) model_time 0.5420 (0.4664) loss 3.4465 (3.5465) grad_norm 1.6083 (1.5082/0.6963) mem 16099MB [2025-01-18 00:48:17 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][70/312] eta 0:01:57 lr 0.003582 time 0.4631 (0.4847) model_time 0.4626 (0.4645) loss 3.5123 (3.5898) grad_norm 1.8133 (1.5081/0.6649) mem 16099MB [2025-01-18 00:48:22 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][80/312] eta 0:01:51 lr 0.003581 time 0.4423 (0.4807) model_time 0.4418 (0.4629) loss 3.1334 (3.6091) grad_norm 2.3162 (1.4887/0.6446) mem 16099MB [2025-01-18 00:48:26 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][90/312] eta 0:01:46 lr 0.003581 time 0.4516 (0.4775) model_time 0.4515 (0.4617) loss 3.6004 (3.6071) grad_norm 1.0031 (1.5145/0.6787) mem 16099MB [2025-01-18 00:48:31 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][100/312] eta 0:01:40 lr 0.003580 time 0.4496 (0.4760) model_time 0.4492 (0.4617) loss 2.7100 (3.5950) grad_norm 0.9014 (1.5074/0.6607) mem 16099MB [2025-01-18 00:48:35 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][110/312] eta 0:01:35 lr 0.003580 time 0.4413 (0.4750) model_time 0.4409 (0.4619) loss 3.9413 (3.6151) grad_norm 3.2347 (1.5534/0.6911) mem 16099MB [2025-01-18 00:48:40 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][120/312] eta 0:01:30 lr 0.003580 time 0.4473 (0.4733) model_time 0.4472 (0.4613) loss 3.5072 (3.5989) grad_norm 2.5071 (1.5618/0.6861) mem 16099MB [2025-01-18 00:48:45 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][130/312] eta 0:01:25 lr 0.003579 time 0.4517 (0.4722) model_time 0.4516 (0.4611) loss 4.6207 (3.5970) grad_norm 0.9715 (1.5283/0.6742) mem 16099MB [2025-01-18 00:48:49 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][140/312] eta 0:01:21 lr 0.003579 time 0.4393 (0.4713) model_time 0.4388 (0.4609) loss 2.5407 (3.5770) grad_norm 1.9416 (1.5068/0.6594) mem 16099MB [2025-01-18 00:48:54 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][150/312] eta 0:01:16 lr 0.003578 time 0.4476 (0.4728) model_time 0.4472 (0.4630) loss 2.9096 (3.5715) grad_norm 0.6613 (1.4917/0.6481) mem 16099MB [2025-01-18 00:48:59 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][160/312] eta 0:01:11 lr 0.003578 time 0.4493 (0.4722) model_time 0.4488 (0.4630) loss 3.9454 (3.5603) grad_norm 1.1288 (1.5276/0.7256) mem 16099MB [2025-01-18 00:49:03 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][170/312] eta 0:01:06 lr 0.003578 time 0.4373 (0.4717) model_time 0.4372 (0.4631) loss 3.8408 (3.5474) grad_norm 1.6336 (1.5468/0.7552) mem 16099MB [2025-01-18 00:49:08 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][180/312] eta 0:01:02 lr 0.003577 time 0.4607 (0.4712) model_time 0.4602 (0.4630) loss 3.7384 (3.5528) grad_norm 0.9408 (1.5422/0.7696) mem 16099MB [2025-01-18 00:49:13 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][190/312] eta 0:00:57 lr 0.003577 time 0.4536 (0.4705) model_time 0.4532 (0.4628) loss 2.4168 (3.5536) grad_norm 0.8671 (1.5267/0.7554) mem 16099MB [2025-01-18 00:49:17 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][200/312] eta 0:00:52 lr 0.003576 time 0.4657 (0.4697) model_time 0.4656 (0.4623) loss 3.8847 (3.5496) grad_norm 1.0059 (1.5247/0.7413) mem 16099MB [2025-01-18 00:49:22 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][210/312] eta 0:00:47 lr 0.003576 time 0.4790 (0.4705) model_time 0.4786 (0.4635) loss 3.2441 (3.5588) grad_norm 1.5698 (1.5389/0.7532) mem 16099MB [2025-01-18 00:49:27 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][220/312] eta 0:00:43 lr 0.003576 time 0.4438 (0.4697) model_time 0.4434 (0.4630) loss 2.7493 (3.5518) grad_norm 1.5881 (1.5424/0.7486) mem 16099MB [2025-01-18 00:49:31 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][230/312] eta 0:00:38 lr 0.003575 time 0.4479 (0.4701) model_time 0.4475 (0.4636) loss 3.8033 (3.5659) grad_norm 1.4987 (1.5304/0.7427) mem 16099MB [2025-01-18 00:49:36 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][240/312] eta 0:00:33 lr 0.003575 time 0.4432 (0.4695) model_time 0.4428 (0.4633) loss 3.9464 (3.5729) grad_norm 0.9366 (1.5249/0.7298) mem 16099MB [2025-01-18 00:49:40 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][250/312] eta 0:00:29 lr 0.003574 time 0.4477 (0.4691) model_time 0.4476 (0.4631) loss 3.7931 (3.5734) grad_norm 3.8950 (1.5485/0.7454) mem 16099MB [2025-01-18 00:49:45 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][260/312] eta 0:00:24 lr 0.003574 time 0.4539 (0.4688) model_time 0.4535 (0.4630) loss 4.0934 (3.5757) grad_norm 1.2421 (1.5624/0.7436) mem 16099MB [2025-01-18 00:49:50 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][270/312] eta 0:00:19 lr 0.003573 time 0.4505 (0.4683) model_time 0.4503 (0.4627) loss 3.2333 (3.5761) grad_norm 0.8721 (1.5505/0.7371) mem 16099MB [2025-01-18 00:49:54 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][280/312] eta 0:00:14 lr 0.003573 time 0.4532 (0.4684) model_time 0.4528 (0.4630) loss 4.4181 (3.5848) grad_norm 1.1139 (1.5504/0.7257) mem 16099MB [2025-01-18 00:49:59 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][290/312] eta 0:00:10 lr 0.003573 time 0.4636 (0.4682) model_time 0.4634 (0.4630) loss 3.5082 (3.5765) grad_norm 1.0356 (1.5363/0.7190) mem 16099MB [2025-01-18 00:50:04 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][300/312] eta 0:00:05 lr 0.003572 time 0.5275 (0.4679) model_time 0.5274 (0.4628) loss 3.7900 (3.5808) grad_norm 2.5665 (1.5284/0.7165) mem 16099MB [2025-01-18 00:50:08 internimage_t_1k_224] (main.py 510): INFO Train: [63/300][310/312] eta 0:00:00 lr 0.003572 time 0.4375 (0.4670) model_time 0.4374 (0.4622) loss 3.9671 (3.5829) grad_norm 0.9033 (1.5314/0.7141) mem 16099MB [2025-01-18 00:50:08 internimage_t_1k_224] (main.py 519): INFO EPOCH 63 training takes 0:02:25 [2025-01-18 00:50:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_63.pth saving...... [2025-01-18 00:50:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_63.pth saved !!! [2025-01-18 00:50:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.666 (7.666) Loss 0.9973 (0.9973) Acc@1 77.612 (77.612) Acc@5 94.824 (94.824) Mem 16099MB [2025-01-18 00:50:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.023) Loss 1.3942 (1.1842) Acc@1 69.141 (74.339) Acc@5 89.819 (92.640) Mem 16099MB [2025-01-18 00:50:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:63] * Acc@1 74.338 Acc@5 92.682 [2025-01-18 00:50:21 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.3% [2025-01-18 00:50:21 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.74% [2025-01-18 00:50:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.637 (8.637) Loss 1.9869 (1.9869) Acc@1 62.109 (62.109) Acc@5 84.766 (84.766) Mem 16099MB [2025-01-18 00:50:34 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.141) Loss 2.4607 (2.1402) Acc@1 53.662 (59.768) Acc@5 77.832 (82.566) Mem 16099MB [2025-01-18 00:50:34 internimage_t_1k_224] (main.py 575): INFO [Epoch:63] * Acc@1 59.769 Acc@5 82.602 [2025-01-18 00:50:34 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 59.8% [2025-01-18 00:50:34 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:50:35 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:50:35 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 59.77% [2025-01-18 00:50:37 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][0/312] eta 0:11:29 lr 0.003572 time 2.2102 (2.2102) model_time 0.4673 (0.4673) loss 3.4966 (3.4966) grad_norm 1.1202 (1.1202/0.0000) mem 16099MB [2025-01-18 00:50:42 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][10/312] eta 0:03:08 lr 0.003571 time 0.4545 (0.6238) model_time 0.4543 (0.4650) loss 4.3437 (3.4768) grad_norm 2.8860 (1.8189/0.7420) mem 16099MB [2025-01-18 00:50:46 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][20/312] eta 0:02:38 lr 0.003571 time 0.4598 (0.5437) model_time 0.4597 (0.4603) loss 3.6351 (3.4539) grad_norm 3.4480 (2.0711/1.0697) mem 16099MB [2025-01-18 00:50:51 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][30/312] eta 0:02:27 lr 0.003570 time 0.4819 (0.5213) model_time 0.4818 (0.4648) loss 3.1518 (3.4716) grad_norm 2.0190 (1.9915/0.9252) mem 16099MB [2025-01-18 00:50:56 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][40/312] eta 0:02:17 lr 0.003570 time 0.4546 (0.5070) model_time 0.4544 (0.4641) loss 2.2871 (3.4877) grad_norm 0.6829 (1.7737/0.9131) mem 16099MB [2025-01-18 00:51:00 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][50/312] eta 0:02:10 lr 0.003570 time 0.4447 (0.4980) model_time 0.4442 (0.4635) loss 3.5642 (3.5319) grad_norm 1.6556 (1.6802/0.8596) mem 16099MB [2025-01-18 00:51:05 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][60/312] eta 0:02:03 lr 0.003569 time 0.4487 (0.4908) model_time 0.4483 (0.4618) loss 4.4341 (3.5315) grad_norm 1.5435 (1.6462/0.8410) mem 16099MB [2025-01-18 00:51:09 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][70/312] eta 0:01:57 lr 0.003569 time 0.4877 (0.4856) model_time 0.4872 (0.4607) loss 3.9855 (3.5883) grad_norm 0.8654 (1.6465/0.8166) mem 16099MB [2025-01-18 00:51:14 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][80/312] eta 0:01:51 lr 0.003568 time 0.4545 (0.4819) model_time 0.4543 (0.4600) loss 3.7042 (3.5930) grad_norm 1.8110 (1.5973/0.7841) mem 16099MB [2025-01-18 00:51:18 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][90/312] eta 0:01:46 lr 0.003568 time 0.4605 (0.4794) model_time 0.4604 (0.4598) loss 3.6126 (3.5810) grad_norm 1.0285 (1.5548/0.7614) mem 16099MB [2025-01-18 00:51:23 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][100/312] eta 0:01:41 lr 0.003568 time 0.4537 (0.4786) model_time 0.4535 (0.4609) loss 3.7909 (3.6008) grad_norm 1.1474 (1.5566/0.7470) mem 16099MB [2025-01-18 00:51:28 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][110/312] eta 0:01:36 lr 0.003567 time 0.4431 (0.4777) model_time 0.4427 (0.4616) loss 4.1064 (3.6268) grad_norm 1.3640 (1.5266/0.7256) mem 16099MB [2025-01-18 00:51:33 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][120/312] eta 0:01:31 lr 0.003567 time 0.5411 (0.4777) model_time 0.5410 (0.4630) loss 2.1786 (3.6167) grad_norm 1.0596 (1.5098/0.7025) mem 16099MB [2025-01-18 00:51:37 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][130/312] eta 0:01:27 lr 0.003566 time 0.4386 (0.4780) model_time 0.4382 (0.4643) loss 4.2766 (3.6407) grad_norm 0.9311 (1.5624/0.7824) mem 16099MB [2025-01-18 00:51:42 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][140/312] eta 0:01:22 lr 0.003566 time 0.4584 (0.4774) model_time 0.4580 (0.4646) loss 3.2051 (3.6319) grad_norm 0.9735 (1.5789/0.7849) mem 16099MB [2025-01-18 00:51:47 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][150/312] eta 0:01:17 lr 0.003566 time 0.4542 (0.4766) model_time 0.4540 (0.4646) loss 2.4290 (3.6083) grad_norm 0.8626 (1.5610/0.7650) mem 16099MB [2025-01-18 00:51:51 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][160/312] eta 0:01:12 lr 0.003565 time 0.4389 (0.4759) model_time 0.4388 (0.4647) loss 2.7578 (3.6025) grad_norm 1.1037 (1.5404/0.7500) mem 16099MB [2025-01-18 00:51:56 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][170/312] eta 0:01:07 lr 0.003565 time 0.4631 (0.4749) model_time 0.4629 (0.4644) loss 4.0775 (3.5960) grad_norm 2.4686 (1.5859/0.7893) mem 16099MB [2025-01-18 00:52:01 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][180/312] eta 0:01:02 lr 0.003564 time 0.4530 (0.4739) model_time 0.4529 (0.4639) loss 4.1406 (3.5950) grad_norm 1.8562 (1.6064/0.7879) mem 16099MB [2025-01-18 00:52:05 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][190/312] eta 0:00:57 lr 0.003564 time 0.4412 (0.4735) model_time 0.4410 (0.4640) loss 3.2896 (3.5969) grad_norm 1.1721 (1.5896/0.7766) mem 16099MB [2025-01-18 00:52:10 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][200/312] eta 0:00:52 lr 0.003563 time 0.4545 (0.4727) model_time 0.4541 (0.4637) loss 2.5917 (3.5914) grad_norm 1.1822 (1.5672/0.7675) mem 16099MB [2025-01-18 00:52:15 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][210/312] eta 0:00:48 lr 0.003563 time 0.4418 (0.4723) model_time 0.4414 (0.4637) loss 2.4072 (3.5867) grad_norm 0.8434 (1.5436/0.7602) mem 16099MB [2025-01-18 00:52:19 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][220/312] eta 0:00:43 lr 0.003563 time 0.4524 (0.4719) model_time 0.4520 (0.4637) loss 3.7628 (3.5790) grad_norm 1.2598 (1.5505/0.7516) mem 16099MB [2025-01-18 00:52:24 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][230/312] eta 0:00:38 lr 0.003562 time 0.4440 (0.4711) model_time 0.4438 (0.4632) loss 3.8119 (3.5797) grad_norm 1.0556 (1.5500/0.7444) mem 16099MB [2025-01-18 00:52:28 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][240/312] eta 0:00:33 lr 0.003562 time 0.4511 (0.4703) model_time 0.4507 (0.4627) loss 3.9184 (3.5742) grad_norm 0.7807 (1.5354/0.7340) mem 16099MB [2025-01-18 00:52:33 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][250/312] eta 0:00:29 lr 0.003561 time 0.4639 (0.4699) model_time 0.4634 (0.4626) loss 3.5355 (3.5750) grad_norm 2.4653 (1.5478/0.7330) mem 16099MB [2025-01-18 00:52:37 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][260/312] eta 0:00:24 lr 0.003561 time 0.4504 (0.4694) model_time 0.4499 (0.4623) loss 4.0163 (3.5810) grad_norm 1.7153 (1.5723/0.7428) mem 16099MB [2025-01-18 00:52:42 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][270/312] eta 0:00:19 lr 0.003561 time 0.4516 (0.4695) model_time 0.4515 (0.4626) loss 3.9517 (3.5774) grad_norm 1.7256 (1.5772/0.7409) mem 16099MB [2025-01-18 00:52:47 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][280/312] eta 0:00:15 lr 0.003560 time 0.4621 (0.4693) model_time 0.4617 (0.4627) loss 2.4227 (3.5805) grad_norm 1.0925 (1.5731/0.7360) mem 16099MB [2025-01-18 00:52:51 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][290/312] eta 0:00:10 lr 0.003560 time 0.4552 (0.4691) model_time 0.4550 (0.4627) loss 4.5858 (3.5737) grad_norm 0.8954 (1.5657/0.7304) mem 16099MB [2025-01-18 00:52:56 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][300/312] eta 0:00:05 lr 0.003559 time 0.4372 (0.4692) model_time 0.4371 (0.4631) loss 3.3439 (3.5726) grad_norm 2.1158 (1.5640/0.7227) mem 16099MB [2025-01-18 00:53:01 internimage_t_1k_224] (main.py 510): INFO Train: [64/300][310/312] eta 0:00:00 lr 0.003559 time 0.5573 (0.4691) model_time 0.5572 (0.4631) loss 3.7044 (3.5739) grad_norm 1.5786 (1.5593/0.7171) mem 16099MB [2025-01-18 00:53:01 internimage_t_1k_224] (main.py 519): INFO EPOCH 64 training takes 0:02:26 [2025-01-18 00:53:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_64.pth saving...... [2025-01-18 00:53:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_64.pth saved !!! [2025-01-18 00:53:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.302 (7.302) Loss 0.9845 (0.9845) Acc@1 78.882 (78.882) Acc@5 95.312 (95.312) Mem 16099MB [2025-01-18 00:53:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.984) Loss 1.4287 (1.1860) Acc@1 68.604 (74.916) Acc@5 89.990 (92.793) Mem 16099MB [2025-01-18 00:53:13 internimage_t_1k_224] (main.py 575): INFO [Epoch:64] * Acc@1 74.816 Acc@5 92.826 [2025-01-18 00:53:13 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.8% [2025-01-18 00:53:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:53:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:53:15 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.82% [2025-01-18 00:53:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.587 (7.587) Loss 1.9147 (1.9147) Acc@1 63.403 (63.403) Acc@5 85.645 (85.645) Mem 16099MB [2025-01-18 00:53:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.000) Loss 2.3989 (2.0776) Acc@1 54.517 (60.691) Acc@5 78.564 (83.347) Mem 16099MB [2025-01-18 00:53:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:64] * Acc@1 60.677 Acc@5 83.371 [2025-01-18 00:53:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 60.7% [2025-01-18 00:53:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:53:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:53:27 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 60.68% [2025-01-18 00:53:29 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][0/312] eta 0:11:32 lr 0.003559 time 2.2204 (2.2204) model_time 0.6677 (0.6677) loss 4.1051 (4.1051) grad_norm 1.0236 (1.0236/0.0000) mem 16099MB [2025-01-18 00:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][10/312] eta 0:03:10 lr 0.003558 time 0.4641 (0.6311) model_time 0.4640 (0.4897) loss 3.4430 (3.7079) grad_norm 0.6130 (1.7322/0.6808) mem 16099MB [2025-01-18 00:53:39 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][20/312] eta 0:02:44 lr 0.003558 time 0.4455 (0.5634) model_time 0.4453 (0.4892) loss 2.5658 (3.6683) grad_norm 3.2201 (1.6520/0.8474) mem 16099MB [2025-01-18 00:53:43 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][30/312] eta 0:02:30 lr 0.003557 time 0.4763 (0.5323) model_time 0.4759 (0.4819) loss 3.9795 (3.5902) grad_norm 1.0481 (1.4879/0.7473) mem 16099MB [2025-01-18 00:53:48 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][40/312] eta 0:02:20 lr 0.003557 time 0.4522 (0.5157) model_time 0.4518 (0.4775) loss 3.6318 (3.5711) grad_norm 1.3266 (1.5047/0.7204) mem 16099MB [2025-01-18 00:53:53 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][50/312] eta 0:02:12 lr 0.003557 time 0.4558 (0.5039) model_time 0.4553 (0.4731) loss 3.4193 (3.5747) grad_norm 0.8642 (1.4025/0.6871) mem 16099MB [2025-01-18 00:53:57 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][60/312] eta 0:02:05 lr 0.003556 time 0.4563 (0.4981) model_time 0.4562 (0.4716) loss 4.3868 (3.6200) grad_norm 1.6766 (1.4708/0.7085) mem 16099MB [2025-01-18 00:54:02 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][70/312] eta 0:01:59 lr 0.003556 time 0.4507 (0.4918) model_time 0.4505 (0.4691) loss 3.1250 (3.5524) grad_norm 1.7409 (1.4578/0.6819) mem 16099MB [2025-01-18 00:54:06 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][80/312] eta 0:01:53 lr 0.003555 time 0.4472 (0.4880) model_time 0.4470 (0.4680) loss 3.3232 (3.5302) grad_norm 0.9271 (1.4896/0.6994) mem 16099MB [2025-01-18 00:54:11 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][90/312] eta 0:01:48 lr 0.003555 time 0.4402 (0.4874) model_time 0.4398 (0.4695) loss 3.6758 (3.5502) grad_norm 1.0370 (1.5087/0.6945) mem 16099MB [2025-01-18 00:54:16 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][100/312] eta 0:01:42 lr 0.003555 time 0.4460 (0.4849) model_time 0.4456 (0.4687) loss 3.5598 (3.5561) grad_norm 1.4541 (1.5198/0.6796) mem 16099MB [2025-01-18 00:54:20 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][110/312] eta 0:01:37 lr 0.003554 time 0.5382 (0.4828) model_time 0.5377 (0.4681) loss 4.1848 (3.5649) grad_norm 1.2741 (1.4926/0.6637) mem 16099MB [2025-01-18 00:54:25 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][120/312] eta 0:01:32 lr 0.003554 time 0.4553 (0.4810) model_time 0.4549 (0.4675) loss 2.9344 (3.5576) grad_norm 1.0170 (1.4974/0.6569) mem 16099MB [2025-01-18 00:54:30 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][130/312] eta 0:01:27 lr 0.003553 time 0.4667 (0.4798) model_time 0.4666 (0.4673) loss 4.4592 (3.5350) grad_norm 1.0052 (1.4826/0.6438) mem 16099MB [2025-01-18 00:54:34 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][140/312] eta 0:01:22 lr 0.003553 time 0.4504 (0.4785) model_time 0.4500 (0.4669) loss 3.8332 (3.5495) grad_norm 2.1874 (1.5088/0.6541) mem 16099MB [2025-01-18 00:54:39 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][150/312] eta 0:01:17 lr 0.003552 time 0.4462 (0.4775) model_time 0.4460 (0.4666) loss 2.9915 (3.5663) grad_norm 2.1329 (1.5181/0.6421) mem 16099MB [2025-01-18 00:54:44 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][160/312] eta 0:01:12 lr 0.003552 time 0.4592 (0.4774) model_time 0.4588 (0.4672) loss 2.8298 (3.5541) grad_norm 3.4457 (1.5196/0.6468) mem 16099MB [2025-01-18 00:54:48 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][170/312] eta 0:01:07 lr 0.003552 time 0.4566 (0.4758) model_time 0.4562 (0.4661) loss 3.3766 (3.5485) grad_norm 1.8693 (1.5543/0.6825) mem 16099MB [2025-01-18 00:54:53 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][180/312] eta 0:01:02 lr 0.003551 time 0.4493 (0.4757) model_time 0.4489 (0.4665) loss 3.9385 (3.5581) grad_norm 1.5042 (1.5467/0.6710) mem 16099MB [2025-01-18 00:54:58 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][190/312] eta 0:00:57 lr 0.003551 time 0.4490 (0.4745) model_time 0.4486 (0.4658) loss 3.4998 (3.5622) grad_norm 0.9304 (1.5530/0.6879) mem 16099MB [2025-01-18 00:55:02 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][200/312] eta 0:00:53 lr 0.003550 time 0.4473 (0.4737) model_time 0.4469 (0.4654) loss 4.0267 (3.5718) grad_norm 1.6721 (1.5800/0.7055) mem 16099MB [2025-01-18 00:55:07 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][210/312] eta 0:00:48 lr 0.003550 time 0.4448 (0.4735) model_time 0.4446 (0.4656) loss 4.4393 (3.5771) grad_norm 0.8087 (1.5889/0.7083) mem 16099MB [2025-01-18 00:55:11 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][220/312] eta 0:00:43 lr 0.003550 time 0.4565 (0.4731) model_time 0.4561 (0.4655) loss 2.5167 (3.5684) grad_norm 1.1514 (1.5724/0.7019) mem 16099MB [2025-01-18 00:55:16 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][230/312] eta 0:00:38 lr 0.003549 time 0.4466 (0.4721) model_time 0.4462 (0.4649) loss 3.5303 (3.5725) grad_norm 2.5542 (1.5705/0.7036) mem 16099MB [2025-01-18 00:55:21 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][240/312] eta 0:00:33 lr 0.003549 time 0.4821 (0.4720) model_time 0.4817 (0.4650) loss 3.5873 (3.5727) grad_norm 0.8741 (1.5695/0.7001) mem 16099MB [2025-01-18 00:55:25 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][250/312] eta 0:00:29 lr 0.003548 time 0.4415 (0.4723) model_time 0.4414 (0.4656) loss 3.9329 (3.5715) grad_norm 1.1210 (1.5574/0.6939) mem 16099MB [2025-01-18 00:55:30 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][260/312] eta 0:00:24 lr 0.003548 time 0.4516 (0.4722) model_time 0.4512 (0.4657) loss 3.9085 (3.5834) grad_norm 0.9295 (1.5564/0.6910) mem 16099MB [2025-01-18 00:55:35 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][270/312] eta 0:00:19 lr 0.003547 time 0.4497 (0.4718) model_time 0.4493 (0.4656) loss 4.3816 (3.5824) grad_norm 1.2913 (1.5516/0.6842) mem 16099MB [2025-01-18 00:55:39 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][280/312] eta 0:00:15 lr 0.003547 time 0.4459 (0.4715) model_time 0.4457 (0.4654) loss 3.9825 (3.5761) grad_norm 3.5902 (1.5755/0.7002) mem 16099MB [2025-01-18 00:55:44 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][290/312] eta 0:00:10 lr 0.003547 time 0.4496 (0.4711) model_time 0.4492 (0.4652) loss 3.9615 (3.5826) grad_norm 1.1106 (1.5663/0.6933) mem 16099MB [2025-01-18 00:55:49 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][300/312] eta 0:00:05 lr 0.003546 time 0.4385 (0.4706) model_time 0.4384 (0.4649) loss 3.6339 (3.5819) grad_norm 1.1930 (1.5656/0.6861) mem 16099MB [2025-01-18 00:55:53 internimage_t_1k_224] (main.py 510): INFO Train: [65/300][310/312] eta 0:00:00 lr 0.003546 time 0.5169 (0.4701) model_time 0.5168 (0.4646) loss 3.5558 (3.5921) grad_norm 1.5457 (1.5675/0.6879) mem 16099MB [2025-01-18 00:55:54 internimage_t_1k_224] (main.py 519): INFO EPOCH 65 training takes 0:02:26 [2025-01-18 00:55:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_65.pth saving...... [2025-01-18 00:55:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_65.pth saved !!! [2025-01-18 00:56:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.178 (7.178) Loss 0.9447 (0.9447) Acc@1 78.735 (78.735) Acc@5 95.166 (95.166) Mem 16099MB [2025-01-18 00:56:05 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.963) Loss 1.3521 (1.1436) Acc@1 69.995 (74.898) Acc@5 90.186 (92.718) Mem 16099MB [2025-01-18 00:56:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:65] * Acc@1 74.922 Acc@5 92.788 [2025-01-18 00:56:06 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.9% [2025-01-18 00:56:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 00:56:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 00:56:07 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.92% [2025-01-18 00:56:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.392 (7.392) Loss 1.8455 (1.8455) Acc@1 64.771 (64.771) Acc@5 86.548 (86.548) Mem 16099MB [2025-01-18 00:56:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.002) Loss 2.3391 (2.0171) Acc@1 55.347 (61.614) Acc@5 79.419 (84.031) Mem 16099MB [2025-01-18 00:56:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:65] * Acc@1 61.604 Acc@5 84.071 [2025-01-18 00:56:18 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 61.6% [2025-01-18 00:56:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:56:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:56:19 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 61.60% [2025-01-18 00:56:21 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][0/312] eta 0:11:41 lr 0.003546 time 2.2494 (2.2494) model_time 0.4773 (0.4773) loss 3.9441 (3.9441) grad_norm 0.8309 (0.8309/0.0000) mem 16099MB [2025-01-18 00:56:26 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][10/312] eta 0:03:12 lr 0.003545 time 0.4517 (0.6379) model_time 0.4512 (0.4765) loss 4.4592 (3.8093) grad_norm 2.7109 (1.9312/0.8823) mem 16099MB [2025-01-18 00:56:31 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][20/312] eta 0:02:43 lr 0.003545 time 0.4457 (0.5612) model_time 0.4452 (0.4765) loss 4.5109 (3.8215) grad_norm 0.6966 (1.6378/0.7625) mem 16099MB [2025-01-18 00:56:36 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][30/312] eta 0:02:31 lr 0.003544 time 0.4610 (0.5365) model_time 0.4609 (0.4790) loss 3.8629 (3.7663) grad_norm 1.1626 (1.5341/0.6795) mem 16099MB [2025-01-18 00:56:40 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][40/312] eta 0:02:20 lr 0.003544 time 0.4544 (0.5164) model_time 0.4543 (0.4729) loss 3.5076 (3.6843) grad_norm 2.2271 (1.5607/0.6841) mem 16099MB [2025-01-18 00:56:45 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][50/312] eta 0:02:12 lr 0.003543 time 0.4511 (0.5071) model_time 0.4507 (0.4720) loss 4.4318 (3.6283) grad_norm 1.0332 (1.5734/0.7572) mem 16099MB [2025-01-18 00:56:50 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][60/312] eta 0:02:05 lr 0.003543 time 0.4624 (0.4992) model_time 0.4622 (0.4698) loss 3.8991 (3.6464) grad_norm 1.8492 (1.5409/0.7119) mem 16099MB [2025-01-18 00:56:54 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][70/312] eta 0:01:59 lr 0.003543 time 0.4525 (0.4936) model_time 0.4524 (0.4683) loss 3.8548 (3.6437) grad_norm 0.7831 (1.5006/0.6792) mem 16099MB [2025-01-18 00:56:59 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][80/312] eta 0:01:53 lr 0.003542 time 0.4739 (0.4900) model_time 0.4738 (0.4678) loss 2.7263 (3.6299) grad_norm 2.3779 (1.5259/0.6598) mem 16099MB [2025-01-18 00:57:03 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][90/312] eta 0:01:48 lr 0.003542 time 0.4715 (0.4871) model_time 0.4714 (0.4673) loss 3.7074 (3.6444) grad_norm 2.1387 (1.5628/0.6859) mem 16099MB [2025-01-18 00:57:08 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][100/312] eta 0:01:42 lr 0.003541 time 0.4600 (0.4844) model_time 0.4596 (0.4666) loss 3.8876 (3.6342) grad_norm 1.0001 (1.5421/0.6647) mem 16099MB [2025-01-18 00:57:13 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][110/312] eta 0:01:37 lr 0.003541 time 0.5488 (0.4825) model_time 0.5484 (0.4662) loss 4.2705 (3.6426) grad_norm 1.1670 (1.6130/0.7879) mem 16099MB [2025-01-18 00:57:17 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][120/312] eta 0:01:32 lr 0.003541 time 0.4432 (0.4800) model_time 0.4428 (0.4650) loss 2.8163 (3.6256) grad_norm 4.2248 (1.6341/0.8072) mem 16099MB [2025-01-18 00:57:22 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][130/312] eta 0:01:27 lr 0.003540 time 0.4481 (0.4796) model_time 0.4480 (0.4657) loss 3.7440 (3.6185) grad_norm 1.8658 (1.6126/0.7903) mem 16099MB [2025-01-18 00:57:27 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][140/312] eta 0:01:22 lr 0.003540 time 0.4533 (0.4785) model_time 0.4529 (0.4656) loss 3.5084 (3.6179) grad_norm 1.2393 (1.6102/0.7711) mem 16099MB [2025-01-18 00:57:31 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][150/312] eta 0:01:17 lr 0.003539 time 0.4467 (0.4781) model_time 0.4463 (0.4660) loss 4.3563 (3.6035) grad_norm 0.9255 (1.6122/0.7592) mem 16099MB [2025-01-18 00:57:36 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][160/312] eta 0:01:12 lr 0.003539 time 0.4461 (0.4767) model_time 0.4460 (0.4653) loss 3.6475 (3.6042) grad_norm 4.2332 (1.6490/0.7815) mem 16099MB [2025-01-18 00:57:40 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][170/312] eta 0:01:07 lr 0.003538 time 0.4485 (0.4759) model_time 0.4483 (0.4652) loss 3.9178 (3.6042) grad_norm 0.8518 (1.6368/0.7812) mem 16099MB [2025-01-18 00:57:45 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][180/312] eta 0:01:02 lr 0.003538 time 0.5644 (0.4755) model_time 0.5640 (0.4653) loss 4.0554 (3.6068) grad_norm 2.3275 (1.6257/0.7766) mem 16099MB [2025-01-18 00:57:50 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][190/312] eta 0:00:57 lr 0.003538 time 0.4465 (0.4751) model_time 0.4464 (0.4655) loss 3.9050 (3.6071) grad_norm 1.3052 (1.6010/0.7668) mem 16099MB [2025-01-18 00:57:55 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][200/312] eta 0:00:53 lr 0.003537 time 0.4530 (0.4762) model_time 0.4528 (0.4670) loss 4.2873 (3.6087) grad_norm 0.7916 (1.5971/0.7624) mem 16099MB [2025-01-18 00:58:00 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][210/312] eta 0:00:48 lr 0.003537 time 0.4464 (0.4761) model_time 0.4462 (0.4673) loss 2.4535 (3.5880) grad_norm 1.2766 (1.6009/0.7531) mem 16099MB [2025-01-18 00:58:04 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][220/312] eta 0:00:43 lr 0.003536 time 0.4512 (0.4752) model_time 0.4511 (0.4669) loss 3.6751 (3.5929) grad_norm 2.2843 (1.6046/0.7541) mem 16099MB [2025-01-18 00:58:09 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][230/312] eta 0:00:38 lr 0.003536 time 0.4502 (0.4747) model_time 0.4497 (0.4667) loss 3.4474 (3.6003) grad_norm 1.3436 (1.5901/0.7439) mem 16099MB [2025-01-18 00:58:13 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][240/312] eta 0:00:34 lr 0.003535 time 0.4539 (0.4742) model_time 0.4538 (0.4665) loss 3.3895 (3.6003) grad_norm 0.8126 (1.5651/0.7389) mem 16099MB [2025-01-18 00:58:18 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][250/312] eta 0:00:29 lr 0.003535 time 0.4468 (0.4737) model_time 0.4464 (0.4663) loss 3.5274 (3.6096) grad_norm 1.5849 (1.5467/0.7320) mem 16099MB [2025-01-18 00:58:23 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][260/312] eta 0:00:24 lr 0.003535 time 0.4518 (0.4736) model_time 0.4516 (0.4664) loss 3.2794 (3.6002) grad_norm 0.7473 (1.5520/0.7364) mem 16099MB [2025-01-18 00:58:27 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][270/312] eta 0:00:19 lr 0.003534 time 0.4502 (0.4729) model_time 0.4497 (0.4660) loss 3.6846 (3.5985) grad_norm 1.3543 (1.5531/0.7350) mem 16099MB [2025-01-18 00:58:32 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][280/312] eta 0:00:15 lr 0.003534 time 0.4527 (0.4721) model_time 0.4523 (0.4655) loss 2.8961 (3.5937) grad_norm 1.2747 (1.5819/0.7607) mem 16099MB [2025-01-18 00:58:36 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][290/312] eta 0:00:10 lr 0.003533 time 0.4436 (0.4717) model_time 0.4432 (0.4652) loss 2.3552 (3.5945) grad_norm 1.1119 (1.5761/0.7518) mem 16099MB [2025-01-18 00:58:41 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][300/312] eta 0:00:05 lr 0.003533 time 0.5428 (0.4715) model_time 0.5427 (0.4653) loss 4.3372 (3.5967) grad_norm 1.0987 (1.5848/0.7563) mem 16099MB [2025-01-18 00:58:45 internimage_t_1k_224] (main.py 510): INFO Train: [66/300][310/312] eta 0:00:00 lr 0.003532 time 0.4392 (0.4705) model_time 0.4391 (0.4644) loss 4.3810 (3.5969) grad_norm 1.2620 (1.5543/0.7407) mem 16099MB [2025-01-18 00:58:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 66 training takes 0:02:26 [2025-01-18 00:58:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_66.pth saving...... [2025-01-18 00:58:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_66.pth saved !!! [2025-01-18 00:58:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.546 (7.546) Loss 0.9344 (0.9344) Acc@1 78.833 (78.833) Acc@5 95.288 (95.288) Mem 16099MB [2025-01-18 00:58:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.003) Loss 1.3076 (1.1275) Acc@1 70.239 (74.827) Acc@5 90.674 (92.882) Mem 16099MB [2025-01-18 00:58:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:66] * Acc@1 74.796 Acc@5 92.948 [2025-01-18 00:58:58 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.8% [2025-01-18 00:58:58 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 74.92% [2025-01-18 00:59:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.394 (8.394) Loss 1.7781 (1.7781) Acc@1 65.894 (65.894) Acc@5 87.329 (87.329) Mem 16099MB [2025-01-18 00:59:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.118) Loss 2.2799 (1.9580) Acc@1 56.396 (62.604) Acc@5 80.029 (84.719) Mem 16099MB [2025-01-18 00:59:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:66] * Acc@1 62.596 Acc@5 84.765 [2025-01-18 00:59:11 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 62.6% [2025-01-18 00:59:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 00:59:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 00:59:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 62.60% [2025-01-18 00:59:14 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][0/312] eta 0:10:30 lr 0.003532 time 2.0215 (2.0215) model_time 0.5262 (0.5262) loss 3.5821 (3.5821) grad_norm 1.7116 (1.7116/0.0000) mem 16099MB [2025-01-18 00:59:19 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][10/312] eta 0:03:06 lr 0.003532 time 0.4522 (0.6176) model_time 0.4521 (0.4813) loss 3.7014 (3.4915) grad_norm 1.1459 (1.6332/0.8542) mem 16099MB [2025-01-18 00:59:23 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][20/312] eta 0:02:38 lr 0.003531 time 0.4497 (0.5439) model_time 0.4492 (0.4724) loss 3.2153 (3.5568) grad_norm 0.6428 (1.5164/0.6914) mem 16099MB [2025-01-18 00:59:28 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][30/312] eta 0:02:25 lr 0.003531 time 0.4476 (0.5162) model_time 0.4474 (0.4677) loss 3.9587 (3.5040) grad_norm 1.9936 (1.5511/0.6361) mem 16099MB [2025-01-18 00:59:33 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][40/312] eta 0:02:16 lr 0.003531 time 0.4421 (0.5032) model_time 0.4420 (0.4665) loss 3.1302 (3.4484) grad_norm 1.7577 (1.5697/0.6595) mem 16099MB [2025-01-18 00:59:37 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][50/312] eta 0:02:09 lr 0.003530 time 0.4748 (0.4956) model_time 0.4744 (0.4659) loss 4.5054 (3.5177) grad_norm 2.1121 (1.5666/0.6382) mem 16099MB [2025-01-18 00:59:42 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][60/312] eta 0:02:03 lr 0.003530 time 0.4496 (0.4888) model_time 0.4494 (0.4640) loss 2.7110 (3.5166) grad_norm 1.2888 (1.5813/0.6556) mem 16099MB [2025-01-18 00:59:46 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][70/312] eta 0:01:57 lr 0.003529 time 0.4464 (0.4862) model_time 0.4460 (0.4648) loss 3.8941 (3.5037) grad_norm 0.9749 (1.5515/0.6574) mem 16099MB [2025-01-18 00:59:51 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][80/312] eta 0:01:52 lr 0.003529 time 0.4538 (0.4834) model_time 0.4537 (0.4646) loss 4.6805 (3.5123) grad_norm 1.8885 (1.5528/0.6406) mem 16099MB [2025-01-18 00:59:56 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][90/312] eta 0:01:47 lr 0.003528 time 0.5346 (0.4826) model_time 0.5342 (0.4658) loss 3.5556 (3.5151) grad_norm 2.0652 (1.5444/0.6207) mem 16099MB [2025-01-18 01:00:01 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][100/312] eta 0:01:42 lr 0.003528 time 0.4543 (0.4822) model_time 0.4539 (0.4671) loss 3.6431 (3.5348) grad_norm 1.3012 (1.5667/0.6954) mem 16099MB [2025-01-18 01:00:05 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][110/312] eta 0:01:36 lr 0.003528 time 0.4638 (0.4797) model_time 0.4634 (0.4659) loss 2.7508 (3.5320) grad_norm 1.3352 (1.5236/0.6811) mem 16099MB [2025-01-18 01:00:10 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][120/312] eta 0:01:31 lr 0.003527 time 0.4549 (0.4777) model_time 0.4544 (0.4650) loss 3.8878 (3.5206) grad_norm 4.6602 (1.5912/0.7721) mem 16099MB [2025-01-18 01:00:15 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][130/312] eta 0:01:27 lr 0.003527 time 0.4426 (0.4802) model_time 0.4422 (0.4684) loss 2.9212 (3.5181) grad_norm 1.2827 (1.6112/0.7838) mem 16099MB [2025-01-18 01:00:20 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][140/312] eta 0:01:22 lr 0.003526 time 0.4525 (0.4796) model_time 0.4521 (0.4686) loss 3.6750 (3.5318) grad_norm 1.0631 (1.5815/0.7659) mem 16099MB [2025-01-18 01:00:24 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][150/312] eta 0:01:17 lr 0.003526 time 0.4955 (0.4785) model_time 0.4954 (0.4682) loss 4.4977 (3.5304) grad_norm 0.6654 (1.5453/0.7553) mem 16099MB [2025-01-18 01:00:29 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][160/312] eta 0:01:12 lr 0.003525 time 0.4627 (0.4778) model_time 0.4625 (0.4682) loss 4.4605 (3.5378) grad_norm 1.4494 (1.5365/0.7375) mem 16099MB [2025-01-18 01:00:33 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][170/312] eta 0:01:07 lr 0.003525 time 0.4627 (0.4765) model_time 0.4625 (0.4674) loss 3.3571 (3.5274) grad_norm 2.0381 (1.5401/0.7278) mem 16099MB [2025-01-18 01:00:38 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][180/312] eta 0:01:02 lr 0.003525 time 0.4516 (0.4760) model_time 0.4512 (0.4673) loss 3.1786 (3.5219) grad_norm 3.4322 (1.5640/0.7446) mem 16099MB [2025-01-18 01:00:43 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][190/312] eta 0:00:57 lr 0.003524 time 0.4508 (0.4753) model_time 0.4504 (0.4671) loss 3.6865 (3.5235) grad_norm 1.3549 (1.5771/0.7430) mem 16099MB [2025-01-18 01:00:47 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][200/312] eta 0:00:53 lr 0.003524 time 0.4654 (0.4747) model_time 0.4649 (0.4669) loss 3.7014 (3.5249) grad_norm 1.4837 (1.5690/0.7346) mem 16099MB [2025-01-18 01:00:52 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][210/312] eta 0:00:48 lr 0.003523 time 0.4503 (0.4743) model_time 0.4499 (0.4668) loss 4.5390 (3.5221) grad_norm 2.1144 (1.5899/0.7428) mem 16099MB [2025-01-18 01:00:57 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][220/312] eta 0:00:43 lr 0.003523 time 0.4526 (0.4734) model_time 0.4522 (0.4663) loss 4.3083 (3.5112) grad_norm 1.3142 (1.5808/0.7297) mem 16099MB [2025-01-18 01:01:01 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][230/312] eta 0:00:38 lr 0.003522 time 0.4493 (0.4734) model_time 0.4488 (0.4666) loss 4.3124 (3.5110) grad_norm 1.6990 (1.5650/0.7211) mem 16099MB [2025-01-18 01:01:06 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][240/312] eta 0:00:34 lr 0.003522 time 0.4473 (0.4732) model_time 0.4469 (0.4666) loss 3.9660 (3.5145) grad_norm 0.7830 (1.5632/0.7247) mem 16099MB [2025-01-18 01:01:10 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][250/312] eta 0:00:29 lr 0.003522 time 0.4498 (0.4725) model_time 0.4494 (0.4661) loss 2.4414 (3.5250) grad_norm 1.5335 (1.5527/0.7158) mem 16099MB [2025-01-18 01:01:15 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][260/312] eta 0:00:24 lr 0.003521 time 0.4510 (0.4724) model_time 0.4505 (0.4663) loss 3.0289 (3.5226) grad_norm 0.8919 (1.5552/0.7077) mem 16099MB [2025-01-18 01:01:20 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][270/312] eta 0:00:19 lr 0.003521 time 0.4556 (0.4721) model_time 0.4552 (0.4662) loss 2.7186 (3.5185) grad_norm 0.6273 (1.5576/0.7131) mem 16099MB [2025-01-18 01:01:24 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][280/312] eta 0:00:15 lr 0.003520 time 0.4401 (0.4717) model_time 0.4397 (0.4660) loss 4.0243 (3.5165) grad_norm 0.8593 (1.5732/0.7549) mem 16099MB [2025-01-18 01:01:29 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][290/312] eta 0:00:10 lr 0.003520 time 0.4461 (0.4718) model_time 0.4457 (0.4663) loss 4.4569 (3.5308) grad_norm 1.9278 (1.5696/0.7482) mem 16099MB [2025-01-18 01:01:34 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][300/312] eta 0:00:05 lr 0.003519 time 0.4386 (0.4713) model_time 0.4386 (0.4659) loss 3.2759 (3.5361) grad_norm 1.6879 (1.5589/0.7410) mem 16099MB [2025-01-18 01:01:38 internimage_t_1k_224] (main.py 510): INFO Train: [67/300][310/312] eta 0:00:00 lr 0.003519 time 0.4398 (0.4705) model_time 0.4397 (0.4653) loss 2.7517 (3.5379) grad_norm 1.2173 (1.5571/0.7275) mem 16099MB [2025-01-18 01:01:39 internimage_t_1k_224] (main.py 519): INFO EPOCH 67 training takes 0:02:26 [2025-01-18 01:01:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_67.pth saving...... [2025-01-18 01:01:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_67.pth saved !!! [2025-01-18 01:01:47 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.491 (7.491) Loss 1.0131 (1.0131) Acc@1 79.272 (79.272) Acc@5 95.093 (95.093) Mem 16099MB [2025-01-18 01:01:51 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.003) Loss 1.3641 (1.1572) Acc@1 69.922 (75.255) Acc@5 90.381 (92.829) Mem 16099MB [2025-01-18 01:01:51 internimage_t_1k_224] (main.py 575): INFO [Epoch:67] * Acc@1 75.186 Acc@5 92.872 [2025-01-18 01:01:51 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.2% [2025-01-18 01:01:51 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:01:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:01:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.19% [2025-01-18 01:02:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.480 (7.480) Loss 1.7162 (1.7162) Acc@1 66.675 (66.675) Acc@5 88.037 (88.037) Mem 16099MB [2025-01-18 01:02:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.007) Loss 2.2216 (1.9020) Acc@1 57.227 (63.523) Acc@5 80.688 (85.334) Mem 16099MB [2025-01-18 01:02:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:67] * Acc@1 63.500 Acc@5 85.381 [2025-01-18 01:02:03 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 63.5% [2025-01-18 01:02:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:02:05 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:02:05 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 63.50% [2025-01-18 01:02:07 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][0/312] eta 0:12:49 lr 0.003519 time 2.4679 (2.4679) model_time 0.5099 (0.5099) loss 3.8734 (3.8734) grad_norm 0.9090 (0.9090/0.0000) mem 16099MB [2025-01-18 01:02:12 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][10/312] eta 0:03:16 lr 0.003518 time 0.4435 (0.6494) model_time 0.4433 (0.4711) loss 3.7972 (3.5939) grad_norm 1.3259 (1.7864/0.6010) mem 16099MB [2025-01-18 01:02:17 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][20/312] eta 0:02:43 lr 0.003518 time 0.4554 (0.5611) model_time 0.4550 (0.4675) loss 3.4375 (3.6007) grad_norm 3.2077 (1.8701/0.6909) mem 16099MB [2025-01-18 01:02:21 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][30/312] eta 0:02:28 lr 0.003518 time 0.4446 (0.5275) model_time 0.4443 (0.4640) loss 3.8184 (3.6339) grad_norm 1.6132 (1.8719/0.6682) mem 16099MB [2025-01-18 01:02:26 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][40/312] eta 0:02:18 lr 0.003517 time 0.4492 (0.5107) model_time 0.4488 (0.4626) loss 3.9529 (3.6081) grad_norm 1.1631 (1.7536/0.6474) mem 16099MB [2025-01-18 01:02:30 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][50/312] eta 0:02:11 lr 0.003517 time 0.4522 (0.5028) model_time 0.4518 (0.4640) loss 3.6676 (3.6007) grad_norm 1.1230 (1.6673/0.6159) mem 16099MB [2025-01-18 01:02:35 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][60/312] eta 0:02:04 lr 0.003516 time 0.4548 (0.4947) model_time 0.4544 (0.4622) loss 3.0072 (3.6008) grad_norm 1.7121 (1.6324/0.6003) mem 16099MB [2025-01-18 01:02:40 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][70/312] eta 0:01:58 lr 0.003516 time 0.4477 (0.4912) model_time 0.4473 (0.4633) loss 3.9230 (3.6174) grad_norm 0.8929 (1.7160/0.7066) mem 16099MB [2025-01-18 01:02:44 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][80/312] eta 0:01:53 lr 0.003515 time 0.4484 (0.4879) model_time 0.4482 (0.4633) loss 3.4237 (3.5779) grad_norm 2.5315 (1.6720/0.6919) mem 16099MB [2025-01-18 01:02:49 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][90/312] eta 0:01:47 lr 0.003515 time 0.4477 (0.4846) model_time 0.4473 (0.4627) loss 2.4457 (3.5554) grad_norm 1.1188 (1.6677/0.6977) mem 16099MB [2025-01-18 01:02:54 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][100/312] eta 0:01:42 lr 0.003514 time 0.4636 (0.4840) model_time 0.4632 (0.4642) loss 3.2382 (3.4972) grad_norm 1.5514 (1.6451/0.6896) mem 16099MB [2025-01-18 01:02:58 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][110/312] eta 0:01:37 lr 0.003514 time 0.4379 (0.4819) model_time 0.4377 (0.4639) loss 3.6308 (3.5112) grad_norm 1.1114 (1.6139/0.6813) mem 16099MB [2025-01-18 01:03:03 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][120/312] eta 0:01:32 lr 0.003514 time 0.4495 (0.4825) model_time 0.4494 (0.4659) loss 3.8223 (3.5201) grad_norm 1.0397 (1.5811/0.6698) mem 16099MB [2025-01-18 01:03:08 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][130/312] eta 0:01:27 lr 0.003513 time 0.4772 (0.4809) model_time 0.4767 (0.4656) loss 2.9929 (3.5320) grad_norm 1.0598 (1.6309/0.7059) mem 16099MB [2025-01-18 01:03:12 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][140/312] eta 0:01:22 lr 0.003513 time 0.4514 (0.4801) model_time 0.4509 (0.4658) loss 3.3455 (3.5455) grad_norm 1.0186 (1.6298/0.6987) mem 16099MB [2025-01-18 01:03:17 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][150/312] eta 0:01:17 lr 0.003512 time 0.4544 (0.4794) model_time 0.4540 (0.4661) loss 3.0755 (3.5594) grad_norm 1.3671 (1.6273/0.6911) mem 16099MB [2025-01-18 01:03:22 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][160/312] eta 0:01:12 lr 0.003512 time 0.4469 (0.4786) model_time 0.4464 (0.4661) loss 3.7216 (3.5567) grad_norm 0.6654 (1.6180/0.6835) mem 16099MB [2025-01-18 01:03:26 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][170/312] eta 0:01:07 lr 0.003511 time 0.4493 (0.4773) model_time 0.4492 (0.4655) loss 4.0976 (3.5421) grad_norm 1.4462 (1.6010/0.6750) mem 16099MB [2025-01-18 01:03:31 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][180/312] eta 0:01:02 lr 0.003511 time 0.5001 (0.4772) model_time 0.4997 (0.4660) loss 3.2565 (3.5445) grad_norm 1.1354 (1.5870/0.6717) mem 16099MB [2025-01-18 01:03:36 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][190/312] eta 0:00:58 lr 0.003511 time 0.4535 (0.4762) model_time 0.4533 (0.4656) loss 3.4152 (3.5386) grad_norm 1.4712 (1.6054/0.6864) mem 16099MB [2025-01-18 01:03:40 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][200/312] eta 0:00:53 lr 0.003510 time 0.4606 (0.4751) model_time 0.4605 (0.4650) loss 2.5195 (3.5364) grad_norm 1.6999 (1.5934/0.6748) mem 16099MB [2025-01-18 01:03:45 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][210/312] eta 0:00:48 lr 0.003510 time 0.4499 (0.4740) model_time 0.4498 (0.4643) loss 3.7590 (3.5359) grad_norm 1.1393 (1.5879/0.6662) mem 16099MB [2025-01-18 01:03:50 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][220/312] eta 0:00:43 lr 0.003509 time 0.4400 (0.4744) model_time 0.4398 (0.4651) loss 3.1914 (3.5320) grad_norm 1.4902 (1.5724/0.6578) mem 16099MB [2025-01-18 01:03:54 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][230/312] eta 0:00:38 lr 0.003509 time 0.4500 (0.4735) model_time 0.4496 (0.4646) loss 3.5682 (3.5268) grad_norm 0.7194 (1.5539/0.6543) mem 16099MB [2025-01-18 01:03:59 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][240/312] eta 0:00:34 lr 0.003508 time 0.4503 (0.4729) model_time 0.4499 (0.4644) loss 3.3958 (3.5220) grad_norm 1.1434 (1.5360/0.6483) mem 16099MB [2025-01-18 01:04:03 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][250/312] eta 0:00:29 lr 0.003508 time 0.4614 (0.4721) model_time 0.4613 (0.4640) loss 3.7143 (3.5137) grad_norm 1.5531 (1.5271/0.6388) mem 16099MB [2025-01-18 01:04:08 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][260/312] eta 0:00:24 lr 0.003508 time 0.4381 (0.4719) model_time 0.4380 (0.4641) loss 3.6942 (3.5206) grad_norm 1.9524 (1.5424/0.6476) mem 16099MB [2025-01-18 01:04:13 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][270/312] eta 0:00:19 lr 0.003507 time 0.4794 (0.4717) model_time 0.4789 (0.4641) loss 3.5076 (3.5238) grad_norm 1.4361 (1.5336/0.6409) mem 16099MB [2025-01-18 01:04:17 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][280/312] eta 0:00:15 lr 0.003507 time 0.4500 (0.4713) model_time 0.4499 (0.4639) loss 2.7985 (3.5166) grad_norm 2.5427 (1.5294/0.6374) mem 16099MB [2025-01-18 01:04:22 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][290/312] eta 0:00:10 lr 0.003506 time 0.4559 (0.4711) model_time 0.4555 (0.4640) loss 3.1479 (3.5131) grad_norm 1.8980 (1.5729/0.6942) mem 16099MB [2025-01-18 01:04:27 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][300/312] eta 0:00:05 lr 0.003506 time 0.4380 (0.4711) model_time 0.4379 (0.4643) loss 2.5019 (3.5081) grad_norm 1.1738 (1.5674/0.6855) mem 16099MB [2025-01-18 01:04:31 internimage_t_1k_224] (main.py 510): INFO Train: [68/300][310/312] eta 0:00:00 lr 0.003505 time 0.4390 (0.4707) model_time 0.4389 (0.4640) loss 3.7265 (3.5156) grad_norm 1.9683 (1.5518/0.6806) mem 16099MB [2025-01-18 01:04:32 internimage_t_1k_224] (main.py 519): INFO EPOCH 68 training takes 0:02:26 [2025-01-18 01:04:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_68.pth saving...... [2025-01-18 01:04:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_68.pth saved !!! [2025-01-18 01:04:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.324 (7.324) Loss 0.9583 (0.9583) Acc@1 78.662 (78.662) Acc@5 95.020 (95.020) Mem 16099MB [2025-01-18 01:04:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.979) Loss 1.4198 (1.1660) Acc@1 68.750 (74.838) Acc@5 89.868 (92.640) Mem 16099MB [2025-01-18 01:04:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:68] * Acc@1 74.860 Acc@5 92.726 [2025-01-18 01:04:44 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.9% [2025-01-18 01:04:44 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.19% [2025-01-18 01:04:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.424 (8.424) Loss 1.6587 (1.6587) Acc@1 67.603 (67.603) Acc@5 88.525 (88.525) Mem 16099MB [2025-01-18 01:04:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.127) Loss 2.1684 (1.8500) Acc@1 57.959 (64.355) Acc@5 81.177 (85.835) Mem 16099MB [2025-01-18 01:04:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:68] * Acc@1 64.311 Acc@5 85.897 [2025-01-18 01:04:56 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 64.3% [2025-01-18 01:04:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:04:58 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:04:58 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 64.31% [2025-01-18 01:05:00 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][0/312] eta 0:12:01 lr 0.003505 time 2.3120 (2.3120) model_time 0.4707 (0.4707) loss 2.9082 (2.9082) grad_norm 1.4431 (1.4431/0.0000) mem 16099MB [2025-01-18 01:05:05 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][10/312] eta 0:03:12 lr 0.003505 time 0.4518 (0.6381) model_time 0.4516 (0.4705) loss 2.8410 (3.1855) grad_norm 1.0671 (1.2221/0.3500) mem 16099MB [2025-01-18 01:05:09 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][20/312] eta 0:02:40 lr 0.003504 time 0.4558 (0.5500) model_time 0.4557 (0.4621) loss 3.4711 (3.2844) grad_norm 1.0422 (1.3057/0.3941) mem 16099MB [2025-01-18 01:05:14 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][30/312] eta 0:02:28 lr 0.003504 time 0.4707 (0.5257) model_time 0.4702 (0.4661) loss 2.8397 (3.2484) grad_norm 4.5533 (1.5075/0.7425) mem 16099MB [2025-01-18 01:05:19 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][40/312] eta 0:02:18 lr 0.003503 time 0.4606 (0.5095) model_time 0.4602 (0.4643) loss 4.2818 (3.3712) grad_norm 2.6556 (1.5989/0.8283) mem 16099MB [2025-01-18 01:05:23 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][50/312] eta 0:02:11 lr 0.003503 time 0.4520 (0.5014) model_time 0.4518 (0.4649) loss 3.7216 (3.4118) grad_norm 2.0091 (1.6109/0.8516) mem 16099MB [2025-01-18 01:05:28 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][60/312] eta 0:02:04 lr 0.003503 time 0.4596 (0.4935) model_time 0.4592 (0.4630) loss 3.0538 (3.4300) grad_norm 0.7415 (1.5895/0.8192) mem 16099MB [2025-01-18 01:05:32 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][70/312] eta 0:01:58 lr 0.003502 time 0.6053 (0.4897) model_time 0.6049 (0.4634) loss 3.7409 (3.3808) grad_norm 2.4938 (1.5697/0.7808) mem 16099MB [2025-01-18 01:05:37 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][80/312] eta 0:01:53 lr 0.003502 time 0.4624 (0.4879) model_time 0.4620 (0.4648) loss 2.5516 (3.3805) grad_norm 1.1818 (1.6336/0.8043) mem 16099MB [2025-01-18 01:05:42 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][90/312] eta 0:01:48 lr 0.003501 time 0.4578 (0.4884) model_time 0.4576 (0.4679) loss 4.2531 (3.3787) grad_norm 1.1173 (1.5970/0.7806) mem 16099MB [2025-01-18 01:05:47 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][100/312] eta 0:01:43 lr 0.003501 time 0.4680 (0.4859) model_time 0.4678 (0.4673) loss 3.7888 (3.4124) grad_norm 1.7008 (1.5876/0.7633) mem 16099MB [2025-01-18 01:05:51 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][110/312] eta 0:01:37 lr 0.003500 time 0.4678 (0.4843) model_time 0.4676 (0.4674) loss 3.3861 (3.4356) grad_norm 2.5791 (1.5738/0.7475) mem 16099MB [2025-01-18 01:05:56 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][120/312] eta 0:01:32 lr 0.003500 time 0.4620 (0.4840) model_time 0.4615 (0.4684) loss 3.9549 (3.4554) grad_norm 2.2703 (1.5685/0.7285) mem 16099MB [2025-01-18 01:06:01 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][130/312] eta 0:01:27 lr 0.003499 time 0.4450 (0.4827) model_time 0.4446 (0.4683) loss 2.9952 (3.4490) grad_norm 1.3447 (1.5350/0.7201) mem 16099MB [2025-01-18 01:06:06 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][140/312] eta 0:01:22 lr 0.003499 time 0.4618 (0.4822) model_time 0.4616 (0.4688) loss 3.3291 (3.4547) grad_norm 1.1376 (1.5270/0.7081) mem 16099MB [2025-01-18 01:06:10 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][150/312] eta 0:01:17 lr 0.003499 time 0.4430 (0.4814) model_time 0.4425 (0.4688) loss 4.4029 (3.4695) grad_norm 3.1824 (1.5396/0.7064) mem 16099MB [2025-01-18 01:06:15 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][160/312] eta 0:01:13 lr 0.003498 time 0.4497 (0.4804) model_time 0.4495 (0.4686) loss 3.2142 (3.4678) grad_norm 2.0697 (1.5401/0.6961) mem 16099MB [2025-01-18 01:06:20 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][170/312] eta 0:01:08 lr 0.003498 time 0.4418 (0.4803) model_time 0.4414 (0.4691) loss 3.1865 (3.4788) grad_norm 2.2828 (1.5419/0.6921) mem 16099MB [2025-01-18 01:06:24 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][180/312] eta 0:01:03 lr 0.003497 time 0.4564 (0.4792) model_time 0.4562 (0.4687) loss 4.0573 (3.4844) grad_norm 1.7405 (1.5483/0.6791) mem 16099MB [2025-01-18 01:06:29 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][190/312] eta 0:00:58 lr 0.003497 time 0.4608 (0.4781) model_time 0.4603 (0.4681) loss 3.8723 (3.5019) grad_norm 2.4806 (1.5647/0.6810) mem 16099MB [2025-01-18 01:06:34 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][200/312] eta 0:00:53 lr 0.003496 time 0.4537 (0.4774) model_time 0.4533 (0.4679) loss 2.8090 (3.5065) grad_norm 0.9603 (1.5456/0.6710) mem 16099MB [2025-01-18 01:06:38 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][210/312] eta 0:00:48 lr 0.003496 time 0.4613 (0.4763) model_time 0.4609 (0.4672) loss 3.5614 (3.5119) grad_norm 1.9856 (1.5872/0.7881) mem 16099MB [2025-01-18 01:06:43 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][220/312] eta 0:00:43 lr 0.003496 time 0.4609 (0.4752) model_time 0.4608 (0.4665) loss 2.8723 (3.5098) grad_norm 1.8066 (1.5788/0.7742) mem 16099MB [2025-01-18 01:06:47 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][230/312] eta 0:00:38 lr 0.003495 time 0.4586 (0.4742) model_time 0.4584 (0.4659) loss 3.9223 (3.5160) grad_norm 0.9441 (1.5809/0.7736) mem 16099MB [2025-01-18 01:06:52 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][240/312] eta 0:00:34 lr 0.003495 time 0.4517 (0.4732) model_time 0.4516 (0.4652) loss 2.9353 (3.5259) grad_norm 1.4248 (1.5857/0.7978) mem 16099MB [2025-01-18 01:06:56 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][250/312] eta 0:00:29 lr 0.003494 time 0.4554 (0.4730) model_time 0.4550 (0.4652) loss 3.7868 (3.5252) grad_norm 1.8460 (1.5752/0.7932) mem 16099MB [2025-01-18 01:07:01 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][260/312] eta 0:00:24 lr 0.003494 time 0.4502 (0.4726) model_time 0.4501 (0.4652) loss 2.9599 (3.5291) grad_norm 1.1367 (1.5723/0.7820) mem 16099MB [2025-01-18 01:07:06 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][270/312] eta 0:00:19 lr 0.003493 time 0.4585 (0.4732) model_time 0.4580 (0.4660) loss 3.7766 (3.5188) grad_norm 1.5970 (1.5645/0.7728) mem 16099MB [2025-01-18 01:07:11 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][280/312] eta 0:00:15 lr 0.003493 time 0.4540 (0.4736) model_time 0.4537 (0.4666) loss 4.1389 (3.5273) grad_norm 1.0088 (1.5609/0.7688) mem 16099MB [2025-01-18 01:07:15 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][290/312] eta 0:00:10 lr 0.003492 time 0.4539 (0.4732) model_time 0.4538 (0.4665) loss 4.1608 (3.5383) grad_norm 0.9930 (1.5694/0.7675) mem 16099MB [2025-01-18 01:07:20 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][300/312] eta 0:00:05 lr 0.003492 time 0.4440 (0.4728) model_time 0.4439 (0.4663) loss 4.6805 (3.5468) grad_norm 1.9502 (1.5644/0.7595) mem 16099MB [2025-01-18 01:07:25 internimage_t_1k_224] (main.py 510): INFO Train: [69/300][310/312] eta 0:00:00 lr 0.003492 time 0.5446 (0.4722) model_time 0.5445 (0.4660) loss 3.9704 (3.5407) grad_norm 1.0207 (1.5661/0.7596) mem 16099MB [2025-01-18 01:07:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 69 training takes 0:02:27 [2025-01-18 01:07:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_69.pth saving...... [2025-01-18 01:07:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_69.pth saved !!! [2025-01-18 01:07:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.963 (7.963) Loss 0.9446 (0.9446) Acc@1 78.784 (78.784) Acc@5 95.215 (95.215) Mem 16099MB [2025-01-18 01:07:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.067) Loss 1.3756 (1.1399) Acc@1 68.506 (75.040) Acc@5 90.161 (92.991) Mem 16099MB [2025-01-18 01:07:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:69] * Acc@1 74.936 Acc@5 93.010 [2025-01-18 01:07:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.9% [2025-01-18 01:07:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.19% [2025-01-18 01:07:47 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.473 (8.473) Loss 1.6039 (1.6039) Acc@1 68.726 (68.726) Acc@5 89.160 (89.160) Mem 16099MB [2025-01-18 01:07:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.130) Loss 2.1171 (1.8006) Acc@1 58.911 (65.186) Acc@5 81.934 (86.441) Mem 16099MB [2025-01-18 01:07:51 internimage_t_1k_224] (main.py 575): INFO [Epoch:69] * Acc@1 65.143 Acc@5 86.526 [2025-01-18 01:07:51 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 65.1% [2025-01-18 01:07:51 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:07:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:07:52 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 65.14% [2025-01-18 01:07:55 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][0/312] eta 0:14:22 lr 0.003491 time 2.7657 (2.7657) model_time 0.5727 (0.5727) loss 4.0858 (4.0858) grad_norm 2.5221 (2.5221/0.0000) mem 16099MB [2025-01-18 01:07:59 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][10/312] eta 0:03:21 lr 0.003491 time 0.4559 (0.6679) model_time 0.4554 (0.4682) loss 4.0707 (3.4837) grad_norm 4.4486 (2.3169/1.1039) mem 16099MB [2025-01-18 01:08:04 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][20/312] eta 0:02:46 lr 0.003491 time 0.5318 (0.5696) model_time 0.5314 (0.4648) loss 3.3150 (3.4825) grad_norm 0.9940 (1.9477/1.0482) mem 16099MB [2025-01-18 01:08:09 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][30/312] eta 0:02:30 lr 0.003490 time 0.4507 (0.5345) model_time 0.4505 (0.4634) loss 4.4644 (3.6054) grad_norm 1.1451 (1.6922/0.9496) mem 16099MB [2025-01-18 01:08:13 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][40/312] eta 0:02:20 lr 0.003490 time 0.4556 (0.5170) model_time 0.4551 (0.4632) loss 2.9743 (3.5949) grad_norm 1.0166 (1.6186/0.8814) mem 16099MB [2025-01-18 01:08:18 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][50/312] eta 0:02:12 lr 0.003489 time 0.4451 (0.5045) model_time 0.4447 (0.4611) loss 4.0056 (3.5702) grad_norm 1.0858 (1.5245/0.8195) mem 16099MB [2025-01-18 01:08:22 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][60/312] eta 0:02:05 lr 0.003489 time 0.4575 (0.4984) model_time 0.4570 (0.4621) loss 4.1332 (3.6200) grad_norm 1.1203 (1.6004/0.9117) mem 16099MB [2025-01-18 01:08:27 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][70/312] eta 0:01:59 lr 0.003488 time 0.4565 (0.4921) model_time 0.4563 (0.4609) loss 2.8429 (3.5495) grad_norm 1.2577 (1.5824/0.9021) mem 16099MB [2025-01-18 01:08:32 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][80/312] eta 0:01:53 lr 0.003488 time 0.4531 (0.4890) model_time 0.4526 (0.4616) loss 3.0118 (3.5759) grad_norm 1.1115 (1.5545/0.8626) mem 16099MB [2025-01-18 01:08:36 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][90/312] eta 0:01:48 lr 0.003487 time 0.4420 (0.4867) model_time 0.4416 (0.4622) loss 2.8351 (3.5882) grad_norm 1.7875 (1.5296/0.8225) mem 16099MB [2025-01-18 01:08:41 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][100/312] eta 0:01:43 lr 0.003487 time 0.4420 (0.4866) model_time 0.4418 (0.4644) loss 4.3612 (3.5875) grad_norm 2.0578 (1.5801/0.8122) mem 16099MB [2025-01-18 01:08:46 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][110/312] eta 0:01:38 lr 0.003487 time 0.4496 (0.4855) model_time 0.4492 (0.4653) loss 3.8450 (3.5680) grad_norm 1.7378 (1.6048/0.8072) mem 16099MB [2025-01-18 01:08:50 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][120/312] eta 0:01:32 lr 0.003486 time 0.4486 (0.4831) model_time 0.4484 (0.4645) loss 4.0257 (3.5679) grad_norm 0.8078 (1.5568/0.7922) mem 16099MB [2025-01-18 01:08:55 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][130/312] eta 0:01:27 lr 0.003486 time 0.4513 (0.4809) model_time 0.4508 (0.4637) loss 3.1129 (3.5515) grad_norm 1.1165 (1.5323/0.7753) mem 16099MB [2025-01-18 01:09:00 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][140/312] eta 0:01:22 lr 0.003485 time 0.4505 (0.4793) model_time 0.4501 (0.4633) loss 2.5809 (3.5659) grad_norm 1.2516 (1.5077/0.7553) mem 16099MB [2025-01-18 01:09:05 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][150/312] eta 0:01:18 lr 0.003485 time 0.5383 (0.4815) model_time 0.5381 (0.4666) loss 2.7246 (3.5701) grad_norm 0.8602 (1.5075/0.7460) mem 16099MB [2025-01-18 01:09:09 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][160/312] eta 0:01:13 lr 0.003484 time 0.4470 (0.4807) model_time 0.4466 (0.4666) loss 3.1571 (3.5683) grad_norm 1.5540 (1.5491/0.7986) mem 16099MB [2025-01-18 01:09:14 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][170/312] eta 0:01:08 lr 0.003484 time 0.4571 (0.4807) model_time 0.4567 (0.4675) loss 3.2538 (3.5882) grad_norm 1.1796 (1.5363/0.7844) mem 16099MB [2025-01-18 01:09:19 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][180/312] eta 0:01:03 lr 0.003483 time 0.4628 (0.4793) model_time 0.4626 (0.4667) loss 3.4083 (3.5840) grad_norm 1.5638 (1.5469/0.7751) mem 16099MB [2025-01-18 01:09:23 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][190/312] eta 0:00:58 lr 0.003483 time 0.4396 (0.4783) model_time 0.4392 (0.4664) loss 2.4018 (3.5719) grad_norm 1.3224 (1.5662/0.7906) mem 16099MB [2025-01-18 01:09:28 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][200/312] eta 0:00:53 lr 0.003483 time 0.4421 (0.4780) model_time 0.4416 (0.4667) loss 4.2253 (3.5600) grad_norm 2.1005 (1.5882/0.7881) mem 16099MB [2025-01-18 01:09:33 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][210/312] eta 0:00:48 lr 0.003482 time 0.4361 (0.4770) model_time 0.4356 (0.4662) loss 3.0417 (3.5651) grad_norm 1.6336 (1.5864/0.7710) mem 16099MB [2025-01-18 01:09:37 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][220/312] eta 0:00:43 lr 0.003482 time 0.4505 (0.4767) model_time 0.4503 (0.4663) loss 2.7855 (3.5647) grad_norm 0.6559 (1.5742/0.7615) mem 16099MB [2025-01-18 01:09:42 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][230/312] eta 0:00:39 lr 0.003481 time 0.4507 (0.4758) model_time 0.4506 (0.4658) loss 3.9271 (3.5744) grad_norm 0.6831 (1.5808/0.7667) mem 16099MB [2025-01-18 01:09:47 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][240/312] eta 0:00:34 lr 0.003481 time 0.4403 (0.4759) model_time 0.4398 (0.4664) loss 3.9510 (3.5681) grad_norm 1.5720 (1.5708/0.7575) mem 16099MB [2025-01-18 01:09:51 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][250/312] eta 0:00:29 lr 0.003480 time 0.4510 (0.4753) model_time 0.4506 (0.4661) loss 4.4953 (3.5649) grad_norm 0.9566 (1.5580/0.7479) mem 16099MB [2025-01-18 01:09:56 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][260/312] eta 0:00:24 lr 0.003480 time 0.4486 (0.4745) model_time 0.4482 (0.4657) loss 3.5599 (3.5597) grad_norm 0.8523 (1.5430/0.7395) mem 16099MB [2025-01-18 01:10:00 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][270/312] eta 0:00:19 lr 0.003479 time 0.4496 (0.4739) model_time 0.4492 (0.4654) loss 3.6725 (3.5606) grad_norm 0.9503 (1.5492/0.7407) mem 16099MB [2025-01-18 01:10:05 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][280/312] eta 0:00:15 lr 0.003479 time 0.4808 (0.4735) model_time 0.4804 (0.4653) loss 2.6305 (3.5491) grad_norm 1.9612 (1.5498/0.7376) mem 16099MB [2025-01-18 01:10:10 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][290/312] eta 0:00:10 lr 0.003478 time 0.4506 (0.4732) model_time 0.4502 (0.4653) loss 2.8357 (3.5435) grad_norm 1.3912 (1.5410/0.7312) mem 16099MB [2025-01-18 01:10:14 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][300/312] eta 0:00:05 lr 0.003478 time 0.4390 (0.4724) model_time 0.4389 (0.4647) loss 3.7292 (3.5419) grad_norm 2.1501 (1.5475/0.7219) mem 16099MB [2025-01-18 01:10:19 internimage_t_1k_224] (main.py 510): INFO Train: [70/300][310/312] eta 0:00:00 lr 0.003478 time 0.4422 (0.4714) model_time 0.4421 (0.4639) loss 4.1296 (3.5449) grad_norm 2.7277 (1.5535/0.7123) mem 16099MB [2025-01-18 01:10:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 70 training takes 0:02:27 [2025-01-18 01:10:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_70.pth saving...... [2025-01-18 01:10:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_70.pth saved !!! [2025-01-18 01:10:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.161 (7.161) Loss 0.9790 (0.9790) Acc@1 79.126 (79.126) Acc@5 95.044 (95.044) Mem 16099MB [2025-01-18 01:10:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.977) Loss 1.4214 (1.1658) Acc@1 67.773 (74.905) Acc@5 89.917 (92.876) Mem 16099MB [2025-01-18 01:10:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:70] * Acc@1 74.912 Acc@5 92.946 [2025-01-18 01:10:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 74.9% [2025-01-18 01:10:31 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.19% [2025-01-18 01:10:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.049 (8.049) Loss 1.5548 (1.5548) Acc@1 69.458 (69.458) Acc@5 89.819 (89.819) Mem 16099MB [2025-01-18 01:10:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.086) Loss 2.0691 (1.7552) Acc@1 59.595 (65.916) Acc@5 82.642 (86.981) Mem 16099MB [2025-01-18 01:10:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:70] * Acc@1 65.873 Acc@5 87.062 [2025-01-18 01:10:43 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 65.9% [2025-01-18 01:10:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:10:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:10:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 65.87% [2025-01-18 01:10:47 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][0/312] eta 0:14:19 lr 0.003477 time 2.7537 (2.7537) model_time 0.4795 (0.4795) loss 2.8240 (2.8240) grad_norm 5.4877 (5.4877/0.0000) mem 16099MB [2025-01-18 01:10:52 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][10/312] eta 0:03:28 lr 0.003477 time 0.5697 (0.6915) model_time 0.5696 (0.4844) loss 4.1389 (3.3010) grad_norm 1.6206 (2.0542/1.1547) mem 16099MB [2025-01-18 01:10:57 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][20/312] eta 0:02:49 lr 0.003477 time 0.4802 (0.5801) model_time 0.4800 (0.4714) loss 3.6398 (3.4490) grad_norm 0.7861 (1.6824/0.9469) mem 16099MB [2025-01-18 01:11:01 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][30/312] eta 0:02:33 lr 0.003476 time 0.4590 (0.5426) model_time 0.4586 (0.4689) loss 3.8911 (3.5612) grad_norm 1.0727 (1.5157/0.8350) mem 16099MB [2025-01-18 01:11:06 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][40/312] eta 0:02:23 lr 0.003476 time 0.4596 (0.5274) model_time 0.4594 (0.4716) loss 3.1543 (3.5301) grad_norm 1.8087 (1.5450/0.7850) mem 16099MB [2025-01-18 01:11:11 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][50/312] eta 0:02:14 lr 0.003475 time 0.4516 (0.5143) model_time 0.4514 (0.4694) loss 3.6703 (3.5179) grad_norm 2.8260 (1.5797/0.7510) mem 16099MB [2025-01-18 01:11:15 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][60/312] eta 0:02:07 lr 0.003475 time 0.4396 (0.5047) model_time 0.4394 (0.4671) loss 4.0420 (3.5244) grad_norm 1.2730 (1.5764/0.7332) mem 16099MB [2025-01-18 01:11:20 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][70/312] eta 0:02:00 lr 0.003474 time 0.4455 (0.4986) model_time 0.4451 (0.4660) loss 4.3797 (3.5544) grad_norm 1.2609 (1.5244/0.6969) mem 16099MB [2025-01-18 01:11:25 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][80/312] eta 0:01:54 lr 0.003474 time 0.4640 (0.4944) model_time 0.4639 (0.4658) loss 4.2794 (3.5483) grad_norm 1.6162 (1.5423/0.6770) mem 16099MB [2025-01-18 01:11:29 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][90/312] eta 0:01:49 lr 0.003473 time 0.4454 (0.4925) model_time 0.4453 (0.4671) loss 3.6852 (3.5410) grad_norm 1.3594 (1.5053/0.6534) mem 16099MB [2025-01-18 01:11:34 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][100/312] eta 0:01:43 lr 0.003473 time 0.4511 (0.4886) model_time 0.4509 (0.4656) loss 3.8559 (3.5614) grad_norm 1.5532 (1.4932/0.6358) mem 16099MB [2025-01-18 01:11:39 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][110/312] eta 0:01:38 lr 0.003473 time 0.4406 (0.4877) model_time 0.4402 (0.4667) loss 4.0581 (3.5923) grad_norm 2.4109 (1.4886/0.6226) mem 16099MB [2025-01-18 01:11:43 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][120/312] eta 0:01:33 lr 0.003472 time 0.4675 (0.4857) model_time 0.4674 (0.4664) loss 3.4621 (3.6107) grad_norm 0.7936 (1.4830/0.6346) mem 16099MB [2025-01-18 01:11:48 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][130/312] eta 0:01:28 lr 0.003472 time 0.4444 (0.4854) model_time 0.4442 (0.4676) loss 3.9905 (3.6288) grad_norm 1.8844 (1.4893/0.6270) mem 16099MB [2025-01-18 01:11:53 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][140/312] eta 0:01:23 lr 0.003471 time 0.4449 (0.4838) model_time 0.4445 (0.4672) loss 3.9536 (3.6112) grad_norm 2.0157 (1.4960/0.6367) mem 16099MB [2025-01-18 01:11:58 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][150/312] eta 0:01:18 lr 0.003471 time 0.4475 (0.4830) model_time 0.4471 (0.4674) loss 4.6504 (3.5935) grad_norm 1.1122 (1.5149/0.6711) mem 16099MB [2025-01-18 01:12:02 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][160/312] eta 0:01:13 lr 0.003470 time 0.4647 (0.4822) model_time 0.4643 (0.4677) loss 3.8444 (3.5971) grad_norm 1.9434 (1.5540/0.6875) mem 16099MB [2025-01-18 01:12:07 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][170/312] eta 0:01:08 lr 0.003470 time 0.4670 (0.4817) model_time 0.4666 (0.4679) loss 4.3358 (3.6041) grad_norm 0.7838 (1.5386/0.6747) mem 16099MB [2025-01-18 01:12:12 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][180/312] eta 0:01:03 lr 0.003469 time 0.4467 (0.4818) model_time 0.4463 (0.4688) loss 4.2002 (3.6242) grad_norm 1.4484 (1.5446/0.6832) mem 16099MB [2025-01-18 01:12:16 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][190/312] eta 0:00:58 lr 0.003469 time 0.4619 (0.4805) model_time 0.4617 (0.4681) loss 3.3664 (3.6301) grad_norm 2.0243 (1.5340/0.6708) mem 16099MB [2025-01-18 01:12:21 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][200/312] eta 0:00:53 lr 0.003468 time 0.4663 (0.4797) model_time 0.4661 (0.4680) loss 3.0352 (3.6273) grad_norm 1.0629 (1.5267/0.6598) mem 16099MB [2025-01-18 01:12:26 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][210/312] eta 0:00:48 lr 0.003468 time 0.4400 (0.4789) model_time 0.4398 (0.4677) loss 3.8312 (3.6321) grad_norm 1.0201 (1.5318/0.6565) mem 16099MB [2025-01-18 01:12:30 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][220/312] eta 0:00:43 lr 0.003468 time 0.4770 (0.4781) model_time 0.4766 (0.4674) loss 4.2589 (3.6238) grad_norm 1.5274 (1.5348/0.6535) mem 16099MB [2025-01-18 01:12:35 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][230/312] eta 0:00:39 lr 0.003467 time 0.4476 (0.4773) model_time 0.4475 (0.4671) loss 3.6212 (3.6249) grad_norm 1.1090 (1.5332/0.6472) mem 16099MB [2025-01-18 01:12:39 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][240/312] eta 0:00:34 lr 0.003467 time 0.4462 (0.4762) model_time 0.4458 (0.4664) loss 3.3928 (3.6241) grad_norm 1.7157 (1.5236/0.6397) mem 16099MB [2025-01-18 01:12:44 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][250/312] eta 0:00:29 lr 0.003466 time 0.4426 (0.4767) model_time 0.4424 (0.4672) loss 4.4463 (3.6271) grad_norm 2.6952 (1.5530/0.6909) mem 16099MB [2025-01-18 01:12:49 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][260/312] eta 0:00:24 lr 0.003466 time 0.4467 (0.4765) model_time 0.4465 (0.4673) loss 2.7369 (3.6181) grad_norm 2.8147 (1.5483/0.6891) mem 16099MB [2025-01-18 01:12:54 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][270/312] eta 0:00:19 lr 0.003465 time 0.4486 (0.4762) model_time 0.4482 (0.4673) loss 3.4804 (3.6216) grad_norm 1.4949 (1.5446/0.6863) mem 16099MB [2025-01-18 01:12:58 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][280/312] eta 0:00:15 lr 0.003465 time 0.4525 (0.4759) model_time 0.4520 (0.4674) loss 3.6155 (3.6203) grad_norm 1.7340 (1.5608/0.6943) mem 16099MB [2025-01-18 01:13:03 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][290/312] eta 0:00:10 lr 0.003464 time 0.4687 (0.4753) model_time 0.4686 (0.4671) loss 2.7819 (3.6234) grad_norm 0.8703 (1.5465/0.6894) mem 16099MB [2025-01-18 01:13:08 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][300/312] eta 0:00:05 lr 0.003464 time 0.4375 (0.4752) model_time 0.4374 (0.4672) loss 3.8189 (3.6293) grad_norm 1.5197 (1.5230/0.6445) mem 16099MB [2025-01-18 01:13:12 internimage_t_1k_224] (main.py 510): INFO Train: [71/300][310/312] eta 0:00:00 lr 0.003463 time 0.4503 (0.4743) model_time 0.4502 (0.4666) loss 4.0053 (3.6319) grad_norm 0.9771 (1.5127/0.6495) mem 16099MB [2025-01-18 01:13:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 71 training takes 0:02:27 [2025-01-18 01:13:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_71.pth saving...... [2025-01-18 01:13:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_71.pth saved !!! [2025-01-18 01:13:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.426 (7.426) Loss 0.9473 (0.9473) Acc@1 78.955 (78.955) Acc@5 95.386 (95.386) Mem 16099MB [2025-01-18 01:13:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.002) Loss 1.3734 (1.1409) Acc@1 68.433 (75.260) Acc@5 90.381 (92.944) Mem 16099MB [2025-01-18 01:13:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:71] * Acc@1 75.296 Acc@5 93.002 [2025-01-18 01:13:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.3% [2025-01-18 01:13:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:13:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:13:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.30% [2025-01-18 01:13:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.325 (7.325) Loss 1.5081 (1.5081) Acc@1 70.312 (70.312) Acc@5 90.283 (90.283) Mem 16099MB [2025-01-18 01:13:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.001) Loss 2.0217 (1.7108) Acc@1 60.400 (66.595) Acc@5 83.276 (87.447) Mem 16099MB [2025-01-18 01:13:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:71] * Acc@1 66.547 Acc@5 87.538 [2025-01-18 01:13:37 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 66.5% [2025-01-18 01:13:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:13:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:13:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 66.55% [2025-01-18 01:13:41 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][0/312] eta 0:12:47 lr 0.003463 time 2.4611 (2.4611) model_time 0.5300 (0.5300) loss 2.7237 (2.7237) grad_norm 1.7950 (1.7950/0.0000) mem 16099MB [2025-01-18 01:13:46 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][10/312] eta 0:03:18 lr 0.003463 time 0.4479 (0.6580) model_time 0.4474 (0.4821) loss 3.6547 (3.3368) grad_norm 0.7816 (1.4231/0.5076) mem 16099MB [2025-01-18 01:13:51 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][20/312] eta 0:02:48 lr 0.003462 time 0.4466 (0.5754) model_time 0.4462 (0.4831) loss 4.1222 (3.4623) grad_norm 0.8322 (1.3872/0.4695) mem 16099MB [2025-01-18 01:13:55 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][30/312] eta 0:02:32 lr 0.003462 time 0.4714 (0.5394) model_time 0.4710 (0.4767) loss 3.2870 (3.4495) grad_norm 1.6178 (1.3533/0.4384) mem 16099MB [2025-01-18 01:14:00 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][40/312] eta 0:02:21 lr 0.003462 time 0.4458 (0.5210) model_time 0.4454 (0.4734) loss 3.8816 (3.4933) grad_norm 3.0940 (1.6091/0.8901) mem 16099MB [2025-01-18 01:14:05 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][50/312] eta 0:02:14 lr 0.003461 time 0.4455 (0.5117) model_time 0.4453 (0.4735) loss 3.7339 (3.5728) grad_norm 2.3447 (1.7145/0.9200) mem 16099MB [2025-01-18 01:14:10 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][60/312] eta 0:02:07 lr 0.003461 time 0.4422 (0.5053) model_time 0.4418 (0.4733) loss 3.9840 (3.5751) grad_norm 1.3900 (1.7248/0.8613) mem 16099MB [2025-01-18 01:14:14 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][70/312] eta 0:02:00 lr 0.003460 time 0.4735 (0.4992) model_time 0.4733 (0.4716) loss 2.3613 (3.5616) grad_norm 0.7663 (1.6685/0.8420) mem 16099MB [2025-01-18 01:14:19 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][80/312] eta 0:01:54 lr 0.003460 time 0.4390 (0.4943) model_time 0.4388 (0.4701) loss 2.2753 (3.5363) grad_norm 0.6845 (1.6103/0.8172) mem 16099MB [2025-01-18 01:14:23 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][90/312] eta 0:01:48 lr 0.003459 time 0.5247 (0.4909) model_time 0.5242 (0.4693) loss 4.5101 (3.5439) grad_norm 1.1422 (1.5607/0.7888) mem 16099MB [2025-01-18 01:14:28 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][100/312] eta 0:01:43 lr 0.003459 time 0.4479 (0.4872) model_time 0.4474 (0.4677) loss 3.9567 (3.5265) grad_norm 1.1152 (1.5570/0.7684) mem 16099MB [2025-01-18 01:14:33 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][110/312] eta 0:01:38 lr 0.003458 time 0.4530 (0.4853) model_time 0.4528 (0.4675) loss 4.6230 (3.5407) grad_norm 1.2153 (1.5704/0.7606) mem 16099MB [2025-01-18 01:14:37 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][120/312] eta 0:01:32 lr 0.003458 time 0.4603 (0.4830) model_time 0.4602 (0.4667) loss 4.0782 (3.5385) grad_norm 1.3274 (1.5757/0.7386) mem 16099MB [2025-01-18 01:14:42 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][130/312] eta 0:01:27 lr 0.003457 time 0.5418 (0.4827) model_time 0.5416 (0.4676) loss 3.9358 (3.5114) grad_norm 0.8008 (1.5694/0.7309) mem 16099MB [2025-01-18 01:14:47 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][140/312] eta 0:01:23 lr 0.003457 time 0.7338 (0.4839) model_time 0.7336 (0.4698) loss 3.4997 (3.5231) grad_norm 0.8471 (1.5640/0.7332) mem 16099MB [2025-01-18 01:14:52 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][150/312] eta 0:01:18 lr 0.003457 time 0.4498 (0.4822) model_time 0.4494 (0.4690) loss 4.4100 (3.5237) grad_norm 0.8127 (1.5656/0.7294) mem 16099MB [2025-01-18 01:14:56 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][160/312] eta 0:01:13 lr 0.003456 time 0.4496 (0.4812) model_time 0.4494 (0.4688) loss 3.2360 (3.5252) grad_norm 0.7871 (1.5867/0.7385) mem 16099MB [2025-01-18 01:15:01 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][170/312] eta 0:01:08 lr 0.003456 time 0.4432 (0.4799) model_time 0.4431 (0.4682) loss 3.7880 (3.5357) grad_norm 0.9788 (1.5597/0.7273) mem 16099MB [2025-01-18 01:15:05 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][180/312] eta 0:01:03 lr 0.003455 time 0.4598 (0.4789) model_time 0.4594 (0.4678) loss 3.3586 (3.5398) grad_norm 2.4970 (1.5638/0.7580) mem 16099MB [2025-01-18 01:15:10 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][190/312] eta 0:00:58 lr 0.003455 time 0.4561 (0.4775) model_time 0.4556 (0.4670) loss 4.0896 (3.5521) grad_norm 0.9532 (1.5403/0.7481) mem 16099MB [2025-01-18 01:15:15 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][200/312] eta 0:00:53 lr 0.003454 time 0.4477 (0.4777) model_time 0.4473 (0.4677) loss 2.8574 (3.5522) grad_norm 0.8305 (1.5313/0.7350) mem 16099MB [2025-01-18 01:15:19 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][210/312] eta 0:00:48 lr 0.003454 time 0.4472 (0.4771) model_time 0.4466 (0.4676) loss 2.9323 (3.5419) grad_norm 1.3573 (1.5317/0.7281) mem 16099MB [2025-01-18 01:15:24 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][220/312] eta 0:00:43 lr 0.003453 time 0.4529 (0.4765) model_time 0.4525 (0.4674) loss 3.5397 (3.5297) grad_norm 1.1391 (1.5173/0.7185) mem 16099MB [2025-01-18 01:15:29 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][230/312] eta 0:00:39 lr 0.003453 time 0.4501 (0.4758) model_time 0.4497 (0.4670) loss 3.1049 (3.5181) grad_norm 0.6783 (1.5077/0.7072) mem 16099MB [2025-01-18 01:15:33 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][240/312] eta 0:00:34 lr 0.003452 time 0.4426 (0.4757) model_time 0.4424 (0.4673) loss 2.6459 (3.5131) grad_norm 0.9710 (1.5291/0.7273) mem 16099MB [2025-01-18 01:15:38 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][250/312] eta 0:00:29 lr 0.003452 time 0.4527 (0.4755) model_time 0.4522 (0.4674) loss 2.5959 (3.5112) grad_norm 2.3734 (1.5539/0.7461) mem 16099MB [2025-01-18 01:15:43 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][260/312] eta 0:00:24 lr 0.003451 time 0.4521 (0.4756) model_time 0.4517 (0.4678) loss 4.4349 (3.5155) grad_norm 1.5656 (1.5478/0.7370) mem 16099MB [2025-01-18 01:15:47 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][270/312] eta 0:00:19 lr 0.003451 time 0.4543 (0.4748) model_time 0.4539 (0.4672) loss 2.5410 (3.5175) grad_norm 1.7229 (1.5675/0.7611) mem 16099MB [2025-01-18 01:15:52 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][280/312] eta 0:00:15 lr 0.003451 time 0.4403 (0.4746) model_time 0.4398 (0.4673) loss 3.5786 (3.5218) grad_norm 1.7045 (1.5615/0.7545) mem 16099MB [2025-01-18 01:15:57 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][290/312] eta 0:00:10 lr 0.003450 time 0.4510 (0.4743) model_time 0.4506 (0.4672) loss 3.4421 (3.5243) grad_norm 0.6285 (1.5522/0.7487) mem 16099MB [2025-01-18 01:16:01 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][300/312] eta 0:00:05 lr 0.003450 time 0.4384 (0.4740) model_time 0.4383 (0.4672) loss 2.8658 (3.5300) grad_norm 0.9007 (1.5404/0.7437) mem 16099MB [2025-01-18 01:16:06 internimage_t_1k_224] (main.py 510): INFO Train: [72/300][310/312] eta 0:00:00 lr 0.003449 time 0.4394 (0.4730) model_time 0.4394 (0.4664) loss 3.6103 (3.5200) grad_norm 1.0771 (1.5528/0.7529) mem 16099MB [2025-01-18 01:16:06 internimage_t_1k_224] (main.py 519): INFO EPOCH 72 training takes 0:02:27 [2025-01-18 01:16:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_72.pth saving...... [2025-01-18 01:16:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_72.pth saved !!! [2025-01-18 01:16:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.194 (7.194) Loss 0.9706 (0.9706) Acc@1 78.613 (78.613) Acc@5 95.605 (95.605) Mem 16099MB [2025-01-18 01:16:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.100 (0.992) Loss 1.3845 (1.1631) Acc@1 70.117 (75.435) Acc@5 90.576 (93.122) Mem 16099MB [2025-01-18 01:16:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:72] * Acc@1 75.424 Acc@5 93.208 [2025-01-18 01:16:18 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.4% [2025-01-18 01:16:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:16:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:16:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.42% [2025-01-18 01:16:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.573 (7.573) Loss 1.4649 (1.4649) Acc@1 70.972 (70.972) Acc@5 90.723 (90.723) Mem 16099MB [2025-01-18 01:16:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.030) Loss 1.9780 (1.6692) Acc@1 61.084 (67.250) Acc@5 83.789 (87.942) Mem 16099MB [2025-01-18 01:16:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:72] * Acc@1 67.202 Acc@5 88.042 [2025-01-18 01:16:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 67.2% [2025-01-18 01:16:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:16:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:16:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 67.20% [2025-01-18 01:16:35 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][0/312] eta 0:14:25 lr 0.003449 time 2.7743 (2.7743) model_time 0.4821 (0.4821) loss 4.1798 (4.1798) grad_norm 2.3350 (2.3350/0.0000) mem 16099MB [2025-01-18 01:16:40 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][10/312] eta 0:03:21 lr 0.003449 time 0.4656 (0.6678) model_time 0.4652 (0.4591) loss 4.3710 (3.8931) grad_norm 1.9275 (1.8152/0.6734) mem 16099MB [2025-01-18 01:16:45 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][20/312] eta 0:02:45 lr 0.003448 time 0.4523 (0.5671) model_time 0.4521 (0.4576) loss 3.5255 (3.6594) grad_norm 1.0888 (1.7163/0.6698) mem 16099MB [2025-01-18 01:16:49 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][30/312] eta 0:02:30 lr 0.003448 time 0.4421 (0.5344) model_time 0.4419 (0.4601) loss 3.7929 (3.7129) grad_norm 1.0768 (1.5725/0.6120) mem 16099MB [2025-01-18 01:16:54 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][40/312] eta 0:02:21 lr 0.003447 time 0.4622 (0.5199) model_time 0.4621 (0.4636) loss 4.4211 (3.6831) grad_norm 1.3371 (1.5140/0.5853) mem 16099MB [2025-01-18 01:16:59 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][50/312] eta 0:02:14 lr 0.003447 time 0.4604 (0.5132) model_time 0.4603 (0.4679) loss 3.5280 (3.5865) grad_norm 2.0685 (1.5085/0.5532) mem 16099MB [2025-01-18 01:17:03 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][60/312] eta 0:02:07 lr 0.003446 time 0.4723 (0.5058) model_time 0.4719 (0.4679) loss 3.4552 (3.5887) grad_norm 1.0196 (1.4987/0.6247) mem 16099MB [2025-01-18 01:17:08 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][70/312] eta 0:02:01 lr 0.003446 time 0.4415 (0.5002) model_time 0.4413 (0.4675) loss 3.3727 (3.5664) grad_norm 1.4002 (1.4922/0.6005) mem 16099MB [2025-01-18 01:17:13 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][80/312] eta 0:01:55 lr 0.003445 time 0.4434 (0.4983) model_time 0.4429 (0.4697) loss 3.8509 (3.5643) grad_norm 3.0702 (1.5213/0.6430) mem 16099MB [2025-01-18 01:17:18 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][90/312] eta 0:01:50 lr 0.003445 time 0.4650 (0.4964) model_time 0.4649 (0.4708) loss 3.9590 (3.5329) grad_norm 1.1947 (1.5532/0.6773) mem 16099MB [2025-01-18 01:17:22 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][100/312] eta 0:01:44 lr 0.003444 time 0.4500 (0.4920) model_time 0.4496 (0.4689) loss 2.9999 (3.5007) grad_norm 1.6930 (1.5389/0.6500) mem 16099MB [2025-01-18 01:17:27 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][110/312] eta 0:01:38 lr 0.003444 time 0.4403 (0.4888) model_time 0.4398 (0.4678) loss 3.5652 (3.5052) grad_norm 0.8855 (1.5776/0.6894) mem 16099MB [2025-01-18 01:17:31 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][120/312] eta 0:01:33 lr 0.003444 time 0.4447 (0.4860) model_time 0.4446 (0.4666) loss 2.5471 (3.5155) grad_norm 3.3437 (1.5836/0.6878) mem 16099MB [2025-01-18 01:17:36 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][130/312] eta 0:01:28 lr 0.003443 time 0.4715 (0.4854) model_time 0.4714 (0.4675) loss 3.8140 (3.5169) grad_norm 0.8742 (1.5788/0.6736) mem 16099MB [2025-01-18 01:17:41 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][140/312] eta 0:01:23 lr 0.003443 time 0.4478 (0.4836) model_time 0.4476 (0.4670) loss 3.2412 (3.5358) grad_norm 1.8175 (1.5627/0.6554) mem 16099MB [2025-01-18 01:17:45 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][150/312] eta 0:01:18 lr 0.003442 time 0.4453 (0.4821) model_time 0.4449 (0.4665) loss 3.3890 (3.5295) grad_norm 2.1461 (1.5935/0.6780) mem 16099MB [2025-01-18 01:17:50 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][160/312] eta 0:01:13 lr 0.003442 time 0.4497 (0.4816) model_time 0.4493 (0.4670) loss 3.8437 (3.5308) grad_norm 1.3665 (1.6378/0.7272) mem 16099MB [2025-01-18 01:17:55 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][170/312] eta 0:01:08 lr 0.003441 time 0.4574 (0.4802) model_time 0.4573 (0.4665) loss 3.9444 (3.5312) grad_norm 1.3941 (1.6114/0.7199) mem 16099MB [2025-01-18 01:17:59 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][180/312] eta 0:01:03 lr 0.003441 time 0.4498 (0.4798) model_time 0.4493 (0.4668) loss 3.2712 (3.5283) grad_norm 2.2099 (1.6101/0.7211) mem 16099MB [2025-01-18 01:18:04 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][190/312] eta 0:00:58 lr 0.003440 time 0.4540 (0.4792) model_time 0.4536 (0.4668) loss 2.9177 (3.5341) grad_norm 1.0535 (1.5914/0.7120) mem 16099MB [2025-01-18 01:18:09 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][200/312] eta 0:00:53 lr 0.003440 time 0.5452 (0.4792) model_time 0.5448 (0.4674) loss 4.0343 (3.5272) grad_norm 0.8449 (1.5593/0.7091) mem 16099MB [2025-01-18 01:18:14 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][210/312] eta 0:00:48 lr 0.003439 time 0.4472 (0.4794) model_time 0.4470 (0.4682) loss 3.6258 (3.5271) grad_norm 3.1037 (1.5603/0.7040) mem 16099MB [2025-01-18 01:18:18 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][220/312] eta 0:00:44 lr 0.003439 time 0.5463 (0.4786) model_time 0.5461 (0.4678) loss 3.7740 (3.5296) grad_norm 1.5120 (1.5591/0.6931) mem 16099MB [2025-01-18 01:18:23 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][230/312] eta 0:00:39 lr 0.003438 time 0.4554 (0.4780) model_time 0.4549 (0.4677) loss 3.6078 (3.5325) grad_norm 0.9316 (1.5390/0.6877) mem 16099MB [2025-01-18 01:18:28 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][240/312] eta 0:00:34 lr 0.003438 time 0.4500 (0.4777) model_time 0.4498 (0.4678) loss 4.4527 (3.5431) grad_norm 1.9092 (1.5359/0.6826) mem 16099MB [2025-01-18 01:18:32 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][250/312] eta 0:00:29 lr 0.003438 time 0.4472 (0.4768) model_time 0.4467 (0.4673) loss 3.7110 (3.5332) grad_norm 1.8020 (1.5422/0.6844) mem 16099MB [2025-01-18 01:18:37 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][260/312] eta 0:00:24 lr 0.003437 time 0.4958 (0.4764) model_time 0.4956 (0.4673) loss 4.2883 (3.5304) grad_norm 1.0373 (1.5413/0.6746) mem 16099MB [2025-01-18 01:18:42 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][270/312] eta 0:00:19 lr 0.003437 time 0.4475 (0.4761) model_time 0.4471 (0.4672) loss 3.0112 (3.5271) grad_norm 1.1049 (1.5337/0.6694) mem 16099MB [2025-01-18 01:18:46 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][280/312] eta 0:00:15 lr 0.003436 time 0.4448 (0.4758) model_time 0.4442 (0.4672) loss 2.3934 (3.5189) grad_norm 1.3073 (1.5474/0.6701) mem 16099MB [2025-01-18 01:18:51 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][290/312] eta 0:00:10 lr 0.003436 time 0.4643 (0.4760) model_time 0.4639 (0.4677) loss 3.8254 (3.5186) grad_norm 1.5686 (1.5758/0.7192) mem 16099MB [2025-01-18 01:18:56 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][300/312] eta 0:00:05 lr 0.003435 time 0.4386 (0.4753) model_time 0.4385 (0.4673) loss 2.2348 (3.5161) grad_norm 0.8549 (1.5596/0.7188) mem 16099MB [2025-01-18 01:19:00 internimage_t_1k_224] (main.py 510): INFO Train: [73/300][310/312] eta 0:00:00 lr 0.003435 time 0.4377 (0.4742) model_time 0.4376 (0.4665) loss 3.6245 (3.5258) grad_norm 1.7337 (1.5368/0.7136) mem 16099MB [2025-01-18 01:19:01 internimage_t_1k_224] (main.py 519): INFO EPOCH 73 training takes 0:02:27 [2025-01-18 01:19:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_73.pth saving...... [2025-01-18 01:19:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_73.pth saved !!! [2025-01-18 01:19:09 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.700 (7.700) Loss 0.9480 (0.9480) Acc@1 79.761 (79.761) Acc@5 95.728 (95.728) Mem 16099MB [2025-01-18 01:19:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.035) Loss 1.4144 (1.1468) Acc@1 70.068 (75.573) Acc@5 89.795 (93.180) Mem 16099MB [2025-01-18 01:19:13 internimage_t_1k_224] (main.py 575): INFO [Epoch:73] * Acc@1 75.626 Acc@5 93.230 [2025-01-18 01:19:13 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.6% [2025-01-18 01:19:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:19:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:19:14 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.63% [2025-01-18 01:19:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.609 (7.609) Loss 1.4256 (1.4256) Acc@1 71.851 (71.851) Acc@5 91.357 (91.357) Mem 16099MB [2025-01-18 01:19:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.039) Loss 1.9360 (1.6308) Acc@1 61.426 (67.844) Acc@5 84.375 (88.361) Mem 16099MB [2025-01-18 01:19:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:73] * Acc@1 67.820 Acc@5 88.464 [2025-01-18 01:19:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 67.8% [2025-01-18 01:19:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:19:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:19:27 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 67.82% [2025-01-18 01:19:30 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][0/312] eta 0:13:18 lr 0.003435 time 2.5605 (2.5605) model_time 0.4974 (0.4974) loss 3.5055 (3.5055) grad_norm 3.0145 (3.0145/0.0000) mem 16099MB [2025-01-18 01:19:35 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][10/312] eta 0:03:17 lr 0.003434 time 0.5394 (0.6555) model_time 0.5393 (0.4675) loss 3.9747 (3.6012) grad_norm 1.3833 (2.0326/0.8053) mem 16099MB [2025-01-18 01:19:39 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][20/312] eta 0:02:45 lr 0.003434 time 0.4525 (0.5664) model_time 0.4524 (0.4678) loss 3.7117 (3.6754) grad_norm 1.1822 (1.6725/0.7380) mem 16099MB [2025-01-18 01:19:44 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][30/312] eta 0:02:31 lr 0.003433 time 0.4397 (0.5360) model_time 0.4395 (0.4691) loss 4.2274 (3.5302) grad_norm 0.9367 (1.6317/0.7843) mem 16099MB [2025-01-18 01:19:49 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][40/312] eta 0:02:20 lr 0.003433 time 0.4536 (0.5170) model_time 0.4532 (0.4663) loss 3.4594 (3.5529) grad_norm 1.6062 (1.5050/0.7428) mem 16099MB [2025-01-18 01:19:53 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][50/312] eta 0:02:12 lr 0.003432 time 0.4538 (0.5048) model_time 0.4536 (0.4640) loss 4.2799 (3.5438) grad_norm 1.8920 (1.6499/0.8026) mem 16099MB [2025-01-18 01:19:58 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][60/312] eta 0:02:05 lr 0.003432 time 0.4593 (0.4964) model_time 0.4591 (0.4622) loss 3.7793 (3.5524) grad_norm 1.3822 (1.6617/0.7741) mem 16099MB [2025-01-18 01:20:02 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][70/312] eta 0:01:59 lr 0.003431 time 0.4590 (0.4934) model_time 0.4586 (0.4640) loss 3.8144 (3.5691) grad_norm 1.0332 (1.6095/0.7479) mem 16099MB [2025-01-18 01:20:07 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][80/312] eta 0:01:53 lr 0.003431 time 0.4834 (0.4895) model_time 0.4829 (0.4637) loss 2.2436 (3.5400) grad_norm 1.5986 (1.5596/0.7243) mem 16099MB [2025-01-18 01:20:12 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][90/312] eta 0:01:47 lr 0.003430 time 0.4515 (0.4858) model_time 0.4511 (0.4627) loss 4.2584 (3.5452) grad_norm 2.8033 (1.5423/0.7116) mem 16099MB [2025-01-18 01:20:16 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][100/312] eta 0:01:42 lr 0.003430 time 0.4441 (0.4854) model_time 0.4436 (0.4646) loss 3.4743 (3.5191) grad_norm 1.0523 (1.5790/0.7868) mem 16099MB [2025-01-18 01:20:21 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][110/312] eta 0:01:37 lr 0.003430 time 0.4528 (0.4836) model_time 0.4523 (0.4647) loss 4.2025 (3.5378) grad_norm 1.5716 (1.5471/0.7634) mem 16099MB [2025-01-18 01:20:26 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][120/312] eta 0:01:32 lr 0.003429 time 0.4441 (0.4837) model_time 0.4437 (0.4663) loss 4.3967 (3.5315) grad_norm 1.2001 (1.5573/0.7640) mem 16099MB [2025-01-18 01:20:31 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][130/312] eta 0:01:27 lr 0.003429 time 0.4657 (0.4821) model_time 0.4652 (0.4659) loss 3.8991 (3.5280) grad_norm 1.5265 (1.5316/0.7441) mem 16099MB [2025-01-18 01:20:35 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][140/312] eta 0:01:22 lr 0.003428 time 0.5411 (0.4812) model_time 0.5407 (0.4661) loss 4.1144 (3.5509) grad_norm 1.1136 (1.5795/0.7986) mem 16099MB [2025-01-18 01:20:40 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][150/312] eta 0:01:17 lr 0.003428 time 0.4559 (0.4805) model_time 0.4557 (0.4664) loss 3.4491 (3.5599) grad_norm 1.1958 (1.5480/0.7846) mem 16099MB [2025-01-18 01:20:45 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][160/312] eta 0:01:13 lr 0.003427 time 0.4409 (0.4816) model_time 0.4405 (0.4683) loss 3.3942 (3.5526) grad_norm 0.9763 (1.5684/0.7785) mem 16099MB [2025-01-18 01:20:49 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][170/312] eta 0:01:08 lr 0.003427 time 0.4653 (0.4800) model_time 0.4651 (0.4675) loss 3.8707 (3.5503) grad_norm 0.8122 (1.5341/0.7695) mem 16099MB [2025-01-18 01:20:54 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][180/312] eta 0:01:03 lr 0.003426 time 0.4421 (0.4794) model_time 0.4417 (0.4676) loss 2.9447 (3.5667) grad_norm 0.8598 (1.5400/0.7757) mem 16099MB [2025-01-18 01:20:59 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][190/312] eta 0:00:58 lr 0.003426 time 0.4580 (0.4780) model_time 0.4575 (0.4668) loss 4.3821 (3.5692) grad_norm 1.6905 (1.5369/0.7685) mem 16099MB [2025-01-18 01:21:03 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][200/312] eta 0:00:53 lr 0.003425 time 0.4527 (0.4769) model_time 0.4526 (0.4662) loss 2.2818 (3.5447) grad_norm 1.1106 (1.5609/0.8214) mem 16099MB [2025-01-18 01:21:08 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][210/312] eta 0:00:48 lr 0.003425 time 0.4853 (0.4762) model_time 0.4851 (0.4660) loss 1.9929 (3.5384) grad_norm 1.0903 (1.5764/0.8358) mem 16099MB [2025-01-18 01:21:13 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][220/312] eta 0:00:43 lr 0.003424 time 0.4446 (0.4756) model_time 0.4441 (0.4659) loss 4.1399 (3.5460) grad_norm 0.9957 (1.5667/0.8284) mem 16099MB [2025-01-18 01:21:17 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][230/312] eta 0:00:38 lr 0.003424 time 0.4713 (0.4753) model_time 0.4709 (0.4660) loss 3.3328 (3.5525) grad_norm 1.2985 (1.5592/0.8165) mem 16099MB [2025-01-18 01:21:22 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][240/312] eta 0:00:34 lr 0.003423 time 0.4386 (0.4749) model_time 0.4384 (0.4659) loss 3.8302 (3.5517) grad_norm 0.7340 (1.5492/0.8050) mem 16099MB [2025-01-18 01:21:26 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][250/312] eta 0:00:29 lr 0.003423 time 0.4420 (0.4744) model_time 0.4418 (0.4658) loss 3.0268 (3.5423) grad_norm 2.3445 (1.5496/0.7992) mem 16099MB [2025-01-18 01:21:31 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][260/312] eta 0:00:24 lr 0.003423 time 0.4400 (0.4744) model_time 0.4396 (0.4661) loss 3.6002 (3.5482) grad_norm 1.2445 (1.5400/0.7895) mem 16099MB [2025-01-18 01:21:36 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][270/312] eta 0:00:19 lr 0.003422 time 0.4528 (0.4743) model_time 0.4524 (0.4662) loss 3.6406 (3.5479) grad_norm 1.0816 (1.5447/0.7854) mem 16099MB [2025-01-18 01:21:41 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][280/312] eta 0:00:15 lr 0.003422 time 0.4452 (0.4738) model_time 0.4447 (0.4660) loss 3.8514 (3.5495) grad_norm 1.2132 (1.5400/0.7782) mem 16099MB [2025-01-18 01:21:45 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][290/312] eta 0:00:10 lr 0.003421 time 0.4499 (0.4734) model_time 0.4494 (0.4659) loss 3.5888 (3.5438) grad_norm 2.5593 (1.5491/0.7789) mem 16099MB [2025-01-18 01:21:50 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][300/312] eta 0:00:05 lr 0.003421 time 0.4379 (0.4730) model_time 0.4378 (0.4657) loss 2.8592 (3.5406) grad_norm 0.9164 (1.5527/0.7861) mem 16099MB [2025-01-18 01:21:55 internimage_t_1k_224] (main.py 510): INFO Train: [74/300][310/312] eta 0:00:00 lr 0.003420 time 0.4418 (0.4730) model_time 0.4417 (0.4660) loss 3.8708 (3.5374) grad_norm 1.8404 (1.5390/0.7732) mem 16099MB [2025-01-18 01:21:55 internimage_t_1k_224] (main.py 519): INFO EPOCH 74 training takes 0:02:27 [2025-01-18 01:21:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_74.pth saving...... [2025-01-18 01:21:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_74.pth saved !!! [2025-01-18 01:22:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.436 (7.436) Loss 0.9699 (0.9699) Acc@1 78.638 (78.638) Acc@5 95.654 (95.654) Mem 16099MB [2025-01-18 01:22:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.006) Loss 1.4153 (1.1796) Acc@1 70.142 (75.657) Acc@5 89.917 (93.086) Mem 16099MB [2025-01-18 01:22:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:74] * Acc@1 75.558 Acc@5 93.114 [2025-01-18 01:22:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.6% [2025-01-18 01:22:07 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.63% [2025-01-18 01:22:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.278 (8.278) Loss 1.3898 (1.3898) Acc@1 72.339 (72.339) Acc@5 91.650 (91.650) Mem 16099MB [2025-01-18 01:22:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.112) Loss 1.8970 (1.5946) Acc@1 61.914 (68.393) Acc@5 84.570 (88.681) Mem 16099MB [2025-01-18 01:22:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:74] * Acc@1 68.350 Acc@5 88.776 [2025-01-18 01:22:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 68.4% [2025-01-18 01:22:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:22:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:22:21 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 68.35% [2025-01-18 01:22:24 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][0/312] eta 0:12:31 lr 0.003420 time 2.4092 (2.4092) model_time 0.4620 (0.4620) loss 3.6559 (3.6559) grad_norm 1.2145 (1.2145/0.0000) mem 16099MB [2025-01-18 01:22:28 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][10/312] eta 0:03:12 lr 0.003420 time 0.4394 (0.6362) model_time 0.4393 (0.4588) loss 3.3534 (3.3004) grad_norm 2.0921 (1.2658/0.3527) mem 16099MB [2025-01-18 01:22:33 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][20/312] eta 0:02:40 lr 0.003419 time 0.4594 (0.5513) model_time 0.4593 (0.4582) loss 3.9094 (3.2413) grad_norm 0.8900 (1.6254/0.8230) mem 16099MB [2025-01-18 01:22:37 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][30/312] eta 0:02:26 lr 0.003419 time 0.4520 (0.5199) model_time 0.4518 (0.4567) loss 3.8238 (3.2558) grad_norm 1.4089 (1.6786/0.7554) mem 16099MB [2025-01-18 01:22:42 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][40/312] eta 0:02:17 lr 0.003418 time 0.4414 (0.5039) model_time 0.4410 (0.4561) loss 2.5958 (3.3009) grad_norm 1.9975 (1.8352/0.7872) mem 16099MB [2025-01-18 01:22:47 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][50/312] eta 0:02:10 lr 0.003418 time 0.4496 (0.4986) model_time 0.4495 (0.4601) loss 3.4383 (3.3687) grad_norm 0.8187 (1.7624/0.7672) mem 16099MB [2025-01-18 01:22:51 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][60/312] eta 0:02:04 lr 0.003417 time 0.5483 (0.4928) model_time 0.5481 (0.4605) loss 3.7210 (3.4484) grad_norm 1.1662 (1.6672/0.7437) mem 16099MB [2025-01-18 01:22:56 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][70/312] eta 0:01:58 lr 0.003417 time 0.4964 (0.4905) model_time 0.4962 (0.4628) loss 3.3452 (3.4595) grad_norm 1.0702 (1.6764/0.7420) mem 16099MB [2025-01-18 01:23:01 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][80/312] eta 0:01:53 lr 0.003416 time 0.4447 (0.4875) model_time 0.4443 (0.4631) loss 3.0685 (3.4761) grad_norm 1.2278 (1.6606/0.7324) mem 16099MB [2025-01-18 01:23:06 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][90/312] eta 0:01:47 lr 0.003416 time 0.5582 (0.4850) model_time 0.5577 (0.4633) loss 3.0857 (3.4680) grad_norm 3.4518 (1.6563/0.7361) mem 16099MB [2025-01-18 01:23:10 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][100/312] eta 0:01:42 lr 0.003415 time 0.4637 (0.4825) model_time 0.4635 (0.4629) loss 2.9103 (3.4445) grad_norm 1.1720 (1.6372/0.7100) mem 16099MB [2025-01-18 01:23:15 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][110/312] eta 0:01:37 lr 0.003415 time 0.4435 (0.4809) model_time 0.4434 (0.4631) loss 2.9594 (3.4588) grad_norm 0.9512 (1.6142/0.6898) mem 16099MB [2025-01-18 01:23:19 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][120/312] eta 0:01:32 lr 0.003414 time 0.5329 (0.4800) model_time 0.5328 (0.4635) loss 3.0399 (3.4622) grad_norm 1.3307 (1.5769/0.6784) mem 16099MB [2025-01-18 01:23:24 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][130/312] eta 0:01:27 lr 0.003414 time 0.4444 (0.4803) model_time 0.4440 (0.4651) loss 3.7902 (3.4731) grad_norm 3.1502 (1.6345/0.7306) mem 16099MB [2025-01-18 01:23:29 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][140/312] eta 0:01:22 lr 0.003413 time 0.5340 (0.4812) model_time 0.5336 (0.4670) loss 4.0706 (3.4737) grad_norm 1.6131 (1.6238/0.7106) mem 16099MB [2025-01-18 01:23:34 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][150/312] eta 0:01:17 lr 0.003413 time 0.4445 (0.4805) model_time 0.4444 (0.4673) loss 4.3721 (3.4855) grad_norm 1.5123 (1.6113/0.6937) mem 16099MB [2025-01-18 01:23:39 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][160/312] eta 0:01:12 lr 0.003413 time 0.4499 (0.4792) model_time 0.4497 (0.4667) loss 3.7663 (3.4995) grad_norm 0.8861 (1.6498/0.7345) mem 16099MB [2025-01-18 01:23:43 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][170/312] eta 0:01:08 lr 0.003412 time 0.4597 (0.4799) model_time 0.4595 (0.4681) loss 3.8254 (3.5079) grad_norm 0.8388 (1.6113/0.7313) mem 16099MB [2025-01-18 01:23:48 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][180/312] eta 0:01:03 lr 0.003412 time 0.4903 (0.4793) model_time 0.4899 (0.4682) loss 4.0312 (3.5212) grad_norm 0.8290 (1.5834/0.7285) mem 16099MB [2025-01-18 01:23:53 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][190/312] eta 0:00:58 lr 0.003411 time 0.4595 (0.4778) model_time 0.4594 (0.4673) loss 4.0807 (3.5263) grad_norm 0.9029 (1.5769/0.7239) mem 16099MB [2025-01-18 01:23:57 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][200/312] eta 0:00:53 lr 0.003411 time 0.4625 (0.4766) model_time 0.4620 (0.4665) loss 3.5018 (3.5315) grad_norm 0.9731 (1.5853/0.7296) mem 16099MB [2025-01-18 01:24:02 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][210/312] eta 0:00:48 lr 0.003410 time 0.4526 (0.4760) model_time 0.4521 (0.4664) loss 4.0254 (3.5458) grad_norm 2.1493 (1.5763/0.7171) mem 16099MB [2025-01-18 01:24:06 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][220/312] eta 0:00:43 lr 0.003410 time 0.4671 (0.4754) model_time 0.4669 (0.4662) loss 3.5691 (3.5529) grad_norm 1.1530 (1.5693/0.7046) mem 16099MB [2025-01-18 01:24:11 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][230/312] eta 0:00:38 lr 0.003409 time 0.4472 (0.4749) model_time 0.4471 (0.4661) loss 3.3986 (3.5495) grad_norm 0.7103 (1.5621/0.6995) mem 16099MB [2025-01-18 01:24:16 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][240/312] eta 0:00:34 lr 0.003409 time 0.4421 (0.4744) model_time 0.4416 (0.4659) loss 2.7157 (3.5487) grad_norm 0.8596 (1.5468/0.6917) mem 16099MB [2025-01-18 01:24:20 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][250/312] eta 0:00:29 lr 0.003408 time 0.4495 (0.4739) model_time 0.4494 (0.4658) loss 3.0228 (3.5412) grad_norm 2.7316 (1.5459/0.6858) mem 16099MB [2025-01-18 01:24:25 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][260/312] eta 0:00:24 lr 0.003408 time 0.4503 (0.4732) model_time 0.4502 (0.4654) loss 2.7508 (3.5366) grad_norm 0.8340 (1.5399/0.6780) mem 16099MB [2025-01-18 01:24:30 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][270/312] eta 0:00:19 lr 0.003407 time 0.4502 (0.4728) model_time 0.4498 (0.4653) loss 2.9971 (3.5392) grad_norm 2.1997 (1.5288/0.6749) mem 16099MB [2025-01-18 01:24:34 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][280/312] eta 0:00:15 lr 0.003407 time 0.4470 (0.4721) model_time 0.4468 (0.4648) loss 2.8244 (3.5505) grad_norm 1.1318 (1.5474/0.6840) mem 16099MB [2025-01-18 01:24:39 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][290/312] eta 0:00:10 lr 0.003406 time 0.4531 (0.4724) model_time 0.4529 (0.4653) loss 4.3414 (3.5497) grad_norm 0.7311 (1.5440/0.6788) mem 16099MB [2025-01-18 01:24:43 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][300/312] eta 0:00:05 lr 0.003406 time 0.4418 (0.4721) model_time 0.4417 (0.4653) loss 3.7292 (3.5506) grad_norm 1.3435 (1.5636/0.7034) mem 16099MB [2025-01-18 01:24:48 internimage_t_1k_224] (main.py 510): INFO Train: [75/300][310/312] eta 0:00:00 lr 0.003405 time 0.5175 (0.4722) model_time 0.5174 (0.4655) loss 2.8556 (3.5455) grad_norm 2.6244 (1.5665/0.7083) mem 16099MB [2025-01-18 01:24:49 internimage_t_1k_224] (main.py 519): INFO EPOCH 75 training takes 0:02:27 [2025-01-18 01:24:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_75.pth saving...... [2025-01-18 01:24:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_75.pth saved !!! [2025-01-18 01:24:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.847 (7.847) Loss 0.9396 (0.9396) Acc@1 79.297 (79.297) Acc@5 95.825 (95.825) Mem 16099MB [2025-01-18 01:25:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.029) Loss 1.3782 (1.1281) Acc@1 69.141 (75.351) Acc@5 89.917 (93.073) Mem 16099MB [2025-01-18 01:25:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:75] * Acc@1 75.276 Acc@5 93.142 [2025-01-18 01:25:01 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.3% [2025-01-18 01:25:01 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.63% [2025-01-18 01:25:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.462 (8.462) Loss 1.3561 (1.3561) Acc@1 72.876 (72.876) Acc@5 92.041 (92.041) Mem 16099MB [2025-01-18 01:25:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.125) Loss 1.8595 (1.5599) Acc@1 62.354 (68.908) Acc@5 84.912 (88.976) Mem 16099MB [2025-01-18 01:25:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:75] * Acc@1 68.870 Acc@5 89.062 [2025-01-18 01:25:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 68.9% [2025-01-18 01:25:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:25:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:25:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 68.87% [2025-01-18 01:25:18 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][0/312] eta 0:15:17 lr 0.003405 time 2.9404 (2.9404) model_time 0.4811 (0.4811) loss 3.5998 (3.5998) grad_norm 3.4315 (3.4315/0.0000) mem 16099MB [2025-01-18 01:25:23 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][10/312] eta 0:03:30 lr 0.003405 time 0.4608 (0.6958) model_time 0.4607 (0.4719) loss 3.7589 (3.6448) grad_norm 1.1896 (1.6433/0.8859) mem 16099MB [2025-01-18 01:25:28 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][20/312] eta 0:02:52 lr 0.003404 time 0.4402 (0.5902) model_time 0.4400 (0.4728) loss 3.7199 (3.4978) grad_norm 0.9569 (1.5410/0.8021) mem 16099MB [2025-01-18 01:25:32 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][30/312] eta 0:02:34 lr 0.003404 time 0.4506 (0.5466) model_time 0.4502 (0.4669) loss 3.2025 (3.4871) grad_norm 3.9740 (1.7487/0.8690) mem 16099MB [2025-01-18 01:25:37 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][40/312] eta 0:02:24 lr 0.003403 time 0.4494 (0.5300) model_time 0.4492 (0.4697) loss 4.2572 (3.4970) grad_norm 0.7944 (1.8849/0.9179) mem 16099MB [2025-01-18 01:25:42 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][50/312] eta 0:02:15 lr 0.003403 time 0.4449 (0.5188) model_time 0.4447 (0.4702) loss 3.5627 (3.4729) grad_norm 1.0560 (1.8259/0.8643) mem 16099MB [2025-01-18 01:25:46 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][60/312] eta 0:02:08 lr 0.003402 time 0.5314 (0.5112) model_time 0.5309 (0.4705) loss 3.5738 (3.4966) grad_norm 1.3252 (1.7835/0.8598) mem 16099MB [2025-01-18 01:25:51 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][70/312] eta 0:02:02 lr 0.003402 time 0.4478 (0.5058) model_time 0.4473 (0.4707) loss 2.6129 (3.4951) grad_norm 3.1993 (1.7693/0.8773) mem 16099MB [2025-01-18 01:25:56 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][80/312] eta 0:01:56 lr 0.003402 time 0.5561 (0.5015) model_time 0.5559 (0.4708) loss 3.2805 (3.4732) grad_norm 2.5991 (1.7681/0.8674) mem 16099MB [2025-01-18 01:26:01 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][90/312] eta 0:01:50 lr 0.003401 time 0.4532 (0.4978) model_time 0.4528 (0.4704) loss 3.5271 (3.4681) grad_norm 1.4399 (1.7654/0.8373) mem 16099MB [2025-01-18 01:26:05 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][100/312] eta 0:01:44 lr 0.003401 time 0.4478 (0.4942) model_time 0.4476 (0.4695) loss 3.7696 (3.4636) grad_norm 0.8917 (1.7084/0.8185) mem 16099MB [2025-01-18 01:26:10 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][110/312] eta 0:01:39 lr 0.003400 time 0.4679 (0.4906) model_time 0.4674 (0.4681) loss 4.4843 (3.4617) grad_norm 0.7102 (1.6579/0.8027) mem 16099MB [2025-01-18 01:26:15 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][120/312] eta 0:01:34 lr 0.003400 time 0.5609 (0.4901) model_time 0.5608 (0.4693) loss 3.6435 (3.4750) grad_norm 1.2974 (1.6211/0.7851) mem 16099MB [2025-01-18 01:26:19 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][130/312] eta 0:01:28 lr 0.003399 time 0.4598 (0.4885) model_time 0.4597 (0.4694) loss 2.6752 (3.4767) grad_norm 1.1845 (1.6101/0.7679) mem 16099MB [2025-01-18 01:26:24 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][140/312] eta 0:01:23 lr 0.003399 time 0.4521 (0.4867) model_time 0.4516 (0.4689) loss 2.9381 (3.4637) grad_norm 1.0001 (1.6420/0.7903) mem 16099MB [2025-01-18 01:26:28 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][150/312] eta 0:01:18 lr 0.003398 time 0.4597 (0.4849) model_time 0.4593 (0.4682) loss 3.2972 (3.4820) grad_norm 1.4007 (1.6359/0.7758) mem 16099MB [2025-01-18 01:26:33 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][160/312] eta 0:01:13 lr 0.003398 time 0.5503 (0.4847) model_time 0.5499 (0.4690) loss 2.3646 (3.4992) grad_norm 1.4966 (1.6205/0.7641) mem 16099MB [2025-01-18 01:26:38 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][170/312] eta 0:01:08 lr 0.003397 time 0.4473 (0.4837) model_time 0.4467 (0.4689) loss 4.1272 (3.4957) grad_norm 1.2867 (1.5933/0.7517) mem 16099MB [2025-01-18 01:26:43 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][180/312] eta 0:01:03 lr 0.003397 time 0.4640 (0.4826) model_time 0.4635 (0.4687) loss 2.4326 (3.5031) grad_norm 2.6386 (1.6222/0.7793) mem 16099MB [2025-01-18 01:26:47 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][190/312] eta 0:00:58 lr 0.003396 time 0.4511 (0.4811) model_time 0.4506 (0.4678) loss 3.6956 (3.5084) grad_norm 1.0876 (1.6134/0.7733) mem 16099MB [2025-01-18 01:26:52 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][200/312] eta 0:00:53 lr 0.003396 time 0.4458 (0.4803) model_time 0.4454 (0.4676) loss 3.6603 (3.5009) grad_norm 1.0240 (1.5996/0.7606) mem 16099MB [2025-01-18 01:26:56 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][210/312] eta 0:00:48 lr 0.003395 time 0.4504 (0.4791) model_time 0.4502 (0.4670) loss 2.9388 (3.5084) grad_norm 2.9274 (1.6058/0.7539) mem 16099MB [2025-01-18 01:27:01 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][220/312] eta 0:00:43 lr 0.003395 time 0.4521 (0.4781) model_time 0.4517 (0.4666) loss 3.6018 (3.5124) grad_norm 1.1938 (1.5995/0.7467) mem 16099MB [2025-01-18 01:27:06 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][230/312] eta 0:00:39 lr 0.003394 time 0.4503 (0.4787) model_time 0.4501 (0.4676) loss 2.8306 (3.5111) grad_norm 1.1350 (1.5900/0.7407) mem 16099MB [2025-01-18 01:27:11 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][240/312] eta 0:00:34 lr 0.003394 time 0.4428 (0.4783) model_time 0.4424 (0.4677) loss 4.1146 (3.5143) grad_norm 1.4813 (1.5826/0.7328) mem 16099MB [2025-01-18 01:27:15 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][250/312] eta 0:00:29 lr 0.003393 time 0.4441 (0.4781) model_time 0.4440 (0.4679) loss 4.2825 (3.5218) grad_norm 1.6390 (1.5866/0.7267) mem 16099MB [2025-01-18 01:27:20 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][260/312] eta 0:00:24 lr 0.003393 time 0.4478 (0.4777) model_time 0.4476 (0.4679) loss 2.4658 (3.5197) grad_norm 3.1054 (1.5927/0.7259) mem 16099MB [2025-01-18 01:27:25 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][270/312] eta 0:00:20 lr 0.003392 time 0.5379 (0.4777) model_time 0.5375 (0.4683) loss 3.9137 (3.5271) grad_norm 1.8281 (1.5963/0.7282) mem 16099MB [2025-01-18 01:27:29 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][280/312] eta 0:00:15 lr 0.003392 time 0.4522 (0.4773) model_time 0.4518 (0.4681) loss 4.1465 (3.5240) grad_norm 1.4091 (1.5827/0.7243) mem 16099MB [2025-01-18 01:27:34 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][290/312] eta 0:00:10 lr 0.003391 time 0.4481 (0.4766) model_time 0.4479 (0.4678) loss 3.6908 (3.5238) grad_norm 0.7634 (1.5692/0.7175) mem 16099MB [2025-01-18 01:27:39 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][300/312] eta 0:00:05 lr 0.003391 time 0.4457 (0.4763) model_time 0.4456 (0.4677) loss 3.6050 (3.5307) grad_norm 2.9506 (1.5775/0.7330) mem 16099MB [2025-01-18 01:27:43 internimage_t_1k_224] (main.py 510): INFO Train: [76/300][310/312] eta 0:00:00 lr 0.003391 time 0.4470 (0.4752) model_time 0.4469 (0.4669) loss 3.7618 (3.5272) grad_norm 0.7085 (1.5664/0.7275) mem 16099MB [2025-01-18 01:27:44 internimage_t_1k_224] (main.py 519): INFO EPOCH 76 training takes 0:02:28 [2025-01-18 01:27:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_76.pth saving...... [2025-01-18 01:27:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_76.pth saved !!! [2025-01-18 01:27:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.639 (7.639) Loss 0.9618 (0.9618) Acc@1 79.004 (79.004) Acc@5 95.532 (95.532) Mem 16099MB [2025-01-18 01:27:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.030) Loss 1.3436 (1.1179) Acc@1 69.409 (75.775) Acc@5 90.527 (93.262) Mem 16099MB [2025-01-18 01:27:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:76] * Acc@1 75.768 Acc@5 93.322 [2025-01-18 01:27:56 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.8% [2025-01-18 01:27:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:27:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:27:57 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.77% [2025-01-18 01:28:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.598 (7.598) Loss 1.3237 (1.3237) Acc@1 73.535 (73.535) Acc@5 92.383 (92.383) Mem 16099MB [2025-01-18 01:28:09 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.025) Loss 1.8245 (1.5270) Acc@1 62.866 (69.418) Acc@5 85.205 (89.380) Mem 16099MB [2025-01-18 01:28:09 internimage_t_1k_224] (main.py 575): INFO [Epoch:76] * Acc@1 69.380 Acc@5 89.455 [2025-01-18 01:28:09 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 69.4% [2025-01-18 01:28:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:28:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:28:10 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 69.38% [2025-01-18 01:28:13 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][0/312] eta 0:14:34 lr 0.003390 time 2.8014 (2.8014) model_time 0.4749 (0.4749) loss 4.1393 (4.1393) grad_norm 1.4801 (1.4801/0.0000) mem 16099MB [2025-01-18 01:28:18 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][10/312] eta 0:03:24 lr 0.003390 time 0.4417 (0.6783) model_time 0.4413 (0.4664) loss 3.2865 (3.2413) grad_norm 1.4902 (1.4361/0.5313) mem 16099MB [2025-01-18 01:28:22 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][20/312] eta 0:02:47 lr 0.003389 time 0.4590 (0.5729) model_time 0.4588 (0.4618) loss 3.9782 (3.4473) grad_norm 1.3688 (1.3103/0.4383) mem 16099MB [2025-01-18 01:28:27 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][30/312] eta 0:02:32 lr 0.003389 time 0.4422 (0.5400) model_time 0.4420 (0.4646) loss 3.7855 (3.4989) grad_norm 1.5290 (1.6534/0.9227) mem 16099MB [2025-01-18 01:28:32 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][40/312] eta 0:02:21 lr 0.003389 time 0.4409 (0.5187) model_time 0.4405 (0.4616) loss 3.1228 (3.4626) grad_norm 1.0982 (1.5555/0.8472) mem 16099MB [2025-01-18 01:28:36 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][50/312] eta 0:02:13 lr 0.003388 time 0.5838 (0.5095) model_time 0.5833 (0.4635) loss 4.1665 (3.4701) grad_norm 1.1116 (1.5656/0.7768) mem 16099MB [2025-01-18 01:28:41 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][60/312] eta 0:02:07 lr 0.003388 time 0.4485 (0.5049) model_time 0.4480 (0.4664) loss 3.2422 (3.4688) grad_norm 1.9038 (1.5552/0.7319) mem 16099MB [2025-01-18 01:28:46 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][70/312] eta 0:02:00 lr 0.003387 time 0.4518 (0.4977) model_time 0.4513 (0.4645) loss 4.2261 (3.5280) grad_norm 1.3085 (1.5136/0.6934) mem 16099MB [2025-01-18 01:28:50 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][80/312] eta 0:01:54 lr 0.003387 time 0.4456 (0.4947) model_time 0.4451 (0.4656) loss 2.9644 (3.5252) grad_norm 0.8198 (1.6089/0.8395) mem 16099MB [2025-01-18 01:28:55 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][90/312] eta 0:01:49 lr 0.003386 time 0.4538 (0.4917) model_time 0.4536 (0.4658) loss 4.1535 (3.5225) grad_norm 0.9436 (1.6021/0.8484) mem 16099MB [2025-01-18 01:29:00 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][100/312] eta 0:01:44 lr 0.003386 time 0.4486 (0.4909) model_time 0.4482 (0.4675) loss 3.5952 (3.4973) grad_norm 1.4728 (1.5859/0.8279) mem 16099MB [2025-01-18 01:29:05 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][110/312] eta 0:01:39 lr 0.003385 time 0.4426 (0.4917) model_time 0.4420 (0.4704) loss 4.3995 (3.5060) grad_norm 1.0605 (1.5286/0.8128) mem 16099MB [2025-01-18 01:29:10 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][120/312] eta 0:01:33 lr 0.003385 time 0.4571 (0.4894) model_time 0.4569 (0.4698) loss 2.4599 (3.5260) grad_norm 1.4728 (1.5137/0.7861) mem 16099MB [2025-01-18 01:29:14 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][130/312] eta 0:01:28 lr 0.003384 time 0.4581 (0.4874) model_time 0.4580 (0.4692) loss 2.8366 (3.5211) grad_norm 1.0944 (1.5139/0.7712) mem 16099MB [2025-01-18 01:29:19 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][140/312] eta 0:01:23 lr 0.003384 time 0.4575 (0.4851) model_time 0.4573 (0.4682) loss 4.2107 (3.5476) grad_norm 0.8169 (1.5028/0.7511) mem 16099MB [2025-01-18 01:29:23 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][150/312] eta 0:01:18 lr 0.003383 time 0.5580 (0.4836) model_time 0.5578 (0.4678) loss 3.1289 (3.5256) grad_norm 0.8052 (1.4879/0.7356) mem 16099MB [2025-01-18 01:29:28 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][160/312] eta 0:01:13 lr 0.003383 time 0.4678 (0.4834) model_time 0.4674 (0.4685) loss 3.8099 (3.5370) grad_norm 1.1388 (1.4771/0.7175) mem 16099MB [2025-01-18 01:29:33 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][170/312] eta 0:01:08 lr 0.003382 time 0.4578 (0.4816) model_time 0.4576 (0.4676) loss 3.7274 (3.5361) grad_norm 3.7502 (1.4960/0.7374) mem 16099MB [2025-01-18 01:29:37 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][180/312] eta 0:01:03 lr 0.003382 time 0.4412 (0.4799) model_time 0.4410 (0.4667) loss 4.0148 (3.5374) grad_norm 0.9456 (1.5086/0.7595) mem 16099MB [2025-01-18 01:29:42 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][190/312] eta 0:00:58 lr 0.003381 time 0.4402 (0.4791) model_time 0.4400 (0.4665) loss 2.7392 (3.5373) grad_norm 0.9165 (1.4936/0.7474) mem 16099MB [2025-01-18 01:29:47 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][200/312] eta 0:00:53 lr 0.003381 time 0.4531 (0.4789) model_time 0.4526 (0.4669) loss 3.7794 (3.5355) grad_norm 0.8176 (1.4892/0.7384) mem 16099MB [2025-01-18 01:29:52 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][210/312] eta 0:00:49 lr 0.003380 time 0.4547 (0.4808) model_time 0.4543 (0.4694) loss 3.5818 (3.5214) grad_norm 1.1403 (1.4947/0.7432) mem 16099MB [2025-01-18 01:29:56 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][220/312] eta 0:00:44 lr 0.003380 time 0.4543 (0.4797) model_time 0.4538 (0.4688) loss 3.8734 (3.5250) grad_norm 1.5732 (1.5104/0.7444) mem 16099MB [2025-01-18 01:30:01 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][230/312] eta 0:00:39 lr 0.003379 time 0.5457 (0.4795) model_time 0.5452 (0.4690) loss 3.4486 (3.5232) grad_norm 0.8695 (1.5070/0.7363) mem 16099MB [2025-01-18 01:30:06 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][240/312] eta 0:00:34 lr 0.003379 time 0.4405 (0.4784) model_time 0.4403 (0.4683) loss 3.8232 (3.5336) grad_norm 1.6892 (1.5081/0.7264) mem 16099MB [2025-01-18 01:30:10 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][250/312] eta 0:00:29 lr 0.003378 time 0.4482 (0.4784) model_time 0.4478 (0.4688) loss 3.8232 (3.5336) grad_norm 1.2741 (1.4875/0.7200) mem 16099MB [2025-01-18 01:30:15 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][260/312] eta 0:00:24 lr 0.003378 time 0.4684 (0.4777) model_time 0.4680 (0.4684) loss 3.0768 (3.5305) grad_norm 1.7774 (1.5002/0.7216) mem 16099MB [2025-01-18 01:30:20 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][270/312] eta 0:00:20 lr 0.003377 time 0.4670 (0.4781) model_time 0.4666 (0.4691) loss 3.7710 (3.5294) grad_norm 1.2827 (1.4887/0.7123) mem 16099MB [2025-01-18 01:30:24 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][280/312] eta 0:00:15 lr 0.003377 time 0.4595 (0.4772) model_time 0.4589 (0.4686) loss 3.9293 (3.5370) grad_norm 1.9878 (1.4954/0.7100) mem 16099MB [2025-01-18 01:30:29 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][290/312] eta 0:00:10 lr 0.003376 time 0.4565 (0.4774) model_time 0.4561 (0.4690) loss 3.5283 (3.5399) grad_norm 2.5276 (1.5019/0.7070) mem 16099MB [2025-01-18 01:30:34 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][300/312] eta 0:00:05 lr 0.003376 time 0.4374 (0.4772) model_time 0.4373 (0.4691) loss 3.5697 (3.5447) grad_norm 0.8407 (1.4930/0.7054) mem 16099MB [2025-01-18 01:30:38 internimage_t_1k_224] (main.py 510): INFO Train: [77/300][310/312] eta 0:00:00 lr 0.003376 time 0.4381 (0.4764) model_time 0.4380 (0.4685) loss 2.8212 (3.5412) grad_norm 2.0758 (1.5045/0.7071) mem 16099MB [2025-01-18 01:30:39 internimage_t_1k_224] (main.py 519): INFO EPOCH 77 training takes 0:02:28 [2025-01-18 01:30:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_77.pth saving...... [2025-01-18 01:30:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_77.pth saved !!! [2025-01-18 01:30:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.489 (7.489) Loss 0.9549 (0.9549) Acc@1 79.712 (79.712) Acc@5 95.117 (95.117) Mem 16099MB [2025-01-18 01:30:51 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.034) Loss 1.3437 (1.1387) Acc@1 71.240 (75.890) Acc@5 90.625 (93.264) Mem 16099MB [2025-01-18 01:30:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:77] * Acc@1 75.818 Acc@5 93.366 [2025-01-18 01:30:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.8% [2025-01-18 01:30:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:30:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:30:53 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.82% [2025-01-18 01:31:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.523 (7.523) Loss 1.2950 (1.2950) Acc@1 73.926 (73.926) Acc@5 92.627 (92.627) Mem 16099MB [2025-01-18 01:31:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.028) Loss 1.7933 (1.4977) Acc@1 63.428 (69.951) Acc@5 85.669 (89.682) Mem 16099MB [2025-01-18 01:31:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:77] * Acc@1 69.910 Acc@5 89.751 [2025-01-18 01:31:04 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 69.9% [2025-01-18 01:31:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:31:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:31:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 69.91% [2025-01-18 01:31:08 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][0/312] eta 0:14:26 lr 0.003375 time 2.7788 (2.7788) model_time 0.4569 (0.4569) loss 2.3225 (2.3225) grad_norm 2.5142 (2.5142/0.0000) mem 16099MB [2025-01-18 01:31:13 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][10/312] eta 0:03:26 lr 0.003375 time 0.4447 (0.6821) model_time 0.4445 (0.4707) loss 3.6421 (3.4998) grad_norm 1.3840 (1.7283/0.4949) mem 16099MB [2025-01-18 01:31:18 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][20/312] eta 0:02:49 lr 0.003374 time 0.4905 (0.5789) model_time 0.4903 (0.4680) loss 3.2411 (3.3555) grad_norm 2.3408 (1.6119/0.4938) mem 16099MB [2025-01-18 01:31:23 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][30/312] eta 0:02:33 lr 0.003374 time 0.4496 (0.5439) model_time 0.4494 (0.4687) loss 2.5431 (3.4098) grad_norm 2.6220 (1.6314/0.6453) mem 16099MB [2025-01-18 01:31:27 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][40/312] eta 0:02:22 lr 0.003373 time 0.4667 (0.5237) model_time 0.4663 (0.4667) loss 3.2711 (3.4443) grad_norm 1.2995 (1.7121/0.6670) mem 16099MB [2025-01-18 01:31:32 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][50/312] eta 0:02:13 lr 0.003373 time 0.4494 (0.5114) model_time 0.4492 (0.4655) loss 2.9889 (3.4024) grad_norm 0.9035 (1.6216/0.6333) mem 16099MB [2025-01-18 01:31:36 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][60/312] eta 0:02:07 lr 0.003372 time 0.4450 (0.5053) model_time 0.4449 (0.4669) loss 4.2313 (3.4555) grad_norm 1.2890 (1.5768/0.6061) mem 16099MB [2025-01-18 01:31:41 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][70/312] eta 0:02:00 lr 0.003372 time 0.4528 (0.4980) model_time 0.4524 (0.4649) loss 4.1877 (3.4663) grad_norm 0.8619 (1.5274/0.6026) mem 16099MB [2025-01-18 01:31:46 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][80/312] eta 0:01:54 lr 0.003372 time 0.4485 (0.4926) model_time 0.4484 (0.4636) loss 2.6461 (3.4868) grad_norm 1.4189 (1.5772/0.6670) mem 16099MB [2025-01-18 01:31:50 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][90/312] eta 0:01:48 lr 0.003371 time 0.4452 (0.4895) model_time 0.4447 (0.4637) loss 4.1045 (3.4715) grad_norm 0.9740 (1.5346/0.6493) mem 16099MB [2025-01-18 01:31:55 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][100/312] eta 0:01:43 lr 0.003371 time 0.5036 (0.4872) model_time 0.5034 (0.4638) loss 2.1456 (3.4551) grad_norm 1.3228 (1.5124/0.6248) mem 16099MB [2025-01-18 01:32:00 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][110/312] eta 0:01:38 lr 0.003370 time 0.4418 (0.4866) model_time 0.4417 (0.4653) loss 3.5778 (3.4397) grad_norm 1.3038 (1.5030/0.6120) mem 16099MB [2025-01-18 01:32:04 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][120/312] eta 0:01:32 lr 0.003370 time 0.4542 (0.4842) model_time 0.4540 (0.4647) loss 4.4010 (3.4243) grad_norm 0.9713 (1.5299/0.6467) mem 16099MB [2025-01-18 01:32:09 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][130/312] eta 0:01:27 lr 0.003369 time 0.5441 (0.4832) model_time 0.5436 (0.4651) loss 3.8598 (3.4291) grad_norm 0.6914 (1.4962/0.6398) mem 16099MB [2025-01-18 01:32:14 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][140/312] eta 0:01:22 lr 0.003369 time 0.4441 (0.4817) model_time 0.4439 (0.4648) loss 4.4596 (3.4491) grad_norm 1.6032 (1.5059/0.6600) mem 16099MB [2025-01-18 01:32:18 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][150/312] eta 0:01:17 lr 0.003368 time 0.4557 (0.4808) model_time 0.4553 (0.4651) loss 2.7726 (3.4453) grad_norm 1.1405 (1.5173/0.6607) mem 16099MB [2025-01-18 01:32:23 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][160/312] eta 0:01:12 lr 0.003368 time 0.4535 (0.4801) model_time 0.4531 (0.4653) loss 2.4567 (3.4552) grad_norm 3.9884 (1.5358/0.6806) mem 16099MB [2025-01-18 01:32:28 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][170/312] eta 0:01:07 lr 0.003367 time 0.4426 (0.4788) model_time 0.4421 (0.4649) loss 3.5092 (3.4608) grad_norm 1.4870 (1.5500/0.6985) mem 16099MB [2025-01-18 01:32:32 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][180/312] eta 0:01:03 lr 0.003367 time 0.4425 (0.4796) model_time 0.4420 (0.4664) loss 3.8092 (3.4634) grad_norm 2.0307 (1.5419/0.6925) mem 16099MB [2025-01-18 01:32:37 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][190/312] eta 0:00:58 lr 0.003366 time 0.4532 (0.4783) model_time 0.4530 (0.4658) loss 3.8267 (3.4673) grad_norm 1.4159 (1.5627/0.7089) mem 16099MB [2025-01-18 01:32:42 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][200/312] eta 0:00:53 lr 0.003366 time 0.4656 (0.4779) model_time 0.4655 (0.4660) loss 4.5844 (3.4819) grad_norm 1.2034 (1.5512/0.7055) mem 16099MB [2025-01-18 01:32:46 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][210/312] eta 0:00:48 lr 0.003365 time 0.4537 (0.4769) model_time 0.4533 (0.4654) loss 4.0291 (3.4930) grad_norm 1.2125 (1.5467/0.6921) mem 16099MB [2025-01-18 01:32:51 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][220/312] eta 0:00:43 lr 0.003365 time 0.4478 (0.4773) model_time 0.4477 (0.4663) loss 4.2933 (3.4943) grad_norm 1.8122 (1.5505/0.6813) mem 16099MB [2025-01-18 01:32:56 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][230/312] eta 0:00:39 lr 0.003364 time 0.4455 (0.4780) model_time 0.4451 (0.4675) loss 3.6018 (3.4902) grad_norm 1.2123 (1.5410/0.6809) mem 16099MB [2025-01-18 01:33:01 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][240/312] eta 0:00:34 lr 0.003364 time 0.4405 (0.4770) model_time 0.4404 (0.4669) loss 3.7775 (3.4991) grad_norm 0.9924 (1.5517/0.6909) mem 16099MB [2025-01-18 01:33:05 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][250/312] eta 0:00:29 lr 0.003363 time 0.4655 (0.4764) model_time 0.4651 (0.4668) loss 2.7457 (3.4977) grad_norm 1.2489 (1.5413/0.6886) mem 16099MB [2025-01-18 01:33:10 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][260/312] eta 0:00:24 lr 0.003363 time 0.4577 (0.4764) model_time 0.4575 (0.4671) loss 3.7651 (3.5035) grad_norm 1.1829 (1.5419/0.6873) mem 16099MB [2025-01-18 01:33:15 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][270/312] eta 0:00:19 lr 0.003362 time 0.4518 (0.4760) model_time 0.4514 (0.4670) loss 2.7169 (3.4979) grad_norm 1.5530 (1.5565/0.7048) mem 16099MB [2025-01-18 01:33:19 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][280/312] eta 0:00:15 lr 0.003362 time 0.4520 (0.4751) model_time 0.4515 (0.4664) loss 3.8436 (3.4945) grad_norm 1.2489 (1.5404/0.6988) mem 16099MB [2025-01-18 01:33:24 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][290/312] eta 0:00:10 lr 0.003361 time 0.4590 (0.4745) model_time 0.4585 (0.4661) loss 3.8461 (3.5059) grad_norm 1.1499 (1.5247/0.6936) mem 16099MB [2025-01-18 01:33:28 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][300/312] eta 0:00:05 lr 0.003361 time 0.4388 (0.4744) model_time 0.4387 (0.4663) loss 3.2322 (3.5093) grad_norm 2.5728 (1.5174/0.6879) mem 16099MB [2025-01-18 01:33:33 internimage_t_1k_224] (main.py 510): INFO Train: [78/300][310/312] eta 0:00:00 lr 0.003360 time 0.4385 (0.4737) model_time 0.4385 (0.4658) loss 3.5190 (3.5118) grad_norm 2.1376 (1.5205/0.7010) mem 16099MB [2025-01-18 01:33:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 78 training takes 0:02:27 [2025-01-18 01:33:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_78.pth saving...... [2025-01-18 01:33:35 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_78.pth saved !!! [2025-01-18 01:33:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.504 (7.504) Loss 0.9367 (0.9367) Acc@1 79.102 (79.102) Acc@5 95.435 (95.435) Mem 16099MB [2025-01-18 01:33:46 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.020) Loss 1.3617 (1.1351) Acc@1 70.190 (75.699) Acc@5 90.845 (93.237) Mem 16099MB [2025-01-18 01:33:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:78] * Acc@1 75.650 Acc@5 93.286 [2025-01-18 01:33:46 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.6% [2025-01-18 01:33:46 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 75.82% [2025-01-18 01:33:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.508 (8.508) Loss 1.2674 (1.2674) Acc@1 74.316 (74.316) Acc@5 92.749 (92.749) Mem 16099MB [2025-01-18 01:33:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.145) Loss 1.7631 (1.4692) Acc@1 64.014 (70.415) Acc@5 86.182 (89.981) Mem 16099MB [2025-01-18 01:33:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:78] * Acc@1 70.385 Acc@5 90.049 [2025-01-18 01:33:59 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 70.4% [2025-01-18 01:33:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:34:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:34:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 70.39% [2025-01-18 01:34:03 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][0/312] eta 0:11:55 lr 0.003360 time 2.2942 (2.2942) model_time 0.4558 (0.4558) loss 3.1823 (3.1823) grad_norm 4.0668 (4.0668/0.0000) mem 16099MB [2025-01-18 01:34:07 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][10/312] eta 0:03:09 lr 0.003360 time 0.4462 (0.6279) model_time 0.4458 (0.4604) loss 4.5433 (3.7384) grad_norm 0.8441 (1.6787/0.9907) mem 16099MB [2025-01-18 01:34:12 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][20/312] eta 0:02:44 lr 0.003359 time 0.4519 (0.5639) model_time 0.4514 (0.4760) loss 2.6829 (3.6737) grad_norm 1.7001 (1.7657/0.8234) mem 16099MB [2025-01-18 01:34:17 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][30/312] eta 0:02:29 lr 0.003359 time 0.4527 (0.5308) model_time 0.4526 (0.4712) loss 4.0520 (3.5921) grad_norm 1.5299 (1.7703/0.8266) mem 16099MB [2025-01-18 01:34:21 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][40/312] eta 0:02:19 lr 0.003358 time 0.4550 (0.5143) model_time 0.4548 (0.4691) loss 3.3383 (3.5914) grad_norm 0.6584 (1.7260/0.7825) mem 16099MB [2025-01-18 01:34:26 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][50/312] eta 0:02:12 lr 0.003358 time 0.4459 (0.5039) model_time 0.4457 (0.4674) loss 4.1889 (3.5883) grad_norm 1.6518 (1.6616/0.7230) mem 16099MB [2025-01-18 01:34:31 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][60/312] eta 0:02:05 lr 0.003357 time 0.4402 (0.4974) model_time 0.4396 (0.4668) loss 2.7104 (3.5500) grad_norm 2.4900 (1.6392/0.6949) mem 16099MB [2025-01-18 01:34:36 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][70/312] eta 0:02:00 lr 0.003357 time 0.7909 (0.4959) model_time 0.7907 (0.4697) loss 3.8984 (3.5492) grad_norm 1.2847 (1.6676/0.6692) mem 16099MB [2025-01-18 01:34:40 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][80/312] eta 0:01:54 lr 0.003356 time 0.4489 (0.4916) model_time 0.4487 (0.4686) loss 3.5163 (3.5467) grad_norm 1.0350 (1.6802/0.6765) mem 16099MB [2025-01-18 01:34:45 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][90/312] eta 0:01:48 lr 0.003356 time 0.4537 (0.4887) model_time 0.4533 (0.4681) loss 3.6261 (3.6001) grad_norm 1.1258 (1.6475/0.6585) mem 16099MB [2025-01-18 01:34:49 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][100/312] eta 0:01:43 lr 0.003355 time 0.5296 (0.4859) model_time 0.5292 (0.4674) loss 3.5817 (3.6220) grad_norm 1.6180 (1.6632/0.6646) mem 16099MB [2025-01-18 01:34:54 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][110/312] eta 0:01:38 lr 0.003355 time 0.4514 (0.4866) model_time 0.4512 (0.4697) loss 4.2903 (3.6203) grad_norm 1.7164 (1.6240/0.6527) mem 16099MB [2025-01-18 01:34:59 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][120/312] eta 0:01:33 lr 0.003354 time 0.4692 (0.4848) model_time 0.4690 (0.4692) loss 3.1163 (3.6172) grad_norm 2.8265 (1.6314/0.6509) mem 16099MB [2025-01-18 01:35:03 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][130/312] eta 0:01:27 lr 0.003354 time 0.4489 (0.4823) model_time 0.4485 (0.4679) loss 4.2659 (3.6315) grad_norm 1.8954 (1.6277/0.6630) mem 16099MB [2025-01-18 01:35:08 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][140/312] eta 0:01:22 lr 0.003353 time 0.4496 (0.4814) model_time 0.4494 (0.4679) loss 3.1134 (3.5771) grad_norm 1.6779 (1.6004/0.6518) mem 16099MB [2025-01-18 01:35:13 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][150/312] eta 0:01:17 lr 0.003353 time 0.4397 (0.4796) model_time 0.4393 (0.4670) loss 2.3761 (3.5706) grad_norm 0.9557 (1.6079/0.6676) mem 16099MB [2025-01-18 01:35:17 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][160/312] eta 0:01:12 lr 0.003352 time 0.4396 (0.4790) model_time 0.4394 (0.4672) loss 2.5313 (3.5590) grad_norm 2.1411 (1.6037/0.6642) mem 16099MB [2025-01-18 01:35:22 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][170/312] eta 0:01:07 lr 0.003352 time 0.4446 (0.4784) model_time 0.4445 (0.4672) loss 3.8124 (3.5631) grad_norm 1.0247 (1.5955/0.6635) mem 16099MB [2025-01-18 01:35:27 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][180/312] eta 0:01:03 lr 0.003351 time 0.6064 (0.4783) model_time 0.6062 (0.4678) loss 3.0552 (3.5567) grad_norm 1.2521 (1.6013/0.6881) mem 16099MB [2025-01-18 01:35:31 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][190/312] eta 0:00:58 lr 0.003351 time 0.4660 (0.4774) model_time 0.4658 (0.4674) loss 3.6441 (3.5522) grad_norm 1.5829 (1.5985/0.6714) mem 16099MB [2025-01-18 01:35:36 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][200/312] eta 0:00:53 lr 0.003350 time 0.4579 (0.4770) model_time 0.4574 (0.4674) loss 3.9882 (3.5526) grad_norm 2.0816 (1.5816/0.6634) mem 16099MB [2025-01-18 01:35:41 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][210/312] eta 0:00:48 lr 0.003350 time 0.4581 (0.4766) model_time 0.4576 (0.4675) loss 3.7515 (3.5567) grad_norm 1.9330 (1.5927/0.6646) mem 16099MB [2025-01-18 01:35:45 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][220/312] eta 0:00:43 lr 0.003349 time 0.4932 (0.4758) model_time 0.4930 (0.4671) loss 4.4870 (3.5646) grad_norm 2.7543 (1.6161/0.6784) mem 16099MB [2025-01-18 01:35:50 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][230/312] eta 0:00:38 lr 0.003349 time 0.4548 (0.4749) model_time 0.4544 (0.4666) loss 2.9670 (3.5601) grad_norm 2.5663 (1.6343/0.7051) mem 16099MB [2025-01-18 01:35:55 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][240/312] eta 0:00:34 lr 0.003348 time 0.4503 (0.4740) model_time 0.4501 (0.4659) loss 4.0737 (3.5679) grad_norm 1.0196 (1.6177/0.7006) mem 16099MB [2025-01-18 01:35:59 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][250/312] eta 0:00:29 lr 0.003348 time 0.4396 (0.4731) model_time 0.4391 (0.4654) loss 3.8266 (3.5544) grad_norm 0.8428 (1.5916/0.6998) mem 16099MB [2025-01-18 01:36:04 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][260/312] eta 0:00:24 lr 0.003347 time 0.4507 (0.4729) model_time 0.4503 (0.4655) loss 3.3472 (3.5472) grad_norm 0.7806 (1.5797/0.6937) mem 16099MB [2025-01-18 01:36:08 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][270/312] eta 0:00:19 lr 0.003347 time 0.4631 (0.4723) model_time 0.4627 (0.4652) loss 3.3850 (3.5387) grad_norm 1.5527 (1.5756/0.6873) mem 16099MB [2025-01-18 01:36:13 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][280/312] eta 0:00:15 lr 0.003346 time 0.5609 (0.4723) model_time 0.5607 (0.4654) loss 3.7141 (3.5401) grad_norm 1.3092 (1.5623/0.6806) mem 16099MB [2025-01-18 01:36:18 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][290/312] eta 0:00:10 lr 0.003346 time 0.4414 (0.4723) model_time 0.4413 (0.4656) loss 2.2943 (3.5347) grad_norm 5.0406 (1.6002/0.7461) mem 16099MB [2025-01-18 01:36:22 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][300/312] eta 0:00:05 lr 0.003345 time 0.4370 (0.4723) model_time 0.4369 (0.4658) loss 2.9828 (3.5416) grad_norm 1.1668 (1.5949/0.7280) mem 16099MB [2025-01-18 01:36:27 internimage_t_1k_224] (main.py 510): INFO Train: [79/300][310/312] eta 0:00:00 lr 0.003345 time 0.4393 (0.4720) model_time 0.4392 (0.4657) loss 3.5757 (3.5491) grad_norm 2.4199 (1.5934/0.7244) mem 16099MB [2025-01-18 01:36:28 internimage_t_1k_224] (main.py 519): INFO EPOCH 79 training takes 0:02:27 [2025-01-18 01:36:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_79.pth saving...... [2025-01-18 01:36:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_79.pth saved !!! [2025-01-18 01:36:36 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.433 (7.433) Loss 0.9261 (0.9261) Acc@1 79.590 (79.590) Acc@5 95.386 (95.386) Mem 16099MB [2025-01-18 01:36:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.016) Loss 1.2776 (1.0959) Acc@1 71.826 (76.194) Acc@5 91.089 (93.388) Mem 16099MB [2025-01-18 01:36:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:79] * Acc@1 76.128 Acc@5 93.422 [2025-01-18 01:36:40 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.1% [2025-01-18 01:36:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:36:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:36:41 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.13% [2025-01-18 01:36:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.171 (7.171) Loss 1.2403 (1.2403) Acc@1 74.780 (74.780) Acc@5 93.115 (93.115) Mem 16099MB [2025-01-18 01:36:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.991) Loss 1.7340 (1.4421) Acc@1 64.526 (70.872) Acc@5 86.377 (90.248) Mem 16099MB [2025-01-18 01:36:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:79] * Acc@1 70.843 Acc@5 90.311 [2025-01-18 01:36:52 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 70.8% [2025-01-18 01:36:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:36:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:36:54 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 70.84% [2025-01-18 01:36:56 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][0/312] eta 0:11:52 lr 0.003345 time 2.2825 (2.2825) model_time 0.5219 (0.5219) loss 3.8037 (3.8037) grad_norm 1.0003 (1.0003/0.0000) mem 16099MB [2025-01-18 01:37:01 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][10/312] eta 0:03:12 lr 0.003344 time 0.5336 (0.6362) model_time 0.5334 (0.4758) loss 4.2216 (3.4978) grad_norm 1.1291 (1.0769/0.2963) mem 16099MB [2025-01-18 01:37:05 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][20/312] eta 0:02:41 lr 0.003344 time 0.5441 (0.5531) model_time 0.5440 (0.4689) loss 3.3655 (3.6452) grad_norm 1.2192 (1.3994/0.5688) mem 16099MB [2025-01-18 01:37:10 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][30/312] eta 0:02:28 lr 0.003343 time 0.5344 (0.5268) model_time 0.5340 (0.4696) loss 3.0874 (3.5130) grad_norm 1.6257 (1.3821/0.5232) mem 16099MB [2025-01-18 01:37:15 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][40/312] eta 0:02:19 lr 0.003343 time 0.4414 (0.5121) model_time 0.4413 (0.4688) loss 3.8059 (3.5518) grad_norm 0.8664 (1.3447/0.5182) mem 16099MB [2025-01-18 01:37:19 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][50/312] eta 0:02:11 lr 0.003342 time 0.4410 (0.5012) model_time 0.4409 (0.4664) loss 4.2794 (3.5666) grad_norm 1.1583 (1.3147/0.5210) mem 16099MB [2025-01-18 01:37:24 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][60/312] eta 0:02:04 lr 0.003342 time 0.5420 (0.4959) model_time 0.5415 (0.4667) loss 3.2249 (3.5403) grad_norm 1.4765 (1.4213/0.6209) mem 16099MB [2025-01-18 01:37:29 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][70/312] eta 0:01:58 lr 0.003341 time 0.4920 (0.4907) model_time 0.4918 (0.4655) loss 2.9553 (3.5551) grad_norm 1.1584 (1.4949/0.6718) mem 16099MB [2025-01-18 01:37:33 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][80/312] eta 0:01:52 lr 0.003341 time 0.5352 (0.4870) model_time 0.5350 (0.4650) loss 2.9625 (3.5692) grad_norm 0.9211 (1.4847/0.6496) mem 16099MB [2025-01-18 01:37:38 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][90/312] eta 0:01:47 lr 0.003340 time 0.4403 (0.4851) model_time 0.4398 (0.4654) loss 4.4012 (3.5570) grad_norm 1.8710 (1.4739/0.6365) mem 16099MB [2025-01-18 01:37:42 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][100/312] eta 0:01:42 lr 0.003340 time 0.4568 (0.4828) model_time 0.4564 (0.4650) loss 2.5650 (3.5176) grad_norm 1.4725 (1.4627/0.6213) mem 16099MB [2025-01-18 01:37:47 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][110/312] eta 0:01:37 lr 0.003339 time 0.4516 (0.4817) model_time 0.4514 (0.4655) loss 2.4944 (3.5053) grad_norm 1.6938 (1.4420/0.6046) mem 16099MB [2025-01-18 01:37:52 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][120/312] eta 0:01:32 lr 0.003339 time 0.4698 (0.4814) model_time 0.4697 (0.4665) loss 3.1280 (3.5028) grad_norm 1.3023 (1.4643/0.6354) mem 16099MB [2025-01-18 01:37:57 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][130/312] eta 0:01:27 lr 0.003338 time 0.4433 (0.4801) model_time 0.4428 (0.4663) loss 3.5856 (3.5126) grad_norm 1.6019 (1.5033/0.6622) mem 16099MB [2025-01-18 01:38:01 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][140/312] eta 0:01:22 lr 0.003338 time 0.4417 (0.4782) model_time 0.4412 (0.4653) loss 3.7209 (3.5107) grad_norm 1.5452 (1.5019/0.6571) mem 16099MB [2025-01-18 01:38:06 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][150/312] eta 0:01:17 lr 0.003337 time 0.4484 (0.4791) model_time 0.4480 (0.4671) loss 2.9741 (3.4955) grad_norm 1.6350 (1.4938/0.6674) mem 16099MB [2025-01-18 01:38:11 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][160/312] eta 0:01:13 lr 0.003337 time 0.4418 (0.4803) model_time 0.4414 (0.4690) loss 3.4371 (3.4607) grad_norm 0.8729 (1.4810/0.6586) mem 16099MB [2025-01-18 01:38:16 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][170/312] eta 0:01:08 lr 0.003336 time 0.5419 (0.4798) model_time 0.5417 (0.4692) loss 4.4164 (3.4698) grad_norm 1.4097 (1.4850/0.6485) mem 16099MB [2025-01-18 01:38:20 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][180/312] eta 0:01:03 lr 0.003336 time 0.5636 (0.4794) model_time 0.5632 (0.4693) loss 3.7184 (3.4647) grad_norm 0.9863 (1.4838/0.6374) mem 16099MB [2025-01-18 01:38:25 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][190/312] eta 0:00:58 lr 0.003335 time 0.5771 (0.4788) model_time 0.5770 (0.4692) loss 2.8057 (3.4620) grad_norm 1.6216 (1.4859/0.6268) mem 16099MB [2025-01-18 01:38:30 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][200/312] eta 0:00:53 lr 0.003335 time 0.4469 (0.4784) model_time 0.4465 (0.4692) loss 3.4709 (3.4560) grad_norm 1.0560 (1.4782/0.6188) mem 16099MB [2025-01-18 01:38:35 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][210/312] eta 0:00:48 lr 0.003334 time 0.4549 (0.4777) model_time 0.4547 (0.4690) loss 3.4267 (3.4650) grad_norm 1.2000 (1.4636/0.6135) mem 16099MB [2025-01-18 01:38:39 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][220/312] eta 0:00:43 lr 0.003334 time 0.4558 (0.4771) model_time 0.4554 (0.4687) loss 3.9077 (3.4691) grad_norm 1.0581 (1.4847/0.6263) mem 16099MB [2025-01-18 01:38:44 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][230/312] eta 0:00:39 lr 0.003333 time 0.4591 (0.4769) model_time 0.4587 (0.4689) loss 2.6128 (3.4559) grad_norm 1.9415 (1.4862/0.6206) mem 16099MB [2025-01-18 01:38:49 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][240/312] eta 0:00:34 lr 0.003333 time 0.5489 (0.4765) model_time 0.5488 (0.4688) loss 3.8583 (3.4661) grad_norm 1.5718 (1.4763/0.6158) mem 16099MB [2025-01-18 01:38:53 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][250/312] eta 0:00:29 lr 0.003332 time 0.4393 (0.4756) model_time 0.4389 (0.4682) loss 3.0710 (3.4793) grad_norm 2.1010 (1.4937/0.6204) mem 16099MB [2025-01-18 01:38:58 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][260/312] eta 0:00:24 lr 0.003332 time 0.4554 (0.4755) model_time 0.4550 (0.4684) loss 3.1915 (3.4941) grad_norm 0.8677 (1.4833/0.6146) mem 16099MB [2025-01-18 01:39:03 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][270/312] eta 0:00:19 lr 0.003331 time 0.4441 (0.4756) model_time 0.4437 (0.4687) loss 2.8492 (3.4994) grad_norm 1.2782 (1.4814/0.6071) mem 16099MB [2025-01-18 01:39:07 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][280/312] eta 0:00:15 lr 0.003331 time 0.4484 (0.4748) model_time 0.4479 (0.4681) loss 2.4222 (3.5011) grad_norm 4.3883 (1.4875/0.6257) mem 16099MB [2025-01-18 01:39:12 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][290/312] eta 0:00:10 lr 0.003330 time 0.4876 (0.4744) model_time 0.4870 (0.4680) loss 3.5778 (3.5040) grad_norm 0.8866 (1.5017/0.6432) mem 16099MB [2025-01-18 01:39:16 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][300/312] eta 0:00:05 lr 0.003330 time 0.4420 (0.4738) model_time 0.4418 (0.4675) loss 2.6113 (3.5027) grad_norm 1.1052 (1.5038/0.6395) mem 16099MB [2025-01-18 01:39:21 internimage_t_1k_224] (main.py 510): INFO Train: [80/300][310/312] eta 0:00:00 lr 0.003329 time 0.5318 (0.4733) model_time 0.5317 (0.4673) loss 3.5765 (3.5018) grad_norm 2.5194 (1.5170/0.6409) mem 16099MB [2025-01-18 01:39:21 internimage_t_1k_224] (main.py 519): INFO EPOCH 80 training takes 0:02:27 [2025-01-18 01:39:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_80.pth saving...... [2025-01-18 01:39:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_80.pth saved !!! [2025-01-18 01:39:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.578 (7.578) Loss 0.9735 (0.9735) Acc@1 78.882 (78.882) Acc@5 95.410 (95.410) Mem 16099MB [2025-01-18 01:39:34 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.009) Loss 1.3802 (1.1482) Acc@1 69.849 (75.892) Acc@5 90.161 (93.237) Mem 16099MB [2025-01-18 01:39:34 internimage_t_1k_224] (main.py 575): INFO [Epoch:80] * Acc@1 75.838 Acc@5 93.312 [2025-01-18 01:39:34 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.8% [2025-01-18 01:39:34 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.13% [2025-01-18 01:39:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.307 (8.307) Loss 1.2152 (1.2152) Acc@1 75.049 (75.049) Acc@5 93.262 (93.262) Mem 16099MB [2025-01-18 01:39:46 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.116) Loss 1.7055 (1.4159) Acc@1 64.941 (71.258) Acc@5 86.743 (90.470) Mem 16099MB [2025-01-18 01:39:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:80] * Acc@1 71.241 Acc@5 90.533 [2025-01-18 01:39:46 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 71.2% [2025-01-18 01:39:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:39:48 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:39:48 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 71.24% [2025-01-18 01:39:50 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][0/312] eta 0:14:12 lr 0.003329 time 2.7313 (2.7313) model_time 0.4673 (0.4673) loss 4.2685 (4.2685) grad_norm 2.4232 (2.4232/0.0000) mem 16099MB [2025-01-18 01:39:55 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][10/312] eta 0:03:26 lr 0.003329 time 0.4453 (0.6849) model_time 0.4452 (0.4787) loss 3.6520 (3.6227) grad_norm 1.9751 (1.6584/0.6241) mem 16099MB [2025-01-18 01:40:00 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][20/312] eta 0:02:49 lr 0.003328 time 0.4473 (0.5789) model_time 0.4471 (0.4708) loss 3.4653 (3.5105) grad_norm 2.0557 (1.5279/0.5585) mem 16099MB [2025-01-18 01:40:05 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][30/312] eta 0:02:33 lr 0.003328 time 0.4452 (0.5444) model_time 0.4451 (0.4711) loss 3.5406 (3.5438) grad_norm 1.7753 (1.4597/0.5101) mem 16099MB [2025-01-18 01:40:09 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][40/312] eta 0:02:21 lr 0.003327 time 0.4542 (0.5219) model_time 0.4537 (0.4663) loss 4.1597 (3.5291) grad_norm 1.0416 (1.7108/0.9293) mem 16099MB [2025-01-18 01:40:14 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][50/312] eta 0:02:13 lr 0.003327 time 0.4494 (0.5087) model_time 0.4493 (0.4640) loss 3.2339 (3.5112) grad_norm 0.9747 (1.7135/0.9358) mem 16099MB [2025-01-18 01:40:18 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][60/312] eta 0:02:06 lr 0.003326 time 0.4514 (0.5025) model_time 0.4509 (0.4649) loss 3.5884 (3.4955) grad_norm 0.9521 (1.6127/0.9023) mem 16099MB [2025-01-18 01:40:23 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][70/312] eta 0:02:01 lr 0.003326 time 0.7839 (0.5024) model_time 0.7833 (0.4701) loss 2.3011 (3.4829) grad_norm 0.9050 (1.5261/0.8674) mem 16099MB [2025-01-18 01:40:28 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][80/312] eta 0:01:55 lr 0.003325 time 0.4476 (0.4986) model_time 0.4471 (0.4702) loss 3.8618 (3.5205) grad_norm 2.8262 (1.5316/0.8340) mem 16099MB [2025-01-18 01:40:33 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][90/312] eta 0:01:49 lr 0.003325 time 0.4442 (0.4937) model_time 0.4440 (0.4684) loss 3.8253 (3.5375) grad_norm 3.3895 (1.5889/0.8484) mem 16099MB [2025-01-18 01:40:37 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][100/312] eta 0:01:43 lr 0.003324 time 0.4625 (0.4899) model_time 0.4620 (0.4671) loss 3.7629 (3.5220) grad_norm 1.7198 (1.5747/0.8194) mem 16099MB [2025-01-18 01:40:42 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][110/312] eta 0:01:38 lr 0.003324 time 0.5754 (0.4877) model_time 0.5752 (0.4669) loss 2.7192 (3.5009) grad_norm 0.6684 (1.5503/0.7943) mem 16099MB [2025-01-18 01:40:47 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][120/312] eta 0:01:33 lr 0.003323 time 0.4622 (0.4870) model_time 0.4618 (0.4679) loss 2.7575 (3.4978) grad_norm 0.9957 (1.5632/0.7847) mem 16099MB [2025-01-18 01:40:51 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][130/312] eta 0:01:28 lr 0.003323 time 0.4655 (0.4856) model_time 0.4650 (0.4680) loss 3.3911 (3.5024) grad_norm 1.2557 (1.5570/0.7718) mem 16099MB [2025-01-18 01:40:56 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][140/312] eta 0:01:23 lr 0.003322 time 0.5388 (0.4851) model_time 0.5384 (0.4686) loss 3.9600 (3.4942) grad_norm 1.8280 (1.5505/0.7510) mem 16099MB [2025-01-18 01:41:01 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][150/312] eta 0:01:18 lr 0.003322 time 0.4413 (0.4846) model_time 0.4411 (0.4692) loss 2.7637 (3.4777) grad_norm 1.9592 (1.5382/0.7361) mem 16099MB [2025-01-18 01:41:06 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][160/312] eta 0:01:13 lr 0.003321 time 0.4603 (0.4848) model_time 0.4602 (0.4703) loss 4.1558 (3.4895) grad_norm 0.9347 (1.5148/0.7207) mem 16099MB [2025-01-18 01:41:10 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][170/312] eta 0:01:08 lr 0.003321 time 0.4567 (0.4831) model_time 0.4565 (0.4694) loss 3.5398 (3.5154) grad_norm 0.8723 (1.5007/0.7093) mem 16099MB [2025-01-18 01:41:15 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][180/312] eta 0:01:03 lr 0.003320 time 0.4474 (0.4816) model_time 0.4469 (0.4687) loss 2.1753 (3.5172) grad_norm 3.8798 (1.5067/0.7305) mem 16099MB [2025-01-18 01:41:19 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][190/312] eta 0:00:58 lr 0.003320 time 0.4511 (0.4804) model_time 0.4505 (0.4681) loss 3.7056 (3.5055) grad_norm 1.8604 (1.5469/0.7804) mem 16099MB [2025-01-18 01:41:24 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][200/312] eta 0:00:53 lr 0.003319 time 0.4547 (0.4794) model_time 0.4543 (0.4677) loss 3.9682 (3.4925) grad_norm 0.8204 (1.5570/0.7848) mem 16099MB [2025-01-18 01:41:29 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][210/312] eta 0:00:48 lr 0.003319 time 0.4653 (0.4783) model_time 0.4651 (0.4672) loss 3.7682 (3.5028) grad_norm 1.0416 (1.5505/0.7695) mem 16099MB [2025-01-18 01:41:33 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][220/312] eta 0:00:43 lr 0.003318 time 0.4508 (0.4771) model_time 0.4504 (0.4664) loss 3.7201 (3.5018) grad_norm 2.9520 (1.5649/0.7705) mem 16099MB [2025-01-18 01:41:38 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][230/312] eta 0:00:39 lr 0.003318 time 0.4448 (0.4767) model_time 0.4443 (0.4665) loss 3.6809 (3.4886) grad_norm 1.1655 (1.5558/0.7584) mem 16099MB [2025-01-18 01:41:42 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][240/312] eta 0:00:34 lr 0.003317 time 0.4541 (0.4764) model_time 0.4537 (0.4666) loss 3.8807 (3.4837) grad_norm 1.1585 (1.5518/0.7489) mem 16099MB [2025-01-18 01:41:47 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][250/312] eta 0:00:29 lr 0.003317 time 0.4540 (0.4762) model_time 0.4538 (0.4668) loss 3.4986 (3.4755) grad_norm 1.2808 (1.5531/0.7391) mem 16099MB [2025-01-18 01:41:52 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][260/312] eta 0:00:24 lr 0.003316 time 0.4445 (0.4752) model_time 0.4443 (0.4661) loss 2.9196 (3.4584) grad_norm 1.1189 (1.5479/0.7340) mem 16099MB [2025-01-18 01:41:56 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][270/312] eta 0:00:19 lr 0.003316 time 0.4552 (0.4751) model_time 0.4548 (0.4663) loss 3.1183 (3.4550) grad_norm 1.1186 (1.5445/0.7236) mem 16099MB [2025-01-18 01:42:01 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][280/312] eta 0:00:15 lr 0.003315 time 0.4477 (0.4743) model_time 0.4472 (0.4658) loss 2.4167 (3.4557) grad_norm 1.6411 (1.5475/0.7236) mem 16099MB [2025-01-18 01:42:05 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][290/312] eta 0:00:10 lr 0.003315 time 0.4549 (0.4737) model_time 0.4548 (0.4655) loss 3.8959 (3.4551) grad_norm 1.7804 (1.5477/0.7191) mem 16099MB [2025-01-18 01:42:10 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][300/312] eta 0:00:05 lr 0.003314 time 0.4439 (0.4740) model_time 0.4438 (0.4660) loss 2.8103 (3.4554) grad_norm 1.0551 (1.5334/0.7110) mem 16099MB [2025-01-18 01:42:15 internimage_t_1k_224] (main.py 510): INFO Train: [81/300][310/312] eta 0:00:00 lr 0.003314 time 0.5247 (0.4735) model_time 0.5246 (0.4658) loss 3.4669 (3.4591) grad_norm 1.3652 (1.5285/0.7114) mem 16099MB [2025-01-18 01:42:15 internimage_t_1k_224] (main.py 519): INFO EPOCH 81 training takes 0:02:27 [2025-01-18 01:42:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_81.pth saving...... [2025-01-18 01:42:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_81.pth saved !!! [2025-01-18 01:42:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.541 (7.541) Loss 0.8999 (0.8999) Acc@1 80.151 (80.151) Acc@5 95.508 (95.508) Mem 16099MB [2025-01-18 01:42:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.025) Loss 1.2900 (1.0792) Acc@1 70.654 (76.343) Acc@5 91.284 (93.599) Mem 16099MB [2025-01-18 01:42:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:81] * Acc@1 76.308 Acc@5 93.638 [2025-01-18 01:42:28 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.3% [2025-01-18 01:42:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:42:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:42:29 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.31% [2025-01-18 01:42:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.844 (7.844) Loss 1.1916 (1.1916) Acc@1 75.195 (75.195) Acc@5 93.481 (93.481) Mem 16099MB [2025-01-18 01:42:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.048) Loss 1.6784 (1.3906) Acc@1 65.283 (71.589) Acc@5 86.987 (90.683) Mem 16099MB [2025-01-18 01:42:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:81] * Acc@1 71.569 Acc@5 90.729 [2025-01-18 01:42:41 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 71.6% [2025-01-18 01:42:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:42:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:42:42 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 71.57% [2025-01-18 01:42:44 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][0/312] eta 0:10:53 lr 0.003314 time 2.0934 (2.0934) model_time 0.4984 (0.4984) loss 2.8125 (2.8125) grad_norm 0.9602 (0.9602/0.0000) mem 16099MB [2025-01-18 01:42:50 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][10/312] eta 0:03:21 lr 0.003313 time 0.5335 (0.6679) model_time 0.5331 (0.4741) loss 3.5184 (3.5936) grad_norm 0.9450 (1.8637/1.0700) mem 16099MB [2025-01-18 01:42:54 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][20/312] eta 0:02:44 lr 0.003313 time 0.4395 (0.5640) model_time 0.4393 (0.4623) loss 3.9113 (3.4254) grad_norm 1.4308 (1.6654/0.8446) mem 16099MB [2025-01-18 01:42:59 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][30/312] eta 0:02:30 lr 0.003312 time 0.4471 (0.5334) model_time 0.4467 (0.4643) loss 3.8983 (3.5982) grad_norm 0.8287 (1.5884/0.7870) mem 16099MB [2025-01-18 01:43:03 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][40/312] eta 0:02:19 lr 0.003312 time 0.4493 (0.5144) model_time 0.4489 (0.4620) loss 2.8316 (3.5608) grad_norm 1.0829 (1.5040/0.7227) mem 16099MB [2025-01-18 01:43:08 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][50/312] eta 0:02:12 lr 0.003311 time 0.4559 (0.5057) model_time 0.4558 (0.4636) loss 2.5007 (3.5505) grad_norm 1.5595 (1.5979/0.7201) mem 16099MB [2025-01-18 01:43:13 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][60/312] eta 0:02:05 lr 0.003311 time 0.4502 (0.4971) model_time 0.4498 (0.4618) loss 3.3885 (3.5012) grad_norm 1.5162 (1.5827/0.6858) mem 16099MB [2025-01-18 01:43:17 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][70/312] eta 0:01:59 lr 0.003310 time 0.4572 (0.4926) model_time 0.4567 (0.4622) loss 3.2095 (3.4995) grad_norm 1.3708 (1.5315/0.6593) mem 16099MB [2025-01-18 01:43:22 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][80/312] eta 0:01:53 lr 0.003310 time 0.4508 (0.4905) model_time 0.4506 (0.4638) loss 3.8919 (3.4881) grad_norm 1.2181 (1.5200/0.6393) mem 16099MB [2025-01-18 01:43:27 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][90/312] eta 0:01:48 lr 0.003309 time 0.4530 (0.4868) model_time 0.4526 (0.4629) loss 3.6943 (3.4696) grad_norm 2.8377 (1.5408/0.6244) mem 16099MB [2025-01-18 01:43:31 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][100/312] eta 0:01:42 lr 0.003309 time 0.4448 (0.4840) model_time 0.4444 (0.4625) loss 3.4375 (3.4464) grad_norm 2.0970 (1.6063/0.7203) mem 16099MB [2025-01-18 01:43:36 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][110/312] eta 0:01:37 lr 0.003308 time 0.4457 (0.4825) model_time 0.4452 (0.4629) loss 4.0977 (3.4375) grad_norm 1.6639 (1.6028/0.7012) mem 16099MB [2025-01-18 01:43:41 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][120/312] eta 0:01:32 lr 0.003308 time 0.4659 (0.4811) model_time 0.4653 (0.4630) loss 4.2191 (3.4519) grad_norm 1.4594 (1.5664/0.6881) mem 16099MB [2025-01-18 01:43:45 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][130/312] eta 0:01:27 lr 0.003307 time 0.4586 (0.4805) model_time 0.4582 (0.4638) loss 3.2027 (3.4616) grad_norm 1.4403 (1.5596/0.6679) mem 16099MB [2025-01-18 01:43:50 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][140/312] eta 0:01:22 lr 0.003307 time 0.4522 (0.4803) model_time 0.4520 (0.4647) loss 2.9992 (3.4813) grad_norm 3.4008 (1.6331/0.7582) mem 16099MB [2025-01-18 01:43:55 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][150/312] eta 0:01:17 lr 0.003306 time 0.4456 (0.4791) model_time 0.4451 (0.4645) loss 4.4056 (3.4956) grad_norm 0.7525 (1.6114/0.7453) mem 16099MB [2025-01-18 01:43:59 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][160/312] eta 0:01:12 lr 0.003306 time 0.4496 (0.4773) model_time 0.4491 (0.4636) loss 2.8549 (3.4926) grad_norm 1.2993 (1.6008/0.7346) mem 16099MB [2025-01-18 01:44:04 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][170/312] eta 0:01:07 lr 0.003305 time 0.4425 (0.4769) model_time 0.4423 (0.4640) loss 3.7486 (3.4868) grad_norm 2.3329 (1.5835/0.7254) mem 16099MB [2025-01-18 01:44:08 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][180/312] eta 0:01:02 lr 0.003305 time 0.4492 (0.4759) model_time 0.4490 (0.4636) loss 2.6527 (3.4799) grad_norm 1.4879 (1.5800/0.7165) mem 16099MB [2025-01-18 01:44:13 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][190/312] eta 0:00:57 lr 0.003304 time 0.4544 (0.4747) model_time 0.4542 (0.4631) loss 4.2270 (3.4737) grad_norm 1.5827 (1.5741/0.7060) mem 16099MB [2025-01-18 01:44:18 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][200/312] eta 0:00:53 lr 0.003304 time 0.4739 (0.4741) model_time 0.4735 (0.4630) loss 3.2711 (3.4785) grad_norm 2.5664 (1.6104/0.7345) mem 16099MB [2025-01-18 01:44:22 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][210/312] eta 0:00:48 lr 0.003303 time 0.4515 (0.4742) model_time 0.4511 (0.4637) loss 2.8124 (3.4740) grad_norm 1.3806 (1.6160/0.7317) mem 16099MB [2025-01-18 01:44:27 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][220/312] eta 0:00:43 lr 0.003303 time 0.4503 (0.4736) model_time 0.4499 (0.4635) loss 3.4953 (3.4843) grad_norm 1.2990 (1.6113/0.7251) mem 16099MB [2025-01-18 01:44:32 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][230/312] eta 0:00:38 lr 0.003302 time 0.4464 (0.4728) model_time 0.4462 (0.4632) loss 3.7900 (3.4837) grad_norm 0.7264 (1.5878/0.7225) mem 16099MB [2025-01-18 01:44:36 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][240/312] eta 0:00:34 lr 0.003302 time 0.4739 (0.4729) model_time 0.4738 (0.4636) loss 3.6267 (3.4806) grad_norm 0.8301 (1.5674/0.7189) mem 16099MB [2025-01-18 01:44:41 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][250/312] eta 0:00:29 lr 0.003301 time 0.4480 (0.4724) model_time 0.4476 (0.4634) loss 2.6965 (3.4841) grad_norm 0.8242 (1.5482/0.7126) mem 16099MB [2025-01-18 01:44:45 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][260/312] eta 0:00:24 lr 0.003301 time 0.4595 (0.4720) model_time 0.4591 (0.4633) loss 3.4366 (3.4842) grad_norm 2.0622 (1.5475/0.7097) mem 16099MB [2025-01-18 01:44:50 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][270/312] eta 0:00:19 lr 0.003300 time 0.5442 (0.4725) model_time 0.5440 (0.4642) loss 3.9421 (3.4994) grad_norm 0.7555 (1.5407/0.7042) mem 16099MB [2025-01-18 01:44:55 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][280/312] eta 0:00:15 lr 0.003300 time 0.4836 (0.4722) model_time 0.4832 (0.4641) loss 3.7757 (3.5060) grad_norm 1.4636 (1.5601/0.7324) mem 16099MB [2025-01-18 01:45:00 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][290/312] eta 0:00:10 lr 0.003299 time 0.4486 (0.4730) model_time 0.4485 (0.4652) loss 4.2849 (3.5121) grad_norm 1.1031 (1.5684/0.7306) mem 16099MB [2025-01-18 01:45:05 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][300/312] eta 0:00:05 lr 0.003299 time 0.4424 (0.4728) model_time 0.4423 (0.4653) loss 3.3197 (3.4927) grad_norm 1.5249 (1.5873/0.7607) mem 16099MB [2025-01-18 01:45:09 internimage_t_1k_224] (main.py 510): INFO Train: [82/300][310/312] eta 0:00:00 lr 0.003298 time 0.4460 (0.4722) model_time 0.4459 (0.4649) loss 3.7805 (3.4875) grad_norm 1.2255 (1.5688/0.7367) mem 16099MB [2025-01-18 01:45:10 internimage_t_1k_224] (main.py 519): INFO EPOCH 82 training takes 0:02:27 [2025-01-18 01:45:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_82.pth saving...... [2025-01-18 01:45:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_82.pth saved !!! [2025-01-18 01:45:18 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.477 (7.477) Loss 0.9579 (0.9579) Acc@1 78.979 (78.979) Acc@5 94.946 (94.946) Mem 16099MB [2025-01-18 01:45:22 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.025) Loss 1.3747 (1.1237) Acc@1 70.435 (75.872) Acc@5 90.161 (93.102) Mem 16099MB [2025-01-18 01:45:22 internimage_t_1k_224] (main.py 575): INFO [Epoch:82] * Acc@1 75.910 Acc@5 93.218 [2025-01-18 01:45:22 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 75.9% [2025-01-18 01:45:22 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.31% [2025-01-18 01:45:31 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.413 (8.413) Loss 1.1692 (1.1692) Acc@1 75.586 (75.586) Acc@5 93.677 (93.677) Mem 16099MB [2025-01-18 01:45:35 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.140) Loss 1.6525 (1.3670) Acc@1 65.747 (71.986) Acc@5 87.402 (90.922) Mem 16099MB [2025-01-18 01:45:35 internimage_t_1k_224] (main.py 575): INFO [Epoch:82] * Acc@1 71.943 Acc@5 90.963 [2025-01-18 01:45:35 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 71.9% [2025-01-18 01:45:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:45:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:45:37 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 71.94% [2025-01-18 01:45:39 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][0/312] eta 0:12:14 lr 0.003298 time 2.3558 (2.3558) model_time 0.4575 (0.4575) loss 3.5702 (3.5702) grad_norm 1.7497 (1.7497/0.0000) mem 16099MB [2025-01-18 01:45:44 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][10/312] eta 0:03:13 lr 0.003297 time 0.4541 (0.6411) model_time 0.4539 (0.4682) loss 3.6101 (3.1732) grad_norm 1.1954 (1.3046/0.3280) mem 16099MB [2025-01-18 01:45:48 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][20/312] eta 0:02:41 lr 0.003297 time 0.4610 (0.5522) model_time 0.4605 (0.4614) loss 3.3242 (3.3633) grad_norm 3.1160 (1.5348/0.7820) mem 16099MB [2025-01-18 01:45:53 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][30/312] eta 0:02:26 lr 0.003296 time 0.4648 (0.5208) model_time 0.4646 (0.4593) loss 3.2492 (3.3856) grad_norm 1.8022 (1.6181/0.7543) mem 16099MB [2025-01-18 01:45:57 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][40/312] eta 0:02:17 lr 0.003296 time 0.4820 (0.5059) model_time 0.4818 (0.4592) loss 2.3196 (3.3734) grad_norm 1.4198 (1.4910/0.7005) mem 16099MB [2025-01-18 01:46:02 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][50/312] eta 0:02:11 lr 0.003295 time 0.4556 (0.5008) model_time 0.4554 (0.4632) loss 3.5447 (3.3928) grad_norm 1.1632 (1.4503/0.6392) mem 16099MB [2025-01-18 01:46:07 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][60/312] eta 0:02:04 lr 0.003295 time 0.4400 (0.4945) model_time 0.4398 (0.4630) loss 3.0830 (3.3498) grad_norm 0.8244 (1.4095/0.6064) mem 16099MB [2025-01-18 01:46:11 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][70/312] eta 0:01:59 lr 0.003294 time 0.4550 (0.4924) model_time 0.4548 (0.4653) loss 4.3678 (3.3702) grad_norm 0.9576 (1.4382/0.6242) mem 16099MB [2025-01-18 01:46:16 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][80/312] eta 0:01:53 lr 0.003294 time 0.4523 (0.4877) model_time 0.4522 (0.4639) loss 3.1647 (3.3675) grad_norm 1.5681 (1.5044/0.6527) mem 16099MB [2025-01-18 01:46:21 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][90/312] eta 0:01:47 lr 0.003293 time 0.4686 (0.4838) model_time 0.4685 (0.4626) loss 3.1995 (3.3557) grad_norm 1.2253 (1.5064/0.6332) mem 16099MB [2025-01-18 01:46:25 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][100/312] eta 0:01:42 lr 0.003293 time 0.4845 (0.4819) model_time 0.4843 (0.4627) loss 3.2533 (3.3453) grad_norm 1.1579 (1.5196/0.6262) mem 16099MB [2025-01-18 01:46:30 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][110/312] eta 0:01:36 lr 0.003292 time 0.4506 (0.4796) model_time 0.4505 (0.4621) loss 3.3170 (3.3542) grad_norm 1.2336 (1.5121/0.6080) mem 16099MB [2025-01-18 01:46:34 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][120/312] eta 0:01:31 lr 0.003292 time 0.4593 (0.4778) model_time 0.4589 (0.4617) loss 2.4297 (3.3521) grad_norm 0.9662 (1.5386/0.6490) mem 16099MB [2025-01-18 01:46:39 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][130/312] eta 0:01:26 lr 0.003291 time 0.4537 (0.4766) model_time 0.4536 (0.4618) loss 4.4157 (3.3789) grad_norm 2.3489 (1.5263/0.6379) mem 16099MB [2025-01-18 01:46:44 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][140/312] eta 0:01:22 lr 0.003291 time 0.4833 (0.4772) model_time 0.4831 (0.4634) loss 3.8228 (3.3880) grad_norm 1.1847 (1.5121/0.6294) mem 16099MB [2025-01-18 01:46:48 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][150/312] eta 0:01:17 lr 0.003290 time 0.4578 (0.4766) model_time 0.4577 (0.4636) loss 2.8701 (3.3837) grad_norm 0.8144 (1.5292/0.6604) mem 16099MB [2025-01-18 01:46:53 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][160/312] eta 0:01:12 lr 0.003290 time 0.4591 (0.4768) model_time 0.4587 (0.4646) loss 2.6496 (3.3797) grad_norm 0.7859 (1.5135/0.6506) mem 16099MB [2025-01-18 01:46:58 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][170/312] eta 0:01:07 lr 0.003289 time 0.4503 (0.4768) model_time 0.4501 (0.4653) loss 3.5969 (3.3775) grad_norm 0.6886 (1.4982/0.6460) mem 16099MB [2025-01-18 01:47:03 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][180/312] eta 0:01:02 lr 0.003289 time 0.4558 (0.4759) model_time 0.4556 (0.4650) loss 3.8540 (3.3887) grad_norm 1.9537 (1.4836/0.6364) mem 16099MB [2025-01-18 01:47:07 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][190/312] eta 0:00:58 lr 0.003288 time 0.4475 (0.4754) model_time 0.4473 (0.4651) loss 4.1441 (3.4054) grad_norm 1.0208 (1.4724/0.6294) mem 16099MB [2025-01-18 01:47:12 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][200/312] eta 0:00:53 lr 0.003288 time 0.5080 (0.4746) model_time 0.5075 (0.4647) loss 3.8693 (3.4100) grad_norm 3.3583 (1.4728/0.6305) mem 16099MB [2025-01-18 01:47:17 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][210/312] eta 0:00:48 lr 0.003287 time 0.4977 (0.4738) model_time 0.4975 (0.4643) loss 3.8257 (3.4080) grad_norm 1.2973 (1.4746/0.6274) mem 16099MB [2025-01-18 01:47:21 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][220/312] eta 0:00:43 lr 0.003287 time 0.5286 (0.4737) model_time 0.5284 (0.4647) loss 3.3525 (3.4109) grad_norm 1.4826 (1.4689/0.6315) mem 16099MB [2025-01-18 01:47:26 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][230/312] eta 0:00:38 lr 0.003286 time 0.4436 (0.4740) model_time 0.4435 (0.4653) loss 2.8295 (3.4182) grad_norm 1.7838 (1.4835/0.6338) mem 16099MB [2025-01-18 01:47:31 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][240/312] eta 0:00:34 lr 0.003286 time 0.4574 (0.4737) model_time 0.4395 (0.4653) loss 3.5540 (3.4218) grad_norm 3.3169 (1.5031/0.6622) mem 16099MB [2025-01-18 01:47:35 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][250/312] eta 0:00:29 lr 0.003285 time 0.4590 (0.4732) model_time 0.4586 (0.4651) loss 2.9506 (3.4167) grad_norm 1.1629 (1.5432/0.7196) mem 16099MB [2025-01-18 01:47:40 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][260/312] eta 0:00:24 lr 0.003285 time 0.4635 (0.4726) model_time 0.4631 (0.4648) loss 2.5621 (3.4163) grad_norm 1.0430 (1.5400/0.7229) mem 16099MB [2025-01-18 01:47:44 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][270/312] eta 0:00:19 lr 0.003284 time 0.4624 (0.4721) model_time 0.4620 (0.4645) loss 2.2308 (3.4150) grad_norm 1.3743 (1.5289/0.7150) mem 16099MB [2025-01-18 01:47:49 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][280/312] eta 0:00:15 lr 0.003284 time 0.4680 (0.4719) model_time 0.4674 (0.4646) loss 3.9203 (3.4261) grad_norm 0.9700 (1.5131/0.7088) mem 16099MB [2025-01-18 01:47:54 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][290/312] eta 0:00:10 lr 0.003283 time 0.4550 (0.4722) model_time 0.4546 (0.4652) loss 3.6011 (3.4262) grad_norm 1.0893 (1.5111/0.7027) mem 16099MB [2025-01-18 01:47:59 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][300/312] eta 0:00:05 lr 0.003283 time 0.4424 (0.4721) model_time 0.4423 (0.4652) loss 3.5031 (3.4239) grad_norm 1.5574 (1.5350/0.7209) mem 16099MB [2025-01-18 01:48:03 internimage_t_1k_224] (main.py 510): INFO Train: [83/300][310/312] eta 0:00:00 lr 0.003282 time 0.4441 (0.4716) model_time 0.4440 (0.4650) loss 3.4581 (3.4211) grad_norm 1.2496 (1.5368/0.7197) mem 16099MB [2025-01-18 01:48:04 internimage_t_1k_224] (main.py 519): INFO EPOCH 83 training takes 0:02:27 [2025-01-18 01:48:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_83.pth saving...... [2025-01-18 01:48:05 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_83.pth saved !!! [2025-01-18 01:48:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.420 (7.420) Loss 0.9101 (0.9101) Acc@1 80.078 (80.078) Acc@5 95.557 (95.557) Mem 16099MB [2025-01-18 01:48:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.993) Loss 1.3288 (1.0961) Acc@1 70.215 (76.136) Acc@5 90.869 (93.359) Mem 16099MB [2025-01-18 01:48:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:83] * Acc@1 76.054 Acc@5 93.388 [2025-01-18 01:48:16 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.1% [2025-01-18 01:48:16 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.31% [2025-01-18 01:48:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.254 (8.254) Loss 1.1472 (1.1472) Acc@1 76.001 (76.001) Acc@5 94.067 (94.067) Mem 16099MB [2025-01-18 01:48:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.110) Loss 1.6279 (1.3443) Acc@1 66.211 (72.328) Acc@5 87.671 (91.118) Mem 16099MB [2025-01-18 01:48:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:83] * Acc@1 72.283 Acc@5 91.157 [2025-01-18 01:48:28 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 72.3% [2025-01-18 01:48:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:48:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:48:30 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 72.28% [2025-01-18 01:48:33 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][0/312] eta 0:14:14 lr 0.003282 time 2.7374 (2.7374) model_time 0.4671 (0.4671) loss 3.2685 (3.2685) grad_norm 1.1162 (1.1162/0.0000) mem 16099MB [2025-01-18 01:48:37 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][10/312] eta 0:03:20 lr 0.003282 time 0.4401 (0.6642) model_time 0.4396 (0.4574) loss 2.5789 (3.6293) grad_norm 2.5649 (1.7465/0.8152) mem 16099MB [2025-01-18 01:48:42 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][20/312] eta 0:02:45 lr 0.003281 time 0.4425 (0.5682) model_time 0.4423 (0.4597) loss 2.3670 (3.5257) grad_norm 0.8752 (1.4210/0.7100) mem 16099MB [2025-01-18 01:48:47 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][30/312] eta 0:02:31 lr 0.003281 time 0.4817 (0.5376) model_time 0.4812 (0.4640) loss 3.4789 (3.4711) grad_norm 1.6902 (1.4441/0.6166) mem 16099MB [2025-01-18 01:48:51 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][40/312] eta 0:02:21 lr 0.003280 time 0.4418 (0.5190) model_time 0.4416 (0.4633) loss 3.7507 (3.5015) grad_norm 1.2311 (1.4528/0.5774) mem 16099MB [2025-01-18 01:48:56 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][50/312] eta 0:02:14 lr 0.003280 time 0.4500 (0.5122) model_time 0.4496 (0.4674) loss 4.2778 (3.5649) grad_norm 2.3124 (1.4996/0.6065) mem 16099MB [2025-01-18 01:49:01 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][60/312] eta 0:02:07 lr 0.003279 time 0.4857 (0.5042) model_time 0.4852 (0.4666) loss 3.4114 (3.5762) grad_norm 1.4576 (1.5447/0.6366) mem 16099MB [2025-01-18 01:49:05 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][70/312] eta 0:02:00 lr 0.003279 time 0.4747 (0.4975) model_time 0.4745 (0.4652) loss 2.9879 (3.5853) grad_norm 1.2394 (1.5314/0.6014) mem 16099MB [2025-01-18 01:49:10 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][80/312] eta 0:01:54 lr 0.003278 time 0.4507 (0.4916) model_time 0.4505 (0.4632) loss 3.8638 (3.6104) grad_norm 2.3679 (1.5222/0.5905) mem 16099MB [2025-01-18 01:49:14 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][90/312] eta 0:01:48 lr 0.003277 time 0.4508 (0.4874) model_time 0.4503 (0.4621) loss 4.3950 (3.5801) grad_norm 2.7775 (1.6747/0.8736) mem 16099MB [2025-01-18 01:49:19 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][100/312] eta 0:01:42 lr 0.003277 time 0.4760 (0.4845) model_time 0.4756 (0.4616) loss 4.0998 (3.5849) grad_norm 1.1466 (1.6544/0.8594) mem 16099MB [2025-01-18 01:49:24 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][110/312] eta 0:01:37 lr 0.003276 time 0.4566 (0.4836) model_time 0.4564 (0.4627) loss 4.0044 (3.5581) grad_norm 1.1460 (1.6147/0.8350) mem 16099MB [2025-01-18 01:49:28 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][120/312] eta 0:01:32 lr 0.003276 time 0.4705 (0.4823) model_time 0.4704 (0.4632) loss 4.0876 (3.5763) grad_norm 1.3341 (1.5890/0.8087) mem 16099MB [2025-01-18 01:49:33 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][130/312] eta 0:01:27 lr 0.003275 time 0.4689 (0.4803) model_time 0.4688 (0.4625) loss 4.3623 (3.5736) grad_norm 1.4905 (1.5465/0.7935) mem 16099MB [2025-01-18 01:49:37 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][140/312] eta 0:01:22 lr 0.003275 time 0.4463 (0.4794) model_time 0.4461 (0.4629) loss 3.1375 (3.5779) grad_norm 1.0617 (1.5674/0.7977) mem 16099MB [2025-01-18 01:49:42 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][150/312] eta 0:01:17 lr 0.003274 time 0.4539 (0.4798) model_time 0.4537 (0.4644) loss 4.3141 (3.5653) grad_norm 1.4813 (1.5447/0.7797) mem 16099MB [2025-01-18 01:49:47 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][160/312] eta 0:01:12 lr 0.003274 time 0.4821 (0.4796) model_time 0.4820 (0.4651) loss 3.7179 (3.5652) grad_norm 1.5424 (1.5600/0.7774) mem 16099MB [2025-01-18 01:49:52 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][170/312] eta 0:01:07 lr 0.003273 time 0.4502 (0.4783) model_time 0.4497 (0.4647) loss 3.1825 (3.5671) grad_norm 1.4125 (1.5489/0.7683) mem 16099MB [2025-01-18 01:49:56 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][180/312] eta 0:01:03 lr 0.003273 time 0.5534 (0.4778) model_time 0.5528 (0.4649) loss 3.0841 (3.5637) grad_norm 1.1737 (1.5266/0.7538) mem 16099MB [2025-01-18 01:50:01 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][190/312] eta 0:00:58 lr 0.003272 time 0.4472 (0.4775) model_time 0.4471 (0.4652) loss 3.5173 (3.5586) grad_norm 0.5962 (1.5062/0.7520) mem 16099MB [2025-01-18 01:50:06 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][200/312] eta 0:00:53 lr 0.003272 time 0.4759 (0.4772) model_time 0.4754 (0.4655) loss 4.0984 (3.5490) grad_norm 2.1886 (1.5179/0.7442) mem 16099MB [2025-01-18 01:50:11 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][210/312] eta 0:00:48 lr 0.003271 time 0.4409 (0.4772) model_time 0.4404 (0.4661) loss 3.9959 (3.5560) grad_norm 0.9936 (1.5326/0.7548) mem 16099MB [2025-01-18 01:50:15 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][220/312] eta 0:00:43 lr 0.003271 time 0.4620 (0.4769) model_time 0.4616 (0.4663) loss 3.8195 (3.5487) grad_norm 0.7109 (1.5263/0.7425) mem 16099MB [2025-01-18 01:50:20 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][230/312] eta 0:00:39 lr 0.003270 time 0.5477 (0.4768) model_time 0.5476 (0.4666) loss 3.5336 (3.5532) grad_norm 0.7830 (1.5092/0.7371) mem 16099MB [2025-01-18 01:50:25 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][240/312] eta 0:00:34 lr 0.003270 time 0.4537 (0.4760) model_time 0.4536 (0.4662) loss 3.8190 (3.5480) grad_norm 1.4011 (1.5026/0.7262) mem 16099MB [2025-01-18 01:50:29 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][250/312] eta 0:00:29 lr 0.003269 time 0.4472 (0.4755) model_time 0.4468 (0.4661) loss 3.4886 (3.5512) grad_norm 0.9002 (1.4959/0.7202) mem 16099MB [2025-01-18 01:50:34 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][260/312] eta 0:00:24 lr 0.003269 time 0.4540 (0.4751) model_time 0.4539 (0.4660) loss 4.1680 (3.5527) grad_norm 1.6043 (1.5032/0.7137) mem 16099MB [2025-01-18 01:50:38 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][270/312] eta 0:00:19 lr 0.003268 time 0.4520 (0.4747) model_time 0.4518 (0.4659) loss 3.6748 (3.5338) grad_norm 1.3591 (1.5100/0.7076) mem 16099MB [2025-01-18 01:50:43 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][280/312] eta 0:00:15 lr 0.003268 time 0.4755 (0.4748) model_time 0.4753 (0.4663) loss 2.9294 (3.5318) grad_norm 3.1620 (1.5191/0.7106) mem 16099MB [2025-01-18 01:50:48 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][290/312] eta 0:00:10 lr 0.003267 time 0.4583 (0.4747) model_time 0.4579 (0.4665) loss 4.1214 (3.5278) grad_norm 1.0485 (1.5157/0.7058) mem 16099MB [2025-01-18 01:50:52 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][300/312] eta 0:00:05 lr 0.003267 time 0.4437 (0.4738) model_time 0.4436 (0.4659) loss 3.8126 (3.5295) grad_norm 1.9331 (1.5189/0.7076) mem 16099MB [2025-01-18 01:50:57 internimage_t_1k_224] (main.py 510): INFO Train: [84/300][310/312] eta 0:00:00 lr 0.003266 time 0.4442 (0.4729) model_time 0.4441 (0.4652) loss 3.7979 (3.5262) grad_norm 1.6687 (1.5481/0.7990) mem 16099MB [2025-01-18 01:50:57 internimage_t_1k_224] (main.py 519): INFO EPOCH 84 training takes 0:02:27 [2025-01-18 01:50:57 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_84.pth saving...... [2025-01-18 01:50:58 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_84.pth saved !!! [2025-01-18 01:51:06 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.530 (7.530) Loss 0.9187 (0.9187) Acc@1 80.249 (80.249) Acc@5 95.654 (95.654) Mem 16099MB [2025-01-18 01:51:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.019) Loss 1.3356 (1.0996) Acc@1 71.069 (76.467) Acc@5 90.137 (93.390) Mem 16099MB [2025-01-18 01:51:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:84] * Acc@1 76.398 Acc@5 93.464 [2025-01-18 01:51:10 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.4% [2025-01-18 01:51:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 01:51:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 01:51:11 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.40% [2025-01-18 01:51:19 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.100 (8.100) Loss 1.1267 (1.1267) Acc@1 76.392 (76.392) Acc@5 94.312 (94.312) Mem 16099MB [2025-01-18 01:51:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.097) Loss 1.6057 (1.3231) Acc@1 66.357 (72.661) Acc@5 87.866 (91.331) Mem 16099MB [2025-01-18 01:51:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:84] * Acc@1 72.601 Acc@5 91.387 [2025-01-18 01:51:23 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 72.6% [2025-01-18 01:51:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:51:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:51:25 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 72.60% [2025-01-18 01:51:27 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][0/312] eta 0:11:22 lr 0.003266 time 2.1887 (2.1887) model_time 0.5528 (0.5528) loss 3.0914 (3.0914) grad_norm 0.8778 (0.8778/0.0000) mem 16099MB [2025-01-18 01:51:32 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][10/312] eta 0:03:09 lr 0.003266 time 0.4528 (0.6274) model_time 0.4527 (0.4783) loss 3.3376 (3.4762) grad_norm 1.4874 (1.2207/0.3711) mem 16099MB [2025-01-18 01:51:36 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][20/312] eta 0:02:39 lr 0.003265 time 0.4709 (0.5469) model_time 0.4705 (0.4687) loss 3.7546 (3.6493) grad_norm 1.8609 (1.6116/0.7170) mem 16099MB [2025-01-18 01:51:41 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][30/312] eta 0:02:26 lr 0.003265 time 0.4528 (0.5199) model_time 0.4524 (0.4667) loss 3.6065 (3.6519) grad_norm 1.3834 (1.4691/0.6386) mem 16099MB [2025-01-18 01:51:46 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][40/312] eta 0:02:18 lr 0.003264 time 0.5131 (0.5074) model_time 0.5126 (0.4671) loss 4.3065 (3.6313) grad_norm 2.7031 (1.5377/0.6506) mem 16099MB [2025-01-18 01:51:50 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][50/312] eta 0:02:11 lr 0.003263 time 0.5453 (0.5021) model_time 0.5449 (0.4697) loss 3.8491 (3.6256) grad_norm 1.4832 (1.5065/0.6221) mem 16099MB [2025-01-18 01:51:55 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][60/312] eta 0:02:05 lr 0.003263 time 0.5412 (0.4973) model_time 0.5411 (0.4701) loss 3.2858 (3.6015) grad_norm 1.1984 (1.4914/0.6000) mem 16099MB [2025-01-18 01:52:00 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][70/312] eta 0:01:59 lr 0.003262 time 0.4608 (0.4935) model_time 0.4604 (0.4700) loss 3.8600 (3.5931) grad_norm 0.9570 (1.5298/0.6045) mem 16099MB [2025-01-18 01:52:04 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][80/312] eta 0:01:53 lr 0.003262 time 0.4574 (0.4890) model_time 0.4572 (0.4684) loss 3.6798 (3.5615) grad_norm 1.0524 (1.5109/0.5912) mem 16099MB [2025-01-18 01:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][90/312] eta 0:01:48 lr 0.003261 time 0.5529 (0.4880) model_time 0.5525 (0.4696) loss 2.4189 (3.5351) grad_norm 1.4762 (1.5629/0.6511) mem 16099MB [2025-01-18 01:52:14 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][100/312] eta 0:01:42 lr 0.003261 time 0.4524 (0.4851) model_time 0.4522 (0.4685) loss 3.0990 (3.5153) grad_norm 1.4039 (1.5642/0.6236) mem 16099MB [2025-01-18 01:52:18 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][110/312] eta 0:01:37 lr 0.003260 time 0.4395 (0.4845) model_time 0.4394 (0.4694) loss 3.8035 (3.5052) grad_norm 3.1760 (1.5844/0.6331) mem 16099MB [2025-01-18 01:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][120/312] eta 0:01:32 lr 0.003260 time 0.4419 (0.4827) model_time 0.4417 (0.4688) loss 2.6882 (3.4765) grad_norm 1.0554 (1.5765/0.6180) mem 16099MB [2025-01-18 01:52:28 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][130/312] eta 0:01:27 lr 0.003259 time 0.5447 (0.4820) model_time 0.5442 (0.4691) loss 3.9789 (3.4933) grad_norm 0.8973 (1.5779/0.6360) mem 16099MB [2025-01-18 01:52:33 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][140/312] eta 0:01:22 lr 0.003259 time 0.4485 (0.4819) model_time 0.4480 (0.4699) loss 3.5691 (3.5210) grad_norm 1.2641 (1.5914/0.6574) mem 16099MB [2025-01-18 01:52:37 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][150/312] eta 0:01:17 lr 0.003258 time 0.4591 (0.4809) model_time 0.4589 (0.4697) loss 3.0012 (3.5334) grad_norm 1.3203 (1.5798/0.6474) mem 16099MB [2025-01-18 01:52:42 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][160/312] eta 0:01:13 lr 0.003258 time 0.5334 (0.4813) model_time 0.5330 (0.4707) loss 4.1211 (3.5479) grad_norm 0.9623 (1.5562/0.6363) mem 16099MB [2025-01-18 01:52:47 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][170/312] eta 0:01:08 lr 0.003257 time 0.4476 (0.4800) model_time 0.4474 (0.4701) loss 2.9951 (3.5460) grad_norm 1.3850 (1.5729/0.6968) mem 16099MB [2025-01-18 01:52:51 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][180/312] eta 0:01:03 lr 0.003257 time 0.4429 (0.4786) model_time 0.4424 (0.4692) loss 4.1849 (3.5474) grad_norm 2.1843 (1.5849/0.7030) mem 16099MB [2025-01-18 01:52:56 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][190/312] eta 0:00:58 lr 0.003256 time 0.4651 (0.4778) model_time 0.4649 (0.4688) loss 3.1846 (3.5449) grad_norm 0.8302 (1.5766/0.6919) mem 16099MB [2025-01-18 01:53:01 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][200/312] eta 0:00:53 lr 0.003256 time 0.4435 (0.4770) model_time 0.4433 (0.4685) loss 3.6150 (3.5437) grad_norm 1.1619 (1.5605/0.6885) mem 16099MB [2025-01-18 01:53:05 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][210/312] eta 0:00:48 lr 0.003255 time 0.4700 (0.4770) model_time 0.4695 (0.4689) loss 3.8205 (3.5512) grad_norm 3.1303 (1.5624/0.6905) mem 16099MB [2025-01-18 01:53:10 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][220/312] eta 0:00:43 lr 0.003255 time 0.4490 (0.4763) model_time 0.4486 (0.4685) loss 3.2938 (3.5452) grad_norm 1.2209 (1.5595/0.6779) mem 16099MB [2025-01-18 01:53:15 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][230/312] eta 0:00:39 lr 0.003254 time 0.4421 (0.4762) model_time 0.4420 (0.4687) loss 4.2600 (3.5420) grad_norm 1.1108 (1.5551/0.6703) mem 16099MB [2025-01-18 01:53:19 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][240/312] eta 0:00:34 lr 0.003254 time 0.4572 (0.4757) model_time 0.4568 (0.4685) loss 3.3215 (3.5264) grad_norm 3.4615 (1.5556/0.6732) mem 16099MB [2025-01-18 01:53:24 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][250/312] eta 0:00:29 lr 0.003253 time 0.4638 (0.4747) model_time 0.4636 (0.4678) loss 3.7029 (3.5275) grad_norm 1.1053 (1.5739/0.6937) mem 16099MB [2025-01-18 01:53:28 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][260/312] eta 0:00:24 lr 0.003253 time 0.4533 (0.4742) model_time 0.4528 (0.4675) loss 4.2548 (3.5271) grad_norm 0.6974 (1.5594/0.6867) mem 16099MB [2025-01-18 01:53:33 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][270/312] eta 0:00:19 lr 0.003252 time 0.4625 (0.4734) model_time 0.4623 (0.4669) loss 3.9092 (3.5330) grad_norm 2.0543 (1.5532/0.6810) mem 16099MB [2025-01-18 01:53:38 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][280/312] eta 0:00:15 lr 0.003252 time 0.4497 (0.4735) model_time 0.4495 (0.4673) loss 3.6101 (3.5319) grad_norm 2.7521 (1.5694/0.6956) mem 16099MB [2025-01-18 01:53:42 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][290/312] eta 0:00:10 lr 0.003251 time 0.4564 (0.4735) model_time 0.4560 (0.4675) loss 3.1902 (3.5363) grad_norm 0.8252 (1.5612/0.6881) mem 16099MB [2025-01-18 01:53:47 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][300/312] eta 0:00:05 lr 0.003250 time 0.4445 (0.4726) model_time 0.4445 (0.4668) loss 3.3709 (3.5379) grad_norm 1.2455 (1.5724/0.7046) mem 16099MB [2025-01-18 01:53:52 internimage_t_1k_224] (main.py 510): INFO Train: [85/300][310/312] eta 0:00:00 lr 0.003250 time 0.5195 (0.4722) model_time 0.5194 (0.4665) loss 3.4084 (3.5389) grad_norm 0.5174 (1.5644/0.7091) mem 16099MB [2025-01-18 01:53:52 internimage_t_1k_224] (main.py 519): INFO EPOCH 85 training takes 0:02:27 [2025-01-18 01:53:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_85.pth saving...... [2025-01-18 01:53:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_85.pth saved !!! [2025-01-18 01:54:01 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.656 (7.656) Loss 0.9518 (0.9518) Acc@1 79.932 (79.932) Acc@5 95.898 (95.898) Mem 16099MB [2025-01-18 01:54:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.028) Loss 1.3028 (1.1210) Acc@1 72.607 (76.278) Acc@5 91.162 (93.659) Mem 16099MB [2025-01-18 01:54:05 internimage_t_1k_224] (main.py 575): INFO [Epoch:85] * Acc@1 76.314 Acc@5 93.690 [2025-01-18 01:54:05 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.3% [2025-01-18 01:54:05 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.40% [2025-01-18 01:54:13 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.205 (8.205) Loss 1.1067 (1.1067) Acc@1 76.587 (76.587) Acc@5 94.507 (94.507) Mem 16099MB [2025-01-18 01:54:17 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.100 (1.102) Loss 1.5841 (1.3029) Acc@1 66.748 (72.989) Acc@5 88.159 (91.519) Mem 16099MB [2025-01-18 01:54:17 internimage_t_1k_224] (main.py 575): INFO [Epoch:85] * Acc@1 72.947 Acc@5 91.581 [2025-01-18 01:54:17 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 72.9% [2025-01-18 01:54:17 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:54:18 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:54:18 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 72.95% [2025-01-18 01:54:21 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][0/312] eta 0:14:05 lr 0.003250 time 2.7086 (2.7086) model_time 0.4658 (0.4658) loss 2.4212 (2.4212) grad_norm 1.0642 (1.0642/0.0000) mem 16099MB [2025-01-18 01:54:26 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][10/312] eta 0:03:20 lr 0.003249 time 0.4544 (0.6648) model_time 0.4540 (0.4606) loss 3.1176 (3.1767) grad_norm 1.0952 (1.4013/0.4952) mem 16099MB [2025-01-18 01:54:30 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][20/312] eta 0:02:47 lr 0.003249 time 0.5364 (0.5741) model_time 0.5360 (0.4669) loss 3.8703 (3.3787) grad_norm 1.0925 (1.5130/0.6006) mem 16099MB [2025-01-18 01:54:35 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][30/312] eta 0:02:31 lr 0.003248 time 0.4710 (0.5359) model_time 0.4706 (0.4632) loss 3.8017 (3.4720) grad_norm 1.1425 (1.4815/0.5324) mem 16099MB [2025-01-18 01:54:39 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][40/312] eta 0:02:20 lr 0.003248 time 0.4483 (0.5156) model_time 0.4481 (0.4605) loss 4.1952 (3.5080) grad_norm 2.3190 (1.5022/0.5401) mem 16099MB [2025-01-18 01:54:44 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][50/312] eta 0:02:12 lr 0.003247 time 0.4594 (0.5076) model_time 0.4592 (0.4632) loss 4.3149 (3.5224) grad_norm 1.5720 (1.5545/0.5441) mem 16099MB [2025-01-18 01:54:49 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][60/312] eta 0:02:06 lr 0.003247 time 0.4472 (0.5002) model_time 0.4470 (0.4630) loss 2.8200 (3.4824) grad_norm 1.0618 (1.4852/0.5430) mem 16099MB [2025-01-18 01:54:53 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][70/312] eta 0:01:59 lr 0.003246 time 0.4422 (0.4957) model_time 0.4417 (0.4637) loss 3.3395 (3.5085) grad_norm 1.0954 (1.4662/0.5349) mem 16099MB [2025-01-18 01:54:58 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][80/312] eta 0:01:54 lr 0.003246 time 0.5127 (0.4938) model_time 0.5123 (0.4657) loss 3.4184 (3.5049) grad_norm 1.4424 (1.5447/0.6845) mem 16099MB [2025-01-18 01:55:03 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][90/312] eta 0:01:49 lr 0.003245 time 0.4451 (0.4935) model_time 0.4447 (0.4684) loss 3.3138 (3.5014) grad_norm 1.3618 (1.5008/0.6660) mem 16099MB [2025-01-18 01:55:08 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][100/312] eta 0:01:44 lr 0.003245 time 0.5308 (0.4925) model_time 0.5306 (0.4699) loss 3.7168 (3.4797) grad_norm 1.2205 (1.4717/0.6475) mem 16099MB [2025-01-18 01:55:13 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][110/312] eta 0:01:38 lr 0.003244 time 0.4546 (0.4901) model_time 0.4541 (0.4694) loss 3.3980 (3.4830) grad_norm 1.4450 (1.4408/0.6300) mem 16099MB [2025-01-18 01:55:17 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][120/312] eta 0:01:33 lr 0.003244 time 0.4526 (0.4871) model_time 0.4525 (0.4682) loss 3.7844 (3.4956) grad_norm 1.8359 (1.4804/0.6760) mem 16099MB [2025-01-18 01:55:22 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][130/312] eta 0:01:28 lr 0.003243 time 0.4410 (0.4848) model_time 0.4405 (0.4672) loss 2.8258 (3.5030) grad_norm 1.0247 (1.4991/0.6795) mem 16099MB [2025-01-18 01:55:27 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][140/312] eta 0:01:23 lr 0.003243 time 0.4531 (0.4848) model_time 0.4527 (0.4684) loss 2.8938 (3.4924) grad_norm 1.9226 (1.5229/0.6861) mem 16099MB [2025-01-18 01:55:31 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][150/312] eta 0:01:18 lr 0.003242 time 0.4497 (0.4831) model_time 0.4496 (0.4678) loss 3.3302 (3.4835) grad_norm 1.1548 (1.5287/0.6744) mem 16099MB [2025-01-18 01:55:36 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][160/312] eta 0:01:13 lr 0.003242 time 0.5326 (0.4817) model_time 0.5321 (0.4673) loss 3.8455 (3.4886) grad_norm 0.8318 (1.5333/0.6787) mem 16099MB [2025-01-18 01:55:40 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][170/312] eta 0:01:08 lr 0.003241 time 0.4545 (0.4807) model_time 0.4543 (0.4671) loss 4.0452 (3.4964) grad_norm 2.2328 (1.5160/0.6683) mem 16099MB [2025-01-18 01:55:45 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][180/312] eta 0:01:03 lr 0.003240 time 0.4493 (0.4794) model_time 0.4491 (0.4666) loss 3.7544 (3.4852) grad_norm 1.3475 (1.5163/0.6694) mem 16099MB [2025-01-18 01:55:50 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][190/312] eta 0:00:58 lr 0.003240 time 0.4474 (0.4786) model_time 0.4470 (0.4664) loss 2.9928 (3.4748) grad_norm 3.4903 (1.5328/0.7030) mem 16099MB [2025-01-18 01:55:54 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][200/312] eta 0:00:53 lr 0.003239 time 0.4476 (0.4774) model_time 0.4474 (0.4658) loss 3.6928 (3.4824) grad_norm 1.3675 (1.5284/0.6973) mem 16099MB [2025-01-18 01:55:59 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][210/312] eta 0:00:48 lr 0.003239 time 0.4467 (0.4771) model_time 0.4463 (0.4661) loss 3.6895 (3.4815) grad_norm 1.0284 (1.5408/0.7168) mem 16099MB [2025-01-18 01:56:04 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][220/312] eta 0:00:43 lr 0.003238 time 0.4435 (0.4765) model_time 0.4431 (0.4660) loss 3.6235 (3.4918) grad_norm 1.5412 (1.5394/0.7110) mem 16099MB [2025-01-18 01:56:08 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][230/312] eta 0:00:39 lr 0.003238 time 0.4663 (0.4757) model_time 0.4661 (0.4656) loss 4.3152 (3.4899) grad_norm 0.8908 (1.5466/0.7260) mem 16099MB [2025-01-18 01:56:13 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][240/312] eta 0:00:34 lr 0.003237 time 0.4586 (0.4750) model_time 0.4581 (0.4653) loss 3.1204 (3.4785) grad_norm 0.9308 (1.5549/0.7230) mem 16099MB [2025-01-18 01:56:17 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][250/312] eta 0:00:29 lr 0.003237 time 0.4742 (0.4749) model_time 0.4738 (0.4656) loss 4.2247 (3.4802) grad_norm 1.0825 (1.5544/0.7140) mem 16099MB [2025-01-18 01:56:22 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][260/312] eta 0:00:24 lr 0.003236 time 0.4526 (0.4744) model_time 0.4524 (0.4653) loss 4.3236 (3.4950) grad_norm 1.7986 (1.5487/0.7021) mem 16099MB [2025-01-18 01:56:27 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][270/312] eta 0:00:19 lr 0.003236 time 0.4672 (0.4744) model_time 0.4670 (0.4657) loss 3.5732 (3.4969) grad_norm 1.7706 (1.5620/0.7082) mem 16099MB [2025-01-18 01:56:32 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][280/312] eta 0:00:15 lr 0.003235 time 0.4691 (0.4751) model_time 0.4689 (0.4667) loss 3.5818 (3.5035) grad_norm 1.1723 (1.5593/0.7022) mem 16099MB [2025-01-18 01:56:36 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][290/312] eta 0:00:10 lr 0.003235 time 0.4475 (0.4748) model_time 0.4474 (0.4667) loss 4.1195 (3.5099) grad_norm 1.6495 (1.5497/0.6944) mem 16099MB [2025-01-18 01:56:41 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][300/312] eta 0:00:05 lr 0.003234 time 0.4382 (0.4748) model_time 0.4381 (0.4669) loss 3.6316 (3.5083) grad_norm 1.5427 (1.5465/0.6892) mem 16099MB [2025-01-18 01:56:46 internimage_t_1k_224] (main.py 510): INFO Train: [86/300][310/312] eta 0:00:00 lr 0.003234 time 0.4445 (0.4748) model_time 0.4444 (0.4672) loss 3.4305 (3.5060) grad_norm 1.0083 (1.5469/0.6882) mem 16099MB [2025-01-18 01:56:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 86 training takes 0:02:28 [2025-01-18 01:56:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_86.pth saving...... [2025-01-18 01:56:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_86.pth saved !!! [2025-01-18 01:56:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.092 (8.092) Loss 0.9684 (0.9684) Acc@1 79.224 (79.224) Acc@5 95.142 (95.142) Mem 16099MB [2025-01-18 01:56:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.073) Loss 1.3469 (1.1187) Acc@1 70.776 (76.114) Acc@5 90.796 (93.359) Mem 16099MB [2025-01-18 01:56:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:86] * Acc@1 75.970 Acc@5 93.378 [2025-01-18 01:56:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.0% [2025-01-18 01:56:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.40% [2025-01-18 01:57:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.538 (8.538) Loss 1.0887 (1.0887) Acc@1 76.855 (76.855) Acc@5 94.629 (94.629) Mem 16099MB [2025-01-18 01:57:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.169) Loss 1.5626 (1.2840) Acc@1 66.992 (73.273) Acc@5 88.354 (91.688) Mem 16099MB [2025-01-18 01:57:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:86] * Acc@1 73.213 Acc@5 91.739 [2025-01-18 01:57:12 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 73.2% [2025-01-18 01:57:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 01:57:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 01:57:14 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 73.21% [2025-01-18 01:57:16 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][0/312] eta 0:11:25 lr 0.003234 time 2.1985 (2.1985) model_time 0.4600 (0.4600) loss 3.1737 (3.1737) grad_norm 1.1627 (1.1627/0.0000) mem 16099MB [2025-01-18 01:57:21 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][10/312] eta 0:03:11 lr 0.003233 time 0.4587 (0.6326) model_time 0.4585 (0.4743) loss 3.6119 (3.7366) grad_norm 0.9996 (1.3731/0.6526) mem 16099MB [2025-01-18 01:57:26 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][20/312] eta 0:02:45 lr 0.003233 time 0.5983 (0.5682) model_time 0.5979 (0.4851) loss 3.8067 (3.7001) grad_norm 1.4947 (1.3851/0.5196) mem 16099MB [2025-01-18 01:57:31 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][30/312] eta 0:02:30 lr 0.003232 time 0.4552 (0.5340) model_time 0.4547 (0.4776) loss 3.4268 (3.6064) grad_norm 4.7451 (1.7327/0.9501) mem 16099MB [2025-01-18 01:57:35 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][40/312] eta 0:02:19 lr 0.003231 time 0.4624 (0.5142) model_time 0.4623 (0.4715) loss 3.0798 (3.5671) grad_norm 1.3206 (1.6959/0.8483) mem 16099MB [2025-01-18 01:57:40 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][50/312] eta 0:02:13 lr 0.003231 time 0.4508 (0.5100) model_time 0.4504 (0.4756) loss 4.2142 (3.5675) grad_norm 1.8018 (1.6279/0.7932) mem 16099MB [2025-01-18 01:57:45 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][60/312] eta 0:02:06 lr 0.003230 time 0.4493 (0.5006) model_time 0.4488 (0.4718) loss 3.4653 (3.5717) grad_norm 1.4948 (1.6240/0.7486) mem 16099MB [2025-01-18 01:57:49 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][70/312] eta 0:01:59 lr 0.003230 time 0.4488 (0.4946) model_time 0.4487 (0.4697) loss 3.9612 (3.5168) grad_norm 0.9890 (1.6073/0.7161) mem 16099MB [2025-01-18 01:57:54 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][80/312] eta 0:01:53 lr 0.003229 time 0.4720 (0.4896) model_time 0.4718 (0.4678) loss 3.3174 (3.4847) grad_norm 1.0183 (1.5928/0.6871) mem 16099MB [2025-01-18 01:57:58 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][90/312] eta 0:01:47 lr 0.003229 time 0.4535 (0.4860) model_time 0.4533 (0.4665) loss 4.4637 (3.4594) grad_norm 2.5703 (1.6068/0.6828) mem 16099MB [2025-01-18 01:58:03 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][100/312] eta 0:01:42 lr 0.003228 time 0.4433 (0.4830) model_time 0.4431 (0.4655) loss 2.4867 (3.4316) grad_norm 2.6107 (1.6011/0.6752) mem 16099MB [2025-01-18 01:58:07 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][110/312] eta 0:01:37 lr 0.003228 time 0.4463 (0.4809) model_time 0.4458 (0.4649) loss 4.1115 (3.4587) grad_norm 0.7863 (1.5984/0.6826) mem 16099MB [2025-01-18 01:58:12 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][120/312] eta 0:01:31 lr 0.003227 time 0.4485 (0.4788) model_time 0.4483 (0.4640) loss 3.6425 (3.4777) grad_norm 2.5483 (1.6383/0.6941) mem 16099MB [2025-01-18 01:58:17 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][130/312] eta 0:01:26 lr 0.003227 time 0.4634 (0.4777) model_time 0.4633 (0.4640) loss 2.7514 (3.4838) grad_norm 1.3322 (1.6274/0.6749) mem 16099MB [2025-01-18 01:58:21 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][140/312] eta 0:01:22 lr 0.003226 time 0.4506 (0.4773) model_time 0.4505 (0.4646) loss 3.7375 (3.4733) grad_norm 2.2206 (1.6144/0.6701) mem 16099MB [2025-01-18 01:58:26 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][150/312] eta 0:01:17 lr 0.003226 time 0.4550 (0.4779) model_time 0.4546 (0.4660) loss 2.3995 (3.4710) grad_norm 0.9974 (1.5888/0.6642) mem 16099MB [2025-01-18 01:58:31 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][160/312] eta 0:01:12 lr 0.003225 time 0.5422 (0.4784) model_time 0.5421 (0.4672) loss 3.5380 (3.4652) grad_norm 0.8650 (1.5577/0.6593) mem 16099MB [2025-01-18 01:58:36 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][170/312] eta 0:01:07 lr 0.003225 time 0.4688 (0.4783) model_time 0.4684 (0.4678) loss 2.6356 (3.4576) grad_norm 1.9013 (1.5529/0.6526) mem 16099MB [2025-01-18 01:58:41 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][180/312] eta 0:01:03 lr 0.003224 time 0.4524 (0.4776) model_time 0.4523 (0.4676) loss 4.2923 (3.4775) grad_norm 2.4410 (1.5615/0.6522) mem 16099MB [2025-01-18 01:58:45 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][190/312] eta 0:00:58 lr 0.003224 time 0.4469 (0.4778) model_time 0.4464 (0.4682) loss 2.7823 (3.4734) grad_norm 2.1397 (1.5581/0.6517) mem 16099MB [2025-01-18 01:58:50 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][200/312] eta 0:00:53 lr 0.003223 time 0.4528 (0.4771) model_time 0.4527 (0.4680) loss 4.3801 (3.4645) grad_norm 2.8080 (1.5633/0.6517) mem 16099MB [2025-01-18 01:58:55 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][210/312] eta 0:00:48 lr 0.003222 time 0.4523 (0.4765) model_time 0.4519 (0.4677) loss 2.6247 (3.4562) grad_norm 1.5195 (1.5550/0.6458) mem 16099MB [2025-01-18 01:58:59 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][220/312] eta 0:00:43 lr 0.003222 time 0.4522 (0.4761) model_time 0.4518 (0.4677) loss 3.4570 (3.4627) grad_norm 1.7581 (1.5499/0.6393) mem 16099MB [2025-01-18 01:59:04 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][230/312] eta 0:00:39 lr 0.003221 time 0.5476 (0.4761) model_time 0.5472 (0.4681) loss 3.4866 (3.4675) grad_norm 2.9954 (1.5640/0.6715) mem 16099MB [2025-01-18 01:59:09 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][240/312] eta 0:00:34 lr 0.003221 time 0.4456 (0.4756) model_time 0.4451 (0.4679) loss 3.7341 (3.4692) grad_norm 1.3296 (1.5847/0.6857) mem 16099MB [2025-01-18 01:59:13 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][250/312] eta 0:00:29 lr 0.003220 time 0.4532 (0.4751) model_time 0.4527 (0.4677) loss 2.9800 (3.4753) grad_norm 1.2280 (1.6021/0.7028) mem 16099MB [2025-01-18 01:59:18 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][260/312] eta 0:00:24 lr 0.003220 time 0.4627 (0.4745) model_time 0.4623 (0.4673) loss 3.9306 (3.4756) grad_norm 0.8173 (1.5884/0.6989) mem 16099MB [2025-01-18 01:59:23 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][270/312] eta 0:00:19 lr 0.003219 time 0.4516 (0.4740) model_time 0.4514 (0.4670) loss 3.7328 (3.4748) grad_norm 1.4073 (1.5802/0.6917) mem 16099MB [2025-01-18 01:59:27 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][280/312] eta 0:00:15 lr 0.003219 time 0.4428 (0.4735) model_time 0.4426 (0.4668) loss 4.3457 (3.4742) grad_norm 2.0058 (1.5714/0.6858) mem 16099MB [2025-01-18 01:59:32 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][290/312] eta 0:00:10 lr 0.003218 time 0.4494 (0.4740) model_time 0.4490 (0.4675) loss 3.5881 (3.4696) grad_norm 1.8233 (1.6038/0.7266) mem 16099MB [2025-01-18 01:59:36 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][300/312] eta 0:00:05 lr 0.003218 time 0.4390 (0.4732) model_time 0.4389 (0.4669) loss 3.7173 (3.4716) grad_norm 1.9882 (1.5988/0.7217) mem 16099MB [2025-01-18 01:59:41 internimage_t_1k_224] (main.py 510): INFO Train: [87/300][310/312] eta 0:00:00 lr 0.003217 time 0.4350 (0.4723) model_time 0.4350 (0.4663) loss 2.9095 (3.4710) grad_norm 1.3821 (1.6053/0.7175) mem 16099MB [2025-01-18 01:59:41 internimage_t_1k_224] (main.py 519): INFO EPOCH 87 training takes 0:02:27 [2025-01-18 01:59:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_87.pth saving...... [2025-01-18 01:59:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_87.pth saved !!! [2025-01-18 01:59:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 9.353 (9.353) Loss 0.9400 (0.9400) Acc@1 79.858 (79.858) Acc@5 95.166 (95.166) Mem 16099MB [2025-01-18 01:59:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.286) Loss 1.3421 (1.1031) Acc@1 70.459 (76.400) Acc@5 91.260 (93.490) Mem 16099MB [2025-01-18 01:59:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:87] * Acc@1 76.296 Acc@5 93.500 [2025-01-18 01:59:57 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.3% [2025-01-18 01:59:57 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.40% [2025-01-18 02:00:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.371 (8.371) Loss 1.0718 (1.0718) Acc@1 77.148 (77.148) Acc@5 94.800 (94.800) Mem 16099MB [2025-01-18 02:00:09 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.134) Loss 1.5425 (1.2660) Acc@1 67.261 (73.551) Acc@5 88.550 (91.852) Mem 16099MB [2025-01-18 02:00:09 internimage_t_1k_224] (main.py 575): INFO [Epoch:87] * Acc@1 73.488 Acc@5 91.907 [2025-01-18 02:00:09 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 73.5% [2025-01-18 02:00:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:00:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:00:11 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 73.49% [2025-01-18 02:00:14 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][0/312] eta 0:14:26 lr 0.003217 time 2.7784 (2.7784) model_time 0.4725 (0.4725) loss 2.5247 (2.5247) grad_norm 2.5085 (2.5085/0.0000) mem 16099MB [2025-01-18 02:00:18 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][10/312] eta 0:03:20 lr 0.003217 time 0.4454 (0.6643) model_time 0.4450 (0.4544) loss 3.1230 (3.1387) grad_norm 1.2108 (1.4326/0.4042) mem 16099MB [2025-01-18 02:00:23 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][20/312] eta 0:02:46 lr 0.003216 time 0.4514 (0.5713) model_time 0.4509 (0.4612) loss 2.5734 (3.2519) grad_norm 1.1983 (1.3045/0.4214) mem 16099MB [2025-01-18 02:00:28 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][30/312] eta 0:02:30 lr 0.003216 time 0.4645 (0.5342) model_time 0.4641 (0.4595) loss 3.1760 (3.3426) grad_norm 1.3185 (1.2923/0.3914) mem 16099MB [2025-01-18 02:00:32 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][40/312] eta 0:02:20 lr 0.003215 time 0.4831 (0.5169) model_time 0.4829 (0.4603) loss 4.3494 (3.4011) grad_norm 1.0608 (1.4521/0.6036) mem 16099MB [2025-01-18 02:00:37 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][50/312] eta 0:02:13 lr 0.003214 time 0.4412 (0.5083) model_time 0.4410 (0.4628) loss 3.4292 (3.3990) grad_norm 2.5028 (1.4377/0.5911) mem 16099MB [2025-01-18 02:00:42 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][60/312] eta 0:02:07 lr 0.003214 time 0.4461 (0.5045) model_time 0.4459 (0.4664) loss 2.7047 (3.3684) grad_norm 2.2274 (1.4421/0.5669) mem 16099MB [2025-01-18 02:00:47 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][70/312] eta 0:02:01 lr 0.003213 time 0.4482 (0.5003) model_time 0.4481 (0.4675) loss 3.2955 (3.3934) grad_norm 0.9547 (1.3966/0.5688) mem 16099MB [2025-01-18 02:00:52 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][80/312] eta 0:01:56 lr 0.003213 time 0.4751 (0.5011) model_time 0.4747 (0.4723) loss 2.5528 (3.4210) grad_norm 1.7227 (1.3970/0.5760) mem 16099MB [2025-01-18 02:00:56 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][90/312] eta 0:01:50 lr 0.003212 time 0.7365 (0.4991) model_time 0.7363 (0.4734) loss 3.9661 (3.4390) grad_norm 1.2571 (1.4937/0.6924) mem 16099MB [2025-01-18 02:01:01 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][100/312] eta 0:01:44 lr 0.003212 time 0.4558 (0.4950) model_time 0.4556 (0.4719) loss 4.4778 (3.4593) grad_norm 1.2542 (1.4741/0.6721) mem 16099MB [2025-01-18 02:01:06 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][110/312] eta 0:01:39 lr 0.003211 time 0.4539 (0.4935) model_time 0.4535 (0.4724) loss 2.1188 (3.4412) grad_norm 1.1863 (1.4697/0.6545) mem 16099MB [2025-01-18 02:01:10 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][120/312] eta 0:01:34 lr 0.003211 time 0.4528 (0.4914) model_time 0.4523 (0.4720) loss 3.3806 (3.4214) grad_norm 1.4635 (1.4885/0.6444) mem 16099MB [2025-01-18 02:01:15 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][130/312] eta 0:01:29 lr 0.003210 time 0.4818 (0.4899) model_time 0.4814 (0.4719) loss 3.7471 (3.4294) grad_norm 2.1914 (1.5669/0.7599) mem 16099MB [2025-01-18 02:01:20 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][140/312] eta 0:01:23 lr 0.003210 time 0.4454 (0.4872) model_time 0.4452 (0.4706) loss 3.5248 (3.4285) grad_norm 1.6962 (1.5649/0.7430) mem 16099MB [2025-01-18 02:01:24 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][150/312] eta 0:01:18 lr 0.003209 time 0.4554 (0.4864) model_time 0.4552 (0.4708) loss 3.8319 (3.4464) grad_norm 0.8273 (1.5311/0.7320) mem 16099MB [2025-01-18 02:01:29 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][160/312] eta 0:01:14 lr 0.003209 time 0.4421 (0.4869) model_time 0.4416 (0.4723) loss 3.6537 (3.4428) grad_norm 1.8675 (1.5411/0.7216) mem 16099MB [2025-01-18 02:01:34 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][170/312] eta 0:01:08 lr 0.003208 time 0.4658 (0.4851) model_time 0.4656 (0.4713) loss 3.5047 (3.4350) grad_norm 1.3353 (1.5451/0.7102) mem 16099MB [2025-01-18 02:01:39 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][180/312] eta 0:01:03 lr 0.003208 time 0.4567 (0.4836) model_time 0.4565 (0.4705) loss 3.2661 (3.4505) grad_norm 1.2807 (1.5550/0.7341) mem 16099MB [2025-01-18 02:01:43 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][190/312] eta 0:00:58 lr 0.003207 time 0.4522 (0.4832) model_time 0.4517 (0.4708) loss 3.2864 (3.4404) grad_norm 1.6649 (1.5399/0.7210) mem 16099MB [2025-01-18 02:01:48 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][200/312] eta 0:00:54 lr 0.003206 time 0.5367 (0.4829) model_time 0.5366 (0.4710) loss 4.4660 (3.4496) grad_norm 1.6164 (1.5266/0.7099) mem 16099MB [2025-01-18 02:01:53 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][210/312] eta 0:00:49 lr 0.003206 time 0.4550 (0.4820) model_time 0.4548 (0.4707) loss 3.8063 (3.4589) grad_norm 0.8847 (1.5056/0.7013) mem 16099MB [2025-01-18 02:01:57 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][220/312] eta 0:00:44 lr 0.003205 time 0.4623 (0.4811) model_time 0.4621 (0.4703) loss 2.3851 (3.4387) grad_norm 1.9018 (1.5159/0.6942) mem 16099MB [2025-01-18 02:02:02 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][230/312] eta 0:00:39 lr 0.003205 time 0.4617 (0.4802) model_time 0.4615 (0.4698) loss 3.7520 (3.4442) grad_norm 1.9984 (1.5441/0.7168) mem 16099MB [2025-01-18 02:02:07 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][240/312] eta 0:00:34 lr 0.003204 time 0.4507 (0.4794) model_time 0.4503 (0.4695) loss 3.5155 (3.4502) grad_norm 0.9534 (1.5762/0.7596) mem 16099MB [2025-01-18 02:02:11 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][250/312] eta 0:00:29 lr 0.003204 time 0.4501 (0.4789) model_time 0.4499 (0.4693) loss 2.9476 (3.4550) grad_norm 0.9955 (1.5770/0.7595) mem 16099MB [2025-01-18 02:02:16 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][260/312] eta 0:00:24 lr 0.003203 time 0.4500 (0.4784) model_time 0.4498 (0.4692) loss 3.7355 (3.4493) grad_norm 0.9878 (1.5642/0.7521) mem 16099MB [2025-01-18 02:02:20 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][270/312] eta 0:00:20 lr 0.003203 time 0.4835 (0.4776) model_time 0.4831 (0.4687) loss 3.6424 (3.4532) grad_norm 0.9653 (1.5546/0.7429) mem 16099MB [2025-01-18 02:02:25 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][280/312] eta 0:00:15 lr 0.003202 time 0.4553 (0.4777) model_time 0.4551 (0.4691) loss 2.9911 (3.4481) grad_norm 0.8984 (1.5354/0.7368) mem 16099MB [2025-01-18 02:02:30 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][290/312] eta 0:00:10 lr 0.003202 time 0.4446 (0.4770) model_time 0.4444 (0.4687) loss 3.1838 (3.4487) grad_norm 1.1041 (1.5430/0.7321) mem 16099MB [2025-01-18 02:02:35 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][300/312] eta 0:00:05 lr 0.003201 time 0.4401 (0.4768) model_time 0.4400 (0.4688) loss 3.2842 (3.4480) grad_norm 0.9855 (1.5560/0.7372) mem 16099MB [2025-01-18 02:02:39 internimage_t_1k_224] (main.py 510): INFO Train: [88/300][310/312] eta 0:00:00 lr 0.003201 time 0.4418 (0.4766) model_time 0.4417 (0.4688) loss 3.1008 (3.4445) grad_norm 1.9500 (1.5674/0.7454) mem 16099MB [2025-01-18 02:02:40 internimage_t_1k_224] (main.py 519): INFO EPOCH 88 training takes 0:02:28 [2025-01-18 02:02:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_88.pth saving...... [2025-01-18 02:02:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_88.pth saved !!! [2025-01-18 02:02:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.477 (7.477) Loss 0.9146 (0.9146) Acc@1 80.396 (80.396) Acc@5 95.581 (95.581) Mem 16099MB [2025-01-18 02:02:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.009) Loss 1.3128 (1.0897) Acc@1 70.850 (76.434) Acc@5 90.894 (93.468) Mem 16099MB [2025-01-18 02:02:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:88] * Acc@1 76.396 Acc@5 93.520 [2025-01-18 02:02:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.4% [2025-01-18 02:02:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.40% [2025-01-18 02:03:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.212 (8.212) Loss 1.0567 (1.0567) Acc@1 77.393 (77.393) Acc@5 94.946 (94.946) Mem 16099MB [2025-01-18 02:03:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.105) Loss 1.5235 (1.2492) Acc@1 67.407 (73.837) Acc@5 88.770 (92.012) Mem 16099MB [2025-01-18 02:03:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:88] * Acc@1 73.788 Acc@5 92.063 [2025-01-18 02:03:04 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 73.8% [2025-01-18 02:03:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:03:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:03:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 73.79% [2025-01-18 02:03:08 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][0/312] eta 0:13:03 lr 0.003201 time 2.5120 (2.5120) model_time 0.4872 (0.4872) loss 4.1135 (4.1135) grad_norm 1.3858 (1.3858/0.0000) mem 16099MB [2025-01-18 02:03:13 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][10/312] eta 0:03:18 lr 0.003200 time 0.4504 (0.6557) model_time 0.4503 (0.4713) loss 3.2172 (3.6267) grad_norm 2.7832 (1.3265/0.5239) mem 16099MB [2025-01-18 02:03:18 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][20/312] eta 0:02:43 lr 0.003199 time 0.4537 (0.5591) model_time 0.4535 (0.4623) loss 3.6469 (3.5062) grad_norm 0.9661 (1.5935/0.7607) mem 16099MB [2025-01-18 02:03:22 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][30/312] eta 0:02:28 lr 0.003199 time 0.4696 (0.5256) model_time 0.4694 (0.4600) loss 4.3448 (3.4994) grad_norm 1.2578 (1.5653/0.6621) mem 16099MB [2025-01-18 02:03:27 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][40/312] eta 0:02:18 lr 0.003198 time 0.4398 (0.5090) model_time 0.4394 (0.4593) loss 4.1669 (3.5402) grad_norm 2.6592 (1.5688/0.6592) mem 16099MB [2025-01-18 02:03:32 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][50/312] eta 0:02:11 lr 0.003198 time 0.4552 (0.5027) model_time 0.4547 (0.4627) loss 4.1112 (3.5116) grad_norm 1.8888 (1.5474/0.6401) mem 16099MB [2025-01-18 02:03:36 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][60/312] eta 0:02:04 lr 0.003197 time 0.4497 (0.4948) model_time 0.4492 (0.4613) loss 3.7949 (3.5252) grad_norm 0.9943 (1.4924/0.6131) mem 16099MB [2025-01-18 02:03:41 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][70/312] eta 0:01:58 lr 0.003197 time 0.4548 (0.4897) model_time 0.4547 (0.4608) loss 4.1749 (3.5283) grad_norm 2.0240 (1.5095/0.5891) mem 16099MB [2025-01-18 02:03:45 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][80/312] eta 0:01:52 lr 0.003196 time 0.4492 (0.4865) model_time 0.4491 (0.4611) loss 3.9514 (3.5385) grad_norm 0.9045 (1.5102/0.5954) mem 16099MB [2025-01-18 02:03:50 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][90/312] eta 0:01:47 lr 0.003196 time 0.4478 (0.4837) model_time 0.4476 (0.4611) loss 4.0538 (3.5541) grad_norm 1.1441 (1.5572/0.6527) mem 16099MB [2025-01-18 02:03:55 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][100/312] eta 0:01:42 lr 0.003195 time 0.4522 (0.4826) model_time 0.4520 (0.4622) loss 3.0976 (3.5575) grad_norm 1.6474 (1.5265/0.6380) mem 16099MB [2025-01-18 02:03:59 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][110/312] eta 0:01:37 lr 0.003195 time 0.4788 (0.4812) model_time 0.4786 (0.4626) loss 3.6614 (3.5716) grad_norm 0.7745 (1.5614/0.6875) mem 16099MB [2025-01-18 02:04:04 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][120/312] eta 0:01:32 lr 0.003194 time 0.4532 (0.4801) model_time 0.4528 (0.4630) loss 3.7578 (3.5569) grad_norm 0.8637 (1.5349/0.6686) mem 16099MB [2025-01-18 02:04:09 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][130/312] eta 0:01:27 lr 0.003194 time 0.4444 (0.4798) model_time 0.4443 (0.4640) loss 2.7953 (3.5348) grad_norm 1.8069 (1.5128/0.6509) mem 16099MB [2025-01-18 02:04:14 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][140/312] eta 0:01:22 lr 0.003193 time 0.4593 (0.4797) model_time 0.4591 (0.4649) loss 3.2110 (3.5067) grad_norm 1.3389 (1.5455/0.6695) mem 16099MB [2025-01-18 02:04:18 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][150/312] eta 0:01:17 lr 0.003193 time 0.4981 (0.4790) model_time 0.4979 (0.4653) loss 3.8211 (3.5033) grad_norm 5.0947 (1.5808/0.7240) mem 16099MB [2025-01-18 02:04:23 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][160/312] eta 0:01:12 lr 0.003192 time 0.4473 (0.4788) model_time 0.4472 (0.4659) loss 3.3540 (3.5053) grad_norm 1.0512 (1.5808/0.7292) mem 16099MB [2025-01-18 02:04:28 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][170/312] eta 0:01:08 lr 0.003191 time 0.4487 (0.4804) model_time 0.4486 (0.4682) loss 2.4158 (3.4928) grad_norm 1.1136 (1.5587/0.7170) mem 16099MB [2025-01-18 02:04:33 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][180/312] eta 0:01:03 lr 0.003191 time 0.4418 (0.4795) model_time 0.4413 (0.4679) loss 4.2668 (3.4984) grad_norm 1.2500 (1.5370/0.7081) mem 16099MB [2025-01-18 02:04:37 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][190/312] eta 0:00:58 lr 0.003190 time 0.4525 (0.4783) model_time 0.4523 (0.4673) loss 3.0883 (3.4891) grad_norm 1.5787 (1.5282/0.6930) mem 16099MB [2025-01-18 02:04:42 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][200/312] eta 0:00:53 lr 0.003190 time 0.4435 (0.4770) model_time 0.4433 (0.4666) loss 3.7959 (3.4985) grad_norm 0.9262 (1.5360/0.6864) mem 16099MB [2025-01-18 02:04:46 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][210/312] eta 0:00:48 lr 0.003189 time 0.4575 (0.4765) model_time 0.4573 (0.4665) loss 3.1978 (3.4999) grad_norm 1.3489 (1.5256/0.6798) mem 16099MB [2025-01-18 02:04:51 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][220/312] eta 0:00:43 lr 0.003189 time 0.4523 (0.4757) model_time 0.4521 (0.4662) loss 2.9912 (3.4919) grad_norm 0.8616 (1.5088/0.6752) mem 16099MB [2025-01-18 02:04:56 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][230/312] eta 0:00:38 lr 0.003188 time 0.4809 (0.4752) model_time 0.4807 (0.4661) loss 4.1672 (3.4898) grad_norm 1.3225 (1.4926/0.6663) mem 16099MB [2025-01-18 02:05:00 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][240/312] eta 0:00:34 lr 0.003188 time 0.4553 (0.4747) model_time 0.4549 (0.4660) loss 4.3828 (3.4956) grad_norm 3.2869 (1.5181/0.7006) mem 16099MB [2025-01-18 02:05:05 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][250/312] eta 0:00:29 lr 0.003187 time 0.5443 (0.4746) model_time 0.5441 (0.4661) loss 2.9968 (3.4931) grad_norm 1.0230 (1.5034/0.6913) mem 16099MB [2025-01-18 02:05:10 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][260/312] eta 0:00:24 lr 0.003187 time 0.4714 (0.4741) model_time 0.4709 (0.4660) loss 2.8775 (3.4789) grad_norm 1.9481 (1.5102/0.6893) mem 16099MB [2025-01-18 02:05:14 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][270/312] eta 0:00:19 lr 0.003186 time 0.4501 (0.4734) model_time 0.4500 (0.4655) loss 2.9733 (3.4821) grad_norm 1.4461 (1.5203/0.6921) mem 16099MB [2025-01-18 02:05:19 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][280/312] eta 0:00:15 lr 0.003186 time 0.4890 (0.4728) model_time 0.4889 (0.4652) loss 3.6576 (3.4824) grad_norm 0.9323 (1.5220/0.6926) mem 16099MB [2025-01-18 02:05:23 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][290/312] eta 0:00:10 lr 0.003185 time 0.4570 (0.4728) model_time 0.4566 (0.4655) loss 4.2268 (3.4810) grad_norm 1.1966 (1.5068/0.6880) mem 16099MB [2025-01-18 02:05:28 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][300/312] eta 0:00:05 lr 0.003184 time 0.4382 (0.4721) model_time 0.4381 (0.4650) loss 3.9720 (3.4735) grad_norm 1.3527 (1.5306/0.7178) mem 16099MB [2025-01-18 02:05:33 internimage_t_1k_224] (main.py 510): INFO Train: [89/300][310/312] eta 0:00:00 lr 0.003184 time 0.5400 (0.4719) model_time 0.5399 (0.4650) loss 4.1311 (3.4776) grad_norm 1.3146 (1.5250/0.7138) mem 16099MB [2025-01-18 02:05:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 89 training takes 0:02:27 [2025-01-18 02:05:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_89.pth saving...... [2025-01-18 02:05:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_89.pth saved !!! [2025-01-18 02:05:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.670 (7.670) Loss 0.9350 (0.9350) Acc@1 79.443 (79.443) Acc@5 95.410 (95.410) Mem 16099MB [2025-01-18 02:05:46 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.028) Loss 1.3153 (1.0906) Acc@1 71.216 (76.285) Acc@5 91.357 (93.557) Mem 16099MB [2025-01-18 02:05:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:89] * Acc@1 76.334 Acc@5 93.636 [2025-01-18 02:05:46 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.3% [2025-01-18 02:05:46 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.40% [2025-01-18 02:05:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.547 (8.547) Loss 1.0418 (1.0418) Acc@1 77.734 (77.734) Acc@5 94.995 (94.995) Mem 16099MB [2025-01-18 02:05:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.143) Loss 1.5048 (1.2328) Acc@1 67.651 (74.117) Acc@5 88.989 (92.154) Mem 16099MB [2025-01-18 02:05:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:89] * Acc@1 74.072 Acc@5 92.206 [2025-01-18 02:05:58 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 74.1% [2025-01-18 02:05:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:06:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:06:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 74.07% [2025-01-18 02:06:03 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][0/312] eta 0:14:12 lr 0.003184 time 2.7312 (2.7312) model_time 0.4820 (0.4820) loss 2.6181 (2.6181) grad_norm 1.4972 (1.4972/0.0000) mem 16099MB [2025-01-18 02:06:07 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][10/312] eta 0:03:20 lr 0.003183 time 0.4531 (0.6623) model_time 0.4530 (0.4575) loss 4.1447 (3.7202) grad_norm 2.3860 (1.3664/0.5137) mem 16099MB [2025-01-18 02:06:12 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][20/312] eta 0:02:48 lr 0.003183 time 0.5358 (0.5778) model_time 0.5356 (0.4704) loss 3.6110 (3.4171) grad_norm 1.1356 (1.6198/0.7175) mem 16099MB [2025-01-18 02:06:17 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][30/312] eta 0:02:32 lr 0.003182 time 0.4544 (0.5415) model_time 0.4540 (0.4686) loss 3.6231 (3.4453) grad_norm 0.8611 (1.6201/0.7312) mem 16099MB [2025-01-18 02:06:22 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][40/312] eta 0:02:23 lr 0.003182 time 0.5449 (0.5267) model_time 0.5447 (0.4714) loss 3.0602 (3.4452) grad_norm 3.2821 (1.6482/0.7151) mem 16099MB [2025-01-18 02:06:26 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][50/312] eta 0:02:15 lr 0.003181 time 0.4521 (0.5167) model_time 0.4516 (0.4722) loss 3.7235 (3.4372) grad_norm 0.7656 (1.6382/0.6866) mem 16099MB [2025-01-18 02:06:31 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][60/312] eta 0:02:08 lr 0.003181 time 0.4585 (0.5107) model_time 0.4583 (0.4735) loss 4.1693 (3.3881) grad_norm 1.0918 (1.5693/0.6578) mem 16099MB [2025-01-18 02:06:36 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][70/312] eta 0:02:03 lr 0.003180 time 0.4473 (0.5101) model_time 0.4472 (0.4781) loss 3.7356 (3.4496) grad_norm 1.3765 (1.5260/0.6352) mem 16099MB [2025-01-18 02:06:41 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][80/312] eta 0:01:57 lr 0.003180 time 0.4472 (0.5065) model_time 0.4468 (0.4784) loss 4.0632 (3.4485) grad_norm 2.6127 (1.5264/0.6662) mem 16099MB [2025-01-18 02:06:46 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][90/312] eta 0:01:51 lr 0.003179 time 0.4523 (0.5005) model_time 0.4522 (0.4755) loss 4.2674 (3.4598) grad_norm 1.6028 (1.5607/0.7256) mem 16099MB [2025-01-18 02:06:50 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][100/312] eta 0:01:45 lr 0.003178 time 0.4509 (0.4974) model_time 0.4504 (0.4748) loss 3.5609 (3.4724) grad_norm 0.6655 (1.5329/0.7066) mem 16099MB [2025-01-18 02:06:55 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][110/312] eta 0:01:39 lr 0.003178 time 0.4455 (0.4946) model_time 0.4454 (0.4740) loss 3.3070 (3.4618) grad_norm 0.8100 (1.5055/0.6877) mem 16099MB [2025-01-18 02:06:59 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][120/312] eta 0:01:34 lr 0.003177 time 0.4622 (0.4914) model_time 0.4617 (0.4724) loss 3.6344 (3.4534) grad_norm 1.1026 (1.4777/0.6686) mem 16099MB [2025-01-18 02:07:04 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][130/312] eta 0:01:29 lr 0.003177 time 0.4495 (0.4898) model_time 0.4494 (0.4723) loss 3.2892 (3.4583) grad_norm 1.2822 (1.4943/0.6771) mem 16099MB [2025-01-18 02:07:09 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][140/312] eta 0:01:23 lr 0.003176 time 0.4406 (0.4875) model_time 0.4401 (0.4711) loss 3.1307 (3.4433) grad_norm 1.5857 (1.5443/0.7194) mem 16099MB [2025-01-18 02:07:13 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][150/312] eta 0:01:18 lr 0.003176 time 0.4572 (0.4853) model_time 0.4568 (0.4700) loss 3.6019 (3.4558) grad_norm 2.5114 (1.5666/0.7262) mem 16099MB [2025-01-18 02:07:18 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][160/312] eta 0:01:13 lr 0.003175 time 0.5449 (0.4838) model_time 0.5444 (0.4695) loss 2.3674 (3.4474) grad_norm 1.0487 (1.5554/0.7148) mem 16099MB [2025-01-18 02:07:23 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][170/312] eta 0:01:08 lr 0.003175 time 0.4857 (0.4834) model_time 0.4852 (0.4698) loss 3.4647 (3.4422) grad_norm 2.3607 (1.5291/0.7095) mem 16099MB [2025-01-18 02:07:27 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][180/312] eta 0:01:03 lr 0.003174 time 0.4504 (0.4818) model_time 0.4499 (0.4690) loss 4.2680 (3.4560) grad_norm 0.9256 (1.5158/0.7087) mem 16099MB [2025-01-18 02:07:32 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][190/312] eta 0:00:58 lr 0.003174 time 0.4539 (0.4803) model_time 0.4537 (0.4682) loss 3.3186 (3.4628) grad_norm 3.3952 (1.5077/0.7095) mem 16099MB [2025-01-18 02:07:36 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][200/312] eta 0:00:53 lr 0.003173 time 0.4490 (0.4797) model_time 0.4485 (0.4681) loss 3.2104 (3.4680) grad_norm 1.3530 (1.5212/0.7069) mem 16099MB [2025-01-18 02:07:41 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][210/312] eta 0:00:48 lr 0.003172 time 0.4528 (0.4797) model_time 0.4524 (0.4686) loss 3.7908 (3.4574) grad_norm 1.4428 (1.5312/0.7063) mem 16099MB [2025-01-18 02:07:46 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][220/312] eta 0:00:44 lr 0.003172 time 0.4406 (0.4788) model_time 0.4404 (0.4682) loss 3.6316 (3.4515) grad_norm 1.0723 (1.5299/0.7002) mem 16099MB [2025-01-18 02:07:50 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][230/312] eta 0:00:39 lr 0.003171 time 0.4488 (0.4784) model_time 0.4486 (0.4683) loss 3.7904 (3.4550) grad_norm 1.8327 (1.5402/0.7291) mem 16099MB [2025-01-18 02:07:55 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][240/312] eta 0:00:34 lr 0.003171 time 0.4667 (0.4785) model_time 0.4665 (0.4688) loss 3.9249 (3.4515) grad_norm 1.0617 (1.5529/0.7340) mem 16099MB [2025-01-18 02:08:00 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][250/312] eta 0:00:29 lr 0.003170 time 0.4756 (0.4782) model_time 0.4751 (0.4689) loss 2.6763 (3.4519) grad_norm 3.0232 (1.5629/0.7355) mem 16099MB [2025-01-18 02:08:05 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][260/312] eta 0:00:24 lr 0.003170 time 0.4546 (0.4783) model_time 0.4544 (0.4693) loss 3.1630 (3.4464) grad_norm 1.7011 (1.5555/0.7300) mem 16099MB [2025-01-18 02:08:10 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][270/312] eta 0:00:20 lr 0.003169 time 0.4985 (0.4781) model_time 0.4984 (0.4694) loss 3.3280 (3.4356) grad_norm 1.2825 (1.5420/0.7230) mem 16099MB [2025-01-18 02:08:14 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][280/312] eta 0:00:15 lr 0.003169 time 0.4517 (0.4775) model_time 0.4513 (0.4691) loss 2.3940 (3.4410) grad_norm 1.4344 (1.5511/0.7285) mem 16099MB [2025-01-18 02:08:19 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][290/312] eta 0:00:10 lr 0.003168 time 0.4460 (0.4776) model_time 0.4458 (0.4695) loss 3.9729 (3.4443) grad_norm 1.9823 (1.5461/0.7227) mem 16099MB [2025-01-18 02:08:24 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][300/312] eta 0:00:05 lr 0.003168 time 0.4845 (0.4776) model_time 0.4844 (0.4697) loss 3.0432 (3.4423) grad_norm 1.3136 (1.5468/0.7191) mem 16099MB [2025-01-18 02:08:28 internimage_t_1k_224] (main.py 510): INFO Train: [90/300][310/312] eta 0:00:00 lr 0.003167 time 0.4357 (0.4766) model_time 0.4356 (0.4690) loss 3.1234 (3.4400) grad_norm 0.8022 (1.5486/0.7181) mem 16099MB [2025-01-18 02:08:29 internimage_t_1k_224] (main.py 519): INFO EPOCH 90 training takes 0:02:28 [2025-01-18 02:08:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_90.pth saving...... [2025-01-18 02:08:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_90.pth saved !!! [2025-01-18 02:08:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.285 (7.285) Loss 0.9658 (0.9658) Acc@1 80.200 (80.200) Acc@5 95.752 (95.752) Mem 16099MB [2025-01-18 02:08:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.987) Loss 1.3212 (1.1178) Acc@1 71.631 (76.551) Acc@5 91.431 (93.786) Mem 16099MB [2025-01-18 02:08:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:90] * Acc@1 76.518 Acc@5 93.830 [2025-01-18 02:08:41 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.5% [2025-01-18 02:08:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:08:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:08:42 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.52% [2025-01-18 02:08:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.217 (7.217) Loss 1.0273 (1.0273) Acc@1 77.954 (77.954) Acc@5 95.117 (95.117) Mem 16099MB [2025-01-18 02:08:53 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.994) Loss 1.4864 (1.2169) Acc@1 67.993 (74.381) Acc@5 89.209 (92.321) Mem 16099MB [2025-01-18 02:08:53 internimage_t_1k_224] (main.py 575): INFO [Epoch:90] * Acc@1 74.336 Acc@5 92.358 [2025-01-18 02:08:53 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 74.3% [2025-01-18 02:08:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:08:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:08:54 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 74.34% [2025-01-18 02:08:57 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][0/312] eta 0:11:56 lr 0.003167 time 2.2974 (2.2974) model_time 0.5123 (0.5123) loss 3.1997 (3.1997) grad_norm 0.6249 (0.6249/0.0000) mem 16099MB [2025-01-18 02:09:01 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][10/312] eta 0:03:11 lr 0.003166 time 0.4493 (0.6328) model_time 0.4491 (0.4702) loss 4.3914 (3.4505) grad_norm 1.0928 (1.6842/0.5460) mem 16099MB [2025-01-18 02:09:06 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][20/312] eta 0:02:40 lr 0.003166 time 0.4404 (0.5490) model_time 0.4402 (0.4637) loss 3.8462 (3.4219) grad_norm 1.4090 (2.0308/0.9887) mem 16099MB [2025-01-18 02:09:11 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][30/312] eta 0:02:26 lr 0.003165 time 0.4495 (0.5199) model_time 0.4494 (0.4619) loss 3.4811 (3.3989) grad_norm 0.9799 (1.7356/0.9321) mem 16099MB [2025-01-18 02:09:15 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][40/312] eta 0:02:18 lr 0.003165 time 0.4747 (0.5089) model_time 0.4746 (0.4650) loss 2.8613 (3.3884) grad_norm 1.2759 (1.6044/0.8664) mem 16099MB [2025-01-18 02:09:20 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][50/312] eta 0:02:10 lr 0.003164 time 0.4501 (0.4992) model_time 0.4499 (0.4639) loss 3.7157 (3.3528) grad_norm 2.0802 (1.7330/0.9824) mem 16099MB [2025-01-18 02:09:25 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][60/312] eta 0:02:04 lr 0.003164 time 0.4498 (0.4934) model_time 0.4496 (0.4638) loss 2.9590 (3.3574) grad_norm 0.7613 (1.6606/0.9247) mem 16099MB [2025-01-18 02:09:29 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][70/312] eta 0:01:58 lr 0.003163 time 0.4514 (0.4884) model_time 0.4512 (0.4629) loss 3.7772 (3.3803) grad_norm 0.7842 (1.5792/0.8855) mem 16099MB [2025-01-18 02:09:34 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][80/312] eta 0:01:52 lr 0.003163 time 0.4637 (0.4852) model_time 0.4632 (0.4628) loss 3.3709 (3.3826) grad_norm 1.4319 (1.5918/0.8541) mem 16099MB [2025-01-18 02:09:39 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][90/312] eta 0:01:47 lr 0.003162 time 0.5352 (0.4850) model_time 0.5350 (0.4650) loss 3.6807 (3.3803) grad_norm 1.9009 (1.5943/0.8157) mem 16099MB [2025-01-18 02:09:43 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][100/312] eta 0:01:42 lr 0.003162 time 0.4478 (0.4818) model_time 0.4476 (0.4638) loss 3.0652 (3.4022) grad_norm 0.8850 (1.5551/0.7897) mem 16099MB [2025-01-18 02:09:48 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][110/312] eta 0:01:37 lr 0.003161 time 0.4731 (0.4807) model_time 0.4726 (0.4643) loss 4.0944 (3.4162) grad_norm 1.2795 (1.5111/0.7680) mem 16099MB [2025-01-18 02:09:52 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][120/312] eta 0:01:31 lr 0.003160 time 0.4497 (0.4785) model_time 0.4492 (0.4634) loss 3.7068 (3.4357) grad_norm 0.9840 (1.5272/0.7802) mem 16099MB [2025-01-18 02:09:57 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][130/312] eta 0:01:26 lr 0.003160 time 0.4537 (0.4766) model_time 0.4536 (0.4626) loss 3.4505 (3.4219) grad_norm 0.8305 (1.5644/0.8103) mem 16099MB [2025-01-18 02:10:02 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][140/312] eta 0:01:21 lr 0.003159 time 0.4414 (0.4760) model_time 0.4412 (0.4630) loss 3.7264 (3.4220) grad_norm 1.3515 (1.5705/0.7940) mem 16099MB [2025-01-18 02:10:06 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][150/312] eta 0:01:17 lr 0.003159 time 0.4507 (0.4763) model_time 0.4505 (0.4641) loss 4.2170 (3.4325) grad_norm 1.2319 (1.5448/0.7784) mem 16099MB [2025-01-18 02:10:11 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][160/312] eta 0:01:12 lr 0.003158 time 0.5261 (0.4771) model_time 0.5257 (0.4656) loss 4.1157 (3.4322) grad_norm 1.0302 (1.5464/0.7713) mem 16099MB [2025-01-18 02:10:16 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][170/312] eta 0:01:07 lr 0.003158 time 0.4525 (0.4766) model_time 0.4523 (0.4658) loss 3.6592 (3.4449) grad_norm 3.7535 (1.5730/0.7933) mem 16099MB [2025-01-18 02:10:20 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][180/312] eta 0:01:02 lr 0.003157 time 0.4487 (0.4755) model_time 0.4486 (0.4653) loss 3.9384 (3.4334) grad_norm 0.7423 (1.5892/0.7910) mem 16099MB [2025-01-18 02:10:25 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][190/312] eta 0:00:57 lr 0.003157 time 0.4530 (0.4744) model_time 0.4525 (0.4647) loss 3.7749 (3.4438) grad_norm 1.4096 (1.5795/0.7765) mem 16099MB [2025-01-18 02:10:30 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][200/312] eta 0:00:53 lr 0.003156 time 0.4862 (0.4737) model_time 0.4861 (0.4645) loss 3.7054 (3.4436) grad_norm 1.0838 (1.5547/0.7655) mem 16099MB [2025-01-18 02:10:35 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][210/312] eta 0:00:48 lr 0.003156 time 0.4936 (0.4745) model_time 0.4934 (0.4657) loss 4.1153 (3.4489) grad_norm 1.8274 (1.5330/0.7566) mem 16099MB [2025-01-18 02:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][220/312] eta 0:00:43 lr 0.003155 time 0.4495 (0.4737) model_time 0.4493 (0.4652) loss 4.2432 (3.4598) grad_norm 2.3195 (1.5374/0.7469) mem 16099MB [2025-01-18 02:10:44 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][230/312] eta 0:00:38 lr 0.003154 time 0.4531 (0.4740) model_time 0.4526 (0.4659) loss 4.5049 (3.4785) grad_norm 1.6496 (1.5330/0.7341) mem 16099MB [2025-01-18 02:10:49 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][240/312] eta 0:00:34 lr 0.003154 time 0.4446 (0.4738) model_time 0.4445 (0.4660) loss 4.0251 (3.4746) grad_norm 0.8797 (1.5247/0.7282) mem 16099MB [2025-01-18 02:10:53 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][250/312] eta 0:00:29 lr 0.003153 time 0.4394 (0.4735) model_time 0.4393 (0.4660) loss 2.2553 (3.4731) grad_norm 2.2974 (1.5322/0.7254) mem 16099MB [2025-01-18 02:10:58 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][260/312] eta 0:00:24 lr 0.003153 time 0.4467 (0.4734) model_time 0.4465 (0.4662) loss 2.8135 (3.4739) grad_norm 1.5695 (1.5431/0.7270) mem 16099MB [2025-01-18 02:11:03 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][270/312] eta 0:00:19 lr 0.003152 time 0.4801 (0.4732) model_time 0.4799 (0.4662) loss 3.3214 (3.4809) grad_norm 1.5812 (1.5395/0.7188) mem 16099MB [2025-01-18 02:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][280/312] eta 0:00:15 lr 0.003152 time 0.4613 (0.4731) model_time 0.4611 (0.4664) loss 2.8705 (3.4746) grad_norm 1.7816 (1.5501/0.7183) mem 16099MB [2025-01-18 02:11:12 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][290/312] eta 0:00:10 lr 0.003151 time 0.4515 (0.4730) model_time 0.4510 (0.4665) loss 3.7334 (3.4772) grad_norm 3.2803 (1.5773/0.7415) mem 16099MB [2025-01-18 02:11:17 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][300/312] eta 0:00:05 lr 0.003151 time 0.4383 (0.4730) model_time 0.4382 (0.4667) loss 3.8969 (3.4804) grad_norm 1.6203 (1.5817/0.7380) mem 16099MB [2025-01-18 02:11:21 internimage_t_1k_224] (main.py 510): INFO Train: [91/300][310/312] eta 0:00:00 lr 0.003150 time 0.4366 (0.4721) model_time 0.4366 (0.4660) loss 4.2169 (3.4845) grad_norm 0.8762 (1.5699/0.7450) mem 16099MB [2025-01-18 02:11:22 internimage_t_1k_224] (main.py 519): INFO EPOCH 91 training takes 0:02:27 [2025-01-18 02:11:22 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_91.pth saving...... [2025-01-18 02:11:23 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_91.pth saved !!! [2025-01-18 02:11:31 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.413 (8.413) Loss 0.9254 (0.9254) Acc@1 79.565 (79.565) Acc@5 95.142 (95.142) Mem 16099MB [2025-01-18 02:11:35 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.112) Loss 1.3047 (1.1031) Acc@1 71.045 (76.392) Acc@5 91.602 (93.617) Mem 16099MB [2025-01-18 02:11:35 internimage_t_1k_224] (main.py 575): INFO [Epoch:91] * Acc@1 76.402 Acc@5 93.674 [2025-01-18 02:11:35 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.4% [2025-01-18 02:11:35 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.52% [2025-01-18 02:11:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.888 (8.888) Loss 1.0140 (1.0140) Acc@1 78.052 (78.052) Acc@5 95.117 (95.117) Mem 16099MB [2025-01-18 02:11:48 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.186) Loss 1.4691 (1.2021) Acc@1 68.335 (74.649) Acc@5 89.331 (92.454) Mem 16099MB [2025-01-18 02:11:48 internimage_t_1k_224] (main.py 575): INFO [Epoch:91] * Acc@1 74.600 Acc@5 92.492 [2025-01-18 02:11:48 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 74.6% [2025-01-18 02:11:48 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:11:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:11:50 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 74.60% [2025-01-18 02:11:53 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][0/312] eta 0:14:54 lr 0.003150 time 2.8660 (2.8660) model_time 0.4611 (0.4611) loss 4.4268 (4.4268) grad_norm 1.1196 (1.1196/0.0000) mem 16099MB [2025-01-18 02:11:58 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][10/312] eta 0:03:28 lr 0.003149 time 0.4516 (0.6916) model_time 0.4515 (0.4727) loss 3.6672 (3.3984) grad_norm 1.8065 (1.6650/0.7182) mem 16099MB [2025-01-18 02:12:02 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][20/312] eta 0:02:50 lr 0.003149 time 0.4518 (0.5849) model_time 0.4517 (0.4700) loss 2.5349 (3.4788) grad_norm 1.2479 (1.6033/0.6286) mem 16099MB [2025-01-18 02:12:07 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][30/312] eta 0:02:33 lr 0.003148 time 0.4426 (0.5444) model_time 0.4424 (0.4665) loss 4.3340 (3.5408) grad_norm 1.4735 (1.5810/0.5839) mem 16099MB [2025-01-18 02:12:11 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][40/312] eta 0:02:22 lr 0.003148 time 0.4444 (0.5222) model_time 0.4442 (0.4633) loss 4.0364 (3.4927) grad_norm 0.8437 (1.4554/0.5691) mem 16099MB [2025-01-18 02:12:16 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][50/312] eta 0:02:13 lr 0.003147 time 0.4618 (0.5094) model_time 0.4616 (0.4619) loss 3.1016 (3.4941) grad_norm 1.9433 (1.4979/0.5870) mem 16099MB [2025-01-18 02:12:21 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][60/312] eta 0:02:06 lr 0.003147 time 0.4535 (0.5015) model_time 0.4533 (0.4617) loss 2.9321 (3.4369) grad_norm 1.2778 (1.6005/0.6148) mem 16099MB [2025-01-18 02:12:25 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][70/312] eta 0:01:59 lr 0.003146 time 0.4451 (0.4954) model_time 0.4446 (0.4612) loss 3.0549 (3.4016) grad_norm 1.6352 (1.6115/0.6612) mem 16099MB [2025-01-18 02:12:30 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][80/312] eta 0:01:54 lr 0.003146 time 0.4514 (0.4921) model_time 0.4510 (0.4620) loss 2.9255 (3.4032) grad_norm 0.7534 (1.6152/0.6642) mem 16099MB [2025-01-18 02:12:35 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][90/312] eta 0:01:48 lr 0.003145 time 0.4552 (0.4882) model_time 0.4550 (0.4614) loss 2.5176 (3.4187) grad_norm 1.3624 (1.6002/0.6430) mem 16099MB [2025-01-18 02:12:39 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][100/312] eta 0:01:42 lr 0.003145 time 0.4509 (0.4849) model_time 0.4508 (0.4608) loss 3.6593 (3.4288) grad_norm 2.3022 (1.5821/0.6278) mem 16099MB [2025-01-18 02:12:44 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][110/312] eta 0:01:37 lr 0.003144 time 0.4466 (0.4827) model_time 0.4461 (0.4607) loss 4.0094 (3.4267) grad_norm 1.0856 (1.5788/0.6128) mem 16099MB [2025-01-18 02:12:48 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][120/312] eta 0:01:32 lr 0.003143 time 0.4519 (0.4814) model_time 0.4517 (0.4612) loss 3.1753 (3.4254) grad_norm 2.6099 (1.5846/0.6079) mem 16099MB [2025-01-18 02:12:53 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][130/312] eta 0:01:27 lr 0.003143 time 0.5312 (0.4820) model_time 0.5310 (0.4633) loss 3.6723 (3.4242) grad_norm 3.3517 (1.6016/0.6220) mem 16099MB [2025-01-18 02:12:58 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][140/312] eta 0:01:23 lr 0.003142 time 0.4593 (0.4842) model_time 0.4589 (0.4668) loss 3.2294 (3.4167) grad_norm 1.6033 (1.6200/0.6296) mem 16099MB [2025-01-18 02:13:03 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][150/312] eta 0:01:18 lr 0.003142 time 0.5449 (0.4838) model_time 0.5445 (0.4675) loss 3.6412 (3.4350) grad_norm 1.4928 (1.6015/0.6149) mem 16099MB [2025-01-18 02:13:08 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][160/312] eta 0:01:13 lr 0.003141 time 0.5321 (0.4840) model_time 0.5320 (0.4687) loss 3.9009 (3.4554) grad_norm 1.1524 (1.5769/0.6083) mem 16099MB [2025-01-18 02:13:13 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][170/312] eta 0:01:08 lr 0.003141 time 0.4570 (0.4825) model_time 0.4569 (0.4681) loss 3.0793 (3.4680) grad_norm 1.4598 (1.5807/0.6018) mem 16099MB [2025-01-18 02:13:17 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][180/312] eta 0:01:03 lr 0.003140 time 0.4392 (0.4822) model_time 0.4385 (0.4685) loss 2.1424 (3.4566) grad_norm 0.8952 (1.5576/0.6010) mem 16099MB [2025-01-18 02:13:22 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][190/312] eta 0:00:58 lr 0.003140 time 0.5484 (0.4815) model_time 0.5479 (0.4685) loss 2.5190 (3.4425) grad_norm 0.7876 (1.5510/0.6005) mem 16099MB [2025-01-18 02:13:27 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][200/312] eta 0:00:53 lr 0.003139 time 0.4730 (0.4807) model_time 0.4728 (0.4684) loss 3.4552 (3.4386) grad_norm 2.5144 (1.5502/0.5927) mem 16099MB [2025-01-18 02:13:31 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][210/312] eta 0:00:48 lr 0.003139 time 0.4633 (0.4796) model_time 0.4631 (0.4679) loss 3.6706 (3.4350) grad_norm 2.3523 (1.5783/0.6591) mem 16099MB [2025-01-18 02:13:36 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][220/312] eta 0:00:44 lr 0.003138 time 0.4535 (0.4786) model_time 0.4533 (0.4674) loss 3.0253 (3.4226) grad_norm 1.6974 (1.5953/0.6706) mem 16099MB [2025-01-18 02:13:41 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][230/312] eta 0:00:39 lr 0.003137 time 0.4624 (0.4787) model_time 0.4620 (0.4679) loss 3.9195 (3.4267) grad_norm 1.1101 (1.5834/0.6620) mem 16099MB [2025-01-18 02:13:45 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][240/312] eta 0:00:34 lr 0.003137 time 0.4565 (0.4777) model_time 0.4560 (0.4674) loss 3.0274 (3.4230) grad_norm 1.8825 (1.5681/0.6556) mem 16099MB [2025-01-18 02:13:50 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][250/312] eta 0:00:29 lr 0.003136 time 0.4769 (0.4769) model_time 0.4767 (0.4670) loss 3.8746 (3.4197) grad_norm 1.0465 (1.5509/0.6525) mem 16099MB [2025-01-18 02:13:54 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][260/312] eta 0:00:24 lr 0.003136 time 0.4468 (0.4760) model_time 0.4466 (0.4665) loss 4.0133 (3.4286) grad_norm 1.1159 (1.5421/0.6450) mem 16099MB [2025-01-18 02:13:59 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][270/312] eta 0:00:19 lr 0.003135 time 0.4514 (0.4756) model_time 0.4510 (0.4664) loss 2.7358 (3.4261) grad_norm 0.8511 (1.5469/0.6515) mem 16099MB [2025-01-18 02:14:04 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][280/312] eta 0:00:15 lr 0.003135 time 0.4683 (0.4749) model_time 0.4681 (0.4660) loss 4.3000 (3.4352) grad_norm 2.3781 (1.5428/0.6452) mem 16099MB [2025-01-18 02:14:08 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][290/312] eta 0:00:10 lr 0.003134 time 0.4475 (0.4746) model_time 0.4470 (0.4660) loss 4.1008 (3.4332) grad_norm 1.4722 (1.5323/0.6384) mem 16099MB [2025-01-18 02:14:13 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][300/312] eta 0:00:05 lr 0.003134 time 0.4390 (0.4743) model_time 0.4389 (0.4659) loss 3.8813 (3.4332) grad_norm 1.3966 (1.5392/0.6390) mem 16099MB [2025-01-18 02:14:18 internimage_t_1k_224] (main.py 510): INFO Train: [92/300][310/312] eta 0:00:00 lr 0.003133 time 0.4388 (0.4744) model_time 0.4387 (0.4663) loss 3.7289 (3.4283) grad_norm 1.2369 (1.5253/0.6307) mem 16099MB [2025-01-18 02:14:18 internimage_t_1k_224] (main.py 519): INFO EPOCH 92 training takes 0:02:28 [2025-01-18 02:14:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_92.pth saving...... [2025-01-18 02:14:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_92.pth saved !!! [2025-01-18 02:14:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.368 (7.368) Loss 0.9034 (0.9034) Acc@1 80.054 (80.054) Acc@5 95.581 (95.581) Mem 16099MB [2025-01-18 02:14:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.004) Loss 1.2744 (1.0866) Acc@1 71.973 (76.485) Acc@5 91.626 (93.544) Mem 16099MB [2025-01-18 02:14:30 internimage_t_1k_224] (main.py 575): INFO [Epoch:92] * Acc@1 76.456 Acc@5 93.590 [2025-01-18 02:14:30 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.5% [2025-01-18 02:14:30 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.52% [2025-01-18 02:14:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.367 (8.367) Loss 1.0021 (1.0021) Acc@1 78.247 (78.247) Acc@5 95.215 (95.215) Mem 16099MB [2025-01-18 02:14:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (1.129) Loss 1.4525 (1.1880) Acc@1 68.579 (74.871) Acc@5 89.380 (92.569) Mem 16099MB [2025-01-18 02:14:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:92] * Acc@1 74.818 Acc@5 92.610 [2025-01-18 02:14:43 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 74.8% [2025-01-18 02:14:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:14:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:14:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 74.82% [2025-01-18 02:14:48 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][0/312] eta 0:15:41 lr 0.003133 time 3.0186 (3.0186) model_time 0.4732 (0.4732) loss 3.8117 (3.8117) grad_norm 2.2018 (2.2018/0.0000) mem 16099MB [2025-01-18 02:14:52 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][10/312] eta 0:03:32 lr 0.003132 time 0.4661 (0.7021) model_time 0.4657 (0.4703) loss 3.6475 (3.4912) grad_norm 1.3025 (1.7766/0.7018) mem 16099MB [2025-01-18 02:14:57 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][20/312] eta 0:02:50 lr 0.003132 time 0.4513 (0.5829) model_time 0.4511 (0.4613) loss 3.0735 (3.4804) grad_norm 1.9631 (1.7355/0.6463) mem 16099MB [2025-01-18 02:15:01 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][30/312] eta 0:02:33 lr 0.003131 time 0.5455 (0.5448) model_time 0.5453 (0.4624) loss 3.5940 (3.4854) grad_norm 1.3901 (1.6981/0.5649) mem 16099MB [2025-01-18 02:15:06 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][40/312] eta 0:02:22 lr 0.003131 time 0.4571 (0.5237) model_time 0.4570 (0.4612) loss 2.5290 (3.4595) grad_norm 1.0498 (1.6367/0.5307) mem 16099MB [2025-01-18 02:15:11 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][50/312] eta 0:02:14 lr 0.003130 time 0.4481 (0.5139) model_time 0.4480 (0.4636) loss 2.8225 (3.5065) grad_norm 1.8418 (1.6853/0.5335) mem 16099MB [2025-01-18 02:15:15 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][60/312] eta 0:02:07 lr 0.003130 time 0.4514 (0.5050) model_time 0.4512 (0.4629) loss 3.3882 (3.4555) grad_norm 0.9032 (1.6260/0.5220) mem 16099MB [2025-01-18 02:15:20 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][70/312] eta 0:02:00 lr 0.003129 time 0.4409 (0.4998) model_time 0.4407 (0.4636) loss 3.9897 (3.4872) grad_norm 1.2444 (1.5928/0.5244) mem 16099MB [2025-01-18 02:15:25 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][80/312] eta 0:01:54 lr 0.003129 time 0.4448 (0.4954) model_time 0.4443 (0.4636) loss 3.2181 (3.4682) grad_norm 1.1468 (1.5604/0.5153) mem 16099MB [2025-01-18 02:15:29 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][90/312] eta 0:01:49 lr 0.003128 time 0.4627 (0.4917) model_time 0.4623 (0.4633) loss 2.2862 (3.4515) grad_norm 3.6021 (1.6442/0.6725) mem 16099MB [2025-01-18 02:15:34 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][100/312] eta 0:01:44 lr 0.003127 time 0.4539 (0.4908) model_time 0.4536 (0.4652) loss 2.5336 (3.4542) grad_norm 1.2863 (1.6685/0.7032) mem 16099MB [2025-01-18 02:15:39 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][110/312] eta 0:01:38 lr 0.003127 time 0.4490 (0.4900) model_time 0.4489 (0.4667) loss 3.2576 (3.4392) grad_norm 0.7594 (1.6229/0.6938) mem 16099MB [2025-01-18 02:15:44 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][120/312] eta 0:01:33 lr 0.003126 time 0.4639 (0.4892) model_time 0.4637 (0.4678) loss 3.4397 (3.4305) grad_norm 1.0003 (1.5906/0.6800) mem 16099MB [2025-01-18 02:15:48 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][130/312] eta 0:01:28 lr 0.003126 time 0.4644 (0.4882) model_time 0.4640 (0.4684) loss 3.9490 (3.4514) grad_norm 1.0267 (1.5630/0.6650) mem 16099MB [2025-01-18 02:15:53 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][140/312] eta 0:01:23 lr 0.003125 time 0.4602 (0.4870) model_time 0.4601 (0.4686) loss 3.7108 (3.4538) grad_norm 1.0514 (1.5837/0.6670) mem 16099MB [2025-01-18 02:15:58 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][150/312] eta 0:01:18 lr 0.003125 time 0.4571 (0.4859) model_time 0.4569 (0.4687) loss 3.6302 (3.4515) grad_norm 1.0862 (1.5834/0.6612) mem 16099MB [2025-01-18 02:16:02 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][160/312] eta 0:01:13 lr 0.003124 time 0.4573 (0.4843) model_time 0.4572 (0.4681) loss 3.2284 (3.4475) grad_norm 1.6099 (1.5847/0.6538) mem 16099MB [2025-01-18 02:16:07 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][170/312] eta 0:01:08 lr 0.003124 time 0.4600 (0.4836) model_time 0.4596 (0.4684) loss 4.3910 (3.4546) grad_norm 1.6251 (1.6168/0.6828) mem 16099MB [2025-01-18 02:16:12 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][180/312] eta 0:01:03 lr 0.003123 time 0.4410 (0.4823) model_time 0.4406 (0.4679) loss 3.4755 (3.4420) grad_norm 0.9732 (1.6154/0.6875) mem 16099MB [2025-01-18 02:16:16 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][190/312] eta 0:00:58 lr 0.003122 time 0.4566 (0.4808) model_time 0.4564 (0.4671) loss 3.6412 (3.4503) grad_norm 0.7948 (1.5892/0.6823) mem 16099MB [2025-01-18 02:16:21 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][200/312] eta 0:00:53 lr 0.003122 time 0.4437 (0.4796) model_time 0.4436 (0.4666) loss 3.6838 (3.4424) grad_norm 0.9174 (1.5650/0.6783) mem 16099MB [2025-01-18 02:16:26 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][210/312] eta 0:00:48 lr 0.003121 time 0.5470 (0.4794) model_time 0.5465 (0.4670) loss 3.7022 (3.4367) grad_norm 1.8418 (1.5802/0.6763) mem 16099MB [2025-01-18 02:16:30 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][220/312] eta 0:00:43 lr 0.003121 time 0.4534 (0.4782) model_time 0.4532 (0.4663) loss 3.5385 (3.4418) grad_norm 2.0467 (1.5814/0.6738) mem 16099MB [2025-01-18 02:16:35 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][230/312] eta 0:00:39 lr 0.003120 time 0.4519 (0.4776) model_time 0.4517 (0.4662) loss 3.9202 (3.4277) grad_norm 1.0536 (1.5688/0.6638) mem 16099MB [2025-01-18 02:16:39 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][240/312] eta 0:00:34 lr 0.003120 time 0.4878 (0.4768) model_time 0.4874 (0.4659) loss 3.7063 (3.4369) grad_norm 0.9164 (1.5615/0.6547) mem 16099MB [2025-01-18 02:16:44 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][250/312] eta 0:00:29 lr 0.003119 time 0.4496 (0.4764) model_time 0.4494 (0.4659) loss 3.2669 (3.4270) grad_norm 0.7760 (1.5452/0.6532) mem 16099MB [2025-01-18 02:16:49 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][260/312] eta 0:00:24 lr 0.003119 time 0.4547 (0.4756) model_time 0.4546 (0.4654) loss 4.3926 (3.4446) grad_norm 3.9039 (1.5479/0.6683) mem 16099MB [2025-01-18 02:16:54 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][270/312] eta 0:00:20 lr 0.003118 time 0.5450 (0.4763) model_time 0.5445 (0.4665) loss 3.7391 (3.4566) grad_norm 0.7152 (1.5529/0.6724) mem 16099MB [2025-01-18 02:16:58 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][280/312] eta 0:00:15 lr 0.003117 time 0.4580 (0.4762) model_time 0.4575 (0.4668) loss 4.2633 (3.4633) grad_norm 2.6479 (1.5475/0.6688) mem 16099MB [2025-01-18 02:17:03 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][290/312] eta 0:00:10 lr 0.003117 time 0.4418 (0.4761) model_time 0.4417 (0.4669) loss 3.1777 (3.4617) grad_norm 1.8635 (1.5568/0.6722) mem 16099MB [2025-01-18 02:17:08 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][300/312] eta 0:00:05 lr 0.003116 time 0.4374 (0.4760) model_time 0.4373 (0.4672) loss 3.1159 (3.4659) grad_norm 1.7146 (1.5898/0.7075) mem 16099MB [2025-01-18 02:17:12 internimage_t_1k_224] (main.py 510): INFO Train: [93/300][310/312] eta 0:00:00 lr 0.003116 time 0.5185 (0.4751) model_time 0.5184 (0.4665) loss 4.2652 (3.4656) grad_norm 1.2770 (1.5821/0.7017) mem 16099MB [2025-01-18 02:17:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 93 training takes 0:02:28 [2025-01-18 02:17:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_93.pth saving...... [2025-01-18 02:17:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_93.pth saved !!! [2025-01-18 02:17:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.623 (7.623) Loss 0.9925 (0.9925) Acc@1 79.858 (79.858) Acc@5 95.117 (95.117) Mem 16099MB [2025-01-18 02:17:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.033) Loss 1.3208 (1.1135) Acc@1 71.899 (76.649) Acc@5 91.138 (93.661) Mem 16099MB [2025-01-18 02:17:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:93] * Acc@1 76.556 Acc@5 93.654 [2025-01-18 02:17:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.6% [2025-01-18 02:17:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:17:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:17:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.56% [2025-01-18 02:17:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.545 (7.545) Loss 0.9910 (0.9910) Acc@1 78.467 (78.467) Acc@5 95.215 (95.215) Mem 16099MB [2025-01-18 02:17:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.022) Loss 1.4371 (1.1745) Acc@1 68.652 (75.102) Acc@5 89.551 (92.667) Mem 16099MB [2025-01-18 02:17:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:93] * Acc@1 75.044 Acc@5 92.716 [2025-01-18 02:17:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 75.0% [2025-01-18 02:17:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:17:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:17:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 75.04% [2025-01-18 02:17:42 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][0/312] eta 0:13:25 lr 0.003116 time 2.5819 (2.5819) model_time 0.4630 (0.4630) loss 3.9101 (3.9101) grad_norm 1.4279 (1.4279/0.0000) mem 16099MB [2025-01-18 02:17:47 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][10/312] eta 0:03:21 lr 0.003115 time 0.5334 (0.6661) model_time 0.5333 (0.4731) loss 4.1863 (3.7230) grad_norm 1.9172 (1.1462/0.2903) mem 16099MB [2025-01-18 02:17:51 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][20/312] eta 0:02:45 lr 0.003115 time 0.4558 (0.5657) model_time 0.4556 (0.4645) loss 2.6848 (3.6769) grad_norm 2.0734 (1.3880/0.4835) mem 16099MB [2025-01-18 02:17:56 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][30/312] eta 0:02:31 lr 0.003114 time 0.4480 (0.5385) model_time 0.4479 (0.4698) loss 3.6826 (3.5737) grad_norm 1.7195 (1.4110/0.5488) mem 16099MB [2025-01-18 02:18:01 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][40/312] eta 0:02:22 lr 0.003114 time 0.4570 (0.5240) model_time 0.4566 (0.4719) loss 3.4851 (3.5320) grad_norm 2.2618 (1.5031/0.6356) mem 16099MB [2025-01-18 02:18:06 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][50/312] eta 0:02:14 lr 0.003113 time 0.4714 (0.5133) model_time 0.4712 (0.4714) loss 3.0151 (3.5241) grad_norm 1.9915 (1.5408/0.6501) mem 16099MB [2025-01-18 02:18:10 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][60/312] eta 0:02:06 lr 0.003112 time 0.4460 (0.5035) model_time 0.4456 (0.4683) loss 4.2615 (3.4839) grad_norm 1.4171 (1.6218/0.7030) mem 16099MB [2025-01-18 02:18:15 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][70/312] eta 0:02:00 lr 0.003112 time 0.4534 (0.4981) model_time 0.4532 (0.4679) loss 2.5869 (3.5044) grad_norm 1.6578 (1.6174/0.6951) mem 16099MB [2025-01-18 02:18:19 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][80/312] eta 0:01:54 lr 0.003111 time 0.4669 (0.4945) model_time 0.4664 (0.4679) loss 3.4121 (3.4753) grad_norm 1.6233 (1.5656/0.6723) mem 16099MB [2025-01-18 02:18:24 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][90/312] eta 0:01:49 lr 0.003111 time 0.5340 (0.4924) model_time 0.5339 (0.4687) loss 2.9945 (3.4759) grad_norm 1.1886 (1.5997/0.6843) mem 16099MB [2025-01-18 02:18:29 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][100/312] eta 0:01:43 lr 0.003110 time 0.4665 (0.4893) model_time 0.4661 (0.4680) loss 4.2389 (3.4774) grad_norm 1.8467 (1.6167/0.6761) mem 16099MB [2025-01-18 02:18:33 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][110/312] eta 0:01:38 lr 0.003110 time 0.5336 (0.4868) model_time 0.5332 (0.4673) loss 3.6375 (3.4770) grad_norm 0.8618 (1.5826/0.6784) mem 16099MB [2025-01-18 02:18:38 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][120/312] eta 0:01:33 lr 0.003109 time 0.4406 (0.4850) model_time 0.4404 (0.4671) loss 3.2410 (3.4451) grad_norm 0.7700 (1.5429/0.6687) mem 16099MB [2025-01-18 02:18:43 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][130/312] eta 0:01:28 lr 0.003109 time 0.4533 (0.4836) model_time 0.4529 (0.4670) loss 3.9764 (3.4448) grad_norm 1.5900 (1.5481/0.6626) mem 16099MB [2025-01-18 02:18:48 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][140/312] eta 0:01:23 lr 0.003108 time 0.4608 (0.4838) model_time 0.4606 (0.4684) loss 3.8415 (3.4497) grad_norm 1.2824 (1.5909/0.6823) mem 16099MB [2025-01-18 02:18:52 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][150/312] eta 0:01:18 lr 0.003107 time 0.4586 (0.4820) model_time 0.4584 (0.4676) loss 4.2231 (3.4629) grad_norm 1.9455 (1.5971/0.6777) mem 16099MB [2025-01-18 02:18:57 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][160/312] eta 0:01:13 lr 0.003107 time 0.5334 (0.4824) model_time 0.5332 (0.4689) loss 3.2488 (3.4546) grad_norm 1.5932 (1.6002/0.6745) mem 16099MB [2025-01-18 02:19:02 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][170/312] eta 0:01:08 lr 0.003106 time 0.4535 (0.4814) model_time 0.4531 (0.4686) loss 3.3021 (3.4773) grad_norm 1.9660 (1.5739/0.6678) mem 16099MB [2025-01-18 02:19:06 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][180/312] eta 0:01:03 lr 0.003106 time 0.4515 (0.4802) model_time 0.4511 (0.4681) loss 4.0019 (3.4825) grad_norm 1.4589 (1.5777/0.6758) mem 16099MB [2025-01-18 02:19:11 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][190/312] eta 0:00:58 lr 0.003105 time 0.4450 (0.4799) model_time 0.4448 (0.4684) loss 2.7952 (3.4726) grad_norm 2.2987 (1.5996/0.7224) mem 16099MB [2025-01-18 02:19:16 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][200/312] eta 0:00:53 lr 0.003105 time 0.4499 (0.4789) model_time 0.4497 (0.4680) loss 3.8131 (3.4672) grad_norm 0.9738 (1.6045/0.7196) mem 16099MB [2025-01-18 02:19:20 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][210/312] eta 0:00:48 lr 0.003104 time 0.4653 (0.4789) model_time 0.4648 (0.4684) loss 4.0612 (3.4646) grad_norm 2.7034 (1.6175/0.7233) mem 16099MB [2025-01-18 02:19:25 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][220/312] eta 0:00:44 lr 0.003104 time 0.5609 (0.4787) model_time 0.5607 (0.4687) loss 2.9623 (3.4595) grad_norm 0.7983 (1.6101/0.7176) mem 16099MB [2025-01-18 02:19:30 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][230/312] eta 0:00:39 lr 0.003103 time 0.4447 (0.4780) model_time 0.4443 (0.4685) loss 3.4018 (3.4629) grad_norm 1.4739 (1.5996/0.7075) mem 16099MB [2025-01-18 02:19:34 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][240/312] eta 0:00:34 lr 0.003102 time 0.4538 (0.4773) model_time 0.4534 (0.4682) loss 3.3652 (3.4601) grad_norm 0.9333 (1.5870/0.6985) mem 16099MB [2025-01-18 02:19:39 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][250/312] eta 0:00:29 lr 0.003102 time 0.4449 (0.4766) model_time 0.4444 (0.4677) loss 3.6675 (3.4693) grad_norm 1.0330 (1.5687/0.6906) mem 16099MB [2025-01-18 02:19:44 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][260/312] eta 0:00:24 lr 0.003101 time 0.4530 (0.4764) model_time 0.4526 (0.4679) loss 4.1981 (3.4665) grad_norm 3.3448 (1.5912/0.7210) mem 16099MB [2025-01-18 02:19:49 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][270/312] eta 0:00:20 lr 0.003101 time 0.4526 (0.4771) model_time 0.4520 (0.4688) loss 3.5707 (3.4574) grad_norm 1.9086 (1.6124/0.7460) mem 16099MB [2025-01-18 02:19:53 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][280/312] eta 0:00:15 lr 0.003100 time 0.4705 (0.4763) model_time 0.4703 (0.4683) loss 3.0777 (3.4533) grad_norm 0.8774 (1.6253/0.7579) mem 16099MB [2025-01-18 02:19:58 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][290/312] eta 0:00:10 lr 0.003100 time 0.4507 (0.4757) model_time 0.4502 (0.4680) loss 3.0866 (3.4446) grad_norm 1.0337 (1.6247/0.7614) mem 16099MB [2025-01-18 02:20:02 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][300/312] eta 0:00:05 lr 0.003099 time 0.4470 (0.4751) model_time 0.4469 (0.4677) loss 3.6729 (3.4376) grad_norm 3.4698 (1.6266/0.7656) mem 16099MB [2025-01-18 02:20:07 internimage_t_1k_224] (main.py 510): INFO Train: [94/300][310/312] eta 0:00:00 lr 0.003098 time 0.5129 (0.4742) model_time 0.5128 (0.4670) loss 3.7172 (3.4505) grad_norm 1.4430 (1.6316/0.7626) mem 16099MB [2025-01-18 02:20:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 94 training takes 0:02:27 [2025-01-18 02:20:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_94.pth saving...... [2025-01-18 02:20:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_94.pth saved !!! [2025-01-18 02:20:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.563 (7.563) Loss 0.8911 (0.8911) Acc@1 79.272 (79.272) Acc@5 95.605 (95.605) Mem 16099MB [2025-01-18 02:20:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.003) Loss 1.2410 (1.0513) Acc@1 72.437 (76.853) Acc@5 92.090 (93.803) Mem 16099MB [2025-01-18 02:20:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:94] * Acc@1 76.761 Acc@5 93.840 [2025-01-18 02:20:20 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.8% [2025-01-18 02:20:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:20:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:20:21 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.76% [2025-01-18 02:20:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.649 (7.649) Loss 0.9796 (0.9796) Acc@1 78.687 (78.687) Acc@5 95.312 (95.312) Mem 16099MB [2025-01-18 02:20:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.009) Loss 1.4222 (1.1618) Acc@1 68.970 (75.364) Acc@5 89.673 (92.769) Mem 16099MB [2025-01-18 02:20:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:94] * Acc@1 75.304 Acc@5 92.816 [2025-01-18 02:20:32 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 75.3% [2025-01-18 02:20:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:20:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:20:34 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 75.30% [2025-01-18 02:20:36 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][0/312] eta 0:14:23 lr 0.003098 time 2.7669 (2.7669) model_time 0.4679 (0.4679) loss 3.4389 (3.4389) grad_norm 1.2204 (1.2204/0.0000) mem 16099MB [2025-01-18 02:20:41 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][10/312] eta 0:03:20 lr 0.003098 time 0.4473 (0.6636) model_time 0.4472 (0.4542) loss 3.9283 (3.4426) grad_norm 1.2860 (1.2179/0.2485) mem 16099MB [2025-01-18 02:20:46 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][20/312] eta 0:02:46 lr 0.003097 time 0.4450 (0.5691) model_time 0.4449 (0.4593) loss 2.6883 (3.4019) grad_norm 1.9379 (1.2628/0.3461) mem 16099MB [2025-01-18 02:20:50 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][30/312] eta 0:02:31 lr 0.003097 time 0.4938 (0.5369) model_time 0.4936 (0.4623) loss 3.7005 (3.4416) grad_norm 1.1802 (1.5362/0.7040) mem 16099MB [2025-01-18 02:20:55 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][40/312] eta 0:02:20 lr 0.003096 time 0.4486 (0.5179) model_time 0.4484 (0.4615) loss 3.6045 (3.4894) grad_norm 1.0873 (1.5832/0.7498) mem 16099MB [2025-01-18 02:21:00 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][50/312] eta 0:02:13 lr 0.003096 time 0.4657 (0.5112) model_time 0.4655 (0.4657) loss 3.7783 (3.5144) grad_norm 1.2966 (1.5900/0.6915) mem 16099MB [2025-01-18 02:21:04 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][60/312] eta 0:02:07 lr 0.003095 time 0.4562 (0.5067) model_time 0.4561 (0.4687) loss 4.3956 (3.5263) grad_norm 0.6382 (1.5585/0.6880) mem 16099MB [2025-01-18 02:21:09 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][70/312] eta 0:02:01 lr 0.003094 time 0.4439 (0.5005) model_time 0.4437 (0.4678) loss 3.4047 (3.5062) grad_norm 1.1392 (1.5521/0.6646) mem 16099MB [2025-01-18 02:21:14 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][80/312] eta 0:01:55 lr 0.003094 time 0.5331 (0.4963) model_time 0.5326 (0.4676) loss 3.7685 (3.5032) grad_norm 0.9440 (1.5381/0.6503) mem 16099MB [2025-01-18 02:21:18 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][90/312] eta 0:01:49 lr 0.003093 time 0.4565 (0.4930) model_time 0.4561 (0.4674) loss 2.6667 (3.4853) grad_norm 3.5399 (1.6009/0.8098) mem 16099MB [2025-01-18 02:21:23 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][100/312] eta 0:01:44 lr 0.003093 time 0.4445 (0.4910) model_time 0.4443 (0.4678) loss 3.2889 (3.4713) grad_norm 1.1191 (1.5505/0.7874) mem 16099MB [2025-01-18 02:21:28 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][110/312] eta 0:01:38 lr 0.003092 time 0.4400 (0.4899) model_time 0.4396 (0.4689) loss 3.7168 (3.4665) grad_norm 1.5515 (1.5956/0.8375) mem 16099MB [2025-01-18 02:21:33 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][120/312] eta 0:01:33 lr 0.003092 time 0.4761 (0.4889) model_time 0.4756 (0.4696) loss 2.8967 (3.4576) grad_norm 1.2726 (1.5846/0.8348) mem 16099MB [2025-01-18 02:21:37 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][130/312] eta 0:01:28 lr 0.003091 time 0.4595 (0.4874) model_time 0.4590 (0.4695) loss 3.4310 (3.4603) grad_norm 1.7681 (1.5714/0.8142) mem 16099MB [2025-01-18 02:21:42 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][140/312] eta 0:01:23 lr 0.003091 time 0.4426 (0.4865) model_time 0.4421 (0.4698) loss 2.4777 (3.4344) grad_norm 1.2949 (1.5425/0.7933) mem 16099MB [2025-01-18 02:21:47 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][150/312] eta 0:01:18 lr 0.003090 time 0.4456 (0.4847) model_time 0.4451 (0.4691) loss 4.1083 (3.4420) grad_norm 2.1539 (1.5329/0.7751) mem 16099MB [2025-01-18 02:21:51 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][160/312] eta 0:01:13 lr 0.003089 time 0.4579 (0.4830) model_time 0.4578 (0.4684) loss 3.8028 (3.4506) grad_norm 1.1519 (1.5436/0.7828) mem 16099MB [2025-01-18 02:21:56 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][170/312] eta 0:01:08 lr 0.003089 time 0.4678 (0.4814) model_time 0.4676 (0.4676) loss 3.0351 (3.4582) grad_norm 2.2119 (1.5554/0.7677) mem 16099MB [2025-01-18 02:22:01 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][180/312] eta 0:01:03 lr 0.003088 time 0.4541 (0.4810) model_time 0.4536 (0.4679) loss 3.7726 (3.4493) grad_norm 1.9449 (1.5546/0.7522) mem 16099MB [2025-01-18 02:22:05 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][190/312] eta 0:00:58 lr 0.003088 time 0.4604 (0.4806) model_time 0.4602 (0.4682) loss 3.5168 (3.4513) grad_norm 2.6062 (1.5475/0.7470) mem 16099MB [2025-01-18 02:22:10 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][200/312] eta 0:00:53 lr 0.003087 time 0.4434 (0.4794) model_time 0.4432 (0.4675) loss 3.2650 (3.4538) grad_norm 1.6431 (1.5559/0.7394) mem 16099MB [2025-01-18 02:22:15 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][210/312] eta 0:00:48 lr 0.003087 time 0.4443 (0.4789) model_time 0.4438 (0.4676) loss 3.6471 (3.4546) grad_norm 1.6560 (1.5571/0.7341) mem 16099MB [2025-01-18 02:22:19 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][220/312] eta 0:00:44 lr 0.003086 time 0.4384 (0.4792) model_time 0.4382 (0.4684) loss 3.4165 (3.4537) grad_norm 1.2747 (1.5672/0.7253) mem 16099MB [2025-01-18 02:22:24 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][230/312] eta 0:00:39 lr 0.003086 time 0.4432 (0.4786) model_time 0.4427 (0.4683) loss 2.4694 (3.4496) grad_norm 1.8992 (1.5810/0.7241) mem 16099MB [2025-01-18 02:22:29 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][240/312] eta 0:00:34 lr 0.003085 time 0.4446 (0.4781) model_time 0.4444 (0.4682) loss 3.1653 (3.4554) grad_norm 1.5631 (1.5801/0.7163) mem 16099MB [2025-01-18 02:22:33 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][250/312] eta 0:00:29 lr 0.003084 time 0.4522 (0.4772) model_time 0.4518 (0.4677) loss 3.8397 (3.4438) grad_norm 1.5052 (1.5999/0.7246) mem 16099MB [2025-01-18 02:22:38 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][260/312] eta 0:00:24 lr 0.003084 time 0.5479 (0.4770) model_time 0.5475 (0.4678) loss 3.2610 (3.4383) grad_norm 2.9849 (1.6140/0.7397) mem 16099MB [2025-01-18 02:22:43 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][270/312] eta 0:00:20 lr 0.003083 time 0.4497 (0.4765) model_time 0.4494 (0.4677) loss 2.4661 (3.4402) grad_norm 1.2920 (1.6090/0.7332) mem 16099MB [2025-01-18 02:22:48 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][280/312] eta 0:00:15 lr 0.003083 time 0.4597 (0.4768) model_time 0.4595 (0.4683) loss 3.8530 (3.4320) grad_norm 1.4172 (1.6105/0.7319) mem 16099MB [2025-01-18 02:22:52 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][290/312] eta 0:00:10 lr 0.003082 time 0.4525 (0.4769) model_time 0.4524 (0.4686) loss 3.1485 (3.4305) grad_norm 0.6851 (1.6033/0.7260) mem 16099MB [2025-01-18 02:22:57 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][300/312] eta 0:00:05 lr 0.003082 time 0.4384 (0.4763) model_time 0.4383 (0.4683) loss 3.8305 (3.4314) grad_norm 1.0848 (1.5988/0.7192) mem 16099MB [2025-01-18 02:23:01 internimage_t_1k_224] (main.py 510): INFO Train: [95/300][310/312] eta 0:00:00 lr 0.003081 time 0.4384 (0.4752) model_time 0.4383 (0.4674) loss 4.1762 (3.4357) grad_norm 4.1843 (1.6420/0.7575) mem 16099MB [2025-01-18 02:23:02 internimage_t_1k_224] (main.py 519): INFO EPOCH 95 training takes 0:02:28 [2025-01-18 02:23:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_95.pth saving...... [2025-01-18 02:23:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_95.pth saved !!! [2025-01-18 02:23:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.557 (7.557) Loss 0.9240 (0.9240) Acc@1 80.713 (80.713) Acc@5 95.850 (95.850) Mem 16099MB [2025-01-18 02:23:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.022) Loss 1.2794 (1.0821) Acc@1 72.461 (77.066) Acc@5 91.479 (93.794) Mem 16099MB [2025-01-18 02:23:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:95] * Acc@1 76.973 Acc@5 93.830 [2025-01-18 02:23:14 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.0% [2025-01-18 02:23:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:23:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:23:15 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:23:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.513 (7.513) Loss 0.9685 (0.9685) Acc@1 78.833 (78.833) Acc@5 95.386 (95.386) Mem 16099MB [2025-01-18 02:23:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.010) Loss 1.4079 (1.1498) Acc@1 69.019 (75.537) Acc@5 89.771 (92.858) Mem 16099MB [2025-01-18 02:23:27 internimage_t_1k_224] (main.py 575): INFO [Epoch:95] * Acc@1 75.490 Acc@5 92.906 [2025-01-18 02:23:27 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 75.5% [2025-01-18 02:23:27 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:23:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:23:28 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 75.49% [2025-01-18 02:23:31 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][0/312] eta 0:14:52 lr 0.003081 time 2.8595 (2.8595) model_time 0.4726 (0.4726) loss 4.3135 (4.3135) grad_norm 2.4310 (2.4310/0.0000) mem 16099MB [2025-01-18 02:23:36 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][10/312] eta 0:03:23 lr 0.003080 time 0.4674 (0.6737) model_time 0.4672 (0.4564) loss 3.6349 (3.5191) grad_norm 1.0208 (1.4794/0.4947) mem 16099MB [2025-01-18 02:23:40 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][20/312] eta 0:02:47 lr 0.003080 time 0.4584 (0.5743) model_time 0.4579 (0.4603) loss 4.0321 (3.6083) grad_norm 1.5625 (1.5286/0.5144) mem 16099MB [2025-01-18 02:23:45 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][30/312] eta 0:02:33 lr 0.003079 time 0.4562 (0.5426) model_time 0.4561 (0.4653) loss 2.4908 (3.4633) grad_norm 1.2876 (1.4920/0.5128) mem 16099MB [2025-01-18 02:23:50 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][40/312] eta 0:02:21 lr 0.003079 time 0.4447 (0.5211) model_time 0.4440 (0.4625) loss 3.9993 (3.4817) grad_norm 1.8342 (1.5151/0.4893) mem 16099MB [2025-01-18 02:23:54 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][50/312] eta 0:02:13 lr 0.003078 time 0.4465 (0.5114) model_time 0.4463 (0.4643) loss 2.7910 (3.5152) grad_norm 1.0707 (1.6159/0.6671) mem 16099MB [2025-01-18 02:23:59 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][60/312] eta 0:02:06 lr 0.003078 time 0.4475 (0.5032) model_time 0.4470 (0.4637) loss 3.3086 (3.4925) grad_norm 0.8937 (1.5694/0.6366) mem 16099MB [2025-01-18 02:24:04 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][70/312] eta 0:02:01 lr 0.003077 time 0.4605 (0.5010) model_time 0.4603 (0.4670) loss 3.2921 (3.4817) grad_norm 2.4887 (1.5500/0.6134) mem 16099MB [2025-01-18 02:24:08 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][80/312] eta 0:01:54 lr 0.003076 time 0.4576 (0.4952) model_time 0.4574 (0.4654) loss 3.3765 (3.4636) grad_norm 2.2515 (1.5088/0.6034) mem 16099MB [2025-01-18 02:24:13 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][90/312] eta 0:01:49 lr 0.003076 time 0.5405 (0.4936) model_time 0.5403 (0.4670) loss 2.8302 (3.4508) grad_norm 1.2657 (1.5414/0.6913) mem 16099MB [2025-01-18 02:24:18 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][100/312] eta 0:01:44 lr 0.003075 time 0.4417 (0.4910) model_time 0.4415 (0.4670) loss 3.5490 (3.4552) grad_norm 1.1877 (1.5019/0.6712) mem 16099MB [2025-01-18 02:24:23 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][110/312] eta 0:01:38 lr 0.003075 time 0.4670 (0.4891) model_time 0.4666 (0.4672) loss 3.7585 (3.4724) grad_norm 2.1960 (1.4790/0.6587) mem 16099MB [2025-01-18 02:24:27 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][120/312] eta 0:01:33 lr 0.003074 time 0.4506 (0.4865) model_time 0.4504 (0.4664) loss 2.5507 (3.4546) grad_norm 1.0906 (1.5529/0.7678) mem 16099MB [2025-01-18 02:24:32 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][130/312] eta 0:01:28 lr 0.003074 time 0.4522 (0.4859) model_time 0.4518 (0.4673) loss 3.0126 (3.4385) grad_norm 2.2682 (1.5466/0.7507) mem 16099MB [2025-01-18 02:24:37 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][140/312] eta 0:01:23 lr 0.003073 time 0.4493 (0.4842) model_time 0.4489 (0.4669) loss 2.4462 (3.4341) grad_norm 1.0030 (1.5450/0.7450) mem 16099MB [2025-01-18 02:24:41 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][150/312] eta 0:01:18 lr 0.003073 time 0.4502 (0.4822) model_time 0.4497 (0.4661) loss 3.9394 (3.4555) grad_norm 0.8984 (1.5125/0.7367) mem 16099MB [2025-01-18 02:24:46 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][160/312] eta 0:01:13 lr 0.003072 time 0.5418 (0.4823) model_time 0.5417 (0.4671) loss 3.9236 (3.4631) grad_norm 1.0564 (1.5057/0.7170) mem 16099MB [2025-01-18 02:24:51 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][170/312] eta 0:01:08 lr 0.003071 time 0.4587 (0.4811) model_time 0.4585 (0.4668) loss 3.9243 (3.4678) grad_norm 2.1543 (1.5057/0.7125) mem 16099MB [2025-01-18 02:24:55 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][180/312] eta 0:01:03 lr 0.003071 time 0.4699 (0.4803) model_time 0.4698 (0.4668) loss 3.7411 (3.4830) grad_norm 1.1614 (1.5157/0.7116) mem 16099MB [2025-01-18 02:25:00 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][190/312] eta 0:00:58 lr 0.003070 time 0.4570 (0.4796) model_time 0.4568 (0.4667) loss 2.6711 (3.4772) grad_norm 1.2195 (1.5483/0.7899) mem 16099MB [2025-01-18 02:25:05 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][200/312] eta 0:00:53 lr 0.003070 time 0.4555 (0.4796) model_time 0.4554 (0.4674) loss 3.9016 (3.4819) grad_norm 2.0263 (1.5854/0.8481) mem 16099MB [2025-01-18 02:25:09 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][210/312] eta 0:00:48 lr 0.003069 time 0.4444 (0.4787) model_time 0.4443 (0.4670) loss 3.5826 (3.4815) grad_norm 0.8159 (1.5741/0.8347) mem 16099MB [2025-01-18 02:25:14 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][220/312] eta 0:00:43 lr 0.003069 time 0.4669 (0.4777) model_time 0.4665 (0.4665) loss 3.8215 (3.4851) grad_norm 0.7896 (1.5695/0.8216) mem 16099MB [2025-01-18 02:25:19 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][230/312] eta 0:00:39 lr 0.003068 time 0.4577 (0.4773) model_time 0.4572 (0.4666) loss 2.8024 (3.4792) grad_norm 1.2846 (1.5708/0.8140) mem 16099MB [2025-01-18 02:25:23 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][240/312] eta 0:00:34 lr 0.003067 time 0.4493 (0.4772) model_time 0.4492 (0.4670) loss 3.3717 (3.4877) grad_norm 1.6801 (1.5784/0.8044) mem 16099MB [2025-01-18 02:25:28 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][250/312] eta 0:00:29 lr 0.003067 time 0.4484 (0.4763) model_time 0.4483 (0.4665) loss 3.2467 (3.4848) grad_norm 1.2942 (1.5736/0.7908) mem 16099MB [2025-01-18 02:25:33 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][260/312] eta 0:00:24 lr 0.003066 time 0.4422 (0.4759) model_time 0.4420 (0.4664) loss 3.0748 (3.4909) grad_norm 0.9537 (1.5591/0.7802) mem 16099MB [2025-01-18 02:25:37 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][270/312] eta 0:00:19 lr 0.003066 time 0.4608 (0.4756) model_time 0.4603 (0.4664) loss 2.6893 (3.4784) grad_norm 1.0286 (1.5701/0.7769) mem 16099MB [2025-01-18 02:25:42 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][280/312] eta 0:00:15 lr 0.003065 time 0.4804 (0.4753) model_time 0.4802 (0.4665) loss 4.0988 (3.4670) grad_norm 1.7668 (1.6008/0.8143) mem 16099MB [2025-01-18 02:25:47 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][290/312] eta 0:00:10 lr 0.003065 time 0.4538 (0.4749) model_time 0.4537 (0.4663) loss 3.3973 (3.4641) grad_norm 1.6779 (1.6152/0.8167) mem 16099MB [2025-01-18 02:25:51 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][300/312] eta 0:00:05 lr 0.003064 time 0.4361 (0.4741) model_time 0.4360 (0.4658) loss 4.0443 (3.4739) grad_norm 1.1966 (1.6056/0.8100) mem 16099MB [2025-01-18 02:25:56 internimage_t_1k_224] (main.py 510): INFO Train: [96/300][310/312] eta 0:00:00 lr 0.003063 time 0.4383 (0.4733) model_time 0.4382 (0.4653) loss 3.6383 (3.4789) grad_norm 1.4734 (1.5900/0.8121) mem 16099MB [2025-01-18 02:25:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 96 training takes 0:02:27 [2025-01-18 02:25:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_96.pth saving...... [2025-01-18 02:25:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_96.pth saved !!! [2025-01-18 02:26:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.448 (7.448) Loss 0.9585 (0.9585) Acc@1 79.102 (79.102) Acc@5 95.459 (95.459) Mem 16099MB [2025-01-18 02:26:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.001) Loss 1.2670 (1.0564) Acc@1 71.558 (76.818) Acc@5 91.479 (93.801) Mem 16099MB [2025-01-18 02:26:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:96] * Acc@1 76.733 Acc@5 93.826 [2025-01-18 02:26:08 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.7% [2025-01-18 02:26:08 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:26:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.346 (8.346) Loss 0.9581 (0.9581) Acc@1 79.126 (79.126) Acc@5 95.483 (95.483) Mem 16099MB [2025-01-18 02:26:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.112) Loss 1.3943 (1.1385) Acc@1 69.092 (75.755) Acc@5 89.819 (92.953) Mem 16099MB [2025-01-18 02:26:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:96] * Acc@1 75.700 Acc@5 93.000 [2025-01-18 02:26:21 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 75.7% [2025-01-18 02:26:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:26:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:26:22 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 75.70% [2025-01-18 02:26:25 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][0/312] eta 0:13:03 lr 0.003063 time 2.5109 (2.5109) model_time 0.4627 (0.4627) loss 3.3373 (3.3373) grad_norm 1.7661 (1.7661/0.0000) mem 16099MB [2025-01-18 02:26:30 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][10/312] eta 0:03:23 lr 0.003063 time 0.4738 (0.6722) model_time 0.4737 (0.4857) loss 2.8718 (3.3384) grad_norm 1.8583 (1.5504/0.5509) mem 16099MB [2025-01-18 02:26:34 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][20/312] eta 0:02:46 lr 0.003062 time 0.4544 (0.5716) model_time 0.4540 (0.4738) loss 2.3977 (3.3458) grad_norm 1.4458 (1.3999/0.4656) mem 16099MB [2025-01-18 02:26:39 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][30/312] eta 0:02:31 lr 0.003062 time 0.4557 (0.5381) model_time 0.4555 (0.4718) loss 3.6612 (3.3472) grad_norm 1.4336 (1.3656/0.4131) mem 16099MB [2025-01-18 02:26:44 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][40/312] eta 0:02:23 lr 0.003061 time 0.5563 (0.5287) model_time 0.5559 (0.4785) loss 2.4817 (3.4226) grad_norm 0.8423 (1.4119/0.4701) mem 16099MB [2025-01-18 02:26:48 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][50/312] eta 0:02:14 lr 0.003061 time 0.4484 (0.5146) model_time 0.4479 (0.4741) loss 3.2975 (3.4229) grad_norm 0.8254 (1.5049/0.5163) mem 16099MB [2025-01-18 02:26:53 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][60/312] eta 0:02:08 lr 0.003060 time 0.4503 (0.5083) model_time 0.4501 (0.4744) loss 3.2071 (3.4540) grad_norm 1.3305 (1.5229/0.5756) mem 16099MB [2025-01-18 02:26:58 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][70/312] eta 0:02:01 lr 0.003059 time 0.4427 (0.5038) model_time 0.4425 (0.4746) loss 2.8959 (3.4445) grad_norm 1.4017 (1.4817/0.5569) mem 16099MB [2025-01-18 02:27:03 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][80/312] eta 0:01:55 lr 0.003059 time 0.4877 (0.4984) model_time 0.4872 (0.4727) loss 3.2709 (3.4473) grad_norm 2.3540 (1.4649/0.5512) mem 16099MB [2025-01-18 02:27:07 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][90/312] eta 0:01:50 lr 0.003058 time 0.5391 (0.4961) model_time 0.5389 (0.4732) loss 2.7310 (3.4280) grad_norm 1.5105 (1.4819/0.5767) mem 16099MB [2025-01-18 02:27:12 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][100/312] eta 0:01:44 lr 0.003058 time 0.4503 (0.4932) model_time 0.4498 (0.4723) loss 2.6711 (3.4399) grad_norm 0.9584 (1.4706/0.5644) mem 16099MB [2025-01-18 02:27:17 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][110/312] eta 0:01:39 lr 0.003057 time 0.4574 (0.4909) model_time 0.4572 (0.4719) loss 2.4799 (3.4271) grad_norm 3.5597 (1.5240/0.6078) mem 16099MB [2025-01-18 02:27:21 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][120/312] eta 0:01:33 lr 0.003057 time 0.4594 (0.4879) model_time 0.4589 (0.4705) loss 3.0412 (3.4303) grad_norm 0.7629 (1.5151/0.6066) mem 16099MB [2025-01-18 02:27:26 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][130/312] eta 0:01:28 lr 0.003056 time 0.4948 (0.4863) model_time 0.4944 (0.4701) loss 4.1037 (3.4328) grad_norm 3.4272 (1.5364/0.6221) mem 16099MB [2025-01-18 02:27:31 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][140/312] eta 0:01:23 lr 0.003055 time 0.4503 (0.4867) model_time 0.4499 (0.4717) loss 3.7891 (3.4239) grad_norm 0.9061 (1.5556/0.6288) mem 16099MB [2025-01-18 02:27:35 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][150/312] eta 0:01:18 lr 0.003055 time 0.4582 (0.4846) model_time 0.4580 (0.4706) loss 3.0054 (3.4093) grad_norm 3.2156 (1.5839/0.6487) mem 16099MB [2025-01-18 02:27:40 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][160/312] eta 0:01:13 lr 0.003054 time 0.5678 (0.4836) model_time 0.5673 (0.4704) loss 3.5785 (3.4247) grad_norm 1.4192 (1.5996/0.6738) mem 16099MB [2025-01-18 02:27:45 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][170/312] eta 0:01:08 lr 0.003054 time 0.4499 (0.4827) model_time 0.4497 (0.4702) loss 3.7166 (3.4316) grad_norm 0.9093 (1.5811/0.6623) mem 16099MB [2025-01-18 02:27:49 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][180/312] eta 0:01:03 lr 0.003053 time 0.4853 (0.4815) model_time 0.4849 (0.4697) loss 3.1761 (3.4420) grad_norm 0.9031 (1.5571/0.6552) mem 16099MB [2025-01-18 02:27:54 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][190/312] eta 0:00:58 lr 0.003053 time 0.4472 (0.4805) model_time 0.4470 (0.4693) loss 3.3136 (3.4231) grad_norm 0.9870 (1.5355/0.6521) mem 16099MB [2025-01-18 02:27:59 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][200/312] eta 0:00:53 lr 0.003052 time 0.4540 (0.4798) model_time 0.4538 (0.4692) loss 3.8440 (3.4254) grad_norm 2.3705 (1.5379/0.6502) mem 16099MB [2025-01-18 02:28:03 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][210/312] eta 0:00:48 lr 0.003051 time 0.4328 (0.4794) model_time 0.4323 (0.4692) loss 3.5380 (3.4270) grad_norm 2.3042 (1.5481/0.6517) mem 16099MB [2025-01-18 02:28:08 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][220/312] eta 0:00:44 lr 0.003051 time 0.4433 (0.4786) model_time 0.4429 (0.4689) loss 4.0163 (3.4364) grad_norm 1.1253 (1.5462/0.6467) mem 16099MB [2025-01-18 02:28:13 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][230/312] eta 0:00:39 lr 0.003050 time 0.4390 (0.4782) model_time 0.4389 (0.4688) loss 2.6073 (3.4384) grad_norm 1.7730 (1.5294/0.6423) mem 16099MB [2025-01-18 02:28:17 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][240/312] eta 0:00:34 lr 0.003050 time 0.4444 (0.4775) model_time 0.4440 (0.4686) loss 3.9649 (3.4352) grad_norm 1.0961 (1.5217/0.6319) mem 16099MB [2025-01-18 02:28:22 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][250/312] eta 0:00:29 lr 0.003049 time 0.4495 (0.4777) model_time 0.4494 (0.4691) loss 3.6799 (3.4216) grad_norm 3.5920 (1.5386/0.6490) mem 16099MB [2025-01-18 02:28:27 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][260/312] eta 0:00:24 lr 0.003049 time 0.4800 (0.4773) model_time 0.4799 (0.4690) loss 2.3254 (3.4103) grad_norm 2.4139 (1.5675/0.6964) mem 16099MB [2025-01-18 02:28:31 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][270/312] eta 0:00:20 lr 0.003048 time 0.4531 (0.4768) model_time 0.4529 (0.4688) loss 3.7592 (3.4024) grad_norm 1.3782 (1.5642/0.6879) mem 16099MB [2025-01-18 02:28:36 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][280/312] eta 0:00:15 lr 0.003048 time 0.4544 (0.4770) model_time 0.4540 (0.4692) loss 3.7193 (3.4063) grad_norm 1.0921 (1.5732/0.6870) mem 16099MB [2025-01-18 02:28:41 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][290/312] eta 0:00:10 lr 0.003047 time 0.4470 (0.4765) model_time 0.4466 (0.4690) loss 3.6779 (3.4071) grad_norm 0.9388 (1.5832/0.7063) mem 16099MB [2025-01-18 02:28:45 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][300/312] eta 0:00:05 lr 0.003046 time 0.4395 (0.4758) model_time 0.4394 (0.4686) loss 3.0782 (3.3992) grad_norm 1.5034 (1.5796/0.7010) mem 16099MB [2025-01-18 02:28:50 internimage_t_1k_224] (main.py 510): INFO Train: [97/300][310/312] eta 0:00:00 lr 0.003046 time 0.5701 (0.4754) model_time 0.5699 (0.4684) loss 3.7538 (3.3945) grad_norm 1.3193 (1.5768/0.6962) mem 16099MB [2025-01-18 02:28:50 internimage_t_1k_224] (main.py 519): INFO EPOCH 97 training takes 0:02:28 [2025-01-18 02:28:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_97.pth saving...... [2025-01-18 02:28:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_97.pth saved !!! [2025-01-18 02:28:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.347 (7.347) Loss 0.9037 (0.9037) Acc@1 80.273 (80.273) Acc@5 95.923 (95.923) Mem 16099MB [2025-01-18 02:29:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.000) Loss 1.2283 (1.0540) Acc@1 72.241 (76.946) Acc@5 91.895 (93.841) Mem 16099MB [2025-01-18 02:29:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:97] * Acc@1 76.941 Acc@5 93.910 [2025-01-18 02:29:03 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.9% [2025-01-18 02:29:03 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:29:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.389 (8.389) Loss 0.9485 (0.9485) Acc@1 79.346 (79.346) Acc@5 95.483 (95.483) Mem 16099MB [2025-01-18 02:29:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.105) Loss 1.3806 (1.1273) Acc@1 69.336 (75.963) Acc@5 90.039 (93.075) Mem 16099MB [2025-01-18 02:29:15 internimage_t_1k_224] (main.py 575): INFO [Epoch:97] * Acc@1 75.908 Acc@5 93.116 [2025-01-18 02:29:15 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 75.9% [2025-01-18 02:29:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:29:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:29:17 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 75.91% [2025-01-18 02:29:19 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][0/312] eta 0:11:35 lr 0.003046 time 2.2302 (2.2302) model_time 0.5626 (0.5626) loss 3.6242 (3.6242) grad_norm 1.0548 (1.0548/0.0000) mem 16099MB [2025-01-18 02:29:24 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][10/312] eta 0:03:09 lr 0.003045 time 0.4414 (0.6286) model_time 0.4409 (0.4766) loss 3.6079 (3.3970) grad_norm 2.9512 (1.5974/0.6635) mem 16099MB [2025-01-18 02:29:28 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][20/312] eta 0:02:39 lr 0.003045 time 0.4569 (0.5465) model_time 0.4567 (0.4668) loss 2.6618 (3.4292) grad_norm 0.8908 (1.8002/0.8644) mem 16099MB [2025-01-18 02:29:33 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][30/312] eta 0:02:25 lr 0.003044 time 0.4536 (0.5164) model_time 0.4534 (0.4622) loss 3.5786 (3.4123) grad_norm 2.9927 (1.8482/0.7831) mem 16099MB [2025-01-18 02:29:37 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][40/312] eta 0:02:16 lr 0.003043 time 0.4719 (0.5023) model_time 0.4718 (0.4612) loss 3.5158 (3.4171) grad_norm 1.7418 (1.8014/0.7063) mem 16099MB [2025-01-18 02:29:42 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][50/312] eta 0:02:10 lr 0.003043 time 0.4555 (0.4986) model_time 0.4553 (0.4656) loss 3.5047 (3.4327) grad_norm 2.9943 (1.8432/0.7715) mem 16099MB [2025-01-18 02:29:47 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][60/312] eta 0:02:04 lr 0.003042 time 0.4525 (0.4925) model_time 0.4521 (0.4648) loss 2.8101 (3.4150) grad_norm 1.3438 (1.8151/0.7220) mem 16099MB [2025-01-18 02:29:51 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][70/312] eta 0:01:58 lr 0.003042 time 0.4478 (0.4885) model_time 0.4473 (0.4646) loss 2.4869 (3.4026) grad_norm 1.1944 (1.7505/0.7046) mem 16099MB [2025-01-18 02:29:56 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][80/312] eta 0:01:52 lr 0.003041 time 0.5216 (0.4854) model_time 0.5214 (0.4644) loss 4.4494 (3.4539) grad_norm 1.1211 (1.7030/0.6881) mem 16099MB [2025-01-18 02:30:01 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][90/312] eta 0:01:47 lr 0.003041 time 0.5368 (0.4843) model_time 0.5366 (0.4656) loss 2.4704 (3.4654) grad_norm 0.7064 (1.7054/0.6933) mem 16099MB [2025-01-18 02:30:05 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][100/312] eta 0:01:42 lr 0.003040 time 0.4742 (0.4824) model_time 0.4738 (0.4655) loss 3.0576 (3.4472) grad_norm 1.0750 (1.6678/0.6759) mem 16099MB [2025-01-18 02:30:10 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][110/312] eta 0:01:37 lr 0.003039 time 0.4574 (0.4817) model_time 0.4572 (0.4663) loss 2.1507 (3.4119) grad_norm 3.8200 (1.7254/0.7655) mem 16099MB [2025-01-18 02:30:15 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][120/312] eta 0:01:32 lr 0.003039 time 0.4507 (0.4798) model_time 0.4505 (0.4657) loss 4.1236 (3.4180) grad_norm 1.2008 (1.7001/0.7473) mem 16099MB [2025-01-18 02:30:20 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][130/312] eta 0:01:27 lr 0.003038 time 0.4506 (0.4807) model_time 0.4502 (0.4676) loss 2.3752 (3.4070) grad_norm 0.9266 (1.6823/0.7295) mem 16099MB [2025-01-18 02:30:25 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][140/312] eta 0:01:22 lr 0.003038 time 0.5527 (0.4814) model_time 0.5525 (0.4692) loss 3.5787 (3.4127) grad_norm 1.2379 (1.6607/0.7192) mem 16099MB [2025-01-18 02:30:29 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][150/312] eta 0:01:17 lr 0.003037 time 0.4470 (0.4808) model_time 0.4466 (0.4693) loss 3.9775 (3.4246) grad_norm 1.2317 (1.6577/0.7139) mem 16099MB [2025-01-18 02:30:34 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][160/312] eta 0:01:12 lr 0.003037 time 0.4644 (0.4792) model_time 0.4640 (0.4685) loss 3.1475 (3.4174) grad_norm 1.8912 (1.7045/0.7615) mem 16099MB [2025-01-18 02:30:39 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][170/312] eta 0:01:08 lr 0.003036 time 0.4395 (0.4792) model_time 0.4393 (0.4691) loss 3.4745 (3.4138) grad_norm 1.4729 (1.7173/0.7708) mem 16099MB [2025-01-18 02:30:43 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][180/312] eta 0:01:03 lr 0.003035 time 0.4825 (0.4781) model_time 0.4821 (0.4685) loss 3.7453 (3.4247) grad_norm 1.2953 (1.6842/0.7632) mem 16099MB [2025-01-18 02:30:48 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][190/312] eta 0:00:58 lr 0.003035 time 0.4513 (0.4773) model_time 0.4511 (0.4682) loss 3.7758 (3.4340) grad_norm 1.6823 (1.6606/0.7533) mem 16099MB [2025-01-18 02:30:53 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][200/312] eta 0:00:53 lr 0.003034 time 0.4394 (0.4771) model_time 0.4389 (0.4685) loss 2.9251 (3.4348) grad_norm 1.0144 (1.6489/0.7497) mem 16099MB [2025-01-18 02:30:57 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][210/312] eta 0:00:48 lr 0.003034 time 0.4414 (0.4767) model_time 0.4409 (0.4684) loss 3.5574 (3.4348) grad_norm 1.9565 (1.6324/0.7398) mem 16099MB [2025-01-18 02:31:02 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][220/312] eta 0:00:43 lr 0.003033 time 0.4487 (0.4765) model_time 0.4483 (0.4685) loss 3.3962 (3.4432) grad_norm 4.8752 (1.6420/0.7602) mem 16099MB [2025-01-18 02:31:07 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][230/312] eta 0:00:39 lr 0.003033 time 0.4533 (0.4764) model_time 0.4532 (0.4688) loss 3.4661 (3.4511) grad_norm 3.0214 (1.6675/0.7781) mem 16099MB [2025-01-18 02:31:11 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][240/312] eta 0:00:34 lr 0.003032 time 0.4514 (0.4760) model_time 0.4510 (0.4687) loss 3.2066 (3.4682) grad_norm 0.7664 (1.6515/0.7690) mem 16099MB [2025-01-18 02:31:16 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][250/312] eta 0:00:29 lr 0.003031 time 0.4474 (0.4756) model_time 0.4469 (0.4686) loss 3.9101 (3.4758) grad_norm 3.1108 (1.6645/0.7784) mem 16099MB [2025-01-18 02:31:21 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][260/312] eta 0:00:24 lr 0.003031 time 0.4483 (0.4752) model_time 0.4478 (0.4685) loss 3.9265 (3.4731) grad_norm 0.7785 (1.6654/0.7774) mem 16099MB [2025-01-18 02:31:25 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][270/312] eta 0:00:19 lr 0.003030 time 0.4442 (0.4745) model_time 0.4440 (0.4680) loss 3.7265 (3.4755) grad_norm 1.3640 (1.6516/0.7697) mem 16099MB [2025-01-18 02:31:30 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][280/312] eta 0:00:15 lr 0.003030 time 0.4505 (0.4749) model_time 0.4500 (0.4686) loss 3.8017 (3.4778) grad_norm 1.2374 (1.6413/0.7602) mem 16099MB [2025-01-18 02:31:35 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][290/312] eta 0:00:10 lr 0.003029 time 0.4459 (0.4744) model_time 0.4458 (0.4683) loss 4.0555 (3.4899) grad_norm 6.0783 (1.6602/0.8141) mem 16099MB [2025-01-18 02:31:39 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][300/312] eta 0:00:05 lr 0.003029 time 0.4376 (0.4743) model_time 0.4375 (0.4683) loss 3.7506 (3.4922) grad_norm 1.4669 (1.6729/0.8136) mem 16099MB [2025-01-18 02:31:44 internimage_t_1k_224] (main.py 510): INFO Train: [98/300][310/312] eta 0:00:00 lr 0.003028 time 0.4413 (0.4733) model_time 0.4412 (0.4675) loss 2.7870 (3.4904) grad_norm 1.0199 (1.6554/0.8133) mem 16099MB [2025-01-18 02:31:44 internimage_t_1k_224] (main.py 519): INFO EPOCH 98 training takes 0:02:27 [2025-01-18 02:31:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_98.pth saving...... [2025-01-18 02:31:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_98.pth saved !!! [2025-01-18 02:31:53 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.936 (7.936) Loss 0.8789 (0.8789) Acc@1 80.469 (80.469) Acc@5 95.337 (95.337) Mem 16099MB [2025-01-18 02:31:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.064) Loss 1.2533 (1.0469) Acc@1 71.582 (76.933) Acc@5 91.138 (93.719) Mem 16099MB [2025-01-18 02:31:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:98] * Acc@1 76.945 Acc@5 93.764 [2025-01-18 02:31:57 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.9% [2025-01-18 02:31:57 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:32:06 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.503 (8.503) Loss 0.9398 (0.9398) Acc@1 79.492 (79.492) Acc@5 95.557 (95.557) Mem 16099MB [2025-01-18 02:32:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.148) Loss 1.3674 (1.1169) Acc@1 69.629 (76.134) Acc@5 90.186 (93.220) Mem 16099MB [2025-01-18 02:32:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:98] * Acc@1 76.080 Acc@5 93.258 [2025-01-18 02:32:10 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 76.1% [2025-01-18 02:32:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:32:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:32:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 76.08% [2025-01-18 02:32:14 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][0/312] eta 0:11:53 lr 0.003028 time 2.2874 (2.2874) model_time 0.4884 (0.4884) loss 3.5284 (3.5284) grad_norm 0.9942 (0.9942/0.0000) mem 16099MB [2025-01-18 02:32:18 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][10/312] eta 0:03:11 lr 0.003027 time 0.4562 (0.6334) model_time 0.4560 (0.4696) loss 3.3257 (3.3342) grad_norm 1.1258 (1.5877/0.4301) mem 16099MB [2025-01-18 02:32:23 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][20/312] eta 0:02:41 lr 0.003027 time 0.4614 (0.5530) model_time 0.4609 (0.4670) loss 3.2661 (3.4227) grad_norm 1.6202 (1.4654/0.4082) mem 16099MB [2025-01-18 02:32:28 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][30/312] eta 0:02:28 lr 0.003026 time 0.4471 (0.5257) model_time 0.4467 (0.4674) loss 2.6697 (3.4509) grad_norm 2.8414 (1.4891/0.4771) mem 16099MB [2025-01-18 02:32:32 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][40/312] eta 0:02:18 lr 0.003026 time 0.4578 (0.5088) model_time 0.4576 (0.4646) loss 4.3589 (3.4279) grad_norm 1.9854 (1.5102/0.4661) mem 16099MB [2025-01-18 02:32:37 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][50/312] eta 0:02:11 lr 0.003025 time 0.4615 (0.5013) model_time 0.4611 (0.4657) loss 2.1452 (3.4393) grad_norm 1.7153 (1.5203/0.4349) mem 16099MB [2025-01-18 02:32:42 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][60/312] eta 0:02:04 lr 0.003024 time 0.4646 (0.4954) model_time 0.4645 (0.4655) loss 3.8861 (3.4224) grad_norm 1.9823 (1.5801/0.5174) mem 16099MB [2025-01-18 02:32:46 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][70/312] eta 0:01:58 lr 0.003024 time 0.4545 (0.4908) model_time 0.4543 (0.4651) loss 3.9139 (3.4001) grad_norm 1.7848 (1.5552/0.4990) mem 16099MB [2025-01-18 02:32:51 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][80/312] eta 0:01:52 lr 0.003023 time 0.4607 (0.4866) model_time 0.4606 (0.4640) loss 2.6573 (3.3934) grad_norm 1.5462 (1.5458/0.4970) mem 16099MB [2025-01-18 02:32:56 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][90/312] eta 0:01:47 lr 0.003023 time 0.4508 (0.4845) model_time 0.4504 (0.4643) loss 3.4873 (3.4008) grad_norm 1.8300 (1.5772/0.5289) mem 16099MB [2025-01-18 02:33:00 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][100/312] eta 0:01:42 lr 0.003022 time 0.4528 (0.4838) model_time 0.4524 (0.4656) loss 3.2968 (3.3887) grad_norm 1.5508 (1.5668/0.5213) mem 16099MB [2025-01-18 02:33:05 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][110/312] eta 0:01:37 lr 0.003022 time 0.4581 (0.4836) model_time 0.4580 (0.4671) loss 3.6702 (3.3856) grad_norm 1.2462 (1.5663/0.5303) mem 16099MB [2025-01-18 02:33:10 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][120/312] eta 0:01:32 lr 0.003021 time 0.4519 (0.4825) model_time 0.4515 (0.4673) loss 2.5794 (3.3735) grad_norm 2.7006 (1.5902/0.5636) mem 16099MB [2025-01-18 02:33:15 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][130/312] eta 0:01:28 lr 0.003020 time 0.5522 (0.4844) model_time 0.5518 (0.4703) loss 3.8197 (3.3830) grad_norm 1.1011 (1.6298/0.6032) mem 16099MB [2025-01-18 02:33:20 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][140/312] eta 0:01:23 lr 0.003020 time 0.4566 (0.4835) model_time 0.4561 (0.4704) loss 3.6488 (3.3836) grad_norm 1.5213 (1.6134/0.5866) mem 16099MB [2025-01-18 02:33:24 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][150/312] eta 0:01:18 lr 0.003019 time 0.4537 (0.4826) model_time 0.4533 (0.4703) loss 3.7885 (3.3871) grad_norm 1.3006 (1.6196/0.6002) mem 16099MB [2025-01-18 02:33:29 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][160/312] eta 0:01:13 lr 0.003019 time 0.4427 (0.4832) model_time 0.4425 (0.4717) loss 3.5958 (3.4191) grad_norm 1.0566 (1.5848/0.6002) mem 16099MB [2025-01-18 02:33:34 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][170/312] eta 0:01:08 lr 0.003018 time 0.4538 (0.4836) model_time 0.4537 (0.4727) loss 3.6787 (3.4296) grad_norm 2.5759 (1.6215/0.6226) mem 16099MB [2025-01-18 02:33:39 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][180/312] eta 0:01:03 lr 0.003018 time 0.4549 (0.4821) model_time 0.4545 (0.4718) loss 4.2707 (3.4452) grad_norm 2.7769 (1.6190/0.6186) mem 16099MB [2025-01-18 02:33:43 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][190/312] eta 0:00:58 lr 0.003017 time 0.5026 (0.4809) model_time 0.5022 (0.4711) loss 3.4736 (3.4401) grad_norm 1.9945 (1.6332/0.6198) mem 16099MB [2025-01-18 02:33:48 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][200/312] eta 0:00:53 lr 0.003016 time 0.4452 (0.4801) model_time 0.4450 (0.4707) loss 4.2369 (3.4507) grad_norm 0.8866 (1.6461/0.6267) mem 16099MB [2025-01-18 02:33:53 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][210/312] eta 0:00:48 lr 0.003016 time 0.4449 (0.4799) model_time 0.4445 (0.4710) loss 3.0691 (3.4590) grad_norm 0.6939 (1.6273/0.6293) mem 16099MB [2025-01-18 02:33:57 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][220/312] eta 0:00:44 lr 0.003015 time 0.4577 (0.4790) model_time 0.4575 (0.4704) loss 3.3623 (3.4705) grad_norm 2.5263 (1.6223/0.6325) mem 16099MB [2025-01-18 02:34:02 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][230/312] eta 0:00:39 lr 0.003015 time 0.4436 (0.4781) model_time 0.4432 (0.4699) loss 3.6460 (3.4729) grad_norm 1.2001 (1.6288/0.6380) mem 16099MB [2025-01-18 02:34:07 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][240/312] eta 0:00:34 lr 0.003014 time 0.4695 (0.4774) model_time 0.4693 (0.4696) loss 4.1585 (3.4801) grad_norm 1.7618 (1.6200/0.6278) mem 16099MB [2025-01-18 02:34:11 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][250/312] eta 0:00:29 lr 0.003014 time 0.4539 (0.4765) model_time 0.4538 (0.4689) loss 3.4698 (3.4881) grad_norm 3.1137 (1.6456/0.6862) mem 16099MB [2025-01-18 02:34:16 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][260/312] eta 0:00:24 lr 0.003013 time 0.4497 (0.4760) model_time 0.4493 (0.4688) loss 3.9265 (3.4920) grad_norm 0.9754 (1.6279/0.6819) mem 16099MB [2025-01-18 02:34:20 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][270/312] eta 0:00:19 lr 0.003012 time 0.4503 (0.4755) model_time 0.4501 (0.4685) loss 2.8727 (3.4942) grad_norm 1.4923 (1.6424/0.6940) mem 16099MB [2025-01-18 02:34:25 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][280/312] eta 0:00:15 lr 0.003012 time 0.4556 (0.4751) model_time 0.4554 (0.4683) loss 3.7101 (3.4827) grad_norm 0.7183 (1.6235/0.6932) mem 16099MB [2025-01-18 02:34:30 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][290/312] eta 0:00:10 lr 0.003011 time 0.5300 (0.4754) model_time 0.5296 (0.4688) loss 2.9292 (3.4805) grad_norm 1.2823 (1.6122/0.6913) mem 16099MB [2025-01-18 02:34:34 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][300/312] eta 0:00:05 lr 0.003011 time 0.4388 (0.4747) model_time 0.4387 (0.4683) loss 2.8173 (3.4752) grad_norm 0.8562 (1.6330/0.7207) mem 16099MB [2025-01-18 02:34:39 internimage_t_1k_224] (main.py 510): INFO Train: [99/300][310/312] eta 0:00:00 lr 0.003010 time 0.4374 (0.4739) model_time 0.4373 (0.4678) loss 3.6951 (3.4697) grad_norm 1.2607 (1.6125/0.7262) mem 16099MB [2025-01-18 02:34:39 internimage_t_1k_224] (main.py 519): INFO EPOCH 99 training takes 0:02:27 [2025-01-18 02:34:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_99.pth saving...... [2025-01-18 02:34:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_99.pth saved !!! [2025-01-18 02:34:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.083 (8.083) Loss 0.9047 (0.9047) Acc@1 79.932 (79.932) Acc@5 95.776 (95.776) Mem 16099MB [2025-01-18 02:34:53 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.129) Loss 1.3103 (1.0916) Acc@1 71.680 (76.911) Acc@5 91.479 (93.872) Mem 16099MB [2025-01-18 02:34:53 internimage_t_1k_224] (main.py 575): INFO [Epoch:99] * Acc@1 76.833 Acc@5 93.876 [2025-01-18 02:34:53 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.8% [2025-01-18 02:34:53 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:35:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 9.882 (9.882) Loss 0.9314 (0.9314) Acc@1 79.492 (79.492) Acc@5 95.630 (95.630) Mem 16099MB [2025-01-18 02:35:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.348) Loss 1.3552 (1.1069) Acc@1 69.800 (76.261) Acc@5 90.259 (93.277) Mem 16099MB [2025-01-18 02:35:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:99] * Acc@1 76.210 Acc@5 93.318 [2025-01-18 02:35:08 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 76.2% [2025-01-18 02:35:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:35:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:35:10 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 76.21% [2025-01-18 02:35:12 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][0/312] eta 0:13:27 lr 0.003010 time 2.5889 (2.5889) model_time 0.4620 (0.4620) loss 2.7490 (2.7490) grad_norm 0.8922 (0.8922/0.0000) mem 16099MB [2025-01-18 02:35:17 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][10/312] eta 0:03:19 lr 0.003009 time 0.4509 (0.6615) model_time 0.4508 (0.4679) loss 2.5829 (3.2362) grad_norm 1.0820 (1.0516/0.2570) mem 16099MB [2025-01-18 02:35:22 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][20/312] eta 0:02:48 lr 0.003009 time 0.5709 (0.5773) model_time 0.5704 (0.4756) loss 2.7505 (3.3280) grad_norm 3.0149 (1.5592/0.9937) mem 16099MB [2025-01-18 02:35:27 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][30/312] eta 0:02:35 lr 0.003008 time 0.5471 (0.5506) model_time 0.5470 (0.4816) loss 4.1783 (3.3752) grad_norm 1.7922 (1.7090/0.9826) mem 16099MB [2025-01-18 02:35:31 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][40/312] eta 0:02:24 lr 0.003008 time 0.4642 (0.5294) model_time 0.4638 (0.4771) loss 2.9931 (3.4237) grad_norm 1.8590 (1.6517/0.8920) mem 16099MB [2025-01-18 02:35:36 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][50/312] eta 0:02:15 lr 0.003007 time 0.4459 (0.5175) model_time 0.4457 (0.4754) loss 3.5215 (3.4358) grad_norm 0.7382 (1.5789/0.8572) mem 16099MB [2025-01-18 02:35:41 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][60/312] eta 0:02:08 lr 0.003007 time 0.4571 (0.5097) model_time 0.4569 (0.4744) loss 2.1572 (3.4268) grad_norm 1.1643 (1.5136/0.8041) mem 16099MB [2025-01-18 02:35:45 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][70/312] eta 0:02:01 lr 0.003006 time 0.4435 (0.5025) model_time 0.4433 (0.4721) loss 3.2469 (3.4213) grad_norm 4.6573 (1.5792/0.8994) mem 16099MB [2025-01-18 02:35:50 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][80/312] eta 0:01:55 lr 0.003005 time 0.4543 (0.4974) model_time 0.4541 (0.4707) loss 3.7800 (3.4420) grad_norm 0.9721 (1.6353/0.9392) mem 16099MB [2025-01-18 02:35:54 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][90/312] eta 0:01:49 lr 0.003005 time 0.4588 (0.4928) model_time 0.4584 (0.4690) loss 3.3639 (3.4415) grad_norm 1.1534 (1.5935/0.9076) mem 16099MB [2025-01-18 02:35:59 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][100/312] eta 0:01:44 lr 0.003004 time 0.4387 (0.4915) model_time 0.4385 (0.4700) loss 3.9374 (3.4083) grad_norm 0.9423 (1.5662/0.8705) mem 16099MB [2025-01-18 02:36:04 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][110/312] eta 0:01:39 lr 0.003004 time 0.4684 (0.4914) model_time 0.4681 (0.4718) loss 3.3981 (3.4107) grad_norm 2.1407 (1.5479/0.8404) mem 16099MB [2025-01-18 02:36:09 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][120/312] eta 0:01:33 lr 0.003003 time 0.5148 (0.4888) model_time 0.5146 (0.4708) loss 2.6837 (3.3816) grad_norm 1.8254 (1.5580/0.8301) mem 16099MB [2025-01-18 02:36:13 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][130/312] eta 0:01:28 lr 0.003003 time 0.4582 (0.4870) model_time 0.4580 (0.4704) loss 3.6162 (3.3973) grad_norm 1.1261 (1.5566/0.8081) mem 16099MB [2025-01-18 02:36:18 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][140/312] eta 0:01:23 lr 0.003002 time 0.5311 (0.4855) model_time 0.5309 (0.4700) loss 4.0771 (3.4190) grad_norm 3.2736 (1.5450/0.8061) mem 16099MB [2025-01-18 02:36:23 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][150/312] eta 0:01:18 lr 0.003001 time 0.4714 (0.4836) model_time 0.4708 (0.4692) loss 3.5429 (3.4018) grad_norm 1.7292 (1.5515/0.7850) mem 16099MB [2025-01-18 02:36:27 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][160/312] eta 0:01:13 lr 0.003001 time 0.4521 (0.4819) model_time 0.4518 (0.4682) loss 4.1167 (3.4081) grad_norm 1.3679 (1.5515/0.7700) mem 16099MB [2025-01-18 02:36:32 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][170/312] eta 0:01:08 lr 0.003000 time 0.4470 (0.4828) model_time 0.4468 (0.4700) loss 3.7559 (3.4081) grad_norm 2.5087 (1.5798/0.7789) mem 16099MB [2025-01-18 02:36:37 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][180/312] eta 0:01:03 lr 0.003000 time 0.4622 (0.4816) model_time 0.4621 (0.4695) loss 3.1548 (3.4068) grad_norm 2.0570 (1.5956/0.7884) mem 16099MB [2025-01-18 02:36:41 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][190/312] eta 0:00:58 lr 0.002999 time 0.4530 (0.4805) model_time 0.4528 (0.4690) loss 3.8302 (3.4257) grad_norm 0.9077 (1.5848/0.7777) mem 16099MB [2025-01-18 02:36:46 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][200/312] eta 0:00:53 lr 0.002998 time 0.4469 (0.4794) model_time 0.4467 (0.4684) loss 2.7207 (3.4165) grad_norm 0.8207 (1.5782/0.7674) mem 16099MB [2025-01-18 02:36:51 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][210/312] eta 0:00:48 lr 0.002998 time 0.4634 (0.4787) model_time 0.4632 (0.4682) loss 2.7790 (3.4152) grad_norm 1.3067 (1.5693/0.7553) mem 16099MB [2025-01-18 02:36:55 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][220/312] eta 0:00:43 lr 0.002997 time 0.4523 (0.4775) model_time 0.4521 (0.4675) loss 3.6302 (3.4200) grad_norm 1.4333 (1.5895/0.7693) mem 16099MB [2025-01-18 02:37:00 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][230/312] eta 0:00:39 lr 0.002997 time 0.4443 (0.4768) model_time 0.4438 (0.4673) loss 2.4228 (3.4297) grad_norm 2.0733 (1.5927/0.7625) mem 16099MB [2025-01-18 02:37:05 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][240/312] eta 0:00:34 lr 0.002996 time 0.4500 (0.4767) model_time 0.4498 (0.4675) loss 3.9327 (3.4400) grad_norm 1.1360 (1.6134/0.7701) mem 16099MB [2025-01-18 02:37:09 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][250/312] eta 0:00:29 lr 0.002996 time 0.4471 (0.4757) model_time 0.4470 (0.4669) loss 3.6636 (3.4355) grad_norm 1.4395 (1.6105/0.7605) mem 16099MB [2025-01-18 02:37:14 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][260/312] eta 0:00:24 lr 0.002995 time 0.4551 (0.4756) model_time 0.4546 (0.4670) loss 4.3965 (3.4413) grad_norm 3.4750 (1.6130/0.7615) mem 16099MB [2025-01-18 02:37:18 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][270/312] eta 0:00:19 lr 0.002994 time 0.4418 (0.4755) model_time 0.4413 (0.4672) loss 2.9873 (3.4361) grad_norm 1.0689 (1.6229/0.7678) mem 16099MB [2025-01-18 02:37:23 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][280/312] eta 0:00:15 lr 0.002994 time 0.4557 (0.4754) model_time 0.4552 (0.4674) loss 3.8450 (3.4427) grad_norm 2.8589 (1.6279/0.7615) mem 16099MB [2025-01-18 02:37:28 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][290/312] eta 0:00:10 lr 0.002993 time 0.4617 (0.4750) model_time 0.4615 (0.4672) loss 3.7028 (3.4385) grad_norm 2.4890 (1.6252/0.7646) mem 16099MB [2025-01-18 02:37:32 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][300/312] eta 0:00:05 lr 0.002993 time 0.4390 (0.4744) model_time 0.4388 (0.4669) loss 3.6628 (3.4410) grad_norm 1.9425 (1.6294/0.7637) mem 16099MB [2025-01-18 02:37:37 internimage_t_1k_224] (main.py 510): INFO Train: [100/300][310/312] eta 0:00:00 lr 0.002992 time 0.4382 (0.4740) model_time 0.4381 (0.4667) loss 4.1828 (3.4412) grad_norm 0.9101 (1.6385/0.7614) mem 16099MB [2025-01-18 02:37:38 internimage_t_1k_224] (main.py 519): INFO EPOCH 100 training takes 0:02:27 [2025-01-18 02:37:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_100.pth saving...... [2025-01-18 02:37:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_100.pth saved !!! [2025-01-18 02:37:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.601 (7.601) Loss 0.8986 (0.8986) Acc@1 80.762 (80.762) Acc@5 95.581 (95.581) Mem 16099MB [2025-01-18 02:37:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.030) Loss 1.2975 (1.0601) Acc@1 71.021 (76.831) Acc@5 91.504 (93.908) Mem 16099MB [2025-01-18 02:37:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:100] * Acc@1 76.737 Acc@5 93.926 [2025-01-18 02:37:50 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.7% [2025-01-18 02:37:50 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:37:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.842 (8.842) Loss 0.9231 (0.9231) Acc@1 79.761 (79.761) Acc@5 95.703 (95.703) Mem 16099MB [2025-01-18 02:38:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.169) Loss 1.3432 (1.0975) Acc@1 70.117 (76.447) Acc@5 90.332 (93.357) Mem 16099MB [2025-01-18 02:38:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:100] * Acc@1 76.382 Acc@5 93.392 [2025-01-18 02:38:03 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 76.4% [2025-01-18 02:38:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:38:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:38:05 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 76.38% [2025-01-18 02:38:07 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][0/312] eta 0:11:44 lr 0.002992 time 2.2569 (2.2569) model_time 0.4832 (0.4832) loss 3.3229 (3.3229) grad_norm 2.1524 (2.1524/0.0000) mem 16099MB [2025-01-18 02:38:11 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][10/312] eta 0:03:11 lr 0.002991 time 0.4647 (0.6341) model_time 0.4646 (0.4725) loss 3.4083 (3.7178) grad_norm 1.8655 (1.6177/0.4325) mem 16099MB [2025-01-18 02:38:16 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][20/312] eta 0:02:41 lr 0.002991 time 0.4527 (0.5518) model_time 0.4525 (0.4670) loss 3.2312 (3.5770) grad_norm 1.3507 (1.5131/0.4376) mem 16099MB [2025-01-18 02:38:21 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][30/312] eta 0:02:29 lr 0.002990 time 0.4486 (0.5285) model_time 0.4479 (0.4709) loss 2.6830 (3.4720) grad_norm 1.0136 (1.4590/0.4527) mem 16099MB [2025-01-18 02:38:26 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][40/312] eta 0:02:19 lr 0.002990 time 0.4515 (0.5138) model_time 0.4512 (0.4701) loss 2.7293 (3.4158) grad_norm 3.5695 (1.6918/0.7712) mem 16099MB [2025-01-18 02:38:30 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][50/312] eta 0:02:13 lr 0.002989 time 0.4538 (0.5088) model_time 0.4533 (0.4737) loss 3.2924 (3.3816) grad_norm 2.9838 (1.7930/0.7892) mem 16099MB [2025-01-18 02:38:35 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][60/312] eta 0:02:07 lr 0.002989 time 0.4742 (0.5056) model_time 0.4737 (0.4761) loss 2.9916 (3.3997) grad_norm 1.0215 (1.8364/0.8568) mem 16099MB [2025-01-18 02:38:40 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][70/312] eta 0:02:00 lr 0.002988 time 0.4592 (0.4983) model_time 0.4590 (0.4730) loss 3.3428 (3.4454) grad_norm 1.5663 (1.7313/0.8415) mem 16099MB [2025-01-18 02:38:45 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][80/312] eta 0:01:54 lr 0.002987 time 0.4498 (0.4941) model_time 0.4493 (0.4718) loss 4.2854 (3.4723) grad_norm 1.8590 (1.6862/0.8046) mem 16099MB [2025-01-18 02:38:49 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][90/312] eta 0:01:49 lr 0.002987 time 0.4503 (0.4916) model_time 0.4498 (0.4717) loss 2.8251 (3.4624) grad_norm 2.7847 (1.6988/0.7865) mem 16099MB [2025-01-18 02:38:54 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][100/312] eta 0:01:43 lr 0.002986 time 0.4545 (0.4883) model_time 0.4540 (0.4703) loss 2.4660 (3.4301) grad_norm 2.2530 (1.7091/0.7906) mem 16099MB [2025-01-18 02:38:58 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][110/312] eta 0:01:37 lr 0.002986 time 0.4439 (0.4851) model_time 0.4435 (0.4687) loss 2.8147 (3.4226) grad_norm 0.9488 (1.7039/0.7784) mem 16099MB [2025-01-18 02:39:03 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][120/312] eta 0:01:32 lr 0.002985 time 0.4536 (0.4826) model_time 0.4531 (0.4675) loss 2.8016 (3.4135) grad_norm 2.8602 (1.6815/0.7773) mem 16099MB [2025-01-18 02:39:08 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][130/312] eta 0:01:27 lr 0.002984 time 0.4579 (0.4808) model_time 0.4578 (0.4668) loss 2.4545 (3.4223) grad_norm 1.4327 (1.6824/0.7652) mem 16099MB [2025-01-18 02:39:13 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][140/312] eta 0:01:22 lr 0.002984 time 0.4465 (0.4825) model_time 0.4463 (0.4695) loss 4.4307 (3.4379) grad_norm 1.5089 (1.6817/0.7529) mem 16099MB [2025-01-18 02:39:17 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][150/312] eta 0:01:17 lr 0.002983 time 0.5040 (0.4812) model_time 0.5035 (0.4690) loss 3.6043 (3.4259) grad_norm 2.4447 (1.6575/0.7433) mem 16099MB [2025-01-18 02:39:22 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][160/312] eta 0:01:13 lr 0.002983 time 0.4477 (0.4804) model_time 0.4472 (0.4690) loss 3.8650 (3.4267) grad_norm 1.0814 (1.6465/0.7414) mem 16099MB [2025-01-18 02:39:27 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][170/312] eta 0:01:08 lr 0.002982 time 0.4414 (0.4800) model_time 0.4413 (0.4692) loss 3.6927 (3.4418) grad_norm 1.0336 (1.6241/0.7328) mem 16099MB [2025-01-18 02:39:31 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][180/312] eta 0:01:03 lr 0.002982 time 0.4944 (0.4788) model_time 0.4942 (0.4686) loss 4.0880 (3.4311) grad_norm 0.9707 (1.6032/0.7211) mem 16099MB [2025-01-18 02:39:36 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][190/312] eta 0:00:58 lr 0.002981 time 0.5393 (0.4795) model_time 0.5391 (0.4698) loss 3.4656 (3.4452) grad_norm 2.0395 (1.6001/0.7182) mem 16099MB [2025-01-18 02:39:41 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][200/312] eta 0:00:53 lr 0.002980 time 0.4728 (0.4783) model_time 0.4723 (0.4691) loss 3.6459 (3.4464) grad_norm 1.4958 (1.5787/0.7093) mem 16099MB [2025-01-18 02:39:45 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][210/312] eta 0:00:48 lr 0.002980 time 0.4516 (0.4774) model_time 0.4514 (0.4686) loss 2.9984 (3.4483) grad_norm 0.8694 (1.5646/0.7052) mem 16099MB [2025-01-18 02:39:50 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][220/312] eta 0:00:43 lr 0.002979 time 0.4529 (0.4779) model_time 0.4527 (0.4695) loss 2.8956 (3.4433) grad_norm 2.0937 (1.5722/0.6980) mem 16099MB [2025-01-18 02:39:55 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][230/312] eta 0:00:39 lr 0.002979 time 0.4447 (0.4767) model_time 0.4442 (0.4686) loss 3.7459 (3.4372) grad_norm 2.6912 (1.5831/0.6944) mem 16099MB [2025-01-18 02:39:59 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][240/312] eta 0:00:34 lr 0.002978 time 0.4306 (0.4763) model_time 0.4304 (0.4685) loss 3.7150 (3.4421) grad_norm 1.7074 (1.5882/0.6962) mem 16099MB [2025-01-18 02:40:04 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][250/312] eta 0:00:29 lr 0.002977 time 0.4576 (0.4756) model_time 0.4574 (0.4681) loss 3.6331 (3.4473) grad_norm 1.9116 (1.5929/0.6942) mem 16099MB [2025-01-18 02:40:09 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][260/312] eta 0:00:24 lr 0.002977 time 0.5383 (0.4760) model_time 0.5381 (0.4687) loss 3.7689 (3.4563) grad_norm 3.3011 (1.6242/0.7661) mem 16099MB [2025-01-18 02:40:13 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][270/312] eta 0:00:19 lr 0.002976 time 0.5635 (0.4758) model_time 0.5630 (0.4688) loss 4.1809 (3.4587) grad_norm 1.2477 (1.6123/0.7582) mem 16099MB [2025-01-18 02:40:18 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][280/312] eta 0:00:15 lr 0.002976 time 0.4473 (0.4750) model_time 0.4468 (0.4683) loss 4.2534 (3.4632) grad_norm 1.4451 (1.5958/0.7509) mem 16099MB [2025-01-18 02:40:23 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][290/312] eta 0:00:10 lr 0.002975 time 0.4493 (0.4754) model_time 0.4490 (0.4689) loss 3.5003 (3.4631) grad_norm 3.5011 (1.6054/0.7581) mem 16099MB [2025-01-18 02:40:28 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][300/312] eta 0:00:05 lr 0.002975 time 0.4444 (0.4755) model_time 0.4443 (0.4692) loss 3.9321 (3.4606) grad_norm 2.2941 (1.6319/0.7927) mem 16099MB [2025-01-18 02:40:32 internimage_t_1k_224] (main.py 510): INFO Train: [101/300][310/312] eta 0:00:00 lr 0.002974 time 0.4379 (0.4744) model_time 0.4377 (0.4683) loss 4.0438 (3.4588) grad_norm 2.0004 (1.6319/0.7936) mem 16099MB [2025-01-18 02:40:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 101 training takes 0:02:27 [2025-01-18 02:40:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_101.pth saving...... [2025-01-18 02:40:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_101.pth saved !!! [2025-01-18 02:40:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.905 (7.905) Loss 0.9274 (0.9274) Acc@1 80.371 (80.371) Acc@5 95.386 (95.386) Mem 16099MB [2025-01-18 02:40:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.053) Loss 1.2415 (1.0688) Acc@1 72.363 (76.953) Acc@5 92.090 (93.925) Mem 16099MB [2025-01-18 02:40:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:101] * Acc@1 76.899 Acc@5 93.900 [2025-01-18 02:40:45 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.9% [2025-01-18 02:40:45 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:40:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.726 (8.726) Loss 0.9163 (0.9163) Acc@1 79.907 (79.907) Acc@5 95.801 (95.801) Mem 16099MB [2025-01-18 02:40:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.169) Loss 1.3327 (1.0892) Acc@1 70.264 (76.582) Acc@5 90.381 (93.441) Mem 16099MB [2025-01-18 02:40:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:101] * Acc@1 76.526 Acc@5 93.476 [2025-01-18 02:40:58 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 76.5% [2025-01-18 02:40:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:41:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:41:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 76.53% [2025-01-18 02:41:02 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][0/312] eta 0:12:48 lr 0.002974 time 2.4633 (2.4633) model_time 0.4638 (0.4638) loss 4.1342 (4.1342) grad_norm 0.8223 (0.8223/0.0000) mem 16099MB [2025-01-18 02:41:07 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][10/312] eta 0:03:25 lr 0.002973 time 0.4570 (0.6794) model_time 0.4563 (0.4974) loss 3.6265 (3.5894) grad_norm 0.8207 (1.2716/0.4217) mem 16099MB [2025-01-18 02:41:12 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][20/312] eta 0:02:47 lr 0.002973 time 0.4560 (0.5729) model_time 0.4554 (0.4774) loss 3.9678 (3.4557) grad_norm 2.4857 (1.4242/0.5836) mem 16099MB [2025-01-18 02:41:16 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][30/312] eta 0:02:31 lr 0.002972 time 0.5484 (0.5384) model_time 0.5479 (0.4735) loss 2.2983 (3.3307) grad_norm 1.7534 (1.5492/0.5705) mem 16099MB [2025-01-18 02:41:21 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][40/312] eta 0:02:21 lr 0.002972 time 0.4542 (0.5205) model_time 0.4536 (0.4714) loss 3.4885 (3.3339) grad_norm 1.3027 (1.5188/0.5451) mem 16099MB [2025-01-18 02:41:26 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][50/312] eta 0:02:14 lr 0.002971 time 0.4497 (0.5121) model_time 0.4495 (0.4726) loss 3.5847 (3.3661) grad_norm 1.0871 (1.6001/0.7706) mem 16099MB [2025-01-18 02:41:30 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][60/312] eta 0:02:06 lr 0.002970 time 0.4464 (0.5039) model_time 0.4459 (0.4708) loss 3.7866 (3.3640) grad_norm 0.9956 (1.5869/0.8049) mem 16099MB [2025-01-18 02:41:35 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][70/312] eta 0:02:00 lr 0.002970 time 0.4586 (0.4982) model_time 0.4585 (0.4697) loss 2.7142 (3.3533) grad_norm 1.9984 (1.5505/0.7600) mem 16099MB [2025-01-18 02:41:40 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][80/312] eta 0:01:54 lr 0.002969 time 0.5451 (0.4944) model_time 0.5447 (0.4693) loss 2.7262 (3.3641) grad_norm 1.9106 (1.5453/0.7222) mem 16099MB [2025-01-18 02:41:44 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][90/312] eta 0:01:49 lr 0.002969 time 0.4543 (0.4918) model_time 0.4539 (0.4694) loss 3.5543 (3.3773) grad_norm 0.7962 (1.5592/0.7491) mem 16099MB [2025-01-18 02:41:49 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][100/312] eta 0:01:43 lr 0.002968 time 0.4516 (0.4879) model_time 0.4514 (0.4677) loss 3.6563 (3.3980) grad_norm 1.6893 (1.5120/0.7307) mem 16099MB [2025-01-18 02:41:54 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][110/312] eta 0:01:37 lr 0.002967 time 0.4574 (0.4848) model_time 0.4569 (0.4664) loss 2.6311 (3.4093) grad_norm 1.0261 (1.5423/0.7437) mem 16099MB [2025-01-18 02:41:58 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][120/312] eta 0:01:32 lr 0.002967 time 0.4489 (0.4821) model_time 0.4487 (0.4652) loss 3.8735 (3.4150) grad_norm 1.5130 (1.5295/0.7204) mem 16099MB [2025-01-18 02:42:03 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][130/312] eta 0:01:27 lr 0.002966 time 0.4548 (0.4812) model_time 0.4544 (0.4656) loss 3.8955 (3.4274) grad_norm 0.8383 (1.5414/0.7603) mem 16099MB [2025-01-18 02:42:07 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][140/312] eta 0:01:22 lr 0.002966 time 0.4528 (0.4805) model_time 0.4524 (0.4659) loss 3.5930 (3.4158) grad_norm 1.2380 (1.5273/0.7434) mem 16099MB [2025-01-18 02:42:12 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][150/312] eta 0:01:17 lr 0.002965 time 0.4743 (0.4795) model_time 0.4738 (0.4659) loss 3.2560 (3.4125) grad_norm 3.5762 (1.5664/0.7918) mem 16099MB [2025-01-18 02:42:17 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][160/312] eta 0:01:12 lr 0.002965 time 0.4568 (0.4787) model_time 0.4566 (0.4659) loss 2.5856 (3.3908) grad_norm 0.9370 (1.5563/0.7776) mem 16099MB [2025-01-18 02:42:22 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][170/312] eta 0:01:07 lr 0.002964 time 0.5801 (0.4786) model_time 0.5796 (0.4665) loss 2.6162 (3.3926) grad_norm 0.8545 (1.5382/0.7654) mem 16099MB [2025-01-18 02:42:26 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][180/312] eta 0:01:03 lr 0.002963 time 0.4754 (0.4786) model_time 0.4749 (0.4672) loss 3.8949 (3.3943) grad_norm 1.3131 (1.5224/0.7526) mem 16099MB [2025-01-18 02:42:31 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][190/312] eta 0:00:58 lr 0.002963 time 0.4326 (0.4774) model_time 0.4322 (0.4665) loss 2.6283 (3.3810) grad_norm 1.4904 (1.5541/0.7899) mem 16099MB [2025-01-18 02:42:36 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][200/312] eta 0:00:53 lr 0.002962 time 0.4450 (0.4782) model_time 0.4446 (0.4678) loss 4.0982 (3.3844) grad_norm 1.0149 (1.5740/0.7866) mem 16099MB [2025-01-18 02:42:40 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][210/312] eta 0:00:48 lr 0.002962 time 0.4465 (0.4772) model_time 0.4463 (0.4673) loss 2.8441 (3.3837) grad_norm 0.7982 (1.5767/0.7804) mem 16099MB [2025-01-18 02:42:45 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][220/312] eta 0:00:43 lr 0.002961 time 0.4427 (0.4768) model_time 0.4425 (0.4674) loss 2.6882 (3.3736) grad_norm 1.7023 (1.5631/0.7674) mem 16099MB [2025-01-18 02:42:50 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][230/312] eta 0:00:39 lr 0.002960 time 0.4597 (0.4768) model_time 0.4592 (0.4678) loss 3.1839 (3.3730) grad_norm 2.9294 (1.5788/0.7632) mem 16099MB [2025-01-18 02:42:54 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][240/312] eta 0:00:34 lr 0.002960 time 0.4479 (0.4760) model_time 0.4474 (0.4673) loss 3.7560 (3.3781) grad_norm 1.4341 (1.5735/0.7500) mem 16099MB [2025-01-18 02:42:59 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][250/312] eta 0:00:29 lr 0.002959 time 0.5387 (0.4769) model_time 0.5382 (0.4685) loss 3.2786 (3.3801) grad_norm 1.3402 (1.5694/0.7426) mem 16099MB [2025-01-18 02:43:04 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][260/312] eta 0:00:24 lr 0.002959 time 0.4658 (0.4762) model_time 0.4656 (0.4681) loss 2.3938 (3.3838) grad_norm 1.4770 (1.5960/0.7597) mem 16099MB [2025-01-18 02:43:09 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][270/312] eta 0:00:19 lr 0.002958 time 0.4461 (0.4755) model_time 0.4459 (0.4677) loss 3.4320 (3.3833) grad_norm 2.2084 (1.6136/0.7679) mem 16099MB [2025-01-18 02:43:13 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][280/312] eta 0:00:15 lr 0.002958 time 0.4817 (0.4752) model_time 0.4812 (0.4677) loss 3.7968 (3.3894) grad_norm 0.9633 (1.6058/0.7585) mem 16099MB [2025-01-18 02:43:18 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][290/312] eta 0:00:10 lr 0.002957 time 0.4558 (0.4749) model_time 0.4553 (0.4676) loss 3.4392 (3.3916) grad_norm 1.4054 (1.5961/0.7482) mem 16099MB [2025-01-18 02:43:23 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][300/312] eta 0:00:05 lr 0.002956 time 0.4377 (0.4745) model_time 0.4376 (0.4674) loss 4.0365 (3.4064) grad_norm 2.4668 (1.5912/0.7446) mem 16099MB [2025-01-18 02:43:27 internimage_t_1k_224] (main.py 510): INFO Train: [102/300][310/312] eta 0:00:00 lr 0.002956 time 0.4390 (0.4737) model_time 0.4389 (0.4668) loss 3.4867 (3.4031) grad_norm 1.3047 (1.6053/0.7463) mem 16099MB [2025-01-18 02:43:27 internimage_t_1k_224] (main.py 519): INFO EPOCH 102 training takes 0:02:27 [2025-01-18 02:43:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_102.pth saving...... [2025-01-18 02:43:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_102.pth saved !!! [2025-01-18 02:43:36 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.314 (7.314) Loss 0.8885 (0.8885) Acc@1 80.493 (80.493) Acc@5 95.850 (95.850) Mem 16099MB [2025-01-18 02:43:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.995) Loss 1.2720 (1.0570) Acc@1 71.509 (76.980) Acc@5 91.528 (93.941) Mem 16099MB [2025-01-18 02:43:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:102] * Acc@1 76.815 Acc@5 93.932 [2025-01-18 02:43:40 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.8% [2025-01-18 02:43:40 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 76.97% [2025-01-18 02:43:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.371 (8.371) Loss 0.9097 (0.9097) Acc@1 80.054 (80.054) Acc@5 95.825 (95.825) Mem 16099MB [2025-01-18 02:43:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.113) Loss 1.3222 (1.0811) Acc@1 70.459 (76.733) Acc@5 90.430 (93.517) Mem 16099MB [2025-01-18 02:43:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:102] * Acc@1 76.671 Acc@5 93.556 [2025-01-18 02:43:52 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 76.7% [2025-01-18 02:43:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:43:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:43:53 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 76.67% [2025-01-18 02:43:56 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][0/312] eta 0:15:05 lr 0.002956 time 2.9025 (2.9025) model_time 0.5137 (0.5137) loss 4.3599 (4.3599) grad_norm 1.7403 (1.7403/0.0000) mem 16099MB [2025-01-18 02:44:01 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][10/312] eta 0:03:23 lr 0.002955 time 0.4476 (0.6734) model_time 0.4471 (0.4558) loss 4.0550 (3.6544) grad_norm 1.4451 (1.5680/0.4751) mem 16099MB [2025-01-18 02:44:06 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][20/312] eta 0:02:47 lr 0.002954 time 0.4529 (0.5748) model_time 0.4527 (0.4606) loss 2.8182 (3.5699) grad_norm 1.3232 (1.5156/0.4377) mem 16099MB [2025-01-18 02:44:10 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][30/312] eta 0:02:32 lr 0.002954 time 0.4417 (0.5396) model_time 0.4415 (0.4622) loss 3.7477 (3.5849) grad_norm 1.2383 (1.5324/0.4811) mem 16099MB [2025-01-18 02:44:15 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][40/312] eta 0:02:21 lr 0.002953 time 0.4777 (0.5189) model_time 0.4772 (0.4603) loss 3.6942 (3.5521) grad_norm 1.3403 (1.5310/0.4996) mem 16099MB [2025-01-18 02:44:19 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][50/312] eta 0:02:13 lr 0.002953 time 0.4506 (0.5080) model_time 0.4504 (0.4607) loss 3.5947 (3.5484) grad_norm 0.9514 (1.4983/0.5084) mem 16099MB [2025-01-18 02:44:24 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][60/312] eta 0:02:06 lr 0.002952 time 0.4679 (0.5004) model_time 0.4674 (0.4608) loss 3.6562 (3.5488) grad_norm 1.0801 (1.4548/0.4908) mem 16099MB [2025-01-18 02:44:29 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][70/312] eta 0:02:00 lr 0.002952 time 0.4691 (0.4998) model_time 0.4689 (0.4657) loss 3.1665 (3.5239) grad_norm 2.1626 (1.5621/0.5708) mem 16099MB [2025-01-18 02:44:34 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][80/312] eta 0:01:54 lr 0.002951 time 0.4441 (0.4949) model_time 0.4439 (0.4650) loss 2.9504 (3.5305) grad_norm 1.3628 (1.5996/0.6210) mem 16099MB [2025-01-18 02:44:38 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][90/312] eta 0:01:49 lr 0.002950 time 0.4482 (0.4942) model_time 0.4480 (0.4675) loss 4.1864 (3.5237) grad_norm 1.9650 (1.6697/0.7480) mem 16099MB [2025-01-18 02:44:43 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][100/312] eta 0:01:44 lr 0.002950 time 0.4503 (0.4910) model_time 0.4501 (0.4670) loss 2.6646 (3.4879) grad_norm 1.7904 (1.6619/0.7301) mem 16099MB [2025-01-18 02:44:48 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][110/312] eta 0:01:38 lr 0.002949 time 0.4516 (0.4884) model_time 0.4511 (0.4665) loss 2.1298 (3.4890) grad_norm 1.6953 (1.6340/0.7087) mem 16099MB [2025-01-18 02:44:52 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][120/312] eta 0:01:33 lr 0.002949 time 0.5469 (0.4868) model_time 0.5467 (0.4666) loss 2.4941 (3.4760) grad_norm 1.6702 (1.6569/0.7026) mem 16099MB [2025-01-18 02:44:57 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][130/312] eta 0:01:28 lr 0.002948 time 0.5425 (0.4849) model_time 0.5421 (0.4662) loss 2.4167 (3.4757) grad_norm 1.0426 (1.6334/0.6848) mem 16099MB [2025-01-18 02:45:02 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][140/312] eta 0:01:23 lr 0.002947 time 0.4441 (0.4845) model_time 0.4436 (0.4671) loss 3.9759 (3.4757) grad_norm 1.2577 (1.6108/0.6759) mem 16099MB [2025-01-18 02:45:06 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][150/312] eta 0:01:18 lr 0.002947 time 0.4560 (0.4825) model_time 0.4558 (0.4663) loss 2.8751 (3.4711) grad_norm 1.1692 (1.5828/0.6669) mem 16099MB [2025-01-18 02:45:11 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][160/312] eta 0:01:13 lr 0.002946 time 0.4543 (0.4826) model_time 0.4539 (0.4673) loss 4.0405 (3.4668) grad_norm 1.4036 (1.6103/0.6934) mem 16099MB [2025-01-18 02:45:16 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][170/312] eta 0:01:08 lr 0.002946 time 0.4596 (0.4813) model_time 0.4594 (0.4669) loss 3.6840 (3.4773) grad_norm 1.5817 (1.6016/0.6823) mem 16099MB [2025-01-18 02:45:20 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][180/312] eta 0:01:03 lr 0.002945 time 0.4554 (0.4799) model_time 0.4552 (0.4663) loss 3.6063 (3.4840) grad_norm 2.9591 (1.6186/0.6801) mem 16099MB [2025-01-18 02:45:25 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][190/312] eta 0:00:58 lr 0.002945 time 0.4803 (0.4786) model_time 0.4802 (0.4657) loss 3.4850 (3.4819) grad_norm 2.4948 (1.6299/0.6856) mem 16099MB [2025-01-18 02:45:30 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][200/312] eta 0:00:53 lr 0.002944 time 0.4663 (0.4780) model_time 0.4659 (0.4657) loss 2.9255 (3.4873) grad_norm 1.0889 (1.6214/0.6777) mem 16099MB [2025-01-18 02:45:34 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][210/312] eta 0:00:48 lr 0.002943 time 0.4447 (0.4767) model_time 0.4446 (0.4650) loss 4.2324 (3.5028) grad_norm 0.8356 (1.5993/0.6721) mem 16099MB [2025-01-18 02:45:39 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][220/312] eta 0:00:43 lr 0.002943 time 0.4575 (0.4760) model_time 0.4573 (0.4648) loss 2.6918 (3.4916) grad_norm 2.2502 (1.6192/0.7015) mem 16099MB [2025-01-18 02:45:43 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][230/312] eta 0:00:38 lr 0.002942 time 0.4496 (0.4750) model_time 0.4492 (0.4642) loss 2.5907 (3.4779) grad_norm 0.9817 (1.6055/0.6957) mem 16099MB [2025-01-18 02:45:48 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][240/312] eta 0:00:34 lr 0.002942 time 0.4535 (0.4758) model_time 0.4534 (0.4655) loss 3.2382 (3.4756) grad_norm 2.9703 (1.6021/0.6900) mem 16099MB [2025-01-18 02:45:53 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][250/312] eta 0:00:29 lr 0.002941 time 0.4479 (0.4750) model_time 0.4475 (0.4650) loss 4.1480 (3.4803) grad_norm 2.1029 (1.6155/0.7169) mem 16099MB [2025-01-18 02:45:57 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][260/312] eta 0:00:24 lr 0.002940 time 0.4496 (0.4747) model_time 0.4491 (0.4651) loss 3.5581 (3.4797) grad_norm 1.1396 (1.5969/0.7103) mem 16099MB [2025-01-18 02:46:02 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][270/312] eta 0:00:19 lr 0.002940 time 0.4547 (0.4753) model_time 0.4545 (0.4661) loss 3.7451 (3.4820) grad_norm 1.2834 (1.5833/0.7012) mem 16099MB [2025-01-18 02:46:07 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][280/312] eta 0:00:15 lr 0.002939 time 0.4638 (0.4747) model_time 0.4636 (0.4658) loss 3.5613 (3.4747) grad_norm 0.9267 (1.5778/0.6929) mem 16099MB [2025-01-18 02:46:11 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][290/312] eta 0:00:10 lr 0.002939 time 0.4534 (0.4740) model_time 0.4530 (0.4654) loss 3.6855 (3.4744) grad_norm 1.6647 (1.5902/0.6895) mem 16099MB [2025-01-18 02:46:16 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][300/312] eta 0:00:05 lr 0.002938 time 0.4374 (0.4735) model_time 0.4373 (0.4651) loss 3.4776 (3.4699) grad_norm 1.2005 (1.6050/0.7073) mem 16099MB [2025-01-18 02:46:21 internimage_t_1k_224] (main.py 510): INFO Train: [103/300][310/312] eta 0:00:00 lr 0.002937 time 0.4415 (0.4735) model_time 0.4413 (0.4654) loss 2.6875 (3.4772) grad_norm 0.9473 (1.5946/0.7079) mem 16099MB [2025-01-18 02:46:21 internimage_t_1k_224] (main.py 519): INFO EPOCH 103 training takes 0:02:27 [2025-01-18 02:46:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_103.pth saving...... [2025-01-18 02:46:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_103.pth saved !!! [2025-01-18 02:46:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.398 (7.398) Loss 0.8941 (0.8941) Acc@1 80.249 (80.249) Acc@5 95.825 (95.825) Mem 16099MB [2025-01-18 02:46:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.996) Loss 1.2556 (1.0609) Acc@1 71.973 (77.162) Acc@5 91.162 (93.923) Mem 16099MB [2025-01-18 02:46:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:103] * Acc@1 77.099 Acc@5 93.978 [2025-01-18 02:46:33 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.1% [2025-01-18 02:46:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:46:35 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:46:35 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.10% [2025-01-18 02:46:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.482 (7.482) Loss 0.9034 (0.9034) Acc@1 80.200 (80.200) Acc@5 95.947 (95.947) Mem 16099MB [2025-01-18 02:46:46 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.979) Loss 1.3117 (1.0731) Acc@1 70.752 (76.900) Acc@5 90.674 (93.601) Mem 16099MB [2025-01-18 02:46:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:103] * Acc@1 76.823 Acc@5 93.648 [2025-01-18 02:46:46 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 76.8% [2025-01-18 02:46:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:46:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:46:47 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 76.82% [2025-01-18 02:46:50 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][0/312] eta 0:13:41 lr 0.002937 time 2.6318 (2.6318) model_time 0.4548 (0.4548) loss 2.9951 (2.9951) grad_norm 0.9072 (0.9072/0.0000) mem 16099MB [2025-01-18 02:46:54 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][10/312] eta 0:03:18 lr 0.002937 time 0.4471 (0.6583) model_time 0.4469 (0.4601) loss 3.8514 (3.2778) grad_norm 1.2925 (1.2471/0.2506) mem 16099MB [2025-01-18 02:46:59 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][20/312] eta 0:02:46 lr 0.002936 time 0.5433 (0.5707) model_time 0.5431 (0.4667) loss 3.1349 (3.3776) grad_norm 2.1143 (1.4134/0.4191) mem 16099MB [2025-01-18 02:47:04 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][30/312] eta 0:02:30 lr 0.002936 time 0.4566 (0.5350) model_time 0.4564 (0.4644) loss 3.6001 (3.3728) grad_norm 0.9161 (1.5112/0.5590) mem 16099MB [2025-01-18 02:47:08 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][40/312] eta 0:02:20 lr 0.002935 time 0.4530 (0.5175) model_time 0.4525 (0.4641) loss 2.8254 (3.3330) grad_norm 1.4043 (1.5940/0.6057) mem 16099MB [2025-01-18 02:47:13 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][50/312] eta 0:02:13 lr 0.002934 time 0.4505 (0.5081) model_time 0.4501 (0.4651) loss 2.7942 (3.3121) grad_norm 1.1468 (1.5619/0.6020) mem 16099MB [2025-01-18 02:47:18 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][60/312] eta 0:02:07 lr 0.002934 time 0.5337 (0.5040) model_time 0.5335 (0.4680) loss 2.8382 (3.3442) grad_norm 1.8708 (1.5834/0.5794) mem 16099MB [2025-01-18 02:47:22 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][70/312] eta 0:02:00 lr 0.002933 time 0.4645 (0.4965) model_time 0.4644 (0.4655) loss 3.3623 (3.3448) grad_norm 1.0466 (1.6646/0.6631) mem 16099MB [2025-01-18 02:47:27 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][80/312] eta 0:01:54 lr 0.002933 time 0.4461 (0.4928) model_time 0.4459 (0.4655) loss 2.9973 (3.3416) grad_norm 1.4712 (1.7176/0.7537) mem 16099MB [2025-01-18 02:47:32 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][90/312] eta 0:01:48 lr 0.002932 time 0.4342 (0.4898) model_time 0.4340 (0.4655) loss 4.0418 (3.3419) grad_norm 0.6909 (1.6673/0.7352) mem 16099MB [2025-01-18 02:47:36 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][100/312] eta 0:01:43 lr 0.002931 time 0.6351 (0.4889) model_time 0.6346 (0.4669) loss 3.2877 (3.3266) grad_norm 0.7472 (1.6011/0.7285) mem 16099MB [2025-01-18 02:47:41 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][110/312] eta 0:01:38 lr 0.002931 time 0.5523 (0.4869) model_time 0.5519 (0.4669) loss 2.0701 (3.3064) grad_norm 1.1686 (1.5812/0.7132) mem 16099MB [2025-01-18 02:47:46 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][120/312] eta 0:01:33 lr 0.002930 time 0.4333 (0.4866) model_time 0.4331 (0.4682) loss 3.7319 (3.3348) grad_norm 3.0097 (1.6161/0.7430) mem 16099MB [2025-01-18 02:47:51 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][130/312] eta 0:01:28 lr 0.002930 time 0.4385 (0.4860) model_time 0.4380 (0.4689) loss 3.5989 (3.3555) grad_norm 1.3142 (1.6127/0.7411) mem 16099MB [2025-01-18 02:47:55 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][140/312] eta 0:01:23 lr 0.002929 time 0.5632 (0.4855) model_time 0.5627 (0.4696) loss 3.6480 (3.3639) grad_norm 0.9615 (1.6149/0.7316) mem 16099MB [2025-01-18 02:48:00 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][150/312] eta 0:01:18 lr 0.002928 time 0.4559 (0.4841) model_time 0.4557 (0.4693) loss 2.9974 (3.3573) grad_norm 1.1486 (1.6076/0.7275) mem 16099MB [2025-01-18 02:48:05 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][160/312] eta 0:01:13 lr 0.002928 time 0.4500 (0.4829) model_time 0.4495 (0.4689) loss 3.3043 (3.3504) grad_norm 0.9321 (1.6034/0.7094) mem 16099MB [2025-01-18 02:48:09 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][170/312] eta 0:01:08 lr 0.002927 time 0.4592 (0.4820) model_time 0.4587 (0.4688) loss 2.3713 (3.3486) grad_norm 1.3462 (1.5927/0.7008) mem 16099MB [2025-01-18 02:48:14 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][180/312] eta 0:01:03 lr 0.002927 time 0.4407 (0.4804) model_time 0.4402 (0.4680) loss 2.5920 (3.3492) grad_norm 1.5400 (1.5904/0.6845) mem 16099MB [2025-01-18 02:48:19 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][190/312] eta 0:00:58 lr 0.002926 time 0.4529 (0.4795) model_time 0.4523 (0.4676) loss 3.9251 (3.3685) grad_norm 1.3919 (1.6074/0.7121) mem 16099MB [2025-01-18 02:48:23 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][200/312] eta 0:00:53 lr 0.002926 time 0.4437 (0.4785) model_time 0.4432 (0.4672) loss 3.4976 (3.3740) grad_norm 1.3624 (1.6439/0.7634) mem 16099MB [2025-01-18 02:48:28 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][210/312] eta 0:00:48 lr 0.002925 time 0.4451 (0.4779) model_time 0.4446 (0.4672) loss 3.4467 (3.3662) grad_norm 1.6538 (1.6620/0.7712) mem 16099MB [2025-01-18 02:48:32 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][220/312] eta 0:00:43 lr 0.002924 time 0.4503 (0.4768) model_time 0.4502 (0.4665) loss 3.4723 (3.3678) grad_norm 1.2613 (1.6453/0.7595) mem 16099MB [2025-01-18 02:48:37 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][230/312] eta 0:00:39 lr 0.002924 time 0.4499 (0.4761) model_time 0.4495 (0.4662) loss 3.7388 (3.3697) grad_norm 2.5416 (1.6429/0.7571) mem 16099MB [2025-01-18 02:48:42 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][240/312] eta 0:00:34 lr 0.002923 time 0.4621 (0.4755) model_time 0.4619 (0.4660) loss 2.3971 (3.3713) grad_norm 1.1029 (1.6431/0.7529) mem 16099MB [2025-01-18 02:48:46 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][250/312] eta 0:00:29 lr 0.002923 time 0.4493 (0.4749) model_time 0.4489 (0.4658) loss 2.2697 (3.3667) grad_norm 2.2520 (1.6316/0.7434) mem 16099MB [2025-01-18 02:48:51 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][260/312] eta 0:00:24 lr 0.002922 time 0.4495 (0.4741) model_time 0.4491 (0.4654) loss 3.8594 (3.3654) grad_norm 1.0242 (1.6152/0.7368) mem 16099MB [2025-01-18 02:48:55 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][270/312] eta 0:00:19 lr 0.002921 time 0.4488 (0.4735) model_time 0.4484 (0.4650) loss 3.3057 (3.3738) grad_norm 1.1077 (1.5969/0.7310) mem 16099MB [2025-01-18 02:49:00 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][280/312] eta 0:00:15 lr 0.002921 time 0.4442 (0.4734) model_time 0.4441 (0.4653) loss 3.7662 (3.3833) grad_norm 2.5281 (1.6281/0.7676) mem 16099MB [2025-01-18 02:49:05 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][290/312] eta 0:00:10 lr 0.002920 time 0.5908 (0.4741) model_time 0.5906 (0.4662) loss 2.0001 (3.3865) grad_norm 1.6819 (1.6208/0.7601) mem 16099MB [2025-01-18 02:49:09 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][300/312] eta 0:00:05 lr 0.002920 time 0.4412 (0.4733) model_time 0.4411 (0.4656) loss 3.0549 (3.3844) grad_norm 1.6283 (1.6295/0.7676) mem 16099MB [2025-01-18 02:49:14 internimage_t_1k_224] (main.py 510): INFO Train: [104/300][310/312] eta 0:00:00 lr 0.002919 time 0.4383 (0.4728) model_time 0.4382 (0.4654) loss 3.5333 (3.3826) grad_norm 1.3265 (1.6416/0.7752) mem 16099MB [2025-01-18 02:49:14 internimage_t_1k_224] (main.py 519): INFO EPOCH 104 training takes 0:02:27 [2025-01-18 02:49:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_104.pth saving...... [2025-01-18 02:49:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_104.pth saved !!! [2025-01-18 02:49:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.295 (7.295) Loss 0.9218 (0.9218) Acc@1 80.176 (80.176) Acc@5 95.874 (95.874) Mem 16099MB [2025-01-18 02:49:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.989) Loss 1.3161 (1.0859) Acc@1 71.460 (77.128) Acc@5 91.699 (94.041) Mem 16099MB [2025-01-18 02:49:27 internimage_t_1k_224] (main.py 575): INFO [Epoch:104] * Acc@1 77.095 Acc@5 94.084 [2025-01-18 02:49:27 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.1% [2025-01-18 02:49:27 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.10% [2025-01-18 02:49:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.097 (8.097) Loss 0.8976 (0.8976) Acc@1 80.298 (80.298) Acc@5 95.972 (95.972) Mem 16099MB [2025-01-18 02:49:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.092) Loss 1.3023 (1.0657) Acc@1 70.996 (77.064) Acc@5 90.869 (93.688) Mem 16099MB [2025-01-18 02:49:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:104] * Acc@1 76.985 Acc@5 93.728 [2025-01-18 02:49:39 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.0% [2025-01-18 02:49:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:49:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:49:40 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 76.99% [2025-01-18 02:49:42 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][0/312] eta 0:10:23 lr 0.002919 time 1.9991 (1.9991) model_time 0.4648 (0.4648) loss 2.1274 (2.1274) grad_norm 2.4427 (2.4427/0.0000) mem 16099MB [2025-01-18 02:49:47 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][10/312] eta 0:03:04 lr 0.002918 time 0.5345 (0.6104) model_time 0.5342 (0.4706) loss 3.6828 (3.3364) grad_norm 1.2711 (1.7110/0.6565) mem 16099MB [2025-01-18 02:49:51 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][20/312] eta 0:02:36 lr 0.002918 time 0.4450 (0.5376) model_time 0.4446 (0.4642) loss 3.5984 (3.3962) grad_norm 1.9953 (1.6073/0.7013) mem 16099MB [2025-01-18 02:49:56 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][30/312] eta 0:02:26 lr 0.002917 time 0.4631 (0.5192) model_time 0.4627 (0.4693) loss 3.4786 (3.4272) grad_norm 3.0879 (1.7958/0.8340) mem 16099MB [2025-01-18 02:50:01 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][40/312] eta 0:02:18 lr 0.002917 time 0.4614 (0.5093) model_time 0.4612 (0.4715) loss 3.5132 (3.4246) grad_norm 1.4240 (1.7132/0.7923) mem 16099MB [2025-01-18 02:50:06 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][50/312] eta 0:02:10 lr 0.002916 time 0.4469 (0.4997) model_time 0.4468 (0.4692) loss 3.6542 (3.4134) grad_norm 1.0328 (1.6622/0.7525) mem 16099MB [2025-01-18 02:50:10 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][60/312] eta 0:02:04 lr 0.002915 time 0.4639 (0.4938) model_time 0.4637 (0.4683) loss 3.5025 (3.4426) grad_norm 1.0100 (1.6108/0.7160) mem 16099MB [2025-01-18 02:50:15 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][70/312] eta 0:01:58 lr 0.002915 time 0.4530 (0.4883) model_time 0.4525 (0.4663) loss 3.5265 (3.4946) grad_norm 2.0828 (1.6429/0.7279) mem 16099MB [2025-01-18 02:50:19 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][80/312] eta 0:01:52 lr 0.002914 time 0.4443 (0.4837) model_time 0.4441 (0.4644) loss 2.5207 (3.4641) grad_norm 1.5918 (1.6329/0.6975) mem 16099MB [2025-01-18 02:50:24 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][90/312] eta 0:01:47 lr 0.002914 time 0.5318 (0.4830) model_time 0.5313 (0.4657) loss 4.5056 (3.5104) grad_norm 2.3619 (1.6543/0.7462) mem 16099MB [2025-01-18 02:50:29 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][100/312] eta 0:01:42 lr 0.002913 time 0.4497 (0.4814) model_time 0.4493 (0.4658) loss 4.0217 (3.5126) grad_norm 1.7570 (1.6112/0.7290) mem 16099MB [2025-01-18 02:50:33 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][110/312] eta 0:01:36 lr 0.002912 time 0.4441 (0.4796) model_time 0.4439 (0.4653) loss 3.3534 (3.5000) grad_norm 2.2863 (1.6250/0.7425) mem 16099MB [2025-01-18 02:50:38 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][120/312] eta 0:01:31 lr 0.002912 time 0.4615 (0.4787) model_time 0.4611 (0.4656) loss 2.2228 (3.4708) grad_norm 2.1539 (1.6102/0.7336) mem 16099MB [2025-01-18 02:50:43 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][130/312] eta 0:01:26 lr 0.002911 time 0.4407 (0.4772) model_time 0.4405 (0.4651) loss 4.4382 (3.4565) grad_norm 1.5991 (1.6102/0.7137) mem 16099MB [2025-01-18 02:50:47 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][140/312] eta 0:01:21 lr 0.002911 time 0.4465 (0.4760) model_time 0.4460 (0.4647) loss 2.7002 (3.4434) grad_norm 1.5798 (1.6138/0.7005) mem 16099MB [2025-01-18 02:50:52 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][150/312] eta 0:01:16 lr 0.002910 time 0.4500 (0.4745) model_time 0.4495 (0.4639) loss 4.3155 (3.4492) grad_norm 1.0550 (1.6265/0.7261) mem 16099MB [2025-01-18 02:50:56 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][160/312] eta 0:01:11 lr 0.002909 time 0.4528 (0.4732) model_time 0.4522 (0.4633) loss 3.6784 (3.4467) grad_norm 1.5345 (1.6455/0.7339) mem 16099MB [2025-01-18 02:51:01 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][170/312] eta 0:01:07 lr 0.002909 time 0.4454 (0.4726) model_time 0.4452 (0.4632) loss 4.4883 (3.4406) grad_norm 1.0583 (1.6509/0.7377) mem 16099MB [2025-01-18 02:51:06 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][180/312] eta 0:01:02 lr 0.002908 time 0.4459 (0.4719) model_time 0.4454 (0.4630) loss 3.4978 (3.4604) grad_norm 1.4741 (1.6489/0.7272) mem 16099MB [2025-01-18 02:51:10 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][190/312] eta 0:00:57 lr 0.002908 time 0.4530 (0.4708) model_time 0.4526 (0.4623) loss 3.0328 (3.4562) grad_norm 1.3939 (1.6271/0.7172) mem 16099MB [2025-01-18 02:51:15 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][200/312] eta 0:00:52 lr 0.002907 time 0.4517 (0.4704) model_time 0.4512 (0.4623) loss 3.8493 (3.4435) grad_norm 1.2622 (1.6249/0.7071) mem 16099MB [2025-01-18 02:51:20 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][210/312] eta 0:00:48 lr 0.002906 time 0.5531 (0.4708) model_time 0.5526 (0.4631) loss 4.1510 (3.4416) grad_norm 1.0975 (1.6082/0.6971) mem 16099MB [2025-01-18 02:51:24 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][220/312] eta 0:00:43 lr 0.002906 time 0.4551 (0.4699) model_time 0.4546 (0.4626) loss 3.4688 (3.4321) grad_norm 3.3336 (1.6182/0.7069) mem 16099MB [2025-01-18 02:51:29 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][230/312] eta 0:00:38 lr 0.002905 time 0.4512 (0.4696) model_time 0.4510 (0.4625) loss 3.4209 (3.4263) grad_norm 1.7648 (1.6276/0.6999) mem 16099MB [2025-01-18 02:51:33 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][240/312] eta 0:00:33 lr 0.002905 time 0.4613 (0.4693) model_time 0.4611 (0.4626) loss 3.6914 (3.4191) grad_norm 1.1848 (1.6159/0.6894) mem 16099MB [2025-01-18 02:51:38 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][250/312] eta 0:00:29 lr 0.002904 time 0.4494 (0.4688) model_time 0.4489 (0.4622) loss 3.2773 (3.4305) grad_norm 1.6793 (1.6262/0.6862) mem 16099MB [2025-01-18 02:51:42 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][260/312] eta 0:00:24 lr 0.002903 time 0.4414 (0.4686) model_time 0.4413 (0.4623) loss 4.2342 (3.4257) grad_norm 1.2416 (1.6284/0.6870) mem 16099MB [2025-01-18 02:51:47 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][270/312] eta 0:00:19 lr 0.002903 time 0.4395 (0.4687) model_time 0.4390 (0.4626) loss 3.7209 (3.4355) grad_norm 0.7788 (1.6222/0.6814) mem 16099MB [2025-01-18 02:51:52 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][280/312] eta 0:00:14 lr 0.002902 time 0.4459 (0.4687) model_time 0.4457 (0.4628) loss 3.7004 (3.4343) grad_norm 0.8552 (1.6194/0.6785) mem 16099MB [2025-01-18 02:51:56 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][290/312] eta 0:00:10 lr 0.002902 time 0.4559 (0.4684) model_time 0.4557 (0.4627) loss 4.5287 (3.4474) grad_norm 2.1318 (1.6170/0.6755) mem 16099MB [2025-01-18 02:52:01 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][300/312] eta 0:00:05 lr 0.002901 time 0.4394 (0.4683) model_time 0.4393 (0.4628) loss 4.1726 (3.4562) grad_norm 1.5031 (1.6124/0.6734) mem 16099MB [2025-01-18 02:52:06 internimage_t_1k_224] (main.py 510): INFO Train: [105/300][310/312] eta 0:00:00 lr 0.002900 time 0.4421 (0.4675) model_time 0.4420 (0.4621) loss 2.9024 (3.4425) grad_norm 0.7843 (1.6078/0.6688) mem 16099MB [2025-01-18 02:52:06 internimage_t_1k_224] (main.py 519): INFO EPOCH 105 training takes 0:02:25 [2025-01-18 02:52:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_105.pth saving...... [2025-01-18 02:52:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_105.pth saved !!! [2025-01-18 02:52:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.081 (7.081) Loss 0.9446 (0.9446) Acc@1 80.444 (80.444) Acc@5 96.045 (96.045) Mem 16099MB [2025-01-18 02:52:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.972) Loss 1.2446 (1.0675) Acc@1 72.583 (77.293) Acc@5 92.114 (94.189) Mem 16099MB [2025-01-18 02:52:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:105] * Acc@1 77.261 Acc@5 94.248 [2025-01-18 02:52:18 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.3% [2025-01-18 02:52:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:52:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:52:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.26% [2025-01-18 02:52:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.410 (7.410) Loss 0.8916 (0.8916) Acc@1 80.444 (80.444) Acc@5 96.045 (96.045) Mem 16099MB [2025-01-18 02:52:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.023) Loss 1.2940 (1.0591) Acc@1 71.216 (77.144) Acc@5 90.991 (93.786) Mem 16099MB [2025-01-18 02:52:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:105] * Acc@1 77.069 Acc@5 93.824 [2025-01-18 02:52:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.1% [2025-01-18 02:52:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:52:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:52:32 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.07% [2025-01-18 02:52:34 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][0/312] eta 0:11:40 lr 0.002900 time 2.2443 (2.2443) model_time 0.4580 (0.4580) loss 2.7516 (2.7516) grad_norm 0.9484 (0.9484/0.0000) mem 16099MB [2025-01-18 02:52:39 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][10/312] eta 0:03:11 lr 0.002900 time 0.4542 (0.6356) model_time 0.4540 (0.4729) loss 3.1587 (3.4577) grad_norm 1.8040 (1.3406/0.2972) mem 16099MB [2025-01-18 02:52:44 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][20/312] eta 0:02:44 lr 0.002899 time 0.4468 (0.5628) model_time 0.4466 (0.4773) loss 3.3520 (3.4998) grad_norm 1.2714 (1.4078/0.4283) mem 16099MB [2025-01-18 02:52:49 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][30/312] eta 0:02:30 lr 0.002899 time 0.4477 (0.5325) model_time 0.4472 (0.4745) loss 3.1234 (3.4684) grad_norm 2.7581 (1.5611/0.6236) mem 16099MB [2025-01-18 02:52:53 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][40/312] eta 0:02:20 lr 0.002898 time 0.4460 (0.5181) model_time 0.4457 (0.4742) loss 4.0856 (3.5443) grad_norm 1.2220 (1.5850/0.6241) mem 16099MB [2025-01-18 02:52:58 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][50/312] eta 0:02:12 lr 0.002897 time 0.4601 (0.5058) model_time 0.4599 (0.4704) loss 3.6639 (3.5185) grad_norm 1.0266 (1.6432/0.6940) mem 16099MB [2025-01-18 02:53:03 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][60/312] eta 0:02:05 lr 0.002897 time 0.4540 (0.4992) model_time 0.4538 (0.4696) loss 3.2819 (3.4841) grad_norm 1.4203 (1.5766/0.6766) mem 16099MB [2025-01-18 02:53:07 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][70/312] eta 0:01:59 lr 0.002896 time 0.4415 (0.4942) model_time 0.4410 (0.4687) loss 2.2571 (3.4094) grad_norm 1.9063 (1.5204/0.6515) mem 16099MB [2025-01-18 02:53:12 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][80/312] eta 0:01:53 lr 0.002896 time 0.4529 (0.4895) model_time 0.4527 (0.4671) loss 3.7257 (3.3797) grad_norm 1.3469 (1.4992/0.6192) mem 16099MB [2025-01-18 02:53:16 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][90/312] eta 0:01:48 lr 0.002895 time 0.4537 (0.4869) model_time 0.4533 (0.4669) loss 3.5954 (3.3975) grad_norm 2.2394 (1.4851/0.6101) mem 16099MB [2025-01-18 02:53:21 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][100/312] eta 0:01:42 lr 0.002894 time 0.4595 (0.4838) model_time 0.4593 (0.4658) loss 2.5267 (3.4026) grad_norm 2.2484 (1.5238/0.6425) mem 16099MB [2025-01-18 02:53:26 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][110/312] eta 0:01:37 lr 0.002894 time 0.4441 (0.4811) model_time 0.4436 (0.4647) loss 4.0996 (3.3983) grad_norm 2.8660 (1.5750/0.6755) mem 16099MB [2025-01-18 02:53:30 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][120/312] eta 0:01:32 lr 0.002893 time 0.4515 (0.4796) model_time 0.4513 (0.4645) loss 3.6204 (3.4053) grad_norm 1.5284 (1.6283/0.7556) mem 16099MB [2025-01-18 02:53:35 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][130/312] eta 0:01:27 lr 0.002893 time 0.4350 (0.4795) model_time 0.4345 (0.4655) loss 3.2306 (3.4007) grad_norm 1.4599 (1.5937/0.7419) mem 16099MB [2025-01-18 02:53:40 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][140/312] eta 0:01:22 lr 0.002892 time 0.4485 (0.4782) model_time 0.4480 (0.4652) loss 2.9440 (3.3889) grad_norm 1.8916 (1.5813/0.7284) mem 16099MB [2025-01-18 02:53:44 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][150/312] eta 0:01:17 lr 0.002891 time 0.5167 (0.4778) model_time 0.5165 (0.4656) loss 2.8079 (3.3713) grad_norm 2.8795 (1.5902/0.7306) mem 16099MB [2025-01-18 02:53:49 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][160/312] eta 0:01:12 lr 0.002891 time 0.4461 (0.4781) model_time 0.4456 (0.4666) loss 3.3592 (3.3764) grad_norm 0.8408 (1.5668/0.7284) mem 16099MB [2025-01-18 02:53:54 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][170/312] eta 0:01:07 lr 0.002890 time 0.4582 (0.4768) model_time 0.4580 (0.4660) loss 4.0226 (3.3999) grad_norm 1.6561 (1.5466/0.7152) mem 16099MB [2025-01-18 02:53:58 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][180/312] eta 0:01:02 lr 0.002890 time 0.4705 (0.4769) model_time 0.4700 (0.4667) loss 3.6243 (3.3906) grad_norm 2.1149 (1.5564/0.6998) mem 16099MB [2025-01-18 02:54:03 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][190/312] eta 0:00:58 lr 0.002889 time 0.4452 (0.4758) model_time 0.4450 (0.4661) loss 3.7812 (3.3960) grad_norm 3.4741 (1.5572/0.7006) mem 16099MB [2025-01-18 02:54:08 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][200/312] eta 0:00:53 lr 0.002888 time 0.4536 (0.4751) model_time 0.4530 (0.4659) loss 3.1323 (3.3996) grad_norm 1.6784 (1.5699/0.6994) mem 16099MB [2025-01-18 02:54:12 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][210/312] eta 0:00:48 lr 0.002888 time 0.4377 (0.4741) model_time 0.4374 (0.4653) loss 4.1887 (3.3996) grad_norm 1.2490 (1.5973/0.7218) mem 16099MB [2025-01-18 02:54:17 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][220/312] eta 0:00:43 lr 0.002887 time 0.4659 (0.4733) model_time 0.4657 (0.4649) loss 3.0941 (3.4057) grad_norm 0.8545 (1.6039/0.7333) mem 16099MB [2025-01-18 02:54:22 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][230/312] eta 0:00:38 lr 0.002887 time 0.5848 (0.4738) model_time 0.5846 (0.4657) loss 3.5314 (3.4138) grad_norm 1.0625 (1.5904/0.7269) mem 16099MB [2025-01-18 02:54:26 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][240/312] eta 0:00:34 lr 0.002886 time 0.4521 (0.4729) model_time 0.4518 (0.4651) loss 3.4457 (3.4134) grad_norm 0.8218 (1.5780/0.7213) mem 16099MB [2025-01-18 02:54:31 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][250/312] eta 0:00:29 lr 0.002885 time 0.4590 (0.4727) model_time 0.4589 (0.4652) loss 3.6618 (3.4241) grad_norm 1.0630 (1.5620/0.7123) mem 16099MB [2025-01-18 02:54:36 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][260/312] eta 0:00:24 lr 0.002885 time 0.4534 (0.4732) model_time 0.4532 (0.4660) loss 2.8094 (3.4295) grad_norm 1.2348 (1.5492/0.7034) mem 16099MB [2025-01-18 02:54:40 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][270/312] eta 0:00:19 lr 0.002884 time 0.4405 (0.4726) model_time 0.4401 (0.4656) loss 3.0491 (3.4271) grad_norm 3.3577 (1.5662/0.7071) mem 16099MB [2025-01-18 02:54:45 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][280/312] eta 0:00:15 lr 0.002884 time 0.4487 (0.4724) model_time 0.4485 (0.4657) loss 3.7270 (3.4326) grad_norm 0.8658 (1.5562/0.7032) mem 16099MB [2025-01-18 02:54:50 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][290/312] eta 0:00:10 lr 0.002883 time 0.4638 (0.4720) model_time 0.4636 (0.4655) loss 4.0893 (3.4277) grad_norm 1.2974 (1.5424/0.6956) mem 16099MB [2025-01-18 02:54:54 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][300/312] eta 0:00:05 lr 0.002882 time 0.4381 (0.4712) model_time 0.4380 (0.4649) loss 2.8220 (3.4171) grad_norm 2.3745 (1.5828/0.7576) mem 16099MB [2025-01-18 02:54:58 internimage_t_1k_224] (main.py 510): INFO Train: [106/300][310/312] eta 0:00:00 lr 0.002882 time 0.4383 (0.4702) model_time 0.4382 (0.4641) loss 3.1946 (3.4229) grad_norm 2.5022 (1.5985/0.7641) mem 16099MB [2025-01-18 02:54:59 internimage_t_1k_224] (main.py 519): INFO EPOCH 106 training takes 0:02:26 [2025-01-18 02:54:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_106.pth saving...... [2025-01-18 02:55:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_106.pth saved !!! [2025-01-18 02:55:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.335 (7.335) Loss 0.9021 (0.9021) Acc@1 80.225 (80.225) Acc@5 95.068 (95.068) Mem 16099MB [2025-01-18 02:55:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (0.977) Loss 1.2085 (1.0116) Acc@1 72.168 (77.561) Acc@5 91.846 (94.045) Mem 16099MB [2025-01-18 02:55:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:106] * Acc@1 77.457 Acc@5 94.036 [2025-01-18 02:55:11 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.5% [2025-01-18 02:55:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:55:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:55:12 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.46% [2025-01-18 02:55:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.423 (7.423) Loss 0.8860 (0.8860) Acc@1 80.688 (80.688) Acc@5 96.094 (96.094) Mem 16099MB [2025-01-18 02:55:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.994) Loss 1.2859 (1.0524) Acc@1 71.289 (77.273) Acc@5 91.113 (93.874) Mem 16099MB [2025-01-18 02:55:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:106] * Acc@1 77.195 Acc@5 93.912 [2025-01-18 02:55:23 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.2% [2025-01-18 02:55:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:55:24 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:55:24 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.20% [2025-01-18 02:55:27 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][0/312] eta 0:13:16 lr 0.002882 time 2.5518 (2.5518) model_time 0.4586 (0.4586) loss 3.4193 (3.4193) grad_norm 2.9219 (2.9219/0.0000) mem 16099MB [2025-01-18 02:55:32 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][10/312] eta 0:03:25 lr 0.002881 time 0.5770 (0.6797) model_time 0.5766 (0.4891) loss 2.8110 (3.3493) grad_norm 1.0820 (1.8321/1.0290) mem 16099MB [2025-01-18 02:55:37 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][20/312] eta 0:02:47 lr 0.002881 time 0.4537 (0.5748) model_time 0.4535 (0.4746) loss 2.7631 (3.2987) grad_norm 0.6932 (1.4488/0.8566) mem 16099MB [2025-01-18 02:55:41 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][30/312] eta 0:02:31 lr 0.002880 time 0.5386 (0.5382) model_time 0.5385 (0.4702) loss 2.3382 (3.1793) grad_norm 2.3219 (1.4096/0.7535) mem 16099MB [2025-01-18 02:55:46 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][40/312] eta 0:02:21 lr 0.002879 time 0.4547 (0.5184) model_time 0.4542 (0.4669) loss 3.0812 (3.2082) grad_norm 3.2120 (1.4721/0.7239) mem 16099MB [2025-01-18 02:55:50 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][50/312] eta 0:02:13 lr 0.002879 time 0.4518 (0.5091) model_time 0.4516 (0.4676) loss 3.1262 (3.2415) grad_norm 0.7707 (1.4705/0.7256) mem 16099MB [2025-01-18 02:55:55 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][60/312] eta 0:02:06 lr 0.002878 time 0.4526 (0.5008) model_time 0.4525 (0.4661) loss 3.5844 (3.2672) grad_norm 1.4744 (1.5298/0.7058) mem 16099MB [2025-01-18 02:56:00 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][70/312] eta 0:01:59 lr 0.002878 time 0.4434 (0.4938) model_time 0.4433 (0.4639) loss 4.1450 (3.2721) grad_norm 1.2731 (1.5347/0.6855) mem 16099MB [2025-01-18 02:56:04 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][80/312] eta 0:01:53 lr 0.002877 time 0.4533 (0.4892) model_time 0.4528 (0.4629) loss 4.2088 (3.2945) grad_norm 4.1193 (1.6454/0.8180) mem 16099MB [2025-01-18 02:56:09 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][90/312] eta 0:01:48 lr 0.002876 time 0.5879 (0.4881) model_time 0.5877 (0.4647) loss 4.1396 (3.3526) grad_norm 1.0276 (1.6397/0.8050) mem 16099MB [2025-01-18 02:56:13 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][100/312] eta 0:01:42 lr 0.002876 time 0.4477 (0.4849) model_time 0.4473 (0.4638) loss 3.7080 (3.3921) grad_norm 0.9847 (1.6035/0.7755) mem 16099MB [2025-01-18 02:56:18 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][110/312] eta 0:01:37 lr 0.002875 time 0.4529 (0.4828) model_time 0.4525 (0.4635) loss 3.6585 (3.3720) grad_norm 0.9083 (1.5714/0.7586) mem 16099MB [2025-01-18 02:56:23 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][120/312] eta 0:01:32 lr 0.002875 time 0.4451 (0.4836) model_time 0.4447 (0.4659) loss 3.7728 (3.3913) grad_norm 2.5596 (1.5564/0.7404) mem 16099MB [2025-01-18 02:56:28 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][130/312] eta 0:01:27 lr 0.002874 time 0.4523 (0.4824) model_time 0.4521 (0.4661) loss 3.5347 (3.4007) grad_norm 0.8141 (1.5509/0.7278) mem 16099MB [2025-01-18 02:56:33 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][140/312] eta 0:01:23 lr 0.002873 time 0.4532 (0.4826) model_time 0.4527 (0.4674) loss 3.5821 (3.4004) grad_norm 1.6781 (1.5560/0.7177) mem 16099MB [2025-01-18 02:56:37 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][150/312] eta 0:01:18 lr 0.002873 time 0.4533 (0.4820) model_time 0.4529 (0.4677) loss 3.6165 (3.4077) grad_norm 1.4438 (1.5564/0.7126) mem 16099MB [2025-01-18 02:56:42 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][160/312] eta 0:01:13 lr 0.002872 time 0.4469 (0.4807) model_time 0.4464 (0.4673) loss 3.7617 (3.4104) grad_norm 0.9444 (1.5768/0.7602) mem 16099MB [2025-01-18 02:56:46 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][170/312] eta 0:01:08 lr 0.002872 time 0.4554 (0.4792) model_time 0.4553 (0.4666) loss 3.4197 (3.4032) grad_norm 1.5364 (1.5741/0.7525) mem 16099MB [2025-01-18 02:56:51 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][180/312] eta 0:01:03 lr 0.002871 time 0.4521 (0.4780) model_time 0.4520 (0.4660) loss 3.3425 (3.4154) grad_norm 0.8112 (1.5775/0.7410) mem 16099MB [2025-01-18 02:56:56 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][190/312] eta 0:00:58 lr 0.002870 time 0.4415 (0.4769) model_time 0.4413 (0.4656) loss 3.3978 (3.4183) grad_norm 3.3318 (1.5994/0.7603) mem 16099MB [2025-01-18 02:57:00 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][200/312] eta 0:00:53 lr 0.002870 time 0.4506 (0.4756) model_time 0.4501 (0.4648) loss 3.2387 (3.4169) grad_norm 1.0207 (1.6163/0.7691) mem 16099MB [2025-01-18 02:57:05 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][210/312] eta 0:00:48 lr 0.002869 time 0.4846 (0.4752) model_time 0.4844 (0.4649) loss 3.2715 (3.4225) grad_norm 2.0873 (1.6260/0.7584) mem 16099MB [2025-01-18 02:57:09 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][220/312] eta 0:00:43 lr 0.002869 time 0.4411 (0.4740) model_time 0.4409 (0.4641) loss 2.2664 (3.4217) grad_norm 2.2170 (1.6113/0.7497) mem 16099MB [2025-01-18 02:57:14 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][230/312] eta 0:00:38 lr 0.002868 time 0.4517 (0.4731) model_time 0.4513 (0.4637) loss 3.5110 (3.4338) grad_norm 1.1866 (1.6014/0.7389) mem 16099MB [2025-01-18 02:57:18 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][240/312] eta 0:00:34 lr 0.002867 time 0.4464 (0.4727) model_time 0.4462 (0.4636) loss 3.8168 (3.4332) grad_norm 0.9835 (1.6053/0.7375) mem 16099MB [2025-01-18 02:57:23 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][250/312] eta 0:00:29 lr 0.002867 time 0.4503 (0.4722) model_time 0.4499 (0.4635) loss 2.7769 (3.4342) grad_norm 2.1764 (1.6056/0.7319) mem 16099MB [2025-01-18 02:57:28 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][260/312] eta 0:00:24 lr 0.002866 time 0.4533 (0.4718) model_time 0.4532 (0.4634) loss 2.5313 (3.4168) grad_norm 0.8214 (1.6121/0.7357) mem 16099MB [2025-01-18 02:57:32 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][270/312] eta 0:00:19 lr 0.002866 time 0.4487 (0.4716) model_time 0.4483 (0.4634) loss 2.9078 (3.4139) grad_norm 1.1575 (1.5990/0.7301) mem 16099MB [2025-01-18 02:57:37 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][280/312] eta 0:00:15 lr 0.002865 time 0.4453 (0.4710) model_time 0.4450 (0.4632) loss 3.1885 (3.4168) grad_norm 1.1559 (1.5893/0.7212) mem 16099MB [2025-01-18 02:57:41 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][290/312] eta 0:00:10 lr 0.002864 time 0.4539 (0.4708) model_time 0.4537 (0.4632) loss 3.3896 (3.4155) grad_norm 1.1600 (1.5929/0.7173) mem 16099MB [2025-01-18 02:57:46 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][300/312] eta 0:00:05 lr 0.002864 time 0.4376 (0.4705) model_time 0.4375 (0.4632) loss 2.3275 (3.4093) grad_norm 1.0619 (1.5855/0.7073) mem 16099MB [2025-01-18 02:57:51 internimage_t_1k_224] (main.py 510): INFO Train: [107/300][310/312] eta 0:00:00 lr 0.002863 time 0.5638 (0.4703) model_time 0.5637 (0.4632) loss 3.6071 (3.4067) grad_norm 2.9313 (1.5820/0.6945) mem 16099MB [2025-01-18 02:57:51 internimage_t_1k_224] (main.py 519): INFO EPOCH 107 training takes 0:02:26 [2025-01-18 02:57:51 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_107.pth saving...... [2025-01-18 02:57:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_107.pth saved !!! [2025-01-18 02:58:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.175 (7.175) Loss 0.8380 (0.8380) Acc@1 80.859 (80.859) Acc@5 95.972 (95.972) Mem 16099MB [2025-01-18 02:58:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (0.966) Loss 1.1957 (1.0112) Acc@1 73.560 (77.657) Acc@5 91.943 (94.010) Mem 16099MB [2025-01-18 02:58:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:107] * Acc@1 77.591 Acc@5 94.030 [2025-01-18 02:58:03 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.6% [2025-01-18 02:58:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 02:58:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 02:58:04 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.59% [2025-01-18 02:58:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.373 (7.373) Loss 0.8806 (0.8806) Acc@1 80.835 (80.835) Acc@5 96.191 (96.191) Mem 16099MB [2025-01-18 02:58:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.996) Loss 1.2782 (1.0461) Acc@1 71.533 (77.424) Acc@5 91.235 (93.987) Mem 16099MB [2025-01-18 02:58:15 internimage_t_1k_224] (main.py 575): INFO [Epoch:107] * Acc@1 77.339 Acc@5 94.014 [2025-01-18 02:58:15 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.3% [2025-01-18 02:58:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 02:58:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 02:58:17 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.34% [2025-01-18 02:58:19 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][0/312] eta 0:11:58 lr 0.002863 time 2.3030 (2.3030) model_time 0.4614 (0.4614) loss 3.5583 (3.5583) grad_norm 1.9661 (1.9661/0.0000) mem 16099MB [2025-01-18 02:58:24 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][10/312] eta 0:03:10 lr 0.002862 time 0.4395 (0.6313) model_time 0.4392 (0.4635) loss 3.7109 (3.3349) grad_norm 0.7812 (1.8303/0.7288) mem 16099MB [2025-01-18 02:58:28 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][20/312] eta 0:02:41 lr 0.002862 time 0.4560 (0.5523) model_time 0.4559 (0.4642) loss 2.9959 (3.3203) grad_norm 1.2318 (1.8984/0.8484) mem 16099MB [2025-01-18 02:58:33 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][30/312] eta 0:02:27 lr 0.002861 time 0.4632 (0.5234) model_time 0.4627 (0.4636) loss 3.4947 (3.1968) grad_norm 1.4502 (1.7013/0.7693) mem 16099MB [2025-01-18 02:58:37 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][40/312] eta 0:02:17 lr 0.002861 time 0.4531 (0.5064) model_time 0.4527 (0.4612) loss 3.4973 (3.2397) grad_norm 1.1040 (1.5547/0.7278) mem 16099MB [2025-01-18 02:58:42 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][50/312] eta 0:02:11 lr 0.002860 time 0.5196 (0.5013) model_time 0.5195 (0.4649) loss 3.4260 (3.3478) grad_norm 1.8762 (1.6210/0.7451) mem 16099MB [2025-01-18 02:58:47 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][60/312] eta 0:02:04 lr 0.002859 time 0.4555 (0.4948) model_time 0.4553 (0.4642) loss 3.2014 (3.3133) grad_norm 1.7101 (1.6275/0.6880) mem 16099MB [2025-01-18 02:58:51 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][70/312] eta 0:01:58 lr 0.002859 time 0.4510 (0.4902) model_time 0.4505 (0.4639) loss 2.5343 (3.3014) grad_norm 1.6655 (1.6408/0.6689) mem 16099MB [2025-01-18 02:58:56 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][80/312] eta 0:01:52 lr 0.002858 time 0.4550 (0.4856) model_time 0.4548 (0.4625) loss 3.3980 (3.3146) grad_norm 1.3872 (1.6999/0.7220) mem 16099MB [2025-01-18 02:59:01 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][90/312] eta 0:01:48 lr 0.002858 time 0.4566 (0.4872) model_time 0.4564 (0.4666) loss 3.7282 (3.2899) grad_norm 2.4134 (1.7511/0.8399) mem 16099MB [2025-01-18 02:59:06 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][100/312] eta 0:01:42 lr 0.002857 time 0.4528 (0.4854) model_time 0.4527 (0.4668) loss 3.8946 (3.2806) grad_norm 1.8178 (1.7157/0.8126) mem 16099MB [2025-01-18 02:59:10 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][110/312] eta 0:01:37 lr 0.002856 time 0.4519 (0.4825) model_time 0.4515 (0.4655) loss 3.8078 (3.3207) grad_norm 1.4534 (1.6793/0.7931) mem 16099MB [2025-01-18 02:59:15 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][120/312] eta 0:01:32 lr 0.002856 time 0.4526 (0.4826) model_time 0.4522 (0.4670) loss 3.4658 (3.3252) grad_norm 0.8933 (1.6534/0.7712) mem 16099MB [2025-01-18 02:59:20 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][130/312] eta 0:01:27 lr 0.002855 time 0.4786 (0.4808) model_time 0.4781 (0.4663) loss 3.7521 (3.3259) grad_norm 1.8028 (1.6518/0.7593) mem 16099MB [2025-01-18 02:59:24 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][140/312] eta 0:01:22 lr 0.002855 time 0.4421 (0.4793) model_time 0.4419 (0.4659) loss 3.9195 (3.3346) grad_norm 1.3270 (1.6770/0.7646) mem 16099MB [2025-01-18 02:59:29 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][150/312] eta 0:01:17 lr 0.002854 time 0.4440 (0.4781) model_time 0.4438 (0.4655) loss 3.7086 (3.3425) grad_norm 1.2522 (1.6813/0.7621) mem 16099MB [2025-01-18 02:59:34 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][160/312] eta 0:01:12 lr 0.002853 time 0.5215 (0.4777) model_time 0.5213 (0.4659) loss 3.3771 (3.3497) grad_norm 1.6603 (1.7304/0.7951) mem 16099MB [2025-01-18 02:59:38 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][170/312] eta 0:01:07 lr 0.002853 time 0.4429 (0.4771) model_time 0.4427 (0.4660) loss 3.3308 (3.3709) grad_norm 2.9349 (1.7202/0.7902) mem 16099MB [2025-01-18 02:59:43 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][180/312] eta 0:01:02 lr 0.002852 time 0.4448 (0.4757) model_time 0.4446 (0.4652) loss 3.4907 (3.3817) grad_norm 2.0964 (1.7093/0.7778) mem 16099MB [2025-01-18 02:59:47 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][190/312] eta 0:00:57 lr 0.002852 time 0.4541 (0.4748) model_time 0.4537 (0.4648) loss 3.7667 (3.3797) grad_norm 1.2597 (1.6863/0.7692) mem 16099MB [2025-01-18 02:59:52 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][200/312] eta 0:00:53 lr 0.002851 time 0.5354 (0.4745) model_time 0.5350 (0.4650) loss 3.9124 (3.3922) grad_norm 0.9322 (1.6606/0.7613) mem 16099MB [2025-01-18 02:59:57 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][210/312] eta 0:00:48 lr 0.002850 time 0.4448 (0.4738) model_time 0.4444 (0.4647) loss 2.2614 (3.3824) grad_norm 2.0393 (1.6912/0.8210) mem 16099MB [2025-01-18 03:00:01 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][220/312] eta 0:00:43 lr 0.002850 time 0.4588 (0.4733) model_time 0.4586 (0.4646) loss 3.2079 (3.3712) grad_norm 1.8993 (1.6911/0.8131) mem 16099MB [2025-01-18 03:00:06 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][230/312] eta 0:00:38 lr 0.002849 time 0.4513 (0.4727) model_time 0.4509 (0.4643) loss 3.9816 (3.3704) grad_norm 2.1070 (1.6922/0.8042) mem 16099MB [2025-01-18 03:00:10 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][240/312] eta 0:00:34 lr 0.002849 time 0.4426 (0.4723) model_time 0.4422 (0.4642) loss 2.9654 (3.3753) grad_norm 1.2509 (1.6761/0.7948) mem 16099MB [2025-01-18 03:00:15 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][250/312] eta 0:00:29 lr 0.002848 time 0.4566 (0.4721) model_time 0.4564 (0.4644) loss 3.7144 (3.3654) grad_norm 1.2031 (1.6830/0.7920) mem 16099MB [2025-01-18 03:00:20 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][260/312] eta 0:00:24 lr 0.002847 time 0.4475 (0.4718) model_time 0.4471 (0.4644) loss 2.4736 (3.3491) grad_norm 2.4978 (1.6766/0.7903) mem 16099MB [2025-01-18 03:00:24 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][270/312] eta 0:00:19 lr 0.002847 time 0.4560 (0.4716) model_time 0.4558 (0.4644) loss 2.7256 (3.3567) grad_norm 1.2751 (1.6778/0.7827) mem 16099MB [2025-01-18 03:00:29 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][280/312] eta 0:00:15 lr 0.002846 time 0.4598 (0.4710) model_time 0.4593 (0.4641) loss 3.9820 (3.3631) grad_norm 1.6020 (1.6805/0.7749) mem 16099MB [2025-01-18 03:00:34 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][290/312] eta 0:00:10 lr 0.002846 time 0.4415 (0.4721) model_time 0.4411 (0.4653) loss 3.2281 (3.3580) grad_norm 1.5276 (1.6663/0.7692) mem 16099MB [2025-01-18 03:00:38 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][300/312] eta 0:00:05 lr 0.002845 time 0.4375 (0.4714) model_time 0.4374 (0.4649) loss 2.5292 (3.3558) grad_norm 3.9998 (1.6627/0.7743) mem 16099MB [2025-01-18 03:00:43 internimage_t_1k_224] (main.py 510): INFO Train: [108/300][310/312] eta 0:00:00 lr 0.002844 time 0.4379 (0.4705) model_time 0.4378 (0.4642) loss 3.3760 (3.3642) grad_norm 0.9714 (1.6526/0.7690) mem 16099MB [2025-01-18 03:00:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 108 training takes 0:02:26 [2025-01-18 03:00:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_108.pth saving...... [2025-01-18 03:00:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_108.pth saved !!! [2025-01-18 03:00:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.351 (7.351) Loss 0.9207 (0.9207) Acc@1 80.688 (80.688) Acc@5 95.825 (95.825) Mem 16099MB [2025-01-18 03:00:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.979) Loss 1.3620 (1.0933) Acc@1 70.459 (76.924) Acc@5 90.894 (93.859) Mem 16099MB [2025-01-18 03:00:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:108] * Acc@1 76.869 Acc@5 93.918 [2025-01-18 03:00:56 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 76.9% [2025-01-18 03:00:56 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.59% [2025-01-18 03:01:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.116 (8.116) Loss 0.8757 (0.8757) Acc@1 80.957 (80.957) Acc@5 96.167 (96.167) Mem 16099MB [2025-01-18 03:01:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.099) Loss 1.2704 (1.0401) Acc@1 71.680 (77.570) Acc@5 91.455 (94.036) Mem 16099MB [2025-01-18 03:01:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:108] * Acc@1 77.471 Acc@5 94.068 [2025-01-18 03:01:08 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.5% [2025-01-18 03:01:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:01:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:01:09 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.47% [2025-01-18 03:01:11 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][0/312] eta 0:11:11 lr 0.002844 time 2.1537 (2.1537) model_time 0.4835 (0.4835) loss 2.8867 (2.8867) grad_norm 2.1661 (2.1661/0.0000) mem 16099MB [2025-01-18 03:01:16 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][10/312] eta 0:03:06 lr 0.002844 time 0.4472 (0.6191) model_time 0.4471 (0.4670) loss 3.0656 (3.2691) grad_norm 1.6739 (1.8482/0.5578) mem 16099MB [2025-01-18 03:01:20 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][20/312] eta 0:02:37 lr 0.002843 time 0.4499 (0.5402) model_time 0.4495 (0.4604) loss 2.5737 (3.3096) grad_norm 2.0975 (1.6211/0.5324) mem 16099MB [2025-01-18 03:01:25 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][30/312] eta 0:02:28 lr 0.002842 time 0.4832 (0.5255) model_time 0.4830 (0.4713) loss 2.6395 (3.3524) grad_norm 1.3849 (1.4586/0.5252) mem 16099MB [2025-01-18 03:01:30 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][40/312] eta 0:02:18 lr 0.002842 time 0.4754 (0.5096) model_time 0.4749 (0.4686) loss 3.5735 (3.3572) grad_norm 0.7776 (1.4138/0.4896) mem 16099MB [2025-01-18 03:01:35 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][50/312] eta 0:02:10 lr 0.002841 time 0.4690 (0.4999) model_time 0.4686 (0.4669) loss 4.2143 (3.3661) grad_norm 2.3991 (1.4334/0.5095) mem 16099MB [2025-01-18 03:01:39 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][60/312] eta 0:02:04 lr 0.002841 time 0.4586 (0.4934) model_time 0.4585 (0.4657) loss 3.0550 (3.3791) grad_norm 1.6564 (1.4605/0.5154) mem 16099MB [2025-01-18 03:01:44 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][70/312] eta 0:01:57 lr 0.002840 time 0.4592 (0.4876) model_time 0.4591 (0.4637) loss 3.3360 (3.3863) grad_norm 1.2818 (1.4263/0.5061) mem 16099MB [2025-01-18 03:01:48 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][80/312] eta 0:01:52 lr 0.002839 time 0.5337 (0.4850) model_time 0.5336 (0.4641) loss 3.9232 (3.3577) grad_norm 2.2382 (1.4423/0.5220) mem 16099MB [2025-01-18 03:01:53 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][90/312] eta 0:01:46 lr 0.002839 time 0.4512 (0.4816) model_time 0.4511 (0.4630) loss 4.2777 (3.3866) grad_norm 3.8930 (1.5022/0.5931) mem 16099MB [2025-01-18 03:01:57 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][100/312] eta 0:01:41 lr 0.002838 time 0.4642 (0.4790) model_time 0.4641 (0.4622) loss 3.0863 (3.3597) grad_norm 1.3914 (1.5028/0.5784) mem 16099MB [2025-01-18 03:02:02 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][110/312] eta 0:01:36 lr 0.002838 time 0.4518 (0.4781) model_time 0.4516 (0.4628) loss 3.5777 (3.3623) grad_norm 1.4649 (1.5254/0.6271) mem 16099MB [2025-01-18 03:02:07 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][120/312] eta 0:01:31 lr 0.002837 time 0.4523 (0.4760) model_time 0.4521 (0.4619) loss 3.0329 (3.3593) grad_norm 1.0953 (1.4860/0.6175) mem 16099MB [2025-01-18 03:02:11 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][130/312] eta 0:01:26 lr 0.002836 time 0.4454 (0.4750) model_time 0.4453 (0.4619) loss 3.5258 (3.3729) grad_norm 0.9677 (1.4595/0.6139) mem 16099MB [2025-01-18 03:02:16 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][140/312] eta 0:01:21 lr 0.002836 time 0.4513 (0.4733) model_time 0.4511 (0.4611) loss 2.8987 (3.3600) grad_norm 3.2911 (1.5455/0.7744) mem 16099MB [2025-01-18 03:02:21 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][150/312] eta 0:01:16 lr 0.002835 time 0.4536 (0.4737) model_time 0.4532 (0.4623) loss 4.0861 (3.3731) grad_norm 1.5671 (1.5399/0.7534) mem 16099MB [2025-01-18 03:02:25 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][160/312] eta 0:01:12 lr 0.002835 time 0.5310 (0.4748) model_time 0.5309 (0.4641) loss 2.0484 (3.3691) grad_norm 0.7867 (1.5391/0.7392) mem 16099MB [2025-01-18 03:02:30 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][170/312] eta 0:01:07 lr 0.002834 time 0.4486 (0.4744) model_time 0.4484 (0.4643) loss 3.4179 (3.3580) grad_norm 0.9562 (1.5243/0.7240) mem 16099MB [2025-01-18 03:02:35 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][180/312] eta 0:01:02 lr 0.002833 time 0.4442 (0.4736) model_time 0.4441 (0.4640) loss 3.4542 (3.3795) grad_norm 1.3820 (1.5287/0.7127) mem 16099MB [2025-01-18 03:02:39 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][190/312] eta 0:00:57 lr 0.002833 time 0.4474 (0.4727) model_time 0.4473 (0.4636) loss 2.3453 (3.3599) grad_norm 1.3728 (1.5131/0.7024) mem 16099MB [2025-01-18 03:02:44 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][200/312] eta 0:00:52 lr 0.002832 time 0.4524 (0.4720) model_time 0.4520 (0.4634) loss 3.9426 (3.3572) grad_norm 1.7818 (1.5108/0.6902) mem 16099MB [2025-01-18 03:02:48 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][210/312] eta 0:00:48 lr 0.002832 time 0.4387 (0.4713) model_time 0.4386 (0.4630) loss 3.5633 (3.3533) grad_norm 1.5966 (1.5119/0.6848) mem 16099MB [2025-01-18 03:02:53 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][220/312] eta 0:00:43 lr 0.002831 time 0.4585 (0.4704) model_time 0.4583 (0.4625) loss 3.3230 (3.3311) grad_norm 1.6673 (1.5158/0.6741) mem 16099MB [2025-01-18 03:02:58 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][230/312] eta 0:00:38 lr 0.002830 time 0.4513 (0.4699) model_time 0.4511 (0.4624) loss 3.4752 (3.3432) grad_norm 2.5156 (1.5284/0.6761) mem 16099MB [2025-01-18 03:03:02 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][240/312] eta 0:00:33 lr 0.002830 time 0.4541 (0.4691) model_time 0.4539 (0.4619) loss 3.6319 (3.3394) grad_norm 1.1918 (1.5184/0.6660) mem 16099MB [2025-01-18 03:03:07 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][250/312] eta 0:00:29 lr 0.002829 time 0.4439 (0.4700) model_time 0.4438 (0.4630) loss 3.1559 (3.3354) grad_norm 2.3774 (1.5287/0.6725) mem 16099MB [2025-01-18 03:03:12 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][260/312] eta 0:00:24 lr 0.002828 time 0.5382 (0.4701) model_time 0.5380 (0.4634) loss 4.3194 (3.3370) grad_norm 4.2548 (1.5453/0.6934) mem 16099MB [2025-01-18 03:03:16 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][270/312] eta 0:00:19 lr 0.002828 time 0.4564 (0.4699) model_time 0.4562 (0.4635) loss 3.4631 (3.3420) grad_norm 3.0533 (1.5769/0.7107) mem 16099MB [2025-01-18 03:03:21 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][280/312] eta 0:00:15 lr 0.002827 time 0.4461 (0.4698) model_time 0.4457 (0.4636) loss 3.7936 (3.3475) grad_norm 1.5183 (1.5712/0.7049) mem 16099MB [2025-01-18 03:03:26 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][290/312] eta 0:00:10 lr 0.002827 time 0.4546 (0.4695) model_time 0.4544 (0.4634) loss 3.3231 (3.3473) grad_norm 3.4747 (1.5764/0.7138) mem 16099MB [2025-01-18 03:03:30 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][300/312] eta 0:00:05 lr 0.002826 time 0.4415 (0.4688) model_time 0.4414 (0.4629) loss 2.3741 (3.3526) grad_norm 0.9412 (1.5724/0.7218) mem 16099MB [2025-01-18 03:03:35 internimage_t_1k_224] (main.py 510): INFO Train: [109/300][310/312] eta 0:00:00 lr 0.002825 time 0.4383 (0.4682) model_time 0.4382 (0.4625) loss 4.0171 (3.3575) grad_norm 1.3464 (1.5624/0.7150) mem 16099MB [2025-01-18 03:03:35 internimage_t_1k_224] (main.py 519): INFO EPOCH 109 training takes 0:02:26 [2025-01-18 03:03:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_109.pth saving...... [2025-01-18 03:03:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_109.pth saved !!! [2025-01-18 03:03:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.292 (7.292) Loss 0.8758 (0.8758) Acc@1 80.444 (80.444) Acc@5 95.752 (95.752) Mem 16099MB [2025-01-18 03:03:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.000) Loss 1.2580 (1.0304) Acc@1 71.875 (77.455) Acc@5 92.090 (94.176) Mem 16099MB [2025-01-18 03:03:48 internimage_t_1k_224] (main.py 575): INFO [Epoch:109] * Acc@1 77.333 Acc@5 94.218 [2025-01-18 03:03:48 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.3% [2025-01-18 03:03:48 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.59% [2025-01-18 03:03:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.458 (8.458) Loss 0.8711 (0.8711) Acc@1 81.128 (81.128) Acc@5 96.191 (96.191) Mem 16099MB [2025-01-18 03:04:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.131) Loss 1.2627 (1.0344) Acc@1 71.802 (77.672) Acc@5 91.577 (94.116) Mem 16099MB [2025-01-18 03:04:00 internimage_t_1k_224] (main.py 575): INFO [Epoch:109] * Acc@1 77.575 Acc@5 94.144 [2025-01-18 03:04:00 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.6% [2025-01-18 03:04:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:04:01 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:04:01 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.58% [2025-01-18 03:04:04 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][0/312] eta 0:11:33 lr 0.002825 time 2.2229 (2.2229) model_time 0.4986 (0.4986) loss 3.6454 (3.6454) grad_norm 1.3205 (1.3205/0.0000) mem 16099MB [2025-01-18 03:04:08 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][10/312] eta 0:03:09 lr 0.002825 time 0.5229 (0.6275) model_time 0.5225 (0.4705) loss 3.1743 (3.5310) grad_norm 2.0621 (1.3423/0.3879) mem 16099MB [2025-01-18 03:04:13 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][20/312] eta 0:02:41 lr 0.002824 time 0.4656 (0.5524) model_time 0.4655 (0.4700) loss 2.6829 (3.3363) grad_norm 2.5675 (1.3766/0.4993) mem 16099MB [2025-01-18 03:04:18 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][30/312] eta 0:02:29 lr 0.002824 time 0.4550 (0.5289) model_time 0.4549 (0.4730) loss 3.6401 (3.2993) grad_norm 0.8772 (1.3818/0.4678) mem 16099MB [2025-01-18 03:04:22 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][40/312] eta 0:02:19 lr 0.002823 time 0.4526 (0.5133) model_time 0.4525 (0.4710) loss 3.5831 (3.3649) grad_norm 1.7133 (1.4011/0.4865) mem 16099MB [2025-01-18 03:04:27 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][50/312] eta 0:02:11 lr 0.002822 time 0.4599 (0.5030) model_time 0.4597 (0.4690) loss 3.5423 (3.4186) grad_norm 1.3106 (1.6680/0.9660) mem 16099MB [2025-01-18 03:04:32 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][60/312] eta 0:02:05 lr 0.002822 time 0.4553 (0.4971) model_time 0.4549 (0.4686) loss 3.3112 (3.4303) grad_norm 1.3507 (1.6541/0.9296) mem 16099MB [2025-01-18 03:04:36 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][70/312] eta 0:01:59 lr 0.002821 time 0.5236 (0.4918) model_time 0.5235 (0.4672) loss 2.6661 (3.4192) grad_norm 0.9540 (1.7049/0.9998) mem 16099MB [2025-01-18 03:04:41 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][80/312] eta 0:01:53 lr 0.002820 time 0.4550 (0.4879) model_time 0.4545 (0.4661) loss 3.2570 (3.4223) grad_norm 0.8386 (1.6582/0.9516) mem 16099MB [2025-01-18 03:04:45 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][90/312] eta 0:01:47 lr 0.002820 time 0.4473 (0.4845) model_time 0.4471 (0.4650) loss 3.4505 (3.4251) grad_norm 3.2111 (1.6562/0.9360) mem 16099MB [2025-01-18 03:04:50 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][100/312] eta 0:01:42 lr 0.002819 time 0.4500 (0.4816) model_time 0.4495 (0.4641) loss 4.0201 (3.3991) grad_norm 0.9132 (1.6345/0.9186) mem 16099MB [2025-01-18 03:04:55 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][110/312] eta 0:01:36 lr 0.002819 time 0.4580 (0.4790) model_time 0.4578 (0.4630) loss 3.4805 (3.3881) grad_norm 1.0740 (1.5840/0.8969) mem 16099MB [2025-01-18 03:04:59 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][120/312] eta 0:01:31 lr 0.002818 time 0.4563 (0.4778) model_time 0.4561 (0.4631) loss 3.4343 (3.3915) grad_norm 1.4407 (1.5898/0.8745) mem 16099MB [2025-01-18 03:05:04 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][130/312] eta 0:01:26 lr 0.002817 time 0.5180 (0.4774) model_time 0.5178 (0.4638) loss 3.6050 (3.4009) grad_norm 1.2220 (1.5710/0.8470) mem 16099MB [2025-01-18 03:05:09 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][140/312] eta 0:01:22 lr 0.002817 time 0.6054 (0.4775) model_time 0.6050 (0.4648) loss 2.7915 (3.3861) grad_norm 3.0488 (1.5736/0.8438) mem 16099MB [2025-01-18 03:05:13 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][150/312] eta 0:01:17 lr 0.002816 time 0.4397 (0.4768) model_time 0.4396 (0.4649) loss 3.3452 (3.3755) grad_norm 1.1733 (1.5886/0.8226) mem 16099MB [2025-01-18 03:05:18 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][160/312] eta 0:01:12 lr 0.002816 time 0.4457 (0.4757) model_time 0.4452 (0.4646) loss 3.7192 (3.3854) grad_norm 1.4249 (1.5843/0.8038) mem 16099MB [2025-01-18 03:05:23 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][170/312] eta 0:01:07 lr 0.002815 time 0.4457 (0.4760) model_time 0.4455 (0.4655) loss 4.0868 (3.4016) grad_norm 2.8818 (1.5757/0.7958) mem 16099MB [2025-01-18 03:05:27 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][180/312] eta 0:01:02 lr 0.002814 time 0.4593 (0.4754) model_time 0.4589 (0.4655) loss 2.8876 (3.4000) grad_norm 1.0200 (1.5628/0.7809) mem 16099MB [2025-01-18 03:05:32 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][190/312] eta 0:00:57 lr 0.002814 time 0.4471 (0.4747) model_time 0.4470 (0.4653) loss 3.1362 (3.3856) grad_norm 1.8016 (1.5762/0.7679) mem 16099MB [2025-01-18 03:05:37 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][200/312] eta 0:00:53 lr 0.002813 time 0.4510 (0.4742) model_time 0.4506 (0.4652) loss 2.8801 (3.3869) grad_norm 1.5924 (1.6034/0.7861) mem 16099MB [2025-01-18 03:05:41 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][210/312] eta 0:00:48 lr 0.002813 time 0.4985 (0.4735) model_time 0.4981 (0.4649) loss 3.6041 (3.3804) grad_norm 0.7911 (1.5902/0.7783) mem 16099MB [2025-01-18 03:05:46 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][220/312] eta 0:00:43 lr 0.002812 time 0.4520 (0.4730) model_time 0.4516 (0.4648) loss 2.9066 (3.3822) grad_norm 2.1103 (1.5931/0.7764) mem 16099MB [2025-01-18 03:05:50 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][230/312] eta 0:00:38 lr 0.002811 time 0.4505 (0.4721) model_time 0.4503 (0.4642) loss 4.1183 (3.3869) grad_norm 1.8150 (1.5910/0.7730) mem 16099MB [2025-01-18 03:05:55 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][240/312] eta 0:00:34 lr 0.002811 time 0.4570 (0.4722) model_time 0.4569 (0.4647) loss 3.5288 (3.3804) grad_norm 1.5448 (1.5937/0.7622) mem 16099MB [2025-01-18 03:06:00 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][250/312] eta 0:00:29 lr 0.002810 time 0.4618 (0.4716) model_time 0.4614 (0.4644) loss 3.7410 (3.3753) grad_norm 1.3036 (1.5853/0.7530) mem 16099MB [2025-01-18 03:06:04 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][260/312] eta 0:00:24 lr 0.002810 time 0.4484 (0.4714) model_time 0.4480 (0.4644) loss 3.4923 (3.3764) grad_norm 2.3669 (1.6094/0.7649) mem 16099MB [2025-01-18 03:06:09 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][270/312] eta 0:00:19 lr 0.002809 time 0.4473 (0.4707) model_time 0.4472 (0.4639) loss 3.5940 (3.3822) grad_norm 2.2757 (1.6294/0.7804) mem 16099MB [2025-01-18 03:06:14 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][280/312] eta 0:00:15 lr 0.002808 time 0.4514 (0.4704) model_time 0.4510 (0.4639) loss 2.8462 (3.3787) grad_norm 0.6753 (1.6222/0.7751) mem 16099MB [2025-01-18 03:06:19 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][290/312] eta 0:00:10 lr 0.002808 time 0.5503 (0.4712) model_time 0.5499 (0.4648) loss 3.3119 (3.3797) grad_norm 0.9897 (1.6111/0.7687) mem 16099MB [2025-01-18 03:06:23 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][300/312] eta 0:00:05 lr 0.002807 time 0.4385 (0.4712) model_time 0.4384 (0.4651) loss 3.5301 (3.3691) grad_norm 0.8653 (1.5987/0.7605) mem 16099MB [2025-01-18 03:06:28 internimage_t_1k_224] (main.py 510): INFO Train: [110/300][310/312] eta 0:00:00 lr 0.002806 time 0.4402 (0.4708) model_time 0.4401 (0.4649) loss 3.0870 (3.3652) grad_norm 0.9286 (1.6041/0.7614) mem 16099MB [2025-01-18 03:06:28 internimage_t_1k_224] (main.py 519): INFO EPOCH 110 training takes 0:02:26 [2025-01-18 03:06:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_110.pth saving...... [2025-01-18 03:06:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_110.pth saved !!! [2025-01-18 03:06:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.476 (7.476) Loss 0.8682 (0.8682) Acc@1 81.494 (81.494) Acc@5 96.143 (96.143) Mem 16099MB [2025-01-18 03:06:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.010) Loss 1.2181 (1.0391) Acc@1 72.803 (77.346) Acc@5 92.334 (94.161) Mem 16099MB [2025-01-18 03:06:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:110] * Acc@1 77.327 Acc@5 94.176 [2025-01-18 03:06:41 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.3% [2025-01-18 03:06:41 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.59% [2025-01-18 03:06:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.256 (8.256) Loss 0.8667 (0.8667) Acc@1 81.177 (81.177) Acc@5 96.265 (96.265) Mem 16099MB [2025-01-18 03:06:53 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.100) Loss 1.2553 (1.0289) Acc@1 71.973 (77.832) Acc@5 91.650 (94.183) Mem 16099MB [2025-01-18 03:06:53 internimage_t_1k_224] (main.py 575): INFO [Epoch:110] * Acc@1 77.725 Acc@5 94.204 [2025-01-18 03:06:53 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.7% [2025-01-18 03:06:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:06:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:06:54 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.73% [2025-01-18 03:06:57 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][0/312] eta 0:12:27 lr 0.002806 time 2.3943 (2.3943) model_time 0.5895 (0.5895) loss 3.4508 (3.4508) grad_norm 1.6764 (1.6764/0.0000) mem 16099MB [2025-01-18 03:07:01 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][10/312] eta 0:03:10 lr 0.002806 time 0.4556 (0.6319) model_time 0.4552 (0.4675) loss 3.8504 (3.0847) grad_norm 1.8280 (1.7163/0.7931) mem 16099MB [2025-01-18 03:07:06 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][20/312] eta 0:02:40 lr 0.002805 time 0.4508 (0.5502) model_time 0.4507 (0.4639) loss 3.4656 (3.1703) grad_norm 1.5584 (2.1036/1.2097) mem 16099MB [2025-01-18 03:07:10 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][30/312] eta 0:02:26 lr 0.002805 time 0.4480 (0.5211) model_time 0.4479 (0.4625) loss 3.7368 (3.1838) grad_norm 1.4972 (1.9019/1.0623) mem 16099MB [2025-01-18 03:07:15 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][40/312] eta 0:02:17 lr 0.002804 time 0.4478 (0.5066) model_time 0.4476 (0.4622) loss 3.3020 (3.2752) grad_norm 1.9484 (1.9502/0.9913) mem 16099MB [2025-01-18 03:07:20 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][50/312] eta 0:02:10 lr 0.002803 time 0.4449 (0.4994) model_time 0.4445 (0.4637) loss 3.3741 (3.2392) grad_norm 1.3061 (1.9085/0.9232) mem 16099MB [2025-01-18 03:07:24 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][60/312] eta 0:02:04 lr 0.002803 time 0.4568 (0.4929) model_time 0.4564 (0.4629) loss 3.7413 (3.3419) grad_norm 1.0863 (1.8252/0.8737) mem 16099MB [2025-01-18 03:07:29 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][70/312] eta 0:01:58 lr 0.002802 time 0.5323 (0.4902) model_time 0.5318 (0.4644) loss 4.3881 (3.3823) grad_norm 1.0498 (1.8129/0.8445) mem 16099MB [2025-01-18 03:07:34 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][80/312] eta 0:01:53 lr 0.002801 time 0.4504 (0.4876) model_time 0.4500 (0.4649) loss 3.6393 (3.4402) grad_norm 2.6644 (1.7854/0.8102) mem 16099MB [2025-01-18 03:07:38 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][90/312] eta 0:01:47 lr 0.002801 time 0.4578 (0.4851) model_time 0.4576 (0.4649) loss 2.9790 (3.4234) grad_norm 1.8384 (1.7781/0.7885) mem 16099MB [2025-01-18 03:07:43 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][100/312] eta 0:01:42 lr 0.002800 time 0.4697 (0.4833) model_time 0.4695 (0.4650) loss 4.0077 (3.4248) grad_norm 3.9206 (1.7710/0.8029) mem 16099MB [2025-01-18 03:07:47 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][110/312] eta 0:01:37 lr 0.002800 time 0.4457 (0.4803) model_time 0.4453 (0.4636) loss 3.8409 (3.4078) grad_norm 2.3613 (1.8053/0.8239) mem 16099MB [2025-01-18 03:07:52 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][120/312] eta 0:01:31 lr 0.002799 time 0.4454 (0.4786) model_time 0.4450 (0.4633) loss 4.1866 (3.4098) grad_norm 1.2561 (1.7749/0.8050) mem 16099MB [2025-01-18 03:07:57 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][130/312] eta 0:01:26 lr 0.002798 time 0.4633 (0.4772) model_time 0.4631 (0.4630) loss 3.3870 (3.4259) grad_norm 1.3744 (1.7539/0.7945) mem 16099MB [2025-01-18 03:08:01 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][140/312] eta 0:01:21 lr 0.002798 time 0.4786 (0.4762) model_time 0.4781 (0.4630) loss 4.2497 (3.4424) grad_norm 2.0832 (1.7721/0.8081) mem 16099MB [2025-01-18 03:08:06 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][150/312] eta 0:01:16 lr 0.002797 time 0.4449 (0.4745) model_time 0.4444 (0.4622) loss 3.4947 (3.4566) grad_norm 0.9618 (1.7485/0.8155) mem 16099MB [2025-01-18 03:08:11 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][160/312] eta 0:01:12 lr 0.002797 time 0.4472 (0.4757) model_time 0.4467 (0.4641) loss 3.1224 (3.4367) grad_norm 1.4115 (1.7084/0.8069) mem 16099MB [2025-01-18 03:08:15 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][170/312] eta 0:01:07 lr 0.002796 time 0.4547 (0.4744) model_time 0.4543 (0.4635) loss 3.4126 (3.4234) grad_norm 2.5138 (1.7126/0.7920) mem 16099MB [2025-01-18 03:08:20 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][180/312] eta 0:01:02 lr 0.002795 time 0.4446 (0.4733) model_time 0.4445 (0.4629) loss 4.2694 (3.4299) grad_norm 1.1874 (1.6880/0.7795) mem 16099MB [2025-01-18 03:08:24 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][190/312] eta 0:00:57 lr 0.002795 time 0.4670 (0.4721) model_time 0.4666 (0.4623) loss 2.7061 (3.4216) grad_norm 1.3197 (1.6821/0.7704) mem 16099MB [2025-01-18 03:08:29 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][200/312] eta 0:00:52 lr 0.002794 time 0.4505 (0.4721) model_time 0.4504 (0.4627) loss 3.6131 (3.4234) grad_norm 1.6689 (1.6890/0.7691) mem 16099MB [2025-01-18 03:08:34 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][210/312] eta 0:00:48 lr 0.002794 time 0.4760 (0.4717) model_time 0.4756 (0.4627) loss 3.9343 (3.4244) grad_norm 2.2187 (1.6831/0.7578) mem 16099MB [2025-01-18 03:08:38 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][220/312] eta 0:00:43 lr 0.002793 time 0.4505 (0.4711) model_time 0.4504 (0.4625) loss 4.2298 (3.4225) grad_norm 0.8131 (1.6782/0.7516) mem 16099MB [2025-01-18 03:08:43 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][230/312] eta 0:00:38 lr 0.002792 time 0.4423 (0.4707) model_time 0.4418 (0.4625) loss 3.5524 (3.4296) grad_norm 1.7355 (1.6649/0.7427) mem 16099MB [2025-01-18 03:08:47 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][240/312] eta 0:00:33 lr 0.002792 time 0.4433 (0.4700) model_time 0.4428 (0.4621) loss 3.4752 (3.4328) grad_norm 1.1876 (1.6676/0.7418) mem 16099MB [2025-01-18 03:08:52 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][250/312] eta 0:00:29 lr 0.002791 time 0.4516 (0.4699) model_time 0.4514 (0.4623) loss 3.2187 (3.4276) grad_norm 1.9704 (1.6709/0.7375) mem 16099MB [2025-01-18 03:08:57 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][260/312] eta 0:00:24 lr 0.002790 time 0.4786 (0.4696) model_time 0.4784 (0.4623) loss 3.6765 (3.4182) grad_norm 1.5430 (1.6723/0.7358) mem 16099MB [2025-01-18 03:09:01 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][270/312] eta 0:00:19 lr 0.002790 time 0.4617 (0.4690) model_time 0.4615 (0.4620) loss 3.9628 (3.4241) grad_norm 2.4388 (1.6704/0.7271) mem 16099MB [2025-01-18 03:09:06 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][280/312] eta 0:00:14 lr 0.002789 time 0.4631 (0.4686) model_time 0.4627 (0.4618) loss 4.1276 (3.4173) grad_norm 1.7950 (1.6613/0.7207) mem 16099MB [2025-01-18 03:09:11 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][290/312] eta 0:00:10 lr 0.002789 time 0.4523 (0.4688) model_time 0.4521 (0.4622) loss 3.1147 (3.4161) grad_norm 2.6102 (1.6699/0.7191) mem 16099MB [2025-01-18 03:09:15 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][300/312] eta 0:00:05 lr 0.002788 time 0.4385 (0.4686) model_time 0.4384 (0.4622) loss 3.0418 (3.4215) grad_norm 1.6649 (1.6891/0.7444) mem 16099MB [2025-01-18 03:09:20 internimage_t_1k_224] (main.py 510): INFO Train: [111/300][310/312] eta 0:00:00 lr 0.002787 time 0.5269 (0.4686) model_time 0.5268 (0.4624) loss 3.6228 (3.4123) grad_norm 1.6909 (1.6876/0.7339) mem 16099MB [2025-01-18 03:09:20 internimage_t_1k_224] (main.py 519): INFO EPOCH 111 training takes 0:02:26 [2025-01-18 03:09:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_111.pth saving...... [2025-01-18 03:09:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_111.pth saved !!! [2025-01-18 03:09:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.348 (7.348) Loss 0.8714 (0.8714) Acc@1 80.835 (80.835) Acc@5 95.947 (95.947) Mem 16099MB [2025-01-18 03:09:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.992) Loss 1.2178 (1.0237) Acc@1 72.510 (77.559) Acc@5 92.090 (94.349) Mem 16099MB [2025-01-18 03:09:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:111] * Acc@1 77.465 Acc@5 94.348 [2025-01-18 03:09:33 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.5% [2025-01-18 03:09:33 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.59% [2025-01-18 03:09:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.350 (8.350) Loss 0.8625 (0.8625) Acc@1 81.250 (81.250) Acc@5 96.289 (96.289) Mem 16099MB [2025-01-18 03:09:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.112) Loss 1.2485 (1.0237) Acc@1 72.070 (77.945) Acc@5 91.699 (94.218) Mem 16099MB [2025-01-18 03:09:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:111] * Acc@1 77.835 Acc@5 94.238 [2025-01-18 03:09:45 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.8% [2025-01-18 03:09:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:09:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:09:46 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.84% [2025-01-18 03:09:49 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][0/312] eta 0:11:41 lr 0.002787 time 2.2498 (2.2498) model_time 0.4774 (0.4774) loss 3.9132 (3.9132) grad_norm 1.4619 (1.4619/0.0000) mem 16099MB [2025-01-18 03:09:53 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][10/312] eta 0:03:08 lr 0.002787 time 0.4590 (0.6239) model_time 0.4589 (0.4625) loss 4.1812 (3.6362) grad_norm 2.0132 (1.4238/0.5361) mem 16099MB [2025-01-18 03:09:58 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][20/312] eta 0:02:40 lr 0.002786 time 0.4520 (0.5483) model_time 0.4516 (0.4636) loss 3.7454 (3.6043) grad_norm 1.9257 (1.8570/0.8819) mem 16099MB [2025-01-18 03:10:03 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][30/312] eta 0:02:27 lr 0.002785 time 0.4584 (0.5239) model_time 0.4580 (0.4665) loss 3.4775 (3.5824) grad_norm 1.2223 (1.7142/0.7706) mem 16099MB [2025-01-18 03:10:07 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][40/312] eta 0:02:19 lr 0.002785 time 0.4648 (0.5122) model_time 0.4647 (0.4686) loss 3.5675 (3.4515) grad_norm 1.3125 (1.5990/0.7354) mem 16099MB [2025-01-18 03:10:12 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][50/312] eta 0:02:11 lr 0.002784 time 0.4538 (0.5008) model_time 0.4534 (0.4657) loss 4.2043 (3.4148) grad_norm 0.9773 (1.5759/0.7659) mem 16099MB [2025-01-18 03:10:17 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][60/312] eta 0:02:04 lr 0.002784 time 0.4384 (0.4943) model_time 0.4382 (0.4649) loss 3.5095 (3.4251) grad_norm 1.7350 (1.6151/0.7878) mem 16099MB [2025-01-18 03:10:21 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][70/312] eta 0:01:58 lr 0.002783 time 0.4535 (0.4884) model_time 0.4531 (0.4631) loss 3.7504 (3.3934) grad_norm 1.4128 (1.5752/0.7602) mem 16099MB [2025-01-18 03:10:26 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][80/312] eta 0:01:52 lr 0.002782 time 0.4521 (0.4856) model_time 0.4520 (0.4634) loss 3.5331 (3.3817) grad_norm 0.8483 (1.5192/0.7304) mem 16099MB [2025-01-18 03:10:30 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][90/312] eta 0:01:47 lr 0.002782 time 0.5443 (0.4842) model_time 0.5442 (0.4644) loss 3.7942 (3.3608) grad_norm 3.6502 (1.5107/0.7338) mem 16099MB [2025-01-18 03:10:35 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][100/312] eta 0:01:41 lr 0.002781 time 0.4501 (0.4807) model_time 0.4497 (0.4628) loss 2.0723 (3.3525) grad_norm 1.7320 (1.6141/0.8355) mem 16099MB [2025-01-18 03:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][110/312] eta 0:01:36 lr 0.002781 time 0.4514 (0.4785) model_time 0.4509 (0.4622) loss 3.3645 (3.3530) grad_norm 2.0891 (1.6851/0.8743) mem 16099MB [2025-01-18 03:10:44 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][120/312] eta 0:01:31 lr 0.002780 time 0.4647 (0.4781) model_time 0.4646 (0.4631) loss 2.4098 (3.3397) grad_norm 1.2883 (1.6768/0.8666) mem 16099MB [2025-01-18 03:10:49 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][130/312] eta 0:01:26 lr 0.002779 time 0.4386 (0.4778) model_time 0.4382 (0.4640) loss 2.5213 (3.3540) grad_norm 1.7900 (1.6508/0.8474) mem 16099MB [2025-01-18 03:10:54 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][140/312] eta 0:01:22 lr 0.002779 time 0.4384 (0.4775) model_time 0.4380 (0.4646) loss 2.9440 (3.3363) grad_norm 1.0108 (1.6319/0.8240) mem 16099MB [2025-01-18 03:10:59 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][150/312] eta 0:01:17 lr 0.002778 time 0.4404 (0.4782) model_time 0.4400 (0.4661) loss 4.2801 (3.3575) grad_norm 1.5962 (1.6054/0.8091) mem 16099MB [2025-01-18 03:11:03 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][160/312] eta 0:01:12 lr 0.002777 time 0.4490 (0.4772) model_time 0.4489 (0.4659) loss 2.6963 (3.3472) grad_norm 0.9235 (1.5694/0.7973) mem 16099MB [2025-01-18 03:11:08 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][170/312] eta 0:01:07 lr 0.002777 time 0.4716 (0.4768) model_time 0.4711 (0.4660) loss 3.5874 (3.3581) grad_norm 0.7875 (1.5753/0.7958) mem 16099MB [2025-01-18 03:11:13 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][180/312] eta 0:01:02 lr 0.002776 time 0.5425 (0.4759) model_time 0.5421 (0.4658) loss 3.6701 (3.3758) grad_norm 2.4313 (1.6061/0.8084) mem 16099MB [2025-01-18 03:11:17 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][190/312] eta 0:00:57 lr 0.002776 time 0.4390 (0.4746) model_time 0.4389 (0.4650) loss 3.4236 (3.3918) grad_norm 1.7460 (1.6214/0.7976) mem 16099MB [2025-01-18 03:11:22 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][200/312] eta 0:00:53 lr 0.002775 time 0.4386 (0.4740) model_time 0.4385 (0.4648) loss 3.7955 (3.3959) grad_norm 1.2049 (1.6008/0.7859) mem 16099MB [2025-01-18 03:11:26 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][210/312] eta 0:00:48 lr 0.002774 time 0.4473 (0.4728) model_time 0.4471 (0.4641) loss 3.6266 (3.4007) grad_norm 1.2131 (1.6038/0.7716) mem 16099MB [2025-01-18 03:11:31 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][220/312] eta 0:00:43 lr 0.002774 time 0.4504 (0.4721) model_time 0.4499 (0.4637) loss 3.6530 (3.4017) grad_norm 0.9516 (1.5919/0.7624) mem 16099MB [2025-01-18 03:11:35 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][230/312] eta 0:00:38 lr 0.002773 time 0.4479 (0.4715) model_time 0.4474 (0.4635) loss 3.9278 (3.4081) grad_norm 0.9164 (1.6006/0.7623) mem 16099MB [2025-01-18 03:11:40 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][240/312] eta 0:00:33 lr 0.002773 time 0.5387 (0.4714) model_time 0.5386 (0.4637) loss 4.1750 (3.4167) grad_norm 0.8745 (1.5912/0.7550) mem 16099MB [2025-01-18 03:11:45 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][250/312] eta 0:00:29 lr 0.002772 time 0.4471 (0.4710) model_time 0.4467 (0.4636) loss 3.3864 (3.4240) grad_norm 1.0989 (1.6039/0.7740) mem 16099MB [2025-01-18 03:11:49 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][260/312] eta 0:00:24 lr 0.002771 time 0.4518 (0.4703) model_time 0.4513 (0.4632) loss 4.0517 (3.4299) grad_norm 1.0714 (1.5929/0.7661) mem 16099MB [2025-01-18 03:11:54 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][270/312] eta 0:00:19 lr 0.002771 time 0.4516 (0.4705) model_time 0.4511 (0.4636) loss 3.8083 (3.4283) grad_norm 1.7515 (1.6026/0.7753) mem 16099MB [2025-01-18 03:11:59 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][280/312] eta 0:00:15 lr 0.002770 time 0.4517 (0.4704) model_time 0.4516 (0.4637) loss 3.3899 (3.4254) grad_norm 3.2144 (1.6546/0.8642) mem 16099MB [2025-01-18 03:12:03 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][290/312] eta 0:00:10 lr 0.002769 time 0.4507 (0.4701) model_time 0.4503 (0.4637) loss 3.7123 (3.4240) grad_norm 1.6073 (1.6615/0.8689) mem 16099MB [2025-01-18 03:12:08 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][300/312] eta 0:00:05 lr 0.002769 time 0.4717 (0.4699) model_time 0.4716 (0.4636) loss 4.1862 (3.4275) grad_norm 1.2630 (1.6428/0.8627) mem 16099MB [2025-01-18 03:12:13 internimage_t_1k_224] (main.py 510): INFO Train: [112/300][310/312] eta 0:00:00 lr 0.002768 time 0.4380 (0.4702) model_time 0.4379 (0.4642) loss 3.6919 (3.4395) grad_norm 1.1387 (1.6422/0.8593) mem 16099MB [2025-01-18 03:12:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 112 training takes 0:02:26 [2025-01-18 03:12:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_112.pth saving...... [2025-01-18 03:12:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_112.pth saved !!! [2025-01-18 03:12:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.362 (7.362) Loss 0.9167 (0.9167) Acc@1 80.469 (80.469) Acc@5 96.021 (96.021) Mem 16099MB [2025-01-18 03:12:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.964) Loss 1.2841 (1.0619) Acc@1 72.290 (77.654) Acc@5 91.895 (94.147) Mem 16099MB [2025-01-18 03:12:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:112] * Acc@1 77.587 Acc@5 94.152 [2025-01-18 03:12:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.6% [2025-01-18 03:12:25 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.59% [2025-01-18 03:12:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.375 (8.375) Loss 0.8587 (0.8587) Acc@1 81.396 (81.396) Acc@5 96.313 (96.313) Mem 16099MB [2025-01-18 03:12:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.120) Loss 1.2415 (1.0187) Acc@1 72.241 (78.061) Acc@5 91.772 (94.287) Mem 16099MB [2025-01-18 03:12:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:112] * Acc@1 77.949 Acc@5 94.308 [2025-01-18 03:12:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 77.9% [2025-01-18 03:12:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:12:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:12:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 77.95% [2025-01-18 03:12:41 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][0/312] eta 0:11:31 lr 0.002768 time 2.2155 (2.2155) model_time 0.4704 (0.4704) loss 3.8543 (3.8543) grad_norm 1.1656 (1.1656/0.0000) mem 16099MB [2025-01-18 03:12:46 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][10/312] eta 0:03:08 lr 0.002768 time 0.4708 (0.6254) model_time 0.4704 (0.4664) loss 3.3209 (3.2875) grad_norm 1.4988 (1.3338/0.1351) mem 16099MB [2025-01-18 03:12:50 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][20/312] eta 0:02:40 lr 0.002767 time 0.4445 (0.5500) model_time 0.4441 (0.4665) loss 2.6552 (3.2635) grad_norm 0.8464 (1.3412/0.3615) mem 16099MB [2025-01-18 03:12:55 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][30/312] eta 0:02:27 lr 0.002766 time 0.4389 (0.5224) model_time 0.4388 (0.4658) loss 2.7461 (3.2389) grad_norm 1.8765 (1.3468/0.3996) mem 16099MB [2025-01-18 03:12:59 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][40/312] eta 0:02:17 lr 0.002766 time 0.4480 (0.5055) model_time 0.4476 (0.4625) loss 3.2229 (3.2591) grad_norm 2.7163 (1.4955/0.4948) mem 16099MB [2025-01-18 03:13:04 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][50/312] eta 0:02:10 lr 0.002765 time 0.4564 (0.4971) model_time 0.4562 (0.4625) loss 1.9595 (3.2690) grad_norm 1.1737 (1.5704/0.5858) mem 16099MB [2025-01-18 03:13:09 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][60/312] eta 0:02:03 lr 0.002764 time 0.4519 (0.4905) model_time 0.4517 (0.4616) loss 3.6239 (3.2923) grad_norm 1.3986 (1.5553/0.5615) mem 16099MB [2025-01-18 03:13:13 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][70/312] eta 0:01:57 lr 0.002764 time 0.4738 (0.4868) model_time 0.4733 (0.4619) loss 3.5254 (3.2823) grad_norm 0.6958 (1.5992/0.5870) mem 16099MB [2025-01-18 03:13:18 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][80/312] eta 0:01:52 lr 0.002763 time 0.4475 (0.4857) model_time 0.4471 (0.4638) loss 2.6615 (3.2782) grad_norm 3.5001 (1.6361/0.6357) mem 16099MB [2025-01-18 03:13:23 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][90/312] eta 0:01:47 lr 0.002763 time 0.5389 (0.4850) model_time 0.5387 (0.4655) loss 3.1499 (3.2770) grad_norm 0.9218 (1.6303/0.6292) mem 16099MB [2025-01-18 03:13:27 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][100/312] eta 0:01:42 lr 0.002762 time 0.4415 (0.4830) model_time 0.4411 (0.4654) loss 2.9112 (3.2546) grad_norm 1.6621 (1.5972/0.6127) mem 16099MB [2025-01-18 03:13:32 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][110/312] eta 0:01:37 lr 0.002761 time 0.4915 (0.4814) model_time 0.4911 (0.4653) loss 4.0005 (3.2618) grad_norm 1.2046 (1.5822/0.5938) mem 16099MB [2025-01-18 03:13:37 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][120/312] eta 0:01:32 lr 0.002761 time 0.4666 (0.4799) model_time 0.4665 (0.4651) loss 3.1166 (3.2580) grad_norm 1.8730 (1.6165/0.6081) mem 16099MB [2025-01-18 03:13:41 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][130/312] eta 0:01:26 lr 0.002760 time 0.4480 (0.4780) model_time 0.4478 (0.4643) loss 4.2857 (3.2683) grad_norm 1.1769 (1.5964/0.5972) mem 16099MB [2025-01-18 03:13:46 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][140/312] eta 0:01:22 lr 0.002760 time 0.5321 (0.4785) model_time 0.5320 (0.4658) loss 2.2730 (3.2412) grad_norm 2.9055 (1.5999/0.6032) mem 16099MB [2025-01-18 03:13:51 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][150/312] eta 0:01:17 lr 0.002759 time 0.4519 (0.4767) model_time 0.4515 (0.4648) loss 2.2193 (3.2435) grad_norm 1.2941 (1.6139/0.6325) mem 16099MB [2025-01-18 03:13:56 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][160/312] eta 0:01:12 lr 0.002758 time 0.5503 (0.4775) model_time 0.5502 (0.4663) loss 3.2514 (3.2544) grad_norm 1.2029 (1.6274/0.6502) mem 16099MB [2025-01-18 03:14:00 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][170/312] eta 0:01:07 lr 0.002758 time 0.4512 (0.4766) model_time 0.4508 (0.4660) loss 2.9820 (3.2670) grad_norm 1.1510 (1.6130/0.6447) mem 16099MB [2025-01-18 03:14:05 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][180/312] eta 0:01:02 lr 0.002757 time 0.4483 (0.4756) model_time 0.4478 (0.4656) loss 3.3097 (3.2794) grad_norm 4.0850 (1.6075/0.6613) mem 16099MB [2025-01-18 03:14:09 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][190/312] eta 0:00:57 lr 0.002756 time 0.4629 (0.4754) model_time 0.4627 (0.4659) loss 4.1225 (3.2872) grad_norm 3.1150 (1.6253/0.6766) mem 16099MB [2025-01-18 03:14:14 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][200/312] eta 0:00:53 lr 0.002756 time 0.4522 (0.4743) model_time 0.4521 (0.4653) loss 1.9352 (3.2826) grad_norm 1.6697 (1.6339/0.6701) mem 16099MB [2025-01-18 03:14:19 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][210/312] eta 0:00:48 lr 0.002755 time 0.4476 (0.4737) model_time 0.4475 (0.4651) loss 3.8527 (3.2919) grad_norm 1.2545 (1.6280/0.6675) mem 16099MB [2025-01-18 03:14:23 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][220/312] eta 0:00:43 lr 0.002755 time 0.4399 (0.4734) model_time 0.4395 (0.4651) loss 3.9186 (3.3016) grad_norm 0.9010 (1.6313/0.6815) mem 16099MB [2025-01-18 03:14:28 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][230/312] eta 0:00:38 lr 0.002754 time 0.4398 (0.4725) model_time 0.4394 (0.4646) loss 3.7590 (3.3085) grad_norm 1.6041 (1.6558/0.7260) mem 16099MB [2025-01-18 03:14:32 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][240/312] eta 0:00:33 lr 0.002753 time 0.4496 (0.4721) model_time 0.4492 (0.4645) loss 3.5143 (3.3071) grad_norm 3.5471 (1.6637/0.7392) mem 16099MB [2025-01-18 03:14:37 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][250/312] eta 0:00:29 lr 0.002753 time 0.4411 (0.4716) model_time 0.4407 (0.4643) loss 2.7180 (3.3055) grad_norm 1.1890 (1.6540/0.7299) mem 16099MB [2025-01-18 03:14:42 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][260/312] eta 0:00:24 lr 0.002752 time 0.4545 (0.4714) model_time 0.4544 (0.4644) loss 3.2473 (3.3162) grad_norm 1.4686 (1.6538/0.7178) mem 16099MB [2025-01-18 03:14:46 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][270/312] eta 0:00:19 lr 0.002751 time 0.4408 (0.4711) model_time 0.4404 (0.4642) loss 3.5951 (3.3201) grad_norm 1.9263 (1.6422/0.7118) mem 16099MB [2025-01-18 03:14:51 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][280/312] eta 0:00:15 lr 0.002751 time 0.4483 (0.4705) model_time 0.4481 (0.4639) loss 2.5922 (3.3079) grad_norm 3.7877 (1.6639/0.7405) mem 16099MB [2025-01-18 03:14:56 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][290/312] eta 0:00:10 lr 0.002750 time 0.4617 (0.4705) model_time 0.4616 (0.4641) loss 3.7575 (3.3142) grad_norm 2.0271 (1.6676/0.7379) mem 16099MB [2025-01-18 03:15:00 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][300/312] eta 0:00:05 lr 0.002750 time 0.4402 (0.4702) model_time 0.4401 (0.4640) loss 3.9413 (3.3158) grad_norm 3.3025 (1.6686/0.7403) mem 16099MB [2025-01-18 03:15:05 internimage_t_1k_224] (main.py 510): INFO Train: [113/300][310/312] eta 0:00:00 lr 0.002749 time 0.4389 (0.4696) model_time 0.4389 (0.4636) loss 3.7933 (3.3210) grad_norm 1.3551 (1.6709/0.7420) mem 16099MB [2025-01-18 03:15:05 internimage_t_1k_224] (main.py 519): INFO EPOCH 113 training takes 0:02:26 [2025-01-18 03:15:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_113.pth saving...... [2025-01-18 03:15:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_113.pth saved !!! [2025-01-18 03:15:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.437 (7.437) Loss 0.8550 (0.8550) Acc@1 81.030 (81.030) Acc@5 96.191 (96.191) Mem 16099MB [2025-01-18 03:15:17 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.008) Loss 1.2835 (1.0355) Acc@1 70.435 (77.652) Acc@5 92.065 (94.234) Mem 16099MB [2025-01-18 03:15:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:113] * Acc@1 77.641 Acc@5 94.258 [2025-01-18 03:15:18 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.6% [2025-01-18 03:15:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:15:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:15:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.64% [2025-01-18 03:15:26 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.336 (7.336) Loss 0.8551 (0.8551) Acc@1 81.543 (81.543) Acc@5 96.484 (96.484) Mem 16099MB [2025-01-18 03:15:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.008) Loss 1.2353 (1.0141) Acc@1 72.339 (78.203) Acc@5 91.895 (94.367) Mem 16099MB [2025-01-18 03:15:30 internimage_t_1k_224] (main.py 575): INFO [Epoch:113] * Acc@1 78.091 Acc@5 94.378 [2025-01-18 03:15:30 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.1% [2025-01-18 03:15:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:15:31 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:15:31 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.09% [2025-01-18 03:15:33 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][0/312] eta 0:10:27 lr 0.002749 time 2.0120 (2.0120) model_time 0.4703 (0.4703) loss 2.6591 (2.6591) grad_norm 1.3687 (1.3687/0.0000) mem 16099MB [2025-01-18 03:15:38 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][10/312] eta 0:03:07 lr 0.002748 time 0.4626 (0.6225) model_time 0.4622 (0.4820) loss 3.4008 (3.3749) grad_norm 2.6261 (1.6915/0.4976) mem 16099MB [2025-01-18 03:15:42 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][20/312] eta 0:02:38 lr 0.002748 time 0.4518 (0.5425) model_time 0.4514 (0.4687) loss 3.1078 (3.3916) grad_norm 1.6611 (1.7070/0.5216) mem 16099MB [2025-01-18 03:15:47 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][30/312] eta 0:02:27 lr 0.002747 time 0.5681 (0.5248) model_time 0.5679 (0.4747) loss 3.4214 (3.3997) grad_norm 1.4761 (1.7712/0.7110) mem 16099MB [2025-01-18 03:15:52 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][40/312] eta 0:02:17 lr 0.002746 time 0.4524 (0.5073) model_time 0.4520 (0.4694) loss 3.5571 (3.4767) grad_norm 1.9538 (1.7116/0.6710) mem 16099MB [2025-01-18 03:15:57 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][50/312] eta 0:02:10 lr 0.002746 time 0.4409 (0.4987) model_time 0.4407 (0.4681) loss 3.4635 (3.4379) grad_norm 1.0607 (1.6382/0.6476) mem 16099MB [2025-01-18 03:16:01 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][60/312] eta 0:02:03 lr 0.002745 time 0.4397 (0.4913) model_time 0.4393 (0.4657) loss 3.6819 (3.4982) grad_norm 0.9909 (1.5387/0.6403) mem 16099MB [2025-01-18 03:16:06 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][70/312] eta 0:01:57 lr 0.002745 time 0.4450 (0.4867) model_time 0.4446 (0.4647) loss 3.6632 (3.4697) grad_norm 1.3123 (1.5150/0.6166) mem 16099MB [2025-01-18 03:16:10 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][80/312] eta 0:01:52 lr 0.002744 time 0.4508 (0.4831) model_time 0.4504 (0.4637) loss 3.7168 (3.4026) grad_norm 0.8303 (1.5247/0.6318) mem 16099MB [2025-01-18 03:16:15 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][90/312] eta 0:01:46 lr 0.002743 time 0.4819 (0.4804) model_time 0.4818 (0.4631) loss 4.1864 (3.4126) grad_norm 1.7882 (1.5213/0.6449) mem 16099MB [2025-01-18 03:16:19 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][100/312] eta 0:01:41 lr 0.002743 time 0.4488 (0.4773) model_time 0.4486 (0.4617) loss 2.8051 (3.3697) grad_norm 1.7869 (1.5350/0.6324) mem 16099MB [2025-01-18 03:16:24 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][110/312] eta 0:01:36 lr 0.002742 time 0.4444 (0.4761) model_time 0.4442 (0.4618) loss 2.8736 (3.3631) grad_norm 0.9162 (1.5686/0.6552) mem 16099MB [2025-01-18 03:16:29 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][120/312] eta 0:01:31 lr 0.002741 time 0.4514 (0.4759) model_time 0.4510 (0.4628) loss 2.1476 (3.3534) grad_norm 1.4364 (1.5540/0.6401) mem 16099MB [2025-01-18 03:16:34 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][130/312] eta 0:01:26 lr 0.002741 time 0.4451 (0.4767) model_time 0.4450 (0.4646) loss 3.0901 (3.3642) grad_norm 1.6813 (1.5466/0.6221) mem 16099MB [2025-01-18 03:16:38 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][140/312] eta 0:01:21 lr 0.002740 time 0.4387 (0.4757) model_time 0.4382 (0.4644) loss 3.6039 (3.3641) grad_norm 2.2630 (1.5620/0.6220) mem 16099MB [2025-01-18 03:16:43 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][150/312] eta 0:01:17 lr 0.002740 time 0.4543 (0.4763) model_time 0.4541 (0.4657) loss 2.5693 (3.3388) grad_norm 3.2550 (1.6294/0.7225) mem 16099MB [2025-01-18 03:16:48 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][160/312] eta 0:01:12 lr 0.002739 time 0.5323 (0.4757) model_time 0.5321 (0.4658) loss 3.4783 (3.3469) grad_norm 1.4277 (1.6426/0.7197) mem 16099MB [2025-01-18 03:16:52 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][170/312] eta 0:01:07 lr 0.002738 time 0.4882 (0.4745) model_time 0.4878 (0.4651) loss 3.4425 (3.3329) grad_norm 1.3181 (1.6309/0.7051) mem 16099MB [2025-01-18 03:16:57 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][180/312] eta 0:01:02 lr 0.002738 time 0.4517 (0.4744) model_time 0.4512 (0.4656) loss 3.4672 (3.3387) grad_norm 1.3035 (1.6251/0.6902) mem 16099MB [2025-01-18 03:17:02 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][190/312] eta 0:00:57 lr 0.002737 time 0.4385 (0.4738) model_time 0.4383 (0.4653) loss 2.8545 (3.3585) grad_norm 1.0159 (1.6373/0.6969) mem 16099MB [2025-01-18 03:17:06 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][200/312] eta 0:00:53 lr 0.002737 time 0.4474 (0.4736) model_time 0.4473 (0.4655) loss 2.6956 (3.3301) grad_norm 0.8775 (1.6492/0.6946) mem 16099MB [2025-01-18 03:17:11 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][210/312] eta 0:00:48 lr 0.002736 time 0.4445 (0.4727) model_time 0.4440 (0.4650) loss 3.2900 (3.3277) grad_norm 0.9264 (1.6296/0.6902) mem 16099MB [2025-01-18 03:17:15 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][220/312] eta 0:00:43 lr 0.002735 time 0.4546 (0.4721) model_time 0.4542 (0.4647) loss 3.3443 (3.3354) grad_norm 0.9014 (1.6022/0.6869) mem 16099MB [2025-01-18 03:17:20 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][230/312] eta 0:00:38 lr 0.002735 time 0.4969 (0.4716) model_time 0.4965 (0.4646) loss 3.5823 (3.3447) grad_norm 1.6510 (1.5938/0.6815) mem 16099MB [2025-01-18 03:17:25 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][240/312] eta 0:00:33 lr 0.002734 time 0.4399 (0.4709) model_time 0.4395 (0.4641) loss 3.4500 (3.3451) grad_norm 0.8101 (1.5996/0.6854) mem 16099MB [2025-01-18 03:17:29 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][250/312] eta 0:00:29 lr 0.002733 time 0.4686 (0.4703) model_time 0.4685 (0.4636) loss 2.9621 (3.3440) grad_norm 1.1553 (1.5966/0.6810) mem 16099MB [2025-01-18 03:17:34 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][260/312] eta 0:00:24 lr 0.002733 time 0.4451 (0.4696) model_time 0.4447 (0.4631) loss 3.4555 (3.3487) grad_norm 1.5897 (1.6035/0.6769) mem 16099MB [2025-01-18 03:17:38 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][270/312] eta 0:00:19 lr 0.002732 time 0.4446 (0.4696) model_time 0.4442 (0.4634) loss 3.3539 (3.3484) grad_norm 3.2456 (1.6232/0.6823) mem 16099MB [2025-01-18 03:17:43 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][280/312] eta 0:00:15 lr 0.002732 time 0.4486 (0.4692) model_time 0.4484 (0.4632) loss 2.9183 (3.3517) grad_norm 1.9424 (1.6383/0.6957) mem 16099MB [2025-01-18 03:17:48 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][290/312] eta 0:00:10 lr 0.002731 time 0.4516 (0.4693) model_time 0.4511 (0.4635) loss 3.3380 (3.3418) grad_norm 1.1107 (1.6300/0.6883) mem 16099MB [2025-01-18 03:17:52 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][300/312] eta 0:00:05 lr 0.002730 time 0.4373 (0.4692) model_time 0.4372 (0.4635) loss 2.7145 (3.3368) grad_norm 1.4982 (1.6381/0.6838) mem 16099MB [2025-01-18 03:17:57 internimage_t_1k_224] (main.py 510): INFO Train: [114/300][310/312] eta 0:00:00 lr 0.002730 time 0.4449 (0.4694) model_time 0.4448 (0.4639) loss 2.4290 (3.3403) grad_norm 1.1428 (1.6287/0.6834) mem 16099MB [2025-01-18 03:17:58 internimage_t_1k_224] (main.py 519): INFO EPOCH 114 training takes 0:02:26 [2025-01-18 03:17:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_114.pth saving...... [2025-01-18 03:17:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_114.pth saved !!! [2025-01-18 03:18:06 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.379 (7.379) Loss 0.9312 (0.9312) Acc@1 81.250 (81.250) Acc@5 96.265 (96.265) Mem 16099MB [2025-01-18 03:18:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.988) Loss 1.2369 (1.0701) Acc@1 73.486 (77.754) Acc@5 92.432 (94.303) Mem 16099MB [2025-01-18 03:18:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:114] * Acc@1 77.705 Acc@5 94.374 [2025-01-18 03:18:10 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.7% [2025-01-18 03:18:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:18:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:18:11 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.71% [2025-01-18 03:18:18 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.247 (7.247) Loss 0.8515 (0.8515) Acc@1 81.592 (81.592) Acc@5 96.582 (96.582) Mem 16099MB [2025-01-18 03:18:22 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.987) Loss 1.2290 (1.0095) Acc@1 72.314 (78.300) Acc@5 92.017 (94.442) Mem 16099MB [2025-01-18 03:18:22 internimage_t_1k_224] (main.py 575): INFO [Epoch:114] * Acc@1 78.187 Acc@5 94.468 [2025-01-18 03:18:22 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.2% [2025-01-18 03:18:22 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:18:23 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:18:23 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.19% [2025-01-18 03:18:25 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][0/312] eta 0:12:17 lr 0.002730 time 2.3627 (2.3627) model_time 0.4610 (0.4610) loss 2.5087 (2.5087) grad_norm 0.8137 (0.8137/0.0000) mem 16099MB [2025-01-18 03:18:30 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][10/312] eta 0:03:16 lr 0.002729 time 0.5410 (0.6507) model_time 0.5409 (0.4776) loss 2.5311 (3.0513) grad_norm 1.2029 (1.0819/0.2148) mem 16099MB [2025-01-18 03:18:35 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][20/312] eta 0:02:43 lr 0.002728 time 0.4504 (0.5616) model_time 0.4503 (0.4707) loss 3.0510 (3.1158) grad_norm 0.9795 (1.4016/0.4725) mem 16099MB [2025-01-18 03:18:40 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][30/312] eta 0:02:29 lr 0.002728 time 0.5421 (0.5310) model_time 0.5419 (0.4693) loss 3.2590 (3.2067) grad_norm 2.0527 (1.6109/0.7376) mem 16099MB [2025-01-18 03:18:44 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][40/312] eta 0:02:21 lr 0.002727 time 0.4510 (0.5194) model_time 0.4506 (0.4727) loss 3.5148 (3.2210) grad_norm 1.4588 (1.7387/0.7915) mem 16099MB [2025-01-18 03:18:49 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][50/312] eta 0:02:12 lr 0.002726 time 0.4547 (0.5065) model_time 0.4545 (0.4689) loss 2.6610 (3.2110) grad_norm 2.1417 (1.6353/0.7577) mem 16099MB [2025-01-18 03:18:54 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][60/312] eta 0:02:05 lr 0.002726 time 0.4544 (0.4983) model_time 0.4542 (0.4668) loss 3.7031 (3.2568) grad_norm 1.6144 (1.6627/0.7115) mem 16099MB [2025-01-18 03:18:58 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][70/312] eta 0:01:59 lr 0.002725 time 0.4452 (0.4944) model_time 0.4447 (0.4672) loss 2.1615 (3.2627) grad_norm 1.3263 (1.6338/0.6932) mem 16099MB [2025-01-18 03:19:03 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][80/312] eta 0:01:53 lr 0.002725 time 0.4608 (0.4903) model_time 0.4607 (0.4665) loss 3.6435 (3.3245) grad_norm 1.5577 (1.6709/0.7077) mem 16099MB [2025-01-18 03:19:07 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][90/312] eta 0:01:48 lr 0.002724 time 0.4462 (0.4869) model_time 0.4456 (0.4656) loss 2.2555 (3.2932) grad_norm 1.5298 (1.7216/0.7536) mem 16099MB [2025-01-18 03:19:12 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][100/312] eta 0:01:42 lr 0.002723 time 0.4470 (0.4850) model_time 0.4466 (0.4658) loss 2.6014 (3.2550) grad_norm 1.1566 (1.6830/0.7313) mem 16099MB [2025-01-18 03:19:17 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][110/312] eta 0:01:37 lr 0.002723 time 0.4566 (0.4829) model_time 0.4564 (0.4654) loss 4.0088 (3.2694) grad_norm 1.0118 (1.6455/0.7155) mem 16099MB [2025-01-18 03:19:21 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][120/312] eta 0:01:32 lr 0.002722 time 0.5407 (0.4816) model_time 0.5405 (0.4655) loss 2.5679 (3.2540) grad_norm 1.2001 (1.6225/0.6980) mem 16099MB [2025-01-18 03:19:26 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][130/312] eta 0:01:27 lr 0.002721 time 0.4967 (0.4801) model_time 0.4965 (0.4652) loss 3.2083 (3.2569) grad_norm 0.7723 (1.6641/0.7385) mem 16099MB [2025-01-18 03:19:31 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][140/312] eta 0:01:22 lr 0.002721 time 0.5729 (0.4798) model_time 0.5725 (0.4659) loss 2.3201 (3.2550) grad_norm 1.3684 (1.6944/0.7760) mem 16099MB [2025-01-18 03:19:35 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][150/312] eta 0:01:17 lr 0.002720 time 0.4620 (0.4785) model_time 0.4616 (0.4656) loss 3.5602 (3.2773) grad_norm 1.2232 (1.6650/0.7621) mem 16099MB [2025-01-18 03:19:40 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][160/312] eta 0:01:12 lr 0.002720 time 0.4470 (0.4774) model_time 0.4468 (0.4653) loss 4.3922 (3.2918) grad_norm 0.9005 (1.6671/0.7605) mem 16099MB [2025-01-18 03:19:45 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][170/312] eta 0:01:07 lr 0.002719 time 0.4813 (0.4766) model_time 0.4811 (0.4651) loss 2.5489 (3.3032) grad_norm 2.0972 (1.6722/0.7630) mem 16099MB [2025-01-18 03:19:49 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][180/312] eta 0:01:02 lr 0.002718 time 0.4398 (0.4763) model_time 0.4393 (0.4654) loss 4.1214 (3.3065) grad_norm 1.3207 (1.6707/0.7439) mem 16099MB [2025-01-18 03:19:54 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][190/312] eta 0:00:57 lr 0.002718 time 0.4547 (0.4750) model_time 0.4545 (0.4646) loss 3.4068 (3.3088) grad_norm 1.3478 (1.6615/0.7316) mem 16099MB [2025-01-18 03:19:58 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][200/312] eta 0:00:53 lr 0.002717 time 0.4547 (0.4739) model_time 0.4545 (0.4641) loss 2.1833 (3.2955) grad_norm 1.5464 (1.6643/0.7358) mem 16099MB [2025-01-18 03:20:03 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][210/312] eta 0:00:48 lr 0.002717 time 0.4507 (0.4738) model_time 0.4505 (0.4645) loss 3.2942 (3.3039) grad_norm 2.1236 (1.6807/0.7570) mem 16099MB [2025-01-18 03:20:08 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][220/312] eta 0:00:43 lr 0.002716 time 0.4507 (0.4733) model_time 0.4502 (0.4643) loss 3.1052 (3.2985) grad_norm 1.1961 (1.6886/0.7661) mem 16099MB [2025-01-18 03:20:12 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][230/312] eta 0:00:38 lr 0.002715 time 0.4502 (0.4728) model_time 0.4498 (0.4642) loss 3.4950 (3.3018) grad_norm 0.8296 (1.6835/0.7569) mem 16099MB [2025-01-18 03:20:17 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][240/312] eta 0:00:34 lr 0.002715 time 0.4396 (0.4727) model_time 0.4394 (0.4645) loss 3.9325 (3.3035) grad_norm 1.4515 (1.7124/0.7783) mem 16099MB [2025-01-18 03:20:22 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][250/312] eta 0:00:29 lr 0.002714 time 0.4599 (0.4722) model_time 0.4597 (0.4643) loss 2.2754 (3.2969) grad_norm 0.7625 (1.6874/0.7748) mem 16099MB [2025-01-18 03:20:26 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][260/312] eta 0:00:24 lr 0.002713 time 0.4451 (0.4715) model_time 0.4446 (0.4639) loss 2.4944 (3.2991) grad_norm 1.8012 (1.6833/0.7637) mem 16099MB [2025-01-18 03:20:31 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][270/312] eta 0:00:19 lr 0.002713 time 0.4521 (0.4712) model_time 0.4517 (0.4638) loss 3.2342 (3.2993) grad_norm 0.9342 (1.6706/0.7557) mem 16099MB [2025-01-18 03:20:36 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][280/312] eta 0:00:15 lr 0.002712 time 0.4722 (0.4719) model_time 0.4718 (0.4647) loss 4.3645 (3.3146) grad_norm 1.0285 (1.6532/0.7507) mem 16099MB [2025-01-18 03:20:40 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][290/312] eta 0:00:10 lr 0.002712 time 0.4498 (0.4715) model_time 0.4493 (0.4645) loss 3.9782 (3.3114) grad_norm 1.5769 (1.6720/0.7537) mem 16099MB [2025-01-18 03:20:45 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][300/312] eta 0:00:05 lr 0.002711 time 0.4379 (0.4707) model_time 0.4378 (0.4640) loss 2.2566 (3.3073) grad_norm 0.6339 (1.6677/0.7512) mem 16099MB [2025-01-18 03:20:49 internimage_t_1k_224] (main.py 510): INFO Train: [115/300][310/312] eta 0:00:00 lr 0.002710 time 0.4396 (0.4705) model_time 0.4396 (0.4641) loss 3.2727 (3.3145) grad_norm 0.9699 (1.6719/0.7492) mem 16099MB [2025-01-18 03:20:50 internimage_t_1k_224] (main.py 519): INFO EPOCH 115 training takes 0:02:26 [2025-01-18 03:20:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_115.pth saving...... [2025-01-18 03:20:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_115.pth saved !!! [2025-01-18 03:20:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.210 (7.210) Loss 0.9139 (0.9139) Acc@1 80.981 (80.981) Acc@5 95.825 (95.825) Mem 16099MB [2025-01-18 03:21:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.961) Loss 1.2521 (1.0810) Acc@1 73.193 (77.634) Acc@5 92.236 (94.098) Mem 16099MB [2025-01-18 03:21:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:115] * Acc@1 77.459 Acc@5 94.082 [2025-01-18 03:21:02 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.5% [2025-01-18 03:21:02 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.71% [2025-01-18 03:21:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.106 (8.106) Loss 0.8487 (0.8487) Acc@1 81.738 (81.738) Acc@5 96.655 (96.655) Mem 16099MB [2025-01-18 03:21:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.079) Loss 1.2236 (1.0054) Acc@1 72.461 (78.416) Acc@5 92.017 (94.491) Mem 16099MB [2025-01-18 03:21:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:115] * Acc@1 78.293 Acc@5 94.518 [2025-01-18 03:21:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.3% [2025-01-18 03:21:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:21:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:21:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.29% [2025-01-18 03:21:17 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][0/312] eta 0:12:21 lr 0.002710 time 2.3772 (2.3772) model_time 0.4797 (0.4797) loss 3.4234 (3.4234) grad_norm 1.7998 (1.7998/0.0000) mem 16099MB [2025-01-18 03:21:22 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][10/312] eta 0:03:15 lr 0.002710 time 0.4638 (0.6487) model_time 0.4637 (0.4759) loss 3.1806 (3.2435) grad_norm 3.5396 (2.2002/1.0228) mem 16099MB [2025-01-18 03:21:27 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][20/312] eta 0:02:43 lr 0.002709 time 0.4401 (0.5583) model_time 0.4399 (0.4677) loss 4.0827 (3.3078) grad_norm 1.4270 (1.7331/0.9109) mem 16099MB [2025-01-18 03:21:32 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][30/312] eta 0:02:29 lr 0.002708 time 0.4944 (0.5309) model_time 0.4943 (0.4694) loss 3.0822 (3.3208) grad_norm 0.9055 (1.5751/0.8204) mem 16099MB [2025-01-18 03:21:36 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][40/312] eta 0:02:21 lr 0.002708 time 0.5561 (0.5197) model_time 0.5556 (0.4731) loss 3.5662 (3.2897) grad_norm 3.4003 (1.7342/0.9266) mem 16099MB [2025-01-18 03:21:41 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][50/312] eta 0:02:12 lr 0.002707 time 0.4534 (0.5071) model_time 0.4532 (0.4696) loss 2.4894 (3.3023) grad_norm 1.5492 (1.7744/0.9013) mem 16099MB [2025-01-18 03:21:46 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][60/312] eta 0:02:07 lr 0.002706 time 0.4435 (0.5048) model_time 0.4430 (0.4733) loss 2.6742 (3.3138) grad_norm 0.8594 (1.7367/0.8894) mem 16099MB [2025-01-18 03:21:50 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][70/312] eta 0:02:00 lr 0.002706 time 0.4560 (0.4975) model_time 0.4558 (0.4704) loss 3.1310 (3.3422) grad_norm 2.5708 (1.7197/0.8707) mem 16099MB [2025-01-18 03:21:55 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][80/312] eta 0:01:54 lr 0.002705 time 0.4473 (0.4943) model_time 0.4469 (0.4706) loss 3.4395 (3.3628) grad_norm 2.0034 (1.7852/0.8561) mem 16099MB [2025-01-18 03:22:00 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][90/312] eta 0:01:48 lr 0.002705 time 0.4463 (0.4902) model_time 0.4462 (0.4691) loss 3.1793 (3.3754) grad_norm 0.9530 (1.7546/0.8299) mem 16099MB [2025-01-18 03:22:05 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][100/312] eta 0:01:43 lr 0.002704 time 0.5835 (0.4896) model_time 0.5833 (0.4705) loss 2.2205 (3.3694) grad_norm 1.7506 (1.7278/0.8030) mem 16099MB [2025-01-18 03:22:09 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][110/312] eta 0:01:38 lr 0.002703 time 0.4548 (0.4869) model_time 0.4546 (0.4695) loss 3.6668 (3.3699) grad_norm 1.2679 (1.7243/0.7908) mem 16099MB [2025-01-18 03:22:14 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][120/312] eta 0:01:33 lr 0.002703 time 0.4562 (0.4848) model_time 0.4557 (0.4688) loss 2.9193 (3.3541) grad_norm 0.9428 (1.7146/0.7909) mem 16099MB [2025-01-18 03:22:18 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][130/312] eta 0:01:28 lr 0.002702 time 0.4546 (0.4836) model_time 0.4545 (0.4688) loss 3.5763 (3.3426) grad_norm 3.3164 (1.7771/0.8228) mem 16099MB [2025-01-18 03:22:23 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][140/312] eta 0:01:22 lr 0.002701 time 0.4744 (0.4820) model_time 0.4740 (0.4682) loss 2.8016 (3.3385) grad_norm 1.0297 (1.7538/0.8273) mem 16099MB [2025-01-18 03:22:28 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][150/312] eta 0:01:17 lr 0.002701 time 0.4505 (0.4805) model_time 0.4503 (0.4677) loss 2.8912 (3.3131) grad_norm 1.4977 (1.7318/0.8101) mem 16099MB [2025-01-18 03:22:32 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][160/312] eta 0:01:12 lr 0.002700 time 0.4484 (0.4798) model_time 0.4482 (0.4677) loss 3.5914 (3.3162) grad_norm 1.0431 (1.7122/0.7969) mem 16099MB [2025-01-18 03:22:37 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][170/312] eta 0:01:08 lr 0.002700 time 0.4493 (0.4800) model_time 0.4491 (0.4685) loss 3.3111 (3.3121) grad_norm 1.0668 (1.6836/0.7893) mem 16099MB [2025-01-18 03:22:42 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][180/312] eta 0:01:03 lr 0.002699 time 0.4580 (0.4787) model_time 0.4576 (0.4679) loss 3.4302 (3.3218) grad_norm 1.5673 (1.7082/0.8193) mem 16099MB [2025-01-18 03:22:46 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][190/312] eta 0:00:58 lr 0.002698 time 0.4529 (0.4773) model_time 0.4525 (0.4670) loss 4.2691 (3.3255) grad_norm 1.0163 (1.7031/0.8105) mem 16099MB [2025-01-18 03:22:51 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][200/312] eta 0:00:53 lr 0.002698 time 0.4473 (0.4764) model_time 0.4469 (0.4666) loss 3.2838 (3.3109) grad_norm 0.7976 (1.7112/0.8113) mem 16099MB [2025-01-18 03:22:55 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][210/312] eta 0:00:48 lr 0.002697 time 0.4637 (0.4754) model_time 0.4635 (0.4661) loss 2.2439 (3.3132) grad_norm 0.8214 (1.7175/0.8204) mem 16099MB [2025-01-18 03:23:00 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][220/312] eta 0:00:43 lr 0.002696 time 0.4500 (0.4753) model_time 0.4495 (0.4663) loss 2.3546 (3.3169) grad_norm 1.7712 (1.7015/0.8110) mem 16099MB [2025-01-18 03:23:05 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][230/312] eta 0:00:38 lr 0.002696 time 0.4508 (0.4743) model_time 0.4504 (0.4658) loss 2.6360 (3.3225) grad_norm 1.3375 (1.6989/0.7973) mem 16099MB [2025-01-18 03:23:09 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][240/312] eta 0:00:34 lr 0.002695 time 0.4592 (0.4746) model_time 0.4588 (0.4664) loss 3.7772 (3.3268) grad_norm 2.5309 (1.6897/0.7898) mem 16099MB [2025-01-18 03:23:14 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][250/312] eta 0:00:29 lr 0.002695 time 0.4537 (0.4746) model_time 0.4536 (0.4667) loss 3.5532 (3.3329) grad_norm 2.2735 (1.6828/0.7795) mem 16099MB [2025-01-18 03:23:19 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][260/312] eta 0:00:24 lr 0.002694 time 0.4532 (0.4741) model_time 0.4527 (0.4664) loss 3.1392 (3.3330) grad_norm 1.1154 (1.6899/0.7747) mem 16099MB [2025-01-18 03:23:24 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][270/312] eta 0:00:19 lr 0.002693 time 0.5655 (0.4739) model_time 0.5653 (0.4666) loss 4.0584 (3.3356) grad_norm 3.8350 (1.7063/0.7831) mem 16099MB [2025-01-18 03:23:28 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][280/312] eta 0:00:15 lr 0.002693 time 0.4404 (0.4745) model_time 0.4400 (0.4674) loss 4.2948 (3.3294) grad_norm 2.8397 (1.7146/0.7793) mem 16099MB [2025-01-18 03:23:33 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][290/312] eta 0:00:10 lr 0.002692 time 0.4474 (0.4739) model_time 0.4469 (0.4671) loss 3.5715 (3.3229) grad_norm 1.7066 (1.7128/0.7706) mem 16099MB [2025-01-18 03:23:38 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][300/312] eta 0:00:05 lr 0.002691 time 0.4377 (0.4741) model_time 0.4376 (0.4674) loss 2.7330 (3.3246) grad_norm 1.7154 (1.6875/0.7730) mem 16099MB [2025-01-18 03:23:42 internimage_t_1k_224] (main.py 510): INFO Train: [116/300][310/312] eta 0:00:00 lr 0.002691 time 0.4423 (0.4731) model_time 0.4422 (0.4667) loss 3.6144 (3.3296) grad_norm 1.0008 (1.6569/0.7464) mem 16099MB [2025-01-18 03:23:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 116 training takes 0:02:27 [2025-01-18 03:23:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_116.pth saving...... [2025-01-18 03:23:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_116.pth saved !!! [2025-01-18 03:23:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.191 (7.191) Loss 0.8662 (0.8662) Acc@1 80.566 (80.566) Acc@5 95.923 (95.923) Mem 16099MB [2025-01-18 03:23:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.989) Loss 1.2475 (1.0201) Acc@1 72.632 (77.876) Acc@5 91.943 (94.314) Mem 16099MB [2025-01-18 03:23:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:116] * Acc@1 77.785 Acc@5 94.348 [2025-01-18 03:23:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.8% [2025-01-18 03:23:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:23:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:23:56 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.79% [2025-01-18 03:24:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.547 (7.547) Loss 0.8458 (0.8458) Acc@1 81.714 (81.714) Acc@5 96.704 (96.704) Mem 16099MB [2025-01-18 03:24:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.004) Loss 1.2185 (1.0016) Acc@1 72.729 (78.538) Acc@5 92.065 (94.553) Mem 16099MB [2025-01-18 03:24:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:116] * Acc@1 78.419 Acc@5 94.572 [2025-01-18 03:24:07 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.4% [2025-01-18 03:24:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:24:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:24:09 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.42% [2025-01-18 03:24:11 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][0/312] eta 0:12:09 lr 0.002691 time 2.3372 (2.3372) model_time 0.4714 (0.4714) loss 4.0448 (4.0448) grad_norm 0.9319 (0.9319/0.0000) mem 16099MB [2025-01-18 03:24:16 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][10/312] eta 0:03:16 lr 0.002690 time 0.5394 (0.6510) model_time 0.5390 (0.4810) loss 2.4858 (3.4495) grad_norm 1.2982 (1.9222/1.1603) mem 16099MB [2025-01-18 03:24:20 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][20/312] eta 0:02:45 lr 0.002689 time 0.4514 (0.5673) model_time 0.4510 (0.4781) loss 2.6140 (3.4875) grad_norm 1.0335 (1.6197/0.9184) mem 16099MB [2025-01-18 03:24:25 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][30/312] eta 0:02:31 lr 0.002689 time 0.4480 (0.5357) model_time 0.4478 (0.4752) loss 2.2845 (3.3387) grad_norm 2.5806 (2.0121/1.3303) mem 16099MB [2025-01-18 03:24:30 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][40/312] eta 0:02:21 lr 0.002688 time 0.4654 (0.5202) model_time 0.4650 (0.4743) loss 3.2119 (3.3464) grad_norm 2.1700 (1.9015/1.2055) mem 16099MB [2025-01-18 03:24:34 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][50/312] eta 0:02:13 lr 0.002688 time 0.4436 (0.5088) model_time 0.4432 (0.4719) loss 3.3242 (3.3397) grad_norm 0.8325 (1.8447/1.1377) mem 16099MB [2025-01-18 03:24:39 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][60/312] eta 0:02:06 lr 0.002687 time 0.4527 (0.5023) model_time 0.4526 (0.4714) loss 3.9758 (3.3100) grad_norm 0.7179 (1.7156/1.0904) mem 16099MB [2025-01-18 03:24:44 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][70/312] eta 0:01:59 lr 0.002686 time 0.4513 (0.4959) model_time 0.4509 (0.4692) loss 3.6296 (3.3541) grad_norm 1.0423 (1.6370/1.0368) mem 16099MB [2025-01-18 03:24:48 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][80/312] eta 0:01:53 lr 0.002686 time 0.4483 (0.4908) model_time 0.4479 (0.4674) loss 3.7632 (3.3396) grad_norm 0.8530 (1.6468/1.0076) mem 16099MB [2025-01-18 03:24:53 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][90/312] eta 0:01:48 lr 0.002685 time 0.4440 (0.4884) model_time 0.4439 (0.4676) loss 3.4955 (3.3566) grad_norm 1.6549 (1.6029/0.9686) mem 16099MB [2025-01-18 03:24:58 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][100/312] eta 0:01:43 lr 0.002684 time 0.4584 (0.4868) model_time 0.4583 (0.4680) loss 3.6613 (3.3799) grad_norm 0.7007 (1.6068/0.9519) mem 16099MB [2025-01-18 03:25:02 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][110/312] eta 0:01:38 lr 0.002684 time 0.4937 (0.4852) model_time 0.4935 (0.4680) loss 3.2917 (3.3725) grad_norm 1.1410 (1.6250/0.9566) mem 16099MB [2025-01-18 03:25:07 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][120/312] eta 0:01:32 lr 0.002683 time 0.4745 (0.4832) model_time 0.4743 (0.4674) loss 3.2568 (3.3592) grad_norm 1.5404 (1.6084/0.9225) mem 16099MB [2025-01-18 03:25:12 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][130/312] eta 0:01:27 lr 0.002683 time 0.4553 (0.4814) model_time 0.4552 (0.4668) loss 3.1979 (3.3374) grad_norm 1.3824 (1.6267/0.9132) mem 16099MB [2025-01-18 03:25:16 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][140/312] eta 0:01:22 lr 0.002682 time 0.4486 (0.4804) model_time 0.4484 (0.4668) loss 2.3372 (3.3361) grad_norm 2.1455 (1.5989/0.8927) mem 16099MB [2025-01-18 03:25:21 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][150/312] eta 0:01:17 lr 0.002681 time 0.5478 (0.4796) model_time 0.5476 (0.4669) loss 3.3360 (3.3499) grad_norm 1.2488 (1.6334/0.9583) mem 16099MB [2025-01-18 03:25:26 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][160/312] eta 0:01:12 lr 0.002681 time 0.4539 (0.4791) model_time 0.4538 (0.4671) loss 2.8768 (3.3628) grad_norm 1.2009 (1.6364/0.9470) mem 16099MB [2025-01-18 03:25:30 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][170/312] eta 0:01:07 lr 0.002680 time 0.4496 (0.4775) model_time 0.4494 (0.4662) loss 3.9926 (3.3652) grad_norm 0.8716 (1.6237/0.9236) mem 16099MB [2025-01-18 03:25:35 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][180/312] eta 0:01:02 lr 0.002679 time 0.4611 (0.4762) model_time 0.4607 (0.4655) loss 3.6812 (3.3500) grad_norm 1.1467 (1.6119/0.9082) mem 16099MB [2025-01-18 03:25:40 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][190/312] eta 0:00:58 lr 0.002679 time 0.4507 (0.4767) model_time 0.4502 (0.4666) loss 2.8823 (3.3498) grad_norm 1.1916 (1.5899/0.8923) mem 16099MB [2025-01-18 03:25:44 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][200/312] eta 0:00:53 lr 0.002678 time 0.4655 (0.4761) model_time 0.4653 (0.4665) loss 3.1703 (3.3439) grad_norm 2.3457 (1.6122/0.8931) mem 16099MB [2025-01-18 03:25:49 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][210/312] eta 0:00:48 lr 0.002678 time 0.4687 (0.4757) model_time 0.4686 (0.4665) loss 2.4055 (3.3320) grad_norm 0.8054 (1.6469/0.9380) mem 16099MB [2025-01-18 03:25:54 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][220/312] eta 0:00:43 lr 0.002677 time 0.4487 (0.4752) model_time 0.4485 (0.4664) loss 3.8624 (3.3482) grad_norm 1.4922 (1.6462/0.9211) mem 16099MB [2025-01-18 03:25:58 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][230/312] eta 0:00:38 lr 0.002676 time 0.4433 (0.4743) model_time 0.4428 (0.4659) loss 2.6815 (3.3333) grad_norm 1.1177 (1.6395/0.9063) mem 16099MB [2025-01-18 03:26:03 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][240/312] eta 0:00:34 lr 0.002676 time 0.4704 (0.4739) model_time 0.4700 (0.4658) loss 3.6706 (3.3328) grad_norm 0.9313 (1.6359/0.8942) mem 16099MB [2025-01-18 03:26:07 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][250/312] eta 0:00:29 lr 0.002675 time 0.4421 (0.4735) model_time 0.4419 (0.4657) loss 4.0344 (3.3434) grad_norm 2.4120 (1.6519/0.8923) mem 16099MB [2025-01-18 03:26:12 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][260/312] eta 0:00:24 lr 0.002674 time 0.4622 (0.4736) model_time 0.4621 (0.4661) loss 3.1609 (3.3526) grad_norm 1.7147 (1.6461/0.8822) mem 16099MB [2025-01-18 03:26:17 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][270/312] eta 0:00:19 lr 0.002674 time 0.4545 (0.4729) model_time 0.4541 (0.4656) loss 3.1012 (3.3550) grad_norm 1.8222 (1.6341/0.8713) mem 16099MB [2025-01-18 03:26:21 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][280/312] eta 0:00:15 lr 0.002673 time 0.4821 (0.4723) model_time 0.4819 (0.4653) loss 3.5277 (3.3469) grad_norm 4.0625 (1.6612/0.8810) mem 16099MB [2025-01-18 03:26:26 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][290/312] eta 0:00:10 lr 0.002673 time 0.4615 (0.4721) model_time 0.4609 (0.4653) loss 3.4542 (3.3498) grad_norm 1.4630 (1.6855/0.8919) mem 16099MB [2025-01-18 03:26:30 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][300/312] eta 0:00:05 lr 0.002672 time 0.4368 (0.4712) model_time 0.4367 (0.4646) loss 3.0716 (3.3451) grad_norm 1.0632 (1.6812/0.8809) mem 16099MB [2025-01-18 03:26:35 internimage_t_1k_224] (main.py 510): INFO Train: [117/300][310/312] eta 0:00:00 lr 0.002671 time 0.4385 (0.4703) model_time 0.4384 (0.4640) loss 3.4270 (3.3376) grad_norm 1.6666 (1.6606/0.8561) mem 16099MB [2025-01-18 03:26:35 internimage_t_1k_224] (main.py 519): INFO EPOCH 117 training takes 0:02:26 [2025-01-18 03:26:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_117.pth saving...... [2025-01-18 03:26:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_117.pth saved !!! [2025-01-18 03:26:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.126 (7.126) Loss 0.8774 (0.8774) Acc@1 81.250 (81.250) Acc@5 96.265 (96.265) Mem 16099MB [2025-01-18 03:26:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.953) Loss 1.2540 (1.0400) Acc@1 73.193 (78.034) Acc@5 92.505 (94.414) Mem 16099MB [2025-01-18 03:26:47 internimage_t_1k_224] (main.py 575): INFO [Epoch:117] * Acc@1 77.933 Acc@5 94.436 [2025-01-18 03:26:47 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.9% [2025-01-18 03:26:47 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:26:48 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:26:48 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.93% [2025-01-18 03:26:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.342 (7.342) Loss 0.8438 (0.8438) Acc@1 81.738 (81.738) Acc@5 96.753 (96.753) Mem 16099MB [2025-01-18 03:26:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.979) Loss 1.2140 (0.9982) Acc@1 72.754 (78.635) Acc@5 92.139 (94.607) Mem 16099MB [2025-01-18 03:26:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:117] * Acc@1 78.519 Acc@5 94.634 [2025-01-18 03:26:59 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.5% [2025-01-18 03:26:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:27:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:27:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.52% [2025-01-18 03:27:03 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][0/312] eta 0:11:43 lr 0.002671 time 2.2547 (2.2547) model_time 0.4613 (0.4613) loss 3.9934 (3.9934) grad_norm 1.6393 (1.6393/0.0000) mem 16099MB [2025-01-18 03:27:07 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][10/312] eta 0:03:14 lr 0.002671 time 0.4527 (0.6453) model_time 0.4523 (0.4819) loss 3.4354 (3.4679) grad_norm 1.0825 (1.4817/0.3719) mem 16099MB [2025-01-18 03:27:12 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][20/312] eta 0:02:44 lr 0.002670 time 0.4491 (0.5633) model_time 0.4487 (0.4775) loss 4.0057 (3.2991) grad_norm 1.2315 (1.4110/0.2938) mem 16099MB [2025-01-18 03:27:17 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][30/312] eta 0:02:29 lr 0.002669 time 0.4576 (0.5300) model_time 0.4571 (0.4718) loss 2.3744 (3.3725) grad_norm 0.9331 (1.3669/0.3012) mem 16099MB [2025-01-18 03:27:21 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][40/312] eta 0:02:19 lr 0.002669 time 0.4679 (0.5116) model_time 0.4677 (0.4674) loss 3.7279 (3.3493) grad_norm 1.7479 (1.7843/1.0865) mem 16099MB [2025-01-18 03:27:26 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][50/312] eta 0:02:12 lr 0.002668 time 0.4862 (0.5059) model_time 0.4860 (0.4703) loss 3.5736 (3.3993) grad_norm 1.0452 (1.7496/1.0054) mem 16099MB [2025-01-18 03:27:31 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][60/312] eta 0:02:07 lr 0.002667 time 0.4492 (0.5047) model_time 0.4490 (0.4750) loss 3.3794 (3.3897) grad_norm 1.1197 (1.6302/0.9617) mem 16099MB [2025-01-18 03:27:36 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][70/312] eta 0:02:00 lr 0.002667 time 0.4644 (0.4995) model_time 0.4642 (0.4739) loss 3.5658 (3.4032) grad_norm 2.8507 (1.5667/0.9308) mem 16099MB [2025-01-18 03:27:40 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][80/312] eta 0:01:54 lr 0.002666 time 0.4533 (0.4945) model_time 0.4531 (0.4720) loss 3.6868 (3.4040) grad_norm 2.1421 (1.6107/0.9531) mem 16099MB [2025-01-18 03:27:45 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][90/312] eta 0:01:49 lr 0.002666 time 0.4424 (0.4918) model_time 0.4422 (0.4717) loss 2.2899 (3.3814) grad_norm 1.0191 (1.6206/0.9327) mem 16099MB [2025-01-18 03:27:50 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][100/312] eta 0:01:43 lr 0.002665 time 0.4489 (0.4886) model_time 0.4487 (0.4705) loss 3.6751 (3.3961) grad_norm 0.8945 (1.6254/0.9027) mem 16099MB [2025-01-18 03:27:54 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][110/312] eta 0:01:38 lr 0.002664 time 0.4389 (0.4865) model_time 0.4385 (0.4700) loss 2.8097 (3.3702) grad_norm 2.2108 (1.6332/0.8845) mem 16099MB [2025-01-18 03:27:59 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][120/312] eta 0:01:33 lr 0.002664 time 0.5333 (0.4855) model_time 0.5329 (0.4703) loss 4.0994 (3.4163) grad_norm 1.4801 (1.6102/0.8558) mem 16099MB [2025-01-18 03:28:04 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][130/312] eta 0:01:27 lr 0.002663 time 0.4470 (0.4834) model_time 0.4465 (0.4694) loss 3.4084 (3.3863) grad_norm 1.3178 (1.5852/0.8366) mem 16099MB [2025-01-18 03:28:09 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][140/312] eta 0:01:23 lr 0.002662 time 0.4483 (0.4838) model_time 0.4482 (0.4707) loss 2.9316 (3.3719) grad_norm 0.8022 (1.5534/0.8181) mem 16099MB [2025-01-18 03:28:13 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][150/312] eta 0:01:18 lr 0.002662 time 0.4468 (0.4833) model_time 0.4466 (0.4710) loss 3.4990 (3.3926) grad_norm 2.7839 (1.5645/0.8134) mem 16099MB [2025-01-18 03:28:18 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][160/312] eta 0:01:13 lr 0.002661 time 0.4639 (0.4819) model_time 0.4635 (0.4704) loss 4.0243 (3.3851) grad_norm 1.2110 (1.5941/0.8201) mem 16099MB [2025-01-18 03:28:22 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][170/312] eta 0:01:08 lr 0.002660 time 0.4560 (0.4803) model_time 0.4554 (0.4695) loss 2.9459 (3.3967) grad_norm 1.9478 (1.5938/0.8041) mem 16099MB [2025-01-18 03:28:27 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][180/312] eta 0:01:03 lr 0.002660 time 0.4701 (0.4790) model_time 0.4695 (0.4687) loss 3.8115 (3.3995) grad_norm 2.6534 (1.5901/0.7902) mem 16099MB [2025-01-18 03:28:32 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][190/312] eta 0:00:58 lr 0.002659 time 0.4458 (0.4781) model_time 0.4456 (0.4684) loss 2.3552 (3.4007) grad_norm 1.4245 (1.6150/0.8053) mem 16099MB [2025-01-18 03:28:36 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][200/312] eta 0:00:53 lr 0.002659 time 0.4564 (0.4775) model_time 0.4559 (0.4682) loss 3.4803 (3.3910) grad_norm 1.1968 (1.5918/0.7933) mem 16099MB [2025-01-18 03:28:41 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][210/312] eta 0:00:48 lr 0.002658 time 0.4674 (0.4769) model_time 0.4672 (0.4680) loss 2.8834 (3.3773) grad_norm 1.3944 (1.5778/0.7807) mem 16099MB [2025-01-18 03:28:45 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][220/312] eta 0:00:43 lr 0.002657 time 0.4516 (0.4757) model_time 0.4514 (0.4673) loss 3.4538 (3.3767) grad_norm 1.0302 (1.6016/0.7978) mem 16099MB [2025-01-18 03:28:50 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][230/312] eta 0:00:38 lr 0.002657 time 0.4424 (0.4754) model_time 0.4421 (0.4672) loss 2.7622 (3.3649) grad_norm 0.8582 (1.6235/0.8175) mem 16099MB [2025-01-18 03:28:55 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][240/312] eta 0:00:34 lr 0.002656 time 0.4500 (0.4747) model_time 0.4496 (0.4668) loss 3.4868 (3.3623) grad_norm 0.8499 (1.6197/0.8027) mem 16099MB [2025-01-18 03:28:59 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][250/312] eta 0:00:29 lr 0.002655 time 0.4444 (0.4743) model_time 0.4439 (0.4667) loss 3.5097 (3.3599) grad_norm 1.0747 (1.6185/0.7910) mem 16099MB [2025-01-18 03:29:04 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][260/312] eta 0:00:24 lr 0.002655 time 0.4544 (0.4737) model_time 0.4539 (0.4664) loss 3.9625 (3.3631) grad_norm 1.3925 (1.6189/0.7814) mem 16099MB [2025-01-18 03:29:09 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][270/312] eta 0:00:19 lr 0.002654 time 0.4453 (0.4734) model_time 0.4450 (0.4663) loss 2.9443 (3.3573) grad_norm 0.8785 (1.6092/0.7733) mem 16099MB [2025-01-18 03:29:13 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][280/312] eta 0:00:15 lr 0.002654 time 0.5377 (0.4733) model_time 0.5375 (0.4665) loss 3.6865 (3.3502) grad_norm 0.8620 (1.5887/0.7675) mem 16099MB [2025-01-18 03:29:18 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][290/312] eta 0:00:10 lr 0.002653 time 0.4429 (0.4743) model_time 0.4424 (0.4677) loss 2.9889 (3.3468) grad_norm 2.4413 (1.5869/0.7608) mem 16099MB [2025-01-18 03:29:23 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][300/312] eta 0:00:05 lr 0.002652 time 0.4397 (0.4741) model_time 0.4397 (0.4677) loss 3.8353 (3.3557) grad_norm 1.5581 (1.5909/0.7528) mem 16099MB [2025-01-18 03:29:28 internimage_t_1k_224] (main.py 510): INFO Train: [118/300][310/312] eta 0:00:00 lr 0.002652 time 0.5381 (0.4744) model_time 0.5380 (0.4683) loss 2.2376 (3.3441) grad_norm 1.1516 (1.5976/0.7561) mem 16099MB [2025-01-18 03:29:28 internimage_t_1k_224] (main.py 519): INFO EPOCH 118 training takes 0:02:28 [2025-01-18 03:29:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_118.pth saving...... [2025-01-18 03:29:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_118.pth saved !!! [2025-01-18 03:29:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.205 (7.205) Loss 0.8793 (0.8793) Acc@1 80.640 (80.640) Acc@5 95.825 (95.825) Mem 16099MB [2025-01-18 03:29:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.959) Loss 1.2434 (1.0425) Acc@1 72.827 (77.557) Acc@5 91.797 (94.278) Mem 16099MB [2025-01-18 03:29:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:118] * Acc@1 77.503 Acc@5 94.310 [2025-01-18 03:29:40 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 77.5% [2025-01-18 03:29:40 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 77.93% [2025-01-18 03:29:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.402 (8.402) Loss 0.8419 (0.8419) Acc@1 81.860 (81.860) Acc@5 96.777 (96.777) Mem 16099MB [2025-01-18 03:29:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.097) Loss 1.2098 (0.9951) Acc@1 72.681 (78.711) Acc@5 92.261 (94.642) Mem 16099MB [2025-01-18 03:29:53 internimage_t_1k_224] (main.py 575): INFO [Epoch:118] * Acc@1 78.609 Acc@5 94.670 [2025-01-18 03:29:53 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.6% [2025-01-18 03:29:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:29:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:29:54 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.61% [2025-01-18 03:29:56 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][0/312] eta 0:12:59 lr 0.002652 time 2.4996 (2.4996) model_time 0.6122 (0.6122) loss 3.5924 (3.5924) grad_norm 1.8155 (1.8155/0.0000) mem 16099MB [2025-01-18 03:30:01 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][10/312] eta 0:03:16 lr 0.002651 time 0.4524 (0.6506) model_time 0.4523 (0.4788) loss 4.5082 (3.6572) grad_norm 0.9545 (1.5759/0.8595) mem 16099MB [2025-01-18 03:30:06 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][20/312] eta 0:02:43 lr 0.002650 time 0.4600 (0.5601) model_time 0.4598 (0.4699) loss 3.1485 (3.4690) grad_norm 1.3229 (1.4813/0.7057) mem 16099MB [2025-01-18 03:30:10 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][30/312] eta 0:02:28 lr 0.002650 time 0.4734 (0.5263) model_time 0.4729 (0.4651) loss 3.7354 (3.4688) grad_norm 1.6237 (1.5472/0.6130) mem 16099MB [2025-01-18 03:30:15 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][40/312] eta 0:02:18 lr 0.002649 time 0.4515 (0.5082) model_time 0.4511 (0.4618) loss 2.3038 (3.4010) grad_norm 1.2407 (1.5416/0.5872) mem 16099MB [2025-01-18 03:30:19 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][50/312] eta 0:02:11 lr 0.002648 time 0.4441 (0.5014) model_time 0.4439 (0.4640) loss 3.3337 (3.4640) grad_norm 1.2244 (1.5996/0.6562) mem 16099MB [2025-01-18 03:30:24 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][60/312] eta 0:02:04 lr 0.002648 time 0.4616 (0.4947) model_time 0.4614 (0.4633) loss 2.8614 (3.4473) grad_norm 2.2535 (1.7564/0.8315) mem 16099MB [2025-01-18 03:30:29 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][70/312] eta 0:01:58 lr 0.002647 time 0.4525 (0.4903) model_time 0.4521 (0.4634) loss 3.5943 (3.3863) grad_norm 0.8031 (1.7013/0.7943) mem 16099MB [2025-01-18 03:30:33 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][80/312] eta 0:01:52 lr 0.002646 time 0.4473 (0.4859) model_time 0.4472 (0.4622) loss 3.1822 (3.3559) grad_norm 1.3112 (1.6495/0.7610) mem 16099MB [2025-01-18 03:30:38 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][90/312] eta 0:01:47 lr 0.002646 time 0.5349 (0.4854) model_time 0.5348 (0.4643) loss 3.7308 (3.3676) grad_norm 0.9990 (1.6390/0.7596) mem 16099MB [2025-01-18 03:30:43 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][100/312] eta 0:01:42 lr 0.002645 time 0.4607 (0.4829) model_time 0.4603 (0.4638) loss 3.0557 (3.3620) grad_norm 2.2086 (1.6615/0.7496) mem 16099MB [2025-01-18 03:30:47 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][110/312] eta 0:01:37 lr 0.002645 time 0.4405 (0.4809) model_time 0.4401 (0.4635) loss 3.4102 (3.3676) grad_norm 1.6360 (1.6767/0.7839) mem 16099MB [2025-01-18 03:30:52 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][120/312] eta 0:01:32 lr 0.002644 time 0.5566 (0.4797) model_time 0.5562 (0.4638) loss 3.4100 (3.3497) grad_norm 0.8455 (1.6631/0.7734) mem 16099MB [2025-01-18 03:30:57 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][130/312] eta 0:01:27 lr 0.002643 time 0.5597 (0.4807) model_time 0.5595 (0.4659) loss 3.4526 (3.3460) grad_norm 2.3995 (1.6677/0.7578) mem 16099MB [2025-01-18 03:31:01 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][140/312] eta 0:01:22 lr 0.002643 time 0.4489 (0.4787) model_time 0.4484 (0.4650) loss 2.6709 (3.3531) grad_norm 1.0085 (1.6327/0.7434) mem 16099MB [2025-01-18 03:31:06 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][150/312] eta 0:01:17 lr 0.002642 time 0.4504 (0.4781) model_time 0.4503 (0.4652) loss 3.4431 (3.3594) grad_norm 0.8959 (1.6110/0.7268) mem 16099MB [2025-01-18 03:31:11 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][160/312] eta 0:01:12 lr 0.002641 time 0.5447 (0.4788) model_time 0.5443 (0.4667) loss 2.5709 (3.3735) grad_norm 3.3135 (1.6416/0.7465) mem 16099MB [2025-01-18 03:31:16 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][170/312] eta 0:01:08 lr 0.002641 time 0.4541 (0.4791) model_time 0.4539 (0.4677) loss 4.0173 (3.3704) grad_norm 1.2005 (1.6458/0.7420) mem 16099MB [2025-01-18 03:31:20 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][180/312] eta 0:01:03 lr 0.002640 time 0.4494 (0.4784) model_time 0.4490 (0.4676) loss 3.7565 (3.3769) grad_norm 3.0852 (1.6483/0.7488) mem 16099MB [2025-01-18 03:31:25 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][190/312] eta 0:00:58 lr 0.002640 time 0.4499 (0.4777) model_time 0.4495 (0.4675) loss 3.6336 (3.3855) grad_norm 1.1418 (1.6676/0.7880) mem 16099MB [2025-01-18 03:31:30 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][200/312] eta 0:00:53 lr 0.002639 time 0.4407 (0.4783) model_time 0.4403 (0.4685) loss 3.3060 (3.3907) grad_norm 1.5610 (1.6915/0.8281) mem 16099MB [2025-01-18 03:31:35 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][210/312] eta 0:00:48 lr 0.002638 time 0.4811 (0.4773) model_time 0.4809 (0.4680) loss 2.6326 (3.3758) grad_norm 2.7504 (1.7023/0.8310) mem 16099MB [2025-01-18 03:31:39 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][220/312] eta 0:00:43 lr 0.002638 time 0.4495 (0.4767) model_time 0.4490 (0.4678) loss 3.3045 (3.3832) grad_norm 0.9839 (1.6870/0.8263) mem 16099MB [2025-01-18 03:31:44 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][230/312] eta 0:00:39 lr 0.002637 time 0.5444 (0.4764) model_time 0.5443 (0.4678) loss 3.2644 (3.3816) grad_norm 1.1473 (1.6681/0.8168) mem 16099MB [2025-01-18 03:31:49 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][240/312] eta 0:00:34 lr 0.002636 time 0.4484 (0.4764) model_time 0.4480 (0.4682) loss 2.9419 (3.3749) grad_norm 1.9013 (1.6668/0.8104) mem 16099MB [2025-01-18 03:31:53 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][250/312] eta 0:00:29 lr 0.002636 time 0.4495 (0.4755) model_time 0.4494 (0.4676) loss 3.6540 (3.3656) grad_norm 1.2088 (1.6536/0.7997) mem 16099MB [2025-01-18 03:31:58 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][260/312] eta 0:00:24 lr 0.002635 time 0.4483 (0.4745) model_time 0.4482 (0.4669) loss 3.6078 (3.3729) grad_norm 0.6401 (1.6380/0.7921) mem 16099MB [2025-01-18 03:32:02 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][270/312] eta 0:00:19 lr 0.002635 time 0.4545 (0.4737) model_time 0.4544 (0.4663) loss 4.1509 (3.3784) grad_norm 2.8563 (1.6383/0.7899) mem 16099MB [2025-01-18 03:32:07 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][280/312] eta 0:00:15 lr 0.002634 time 0.4555 (0.4730) model_time 0.4554 (0.4659) loss 3.7668 (3.3726) grad_norm 2.8650 (1.6467/0.7840) mem 16099MB [2025-01-18 03:32:12 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][290/312] eta 0:00:10 lr 0.002633 time 0.4611 (0.4737) model_time 0.4610 (0.4669) loss 3.4818 (3.3740) grad_norm 0.6642 (1.6467/0.7930) mem 16099MB [2025-01-18 03:32:16 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][300/312] eta 0:00:05 lr 0.002633 time 0.4378 (0.4731) model_time 0.4377 (0.4665) loss 2.6694 (3.3739) grad_norm 1.0900 (1.6303/0.7866) mem 16099MB [2025-01-18 03:32:21 internimage_t_1k_224] (main.py 510): INFO Train: [119/300][310/312] eta 0:00:00 lr 0.002632 time 0.4412 (0.4721) model_time 0.4411 (0.4657) loss 3.0708 (3.3654) grad_norm 1.6122 (1.6375/0.7728) mem 16099MB [2025-01-18 03:32:21 internimage_t_1k_224] (main.py 519): INFO EPOCH 119 training takes 0:02:27 [2025-01-18 03:32:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_119.pth saving...... [2025-01-18 03:32:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_119.pth saved !!! [2025-01-18 03:32:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.273 (7.273) Loss 0.8635 (0.8635) Acc@1 81.323 (81.323) Acc@5 95.801 (95.801) Mem 16099MB [2025-01-18 03:32:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.971) Loss 1.1973 (1.0000) Acc@1 73.071 (78.078) Acc@5 92.212 (94.287) Mem 16099MB [2025-01-18 03:32:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:119] * Acc@1 78.039 Acc@5 94.346 [2025-01-18 03:32:33 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.0% [2025-01-18 03:32:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:32:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:32:34 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.04% [2025-01-18 03:32:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.159 (7.159) Loss 0.8394 (0.8394) Acc@1 81.885 (81.885) Acc@5 96.777 (96.777) Mem 16099MB [2025-01-18 03:32:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.985) Loss 1.2053 (0.9919) Acc@1 72.754 (78.771) Acc@5 92.261 (94.662) Mem 16099MB [2025-01-18 03:32:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:119] * Acc@1 78.671 Acc@5 94.692 [2025-01-18 03:32:45 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.7% [2025-01-18 03:32:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:32:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:32:46 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.67% [2025-01-18 03:32:49 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][0/312] eta 0:13:15 lr 0.002632 time 2.5496 (2.5496) model_time 0.5314 (0.5314) loss 3.9666 (3.9666) grad_norm 1.2743 (1.2743/0.0000) mem 16099MB [2025-01-18 03:32:54 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][10/312] eta 0:03:21 lr 0.002631 time 0.4511 (0.6660) model_time 0.4508 (0.4822) loss 3.8690 (3.3463) grad_norm 1.2714 (1.8288/0.8656) mem 16099MB [2025-01-18 03:32:59 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][20/312] eta 0:02:48 lr 0.002631 time 0.4574 (0.5781) model_time 0.4570 (0.4816) loss 3.3052 (3.2820) grad_norm 0.9561 (1.9096/0.9439) mem 16099MB [2025-01-18 03:33:03 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][30/312] eta 0:02:32 lr 0.002630 time 0.4575 (0.5422) model_time 0.4569 (0.4767) loss 1.8863 (3.2503) grad_norm 0.7905 (1.9043/0.9357) mem 16099MB [2025-01-18 03:33:08 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][40/312] eta 0:02:21 lr 0.002629 time 0.4483 (0.5213) model_time 0.4479 (0.4717) loss 3.1553 (3.2619) grad_norm 1.8471 (1.7391/0.8772) mem 16099MB [2025-01-18 03:33:12 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][50/312] eta 0:02:13 lr 0.002629 time 0.4427 (0.5097) model_time 0.4426 (0.4698) loss 3.1618 (3.2448) grad_norm 1.1764 (1.6657/0.8162) mem 16099MB [2025-01-18 03:33:17 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][60/312] eta 0:02:07 lr 0.002628 time 0.5556 (0.5043) model_time 0.5554 (0.4708) loss 3.9586 (3.2252) grad_norm 0.9734 (1.6445/0.7783) mem 16099MB [2025-01-18 03:33:22 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][70/312] eta 0:02:00 lr 0.002627 time 0.4475 (0.4971) model_time 0.4471 (0.4683) loss 4.1392 (3.2660) grad_norm 3.9751 (1.6530/0.8259) mem 16099MB [2025-01-18 03:33:26 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][80/312] eta 0:01:54 lr 0.002627 time 0.4419 (0.4944) model_time 0.4417 (0.4691) loss 3.4610 (3.2579) grad_norm 1.2830 (1.6897/0.8266) mem 16099MB [2025-01-18 03:33:31 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][90/312] eta 0:01:48 lr 0.002626 time 0.4788 (0.4907) model_time 0.4786 (0.4682) loss 3.9871 (3.2747) grad_norm 1.8461 (1.6925/0.7925) mem 16099MB [2025-01-18 03:33:36 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][100/312] eta 0:01:43 lr 0.002626 time 0.4505 (0.4881) model_time 0.4500 (0.4678) loss 4.0142 (3.2760) grad_norm 0.7292 (1.6677/0.7801) mem 16099MB [2025-01-18 03:33:40 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][110/312] eta 0:01:38 lr 0.002625 time 0.4516 (0.4858) model_time 0.4515 (0.4673) loss 3.4461 (3.2831) grad_norm 2.2708 (1.7053/0.7753) mem 16099MB [2025-01-18 03:33:45 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][120/312] eta 0:01:32 lr 0.002624 time 0.4470 (0.4828) model_time 0.4466 (0.4658) loss 3.4069 (3.2900) grad_norm 2.5728 (1.7346/0.7797) mem 16099MB [2025-01-18 03:33:50 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][130/312] eta 0:01:27 lr 0.002624 time 0.4452 (0.4819) model_time 0.4448 (0.4662) loss 2.8395 (3.2912) grad_norm 2.1281 (1.7541/0.7603) mem 16099MB [2025-01-18 03:33:55 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][140/312] eta 0:01:23 lr 0.002623 time 0.4641 (0.4833) model_time 0.4639 (0.4686) loss 3.5712 (3.3068) grad_norm 0.9665 (1.7560/0.7924) mem 16099MB [2025-01-18 03:33:59 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][150/312] eta 0:01:18 lr 0.002622 time 0.4532 (0.4816) model_time 0.4530 (0.4679) loss 4.0952 (3.3213) grad_norm 2.1177 (1.7486/0.7752) mem 16099MB [2025-01-18 03:34:04 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][160/312] eta 0:01:13 lr 0.002622 time 0.4524 (0.4810) model_time 0.4523 (0.4681) loss 3.2638 (3.2959) grad_norm 1.6351 (1.7392/0.7555) mem 16099MB [2025-01-18 03:34:09 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][170/312] eta 0:01:08 lr 0.002621 time 0.5415 (0.4806) model_time 0.5411 (0.4685) loss 3.4095 (3.3050) grad_norm 1.1186 (1.7214/0.7403) mem 16099MB [2025-01-18 03:34:14 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][180/312] eta 0:01:03 lr 0.002620 time 0.4508 (0.4820) model_time 0.4503 (0.4705) loss 3.1038 (3.2972) grad_norm 2.1158 (1.7091/0.7278) mem 16099MB [2025-01-18 03:34:18 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][190/312] eta 0:00:58 lr 0.002620 time 0.4597 (0.4811) model_time 0.4596 (0.4702) loss 2.5512 (3.2958) grad_norm 1.6899 (1.6916/0.7187) mem 16099MB [2025-01-18 03:34:23 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][200/312] eta 0:00:53 lr 0.002619 time 0.4526 (0.4818) model_time 0.4522 (0.4714) loss 3.2758 (3.3146) grad_norm 2.7935 (1.6764/0.7173) mem 16099MB [2025-01-18 03:34:28 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][210/312] eta 0:00:48 lr 0.002619 time 0.4502 (0.4803) model_time 0.4500 (0.4704) loss 2.5723 (3.3284) grad_norm 1.3834 (1.6800/0.7099) mem 16099MB [2025-01-18 03:34:32 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][220/312] eta 0:00:44 lr 0.002618 time 0.4937 (0.4792) model_time 0.4935 (0.4697) loss 3.6168 (3.3331) grad_norm 2.7920 (1.6847/0.7124) mem 16099MB [2025-01-18 03:34:37 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][230/312] eta 0:00:39 lr 0.002617 time 0.4473 (0.4785) model_time 0.4471 (0.4694) loss 3.4934 (3.3364) grad_norm 1.0707 (1.6689/0.7042) mem 16099MB [2025-01-18 03:34:42 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][240/312] eta 0:00:34 lr 0.002617 time 0.5458 (0.4778) model_time 0.5456 (0.4691) loss 2.7377 (3.3276) grad_norm 2.1415 (1.6790/0.7138) mem 16099MB [2025-01-18 03:34:46 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][250/312] eta 0:00:29 lr 0.002616 time 0.4679 (0.4781) model_time 0.4678 (0.4697) loss 3.3057 (3.3397) grad_norm 1.9175 (1.6785/0.7051) mem 16099MB [2025-01-18 03:34:51 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][260/312] eta 0:00:24 lr 0.002615 time 0.4443 (0.4776) model_time 0.4439 (0.4695) loss 3.5720 (3.3406) grad_norm 2.0256 (1.6747/0.6957) mem 16099MB [2025-01-18 03:34:56 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][270/312] eta 0:00:20 lr 0.002615 time 0.4647 (0.4771) model_time 0.4645 (0.4693) loss 2.4254 (3.3388) grad_norm 1.4323 (1.6869/0.6986) mem 16099MB [2025-01-18 03:35:00 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][280/312] eta 0:00:15 lr 0.002614 time 0.4544 (0.4762) model_time 0.4539 (0.4687) loss 3.1627 (3.3458) grad_norm 1.7831 (1.6858/0.6898) mem 16099MB [2025-01-18 03:35:05 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][290/312] eta 0:00:10 lr 0.002613 time 0.4448 (0.4757) model_time 0.4444 (0.4684) loss 3.7775 (3.3465) grad_norm 1.2814 (1.6771/0.6813) mem 16099MB [2025-01-18 03:35:10 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][300/312] eta 0:00:05 lr 0.002613 time 0.4377 (0.4754) model_time 0.4376 (0.4683) loss 2.5789 (3.3425) grad_norm 1.6999 (1.7114/0.7576) mem 16099MB [2025-01-18 03:35:14 internimage_t_1k_224] (main.py 510): INFO Train: [120/300][310/312] eta 0:00:00 lr 0.002612 time 0.4384 (0.4748) model_time 0.4383 (0.4680) loss 2.4217 (3.3262) grad_norm 1.0953 (1.6920/0.7454) mem 16099MB [2025-01-18 03:35:15 internimage_t_1k_224] (main.py 519): INFO EPOCH 120 training takes 0:02:28 [2025-01-18 03:35:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_120.pth saving...... [2025-01-18 03:35:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_120.pth saved !!! [2025-01-18 03:35:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.246 (7.246) Loss 0.8757 (0.8757) Acc@1 81.470 (81.470) Acc@5 95.874 (95.874) Mem 16099MB [2025-01-18 03:35:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.001) Loss 1.2045 (1.0329) Acc@1 74.414 (78.058) Acc@5 92.407 (94.272) Mem 16099MB [2025-01-18 03:35:27 internimage_t_1k_224] (main.py 575): INFO [Epoch:120] * Acc@1 77.993 Acc@5 94.338 [2025-01-18 03:35:27 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.0% [2025-01-18 03:35:27 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.04% [2025-01-18 03:35:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.444 (8.444) Loss 0.8372 (0.8372) Acc@1 82.007 (82.007) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 03:35:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.122) Loss 1.2012 (0.9890) Acc@1 73.022 (78.904) Acc@5 92.358 (94.724) Mem 16099MB [2025-01-18 03:35:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:120] * Acc@1 78.803 Acc@5 94.750 [2025-01-18 03:35:39 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.8% [2025-01-18 03:35:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:35:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:35:41 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.80% [2025-01-18 03:35:43 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][0/312] eta 0:12:49 lr 0.002612 time 2.4650 (2.4650) model_time 0.4849 (0.4849) loss 3.3244 (3.3244) grad_norm 1.3180 (1.3180/0.0000) mem 16099MB [2025-01-18 03:35:48 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][10/312] eta 0:03:17 lr 0.002611 time 0.4496 (0.6555) model_time 0.4494 (0.4753) loss 3.7115 (3.4358) grad_norm 1.5946 (1.6357/0.5197) mem 16099MB [2025-01-18 03:35:53 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][20/312] eta 0:02:44 lr 0.002611 time 0.4469 (0.5638) model_time 0.4467 (0.4692) loss 3.5211 (3.3486) grad_norm 2.3642 (1.6781/0.6159) mem 16099MB [2025-01-18 03:35:57 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][30/312] eta 0:02:29 lr 0.002610 time 0.4478 (0.5286) model_time 0.4477 (0.4644) loss 3.5727 (3.3288) grad_norm 1.5131 (1.6188/0.5490) mem 16099MB [2025-01-18 03:36:02 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][40/312] eta 0:02:18 lr 0.002610 time 0.4539 (0.5106) model_time 0.4537 (0.4620) loss 3.3100 (3.3169) grad_norm 1.6766 (1.6163/0.5315) mem 16099MB [2025-01-18 03:36:06 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][50/312] eta 0:02:10 lr 0.002609 time 0.4547 (0.4995) model_time 0.4545 (0.4604) loss 3.1603 (3.3804) grad_norm 0.8186 (1.6327/0.6063) mem 16099MB [2025-01-18 03:36:11 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][60/312] eta 0:02:04 lr 0.002608 time 0.4408 (0.4936) model_time 0.4406 (0.4609) loss 2.2503 (3.3155) grad_norm 1.1795 (1.6072/0.5923) mem 16099MB [2025-01-18 03:36:15 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][70/312] eta 0:01:58 lr 0.002608 time 0.4524 (0.4885) model_time 0.4522 (0.4603) loss 2.9281 (3.3105) grad_norm 0.9502 (1.6071/0.5754) mem 16099MB [2025-01-18 03:36:20 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][80/312] eta 0:01:52 lr 0.002607 time 0.4393 (0.4849) model_time 0.4389 (0.4601) loss 3.9179 (3.2928) grad_norm 1.2624 (1.6384/0.5871) mem 16099MB [2025-01-18 03:36:25 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][90/312] eta 0:01:47 lr 0.002606 time 0.4552 (0.4830) model_time 0.4550 (0.4609) loss 2.5344 (3.2760) grad_norm 0.8846 (1.6263/0.5828) mem 16099MB [2025-01-18 03:36:29 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][100/312] eta 0:01:42 lr 0.002606 time 0.4444 (0.4831) model_time 0.4443 (0.4632) loss 3.6590 (3.3013) grad_norm 2.9804 (1.6636/0.6083) mem 16099MB [2025-01-18 03:36:34 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][110/312] eta 0:01:37 lr 0.002605 time 0.5546 (0.4837) model_time 0.5544 (0.4656) loss 2.6696 (3.3017) grad_norm 1.7712 (1.6829/0.6135) mem 16099MB [2025-01-18 03:36:39 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][120/312] eta 0:01:32 lr 0.002604 time 0.4524 (0.4812) model_time 0.4519 (0.4645) loss 3.8835 (3.3118) grad_norm 0.7675 (1.6451/0.6091) mem 16099MB [2025-01-18 03:36:44 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][130/312] eta 0:01:27 lr 0.002604 time 0.4438 (0.4800) model_time 0.4433 (0.4645) loss 3.8809 (3.3367) grad_norm 1.1903 (1.6183/0.6087) mem 16099MB [2025-01-18 03:36:48 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][140/312] eta 0:01:22 lr 0.002603 time 0.5359 (0.4804) model_time 0.5355 (0.4660) loss 4.1298 (3.3343) grad_norm 1.9986 (1.6308/0.6222) mem 16099MB [2025-01-18 03:36:53 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][150/312] eta 0:01:17 lr 0.002603 time 0.4700 (0.4803) model_time 0.4698 (0.4669) loss 3.7329 (3.3203) grad_norm 1.1103 (1.6458/0.6338) mem 16099MB [2025-01-18 03:36:58 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][160/312] eta 0:01:12 lr 0.002602 time 0.5448 (0.4802) model_time 0.5444 (0.4675) loss 2.0862 (3.3200) grad_norm 1.8791 (1.6433/0.6189) mem 16099MB [2025-01-18 03:37:03 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][170/312] eta 0:01:08 lr 0.002601 time 0.4564 (0.4800) model_time 0.4563 (0.4681) loss 3.3285 (3.3237) grad_norm 1.4083 (1.6499/0.6189) mem 16099MB [2025-01-18 03:37:07 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][180/312] eta 0:01:03 lr 0.002601 time 0.4442 (0.4796) model_time 0.4438 (0.4683) loss 2.8332 (3.3244) grad_norm 1.1234 (1.6227/0.6139) mem 16099MB [2025-01-18 03:37:12 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][190/312] eta 0:00:58 lr 0.002600 time 0.4438 (0.4789) model_time 0.4436 (0.4682) loss 3.4809 (3.3119) grad_norm 2.7869 (1.6549/0.6553) mem 16099MB [2025-01-18 03:37:17 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][200/312] eta 0:00:53 lr 0.002599 time 0.4679 (0.4781) model_time 0.4675 (0.4679) loss 3.2333 (3.2929) grad_norm 1.2126 (1.6536/0.6445) mem 16099MB [2025-01-18 03:37:21 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][210/312] eta 0:00:48 lr 0.002599 time 0.4691 (0.4774) model_time 0.4690 (0.4676) loss 3.5032 (3.3076) grad_norm 1.8726 (1.6691/0.6498) mem 16099MB [2025-01-18 03:37:26 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][220/312] eta 0:00:43 lr 0.002598 time 0.4391 (0.4763) model_time 0.4386 (0.4670) loss 2.5409 (3.3023) grad_norm 2.6699 (1.6866/0.6579) mem 16099MB [2025-01-18 03:37:31 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][230/312] eta 0:00:39 lr 0.002597 time 0.4569 (0.4757) model_time 0.4568 (0.4668) loss 3.6767 (3.3020) grad_norm 2.5951 (1.7025/0.6705) mem 16099MB [2025-01-18 03:37:35 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][240/312] eta 0:00:34 lr 0.002597 time 0.4533 (0.4751) model_time 0.4529 (0.4665) loss 3.5119 (3.3011) grad_norm 2.0051 (1.6909/0.6627) mem 16099MB [2025-01-18 03:37:40 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][250/312] eta 0:00:29 lr 0.002596 time 0.4510 (0.4742) model_time 0.4508 (0.4659) loss 3.9770 (3.3056) grad_norm 1.3503 (1.6902/0.6526) mem 16099MB [2025-01-18 03:37:44 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][260/312] eta 0:00:24 lr 0.002596 time 0.4607 (0.4741) model_time 0.4603 (0.4661) loss 3.0107 (3.2931) grad_norm 1.0944 (1.6736/0.6491) mem 16099MB [2025-01-18 03:37:49 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][270/312] eta 0:00:19 lr 0.002595 time 0.4577 (0.4742) model_time 0.4576 (0.4665) loss 3.4092 (3.2979) grad_norm 3.1712 (1.6850/0.6640) mem 16099MB [2025-01-18 03:37:54 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][280/312] eta 0:00:15 lr 0.002594 time 0.4500 (0.4739) model_time 0.4495 (0.4665) loss 2.4874 (3.2915) grad_norm 1.1048 (1.6904/0.6757) mem 16099MB [2025-01-18 03:37:59 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][290/312] eta 0:00:10 lr 0.002594 time 0.4859 (0.4740) model_time 0.4857 (0.4669) loss 3.5387 (3.2945) grad_norm 1.1278 (1.6783/0.6686) mem 16099MB [2025-01-18 03:38:03 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][300/312] eta 0:00:05 lr 0.002593 time 0.4381 (0.4735) model_time 0.4380 (0.4665) loss 3.3365 (3.2907) grad_norm 1.6725 (1.6748/0.6676) mem 16099MB [2025-01-18 03:38:08 internimage_t_1k_224] (main.py 510): INFO Train: [121/300][310/312] eta 0:00:00 lr 0.002592 time 0.4385 (0.4730) model_time 0.4384 (0.4663) loss 2.8881 (3.2945) grad_norm 1.9360 (1.6614/0.6673) mem 16099MB [2025-01-18 03:38:08 internimage_t_1k_224] (main.py 519): INFO EPOCH 121 training takes 0:02:27 [2025-01-18 03:38:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_121.pth saving...... [2025-01-18 03:38:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_121.pth saved !!! [2025-01-18 03:38:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.395 (7.395) Loss 0.8598 (0.8598) Acc@1 81.152 (81.152) Acc@5 96.265 (96.265) Mem 16099MB [2025-01-18 03:38:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.979) Loss 1.2127 (1.0170) Acc@1 72.559 (78.109) Acc@5 92.456 (94.385) Mem 16099MB [2025-01-18 03:38:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:121] * Acc@1 78.019 Acc@5 94.462 [2025-01-18 03:38:20 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.0% [2025-01-18 03:38:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.04% [2025-01-18 03:38:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.275 (8.275) Loss 0.8352 (0.8352) Acc@1 82.104 (82.104) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 03:38:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.100) Loss 1.1975 (0.9862) Acc@1 73.145 (78.962) Acc@5 92.334 (94.740) Mem 16099MB [2025-01-18 03:38:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:121] * Acc@1 78.859 Acc@5 94.770 [2025-01-18 03:38:33 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 78.9% [2025-01-18 03:38:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:38:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:38:34 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.86% [2025-01-18 03:38:36 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][0/312] eta 0:11:32 lr 0.002592 time 2.2188 (2.2188) model_time 0.5645 (0.5645) loss 3.6098 (3.6098) grad_norm 1.2151 (1.2151/0.0000) mem 16099MB [2025-01-18 03:38:41 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][10/312] eta 0:03:09 lr 0.002592 time 0.4451 (0.6261) model_time 0.4447 (0.4753) loss 3.5578 (3.2269) grad_norm 1.0070 (1.4799/0.6304) mem 16099MB [2025-01-18 03:38:46 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][20/312] eta 0:02:41 lr 0.002591 time 0.4418 (0.5545) model_time 0.4417 (0.4753) loss 3.5265 (3.2036) grad_norm 1.1151 (1.3627/0.5328) mem 16099MB [2025-01-18 03:38:51 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][30/312] eta 0:02:30 lr 0.002590 time 0.4483 (0.5330) model_time 0.4482 (0.4792) loss 3.3373 (3.2606) grad_norm 1.1969 (1.4479/0.5561) mem 16099MB [2025-01-18 03:38:55 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][40/312] eta 0:02:20 lr 0.002590 time 0.4539 (0.5164) model_time 0.4535 (0.4757) loss 3.9933 (3.3670) grad_norm 0.9167 (1.6544/0.7343) mem 16099MB [2025-01-18 03:39:00 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][50/312] eta 0:02:13 lr 0.002589 time 0.4470 (0.5092) model_time 0.4466 (0.4764) loss 3.6779 (3.3573) grad_norm 0.9662 (1.6657/0.7224) mem 16099MB [2025-01-18 03:39:05 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][60/312] eta 0:02:06 lr 0.002588 time 0.5472 (0.5032) model_time 0.5471 (0.4757) loss 3.8560 (3.3809) grad_norm 1.5048 (1.6576/0.6998) mem 16099MB [2025-01-18 03:39:09 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][70/312] eta 0:02:00 lr 0.002588 time 0.5363 (0.4991) model_time 0.5362 (0.4755) loss 2.5933 (3.3761) grad_norm 1.9100 (1.6985/0.7165) mem 16099MB [2025-01-18 03:39:14 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][80/312] eta 0:01:54 lr 0.002587 time 0.4501 (0.4933) model_time 0.4500 (0.4725) loss 3.6297 (3.3688) grad_norm 2.0545 (1.7243/0.7742) mem 16099MB [2025-01-18 03:39:19 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][90/312] eta 0:01:48 lr 0.002587 time 0.4398 (0.4892) model_time 0.4393 (0.4707) loss 3.9846 (3.4061) grad_norm 1.9018 (1.6913/0.7476) mem 16099MB [2025-01-18 03:39:23 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][100/312] eta 0:01:42 lr 0.002586 time 0.4843 (0.4858) model_time 0.4839 (0.4690) loss 3.7853 (3.3930) grad_norm 1.9660 (1.7015/0.7326) mem 16099MB [2025-01-18 03:39:28 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][110/312] eta 0:01:37 lr 0.002585 time 0.5027 (0.4835) model_time 0.5025 (0.4682) loss 3.6597 (3.3954) grad_norm 3.9487 (1.7595/0.8199) mem 16099MB [2025-01-18 03:39:32 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][120/312] eta 0:01:32 lr 0.002585 time 0.4524 (0.4824) model_time 0.4519 (0.4684) loss 3.6430 (3.3788) grad_norm 1.1354 (1.7448/0.8045) mem 16099MB [2025-01-18 03:39:37 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][130/312] eta 0:01:27 lr 0.002584 time 0.7321 (0.4833) model_time 0.7317 (0.4703) loss 2.5041 (3.3748) grad_norm 0.9705 (1.7392/0.8025) mem 16099MB [2025-01-18 03:39:42 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][140/312] eta 0:01:23 lr 0.002583 time 0.4513 (0.4827) model_time 0.4509 (0.4706) loss 3.9875 (3.3826) grad_norm 1.3097 (1.8224/0.9092) mem 16099MB [2025-01-18 03:39:47 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][150/312] eta 0:01:18 lr 0.002583 time 0.5358 (0.4826) model_time 0.5356 (0.4713) loss 3.7551 (3.3955) grad_norm 2.2871 (1.8279/0.9296) mem 16099MB [2025-01-18 03:39:52 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][160/312] eta 0:01:13 lr 0.002582 time 0.4535 (0.4814) model_time 0.4530 (0.4708) loss 2.4688 (3.3815) grad_norm 1.8691 (1.8231/0.9268) mem 16099MB [2025-01-18 03:39:56 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][170/312] eta 0:01:08 lr 0.002581 time 0.4594 (0.4803) model_time 0.4590 (0.4702) loss 4.2275 (3.3879) grad_norm 2.0741 (1.8258/0.9337) mem 16099MB [2025-01-18 03:40:01 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][180/312] eta 0:01:03 lr 0.002581 time 0.4484 (0.4801) model_time 0.4479 (0.4706) loss 3.8516 (3.3823) grad_norm 1.6146 (1.7999/0.9198) mem 16099MB [2025-01-18 03:40:06 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][190/312] eta 0:00:58 lr 0.002580 time 0.4948 (0.4796) model_time 0.4944 (0.4706) loss 4.3902 (3.3873) grad_norm 1.2584 (1.7754/0.9033) mem 16099MB [2025-01-18 03:40:10 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][200/312] eta 0:00:53 lr 0.002580 time 0.4737 (0.4791) model_time 0.4736 (0.4705) loss 3.2505 (3.3877) grad_norm 2.5034 (1.7632/0.8906) mem 16099MB [2025-01-18 03:40:15 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][210/312] eta 0:00:48 lr 0.002579 time 0.4572 (0.4782) model_time 0.4571 (0.4700) loss 3.8114 (3.3959) grad_norm 1.4967 (1.7923/0.9168) mem 16099MB [2025-01-18 03:40:20 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][220/312] eta 0:00:43 lr 0.002578 time 0.4427 (0.4774) model_time 0.4422 (0.4695) loss 4.0710 (3.3941) grad_norm 1.4223 (1.8002/0.9105) mem 16099MB [2025-01-18 03:40:24 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][230/312] eta 0:00:39 lr 0.002578 time 0.4465 (0.4772) model_time 0.4463 (0.4696) loss 3.7999 (3.3876) grad_norm 1.6301 (1.7872/0.8964) mem 16099MB [2025-01-18 03:40:29 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][240/312] eta 0:00:34 lr 0.002577 time 0.4453 (0.4765) model_time 0.4452 (0.4693) loss 2.4182 (3.3783) grad_norm 2.0820 (1.7681/0.8850) mem 16099MB [2025-01-18 03:40:34 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][250/312] eta 0:00:29 lr 0.002576 time 0.4497 (0.4761) model_time 0.4493 (0.4692) loss 3.8908 (3.3724) grad_norm 1.3712 (1.7534/0.8738) mem 16099MB [2025-01-18 03:40:38 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][260/312] eta 0:00:24 lr 0.002576 time 0.4523 (0.4755) model_time 0.4519 (0.4688) loss 3.2673 (3.3632) grad_norm 1.5171 (1.7751/0.8984) mem 16099MB [2025-01-18 03:40:43 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][270/312] eta 0:00:19 lr 0.002575 time 0.4535 (0.4752) model_time 0.4534 (0.4687) loss 2.3889 (3.3567) grad_norm 1.8926 (1.7750/0.8894) mem 16099MB [2025-01-18 03:40:48 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][280/312] eta 0:00:15 lr 0.002574 time 0.4671 (0.4752) model_time 0.4667 (0.4690) loss 2.6643 (3.3523) grad_norm 0.8755 (1.7594/0.8814) mem 16099MB [2025-01-18 03:40:52 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][290/312] eta 0:00:10 lr 0.002574 time 0.4521 (0.4753) model_time 0.4519 (0.4693) loss 3.7792 (3.3515) grad_norm 2.7819 (1.7851/0.9115) mem 16099MB [2025-01-18 03:40:57 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][300/312] eta 0:00:05 lr 0.002573 time 0.4376 (0.4745) model_time 0.4375 (0.4686) loss 3.6186 (3.3522) grad_norm 1.2301 (1.7951/0.9184) mem 16099MB [2025-01-18 03:41:01 internimage_t_1k_224] (main.py 510): INFO Train: [122/300][310/312] eta 0:00:00 lr 0.002573 time 0.4377 (0.4733) model_time 0.4376 (0.4676) loss 3.7911 (3.3511) grad_norm 1.9188 (1.7917/0.9147) mem 16099MB [2025-01-18 03:41:02 internimage_t_1k_224] (main.py 519): INFO EPOCH 122 training takes 0:02:27 [2025-01-18 03:41:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_122.pth saving...... [2025-01-18 03:41:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_122.pth saved !!! [2025-01-18 03:41:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.548 (7.548) Loss 0.8712 (0.8712) Acc@1 81.787 (81.787) Acc@5 96.191 (96.191) Mem 16099MB [2025-01-18 03:41:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.998) Loss 1.1981 (1.0010) Acc@1 72.241 (78.021) Acc@5 92.334 (94.460) Mem 16099MB [2025-01-18 03:41:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:122] * Acc@1 77.983 Acc@5 94.516 [2025-01-18 03:41:14 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.0% [2025-01-18 03:41:14 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.04% [2025-01-18 03:41:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.276 (8.276) Loss 0.8333 (0.8333) Acc@1 82.129 (82.129) Acc@5 96.899 (96.899) Mem 16099MB [2025-01-18 03:41:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.111) Loss 1.1936 (0.9835) Acc@1 73.242 (79.062) Acc@5 92.358 (94.784) Mem 16099MB [2025-01-18 03:41:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:122] * Acc@1 78.961 Acc@5 94.810 [2025-01-18 03:41:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.0% [2025-01-18 03:41:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:41:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:41:28 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 78.96% [2025-01-18 03:41:30 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][0/312] eta 0:12:54 lr 0.002572 time 2.4823 (2.4823) model_time 0.4870 (0.4870) loss 3.0584 (3.0584) grad_norm 1.4262 (1.4262/0.0000) mem 16099MB [2025-01-18 03:41:35 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][10/312] eta 0:03:20 lr 0.002572 time 0.4549 (0.6644) model_time 0.4548 (0.4748) loss 3.4072 (3.1656) grad_norm 1.1935 (1.3871/0.4805) mem 16099MB [2025-01-18 03:41:40 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][20/312] eta 0:02:48 lr 0.002571 time 0.4532 (0.5765) model_time 0.4528 (0.4770) loss 3.2244 (3.2930) grad_norm 1.8484 (1.4671/0.4501) mem 16099MB [2025-01-18 03:41:45 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][30/312] eta 0:02:33 lr 0.002570 time 0.5461 (0.5442) model_time 0.5459 (0.4767) loss 3.0784 (3.2307) grad_norm 1.3613 (1.3986/0.4607) mem 16099MB [2025-01-18 03:41:49 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][40/312] eta 0:02:22 lr 0.002570 time 0.4544 (0.5243) model_time 0.4542 (0.4731) loss 3.4815 (3.2172) grad_norm 2.0043 (1.4136/0.4383) mem 16099MB [2025-01-18 03:41:54 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][50/312] eta 0:02:15 lr 0.002569 time 0.4628 (0.5188) model_time 0.4624 (0.4776) loss 3.4171 (3.2590) grad_norm 1.4429 (1.3956/0.4396) mem 16099MB [2025-01-18 03:41:59 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][60/312] eta 0:02:08 lr 0.002569 time 0.4532 (0.5088) model_time 0.4528 (0.4743) loss 3.6474 (3.3074) grad_norm 0.7890 (1.3544/0.4339) mem 16099MB [2025-01-18 03:42:04 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][70/312] eta 0:02:01 lr 0.002568 time 0.4943 (0.5029) model_time 0.4942 (0.4732) loss 2.4978 (3.2922) grad_norm 0.9841 (1.3452/0.4250) mem 16099MB [2025-01-18 03:42:08 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][80/312] eta 0:01:55 lr 0.002567 time 0.5420 (0.4993) model_time 0.5418 (0.4732) loss 3.9561 (3.2884) grad_norm 2.4088 (1.4105/0.4795) mem 16099MB [2025-01-18 03:42:13 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][90/312] eta 0:01:50 lr 0.002567 time 0.4837 (0.4963) model_time 0.4833 (0.4730) loss 2.7142 (3.2928) grad_norm 1.7766 (1.4848/0.5669) mem 16099MB [2025-01-18 03:42:18 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][100/312] eta 0:01:44 lr 0.002566 time 0.4610 (0.4931) model_time 0.4606 (0.4721) loss 2.7297 (3.3073) grad_norm 1.9051 (1.4744/0.5491) mem 16099MB [2025-01-18 03:42:22 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][110/312] eta 0:01:39 lr 0.002565 time 0.4402 (0.4908) model_time 0.4400 (0.4716) loss 4.0803 (3.2991) grad_norm 2.3245 (1.4757/0.5535) mem 16099MB [2025-01-18 03:42:27 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][120/312] eta 0:01:33 lr 0.002565 time 0.4576 (0.4879) model_time 0.4572 (0.4703) loss 3.2954 (3.2997) grad_norm 1.8261 (1.4993/0.5619) mem 16099MB [2025-01-18 03:42:31 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][130/312] eta 0:01:28 lr 0.002564 time 0.5072 (0.4855) model_time 0.5070 (0.4692) loss 4.2771 (3.3170) grad_norm 3.2052 (1.5469/0.5981) mem 16099MB [2025-01-18 03:42:36 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][140/312] eta 0:01:23 lr 0.002563 time 0.4896 (0.4841) model_time 0.4894 (0.4689) loss 4.1056 (3.3309) grad_norm 1.3225 (1.5463/0.5984) mem 16099MB [2025-01-18 03:42:41 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][150/312] eta 0:01:18 lr 0.002563 time 0.4506 (0.4830) model_time 0.4504 (0.4688) loss 3.5761 (3.3303) grad_norm 1.3487 (1.5358/0.5857) mem 16099MB [2025-01-18 03:42:46 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][160/312] eta 0:01:13 lr 0.002562 time 0.4512 (0.4832) model_time 0.4510 (0.4698) loss 2.0894 (3.3207) grad_norm 2.8179 (1.5259/0.5849) mem 16099MB [2025-01-18 03:42:50 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][170/312] eta 0:01:08 lr 0.002562 time 0.5015 (0.4819) model_time 0.5010 (0.4693) loss 2.9959 (3.3114) grad_norm 1.1031 (1.5501/0.5852) mem 16099MB [2025-01-18 03:42:55 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][180/312] eta 0:01:03 lr 0.002561 time 0.4637 (0.4808) model_time 0.4633 (0.4689) loss 3.3945 (3.3081) grad_norm 1.2240 (1.5755/0.6030) mem 16099MB [2025-01-18 03:42:59 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][190/312] eta 0:00:58 lr 0.002560 time 0.4459 (0.4797) model_time 0.4458 (0.4684) loss 2.9746 (3.3072) grad_norm 1.0950 (1.5672/0.5964) mem 16099MB [2025-01-18 03:43:04 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][200/312] eta 0:00:53 lr 0.002560 time 0.4433 (0.4795) model_time 0.4428 (0.4687) loss 3.4768 (3.3100) grad_norm 2.0559 (1.5853/0.6046) mem 16099MB [2025-01-18 03:43:09 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][210/312] eta 0:00:48 lr 0.002559 time 0.4580 (0.4788) model_time 0.4575 (0.4686) loss 2.8946 (3.3055) grad_norm 1.3972 (1.6018/0.6283) mem 16099MB [2025-01-18 03:43:13 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][220/312] eta 0:00:43 lr 0.002558 time 0.4442 (0.4780) model_time 0.4437 (0.4681) loss 3.2277 (3.3020) grad_norm 1.1175 (1.6159/0.6369) mem 16099MB [2025-01-18 03:43:18 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][230/312] eta 0:00:39 lr 0.002558 time 0.4614 (0.4770) model_time 0.4612 (0.4676) loss 2.9772 (3.3087) grad_norm 1.4534 (1.6143/0.6365) mem 16099MB [2025-01-18 03:43:23 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][240/312] eta 0:00:34 lr 0.002557 time 0.4518 (0.4760) model_time 0.4513 (0.4669) loss 3.6992 (3.3083) grad_norm 1.4029 (1.6365/0.6712) mem 16099MB [2025-01-18 03:43:27 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][250/312] eta 0:00:29 lr 0.002556 time 0.5048 (0.4759) model_time 0.5044 (0.4672) loss 2.3728 (3.3076) grad_norm 1.6679 (1.6338/0.6664) mem 16099MB [2025-01-18 03:43:32 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][260/312] eta 0:00:24 lr 0.002556 time 0.4432 (0.4755) model_time 0.4430 (0.4671) loss 3.6917 (3.3120) grad_norm 1.4530 (1.6208/0.6596) mem 16099MB [2025-01-18 03:43:37 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][270/312] eta 0:00:19 lr 0.002555 time 0.4466 (0.4755) model_time 0.4465 (0.4674) loss 4.2027 (3.3066) grad_norm 1.1361 (1.6187/0.6543) mem 16099MB [2025-01-18 03:43:41 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][280/312] eta 0:00:15 lr 0.002555 time 0.4824 (0.4752) model_time 0.4823 (0.4673) loss 4.2870 (3.3109) grad_norm 0.8358 (1.6147/0.6616) mem 16099MB [2025-01-18 03:43:46 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][290/312] eta 0:00:10 lr 0.002554 time 0.4505 (0.4751) model_time 0.4500 (0.4676) loss 3.2103 (3.3034) grad_norm 0.9380 (1.6018/0.6580) mem 16099MB [2025-01-18 03:43:51 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][300/312] eta 0:00:05 lr 0.002553 time 0.4386 (0.4746) model_time 0.4385 (0.4672) loss 2.5757 (3.3022) grad_norm 1.8185 (1.5979/0.6556) mem 16099MB [2025-01-18 03:43:55 internimage_t_1k_224] (main.py 510): INFO Train: [123/300][310/312] eta 0:00:00 lr 0.002553 time 0.4381 (0.4738) model_time 0.4380 (0.4667) loss 3.9095 (3.3024) grad_norm 3.0181 (1.6249/0.6855) mem 16099MB [2025-01-18 03:43:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 123 training takes 0:02:27 [2025-01-18 03:43:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_123.pth saving...... [2025-01-18 03:43:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_123.pth saved !!! [2025-01-18 03:44:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.495 (7.495) Loss 0.8743 (0.8743) Acc@1 81.616 (81.616) Acc@5 95.947 (95.947) Mem 16099MB [2025-01-18 03:44:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.099 (1.002) Loss 1.2057 (1.0313) Acc@1 74.438 (78.380) Acc@5 92.383 (94.365) Mem 16099MB [2025-01-18 03:44:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:123] * Acc@1 78.305 Acc@5 94.430 [2025-01-18 03:44:08 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.3% [2025-01-18 03:44:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:44:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:44:09 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.30% [2025-01-18 03:44:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.254 (7.254) Loss 0.8315 (0.8315) Acc@1 82.129 (82.129) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 03:44:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.993) Loss 1.1895 (0.9808) Acc@1 73.291 (79.133) Acc@5 92.480 (94.815) Mem 16099MB [2025-01-18 03:44:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:123] * Acc@1 79.029 Acc@5 94.842 [2025-01-18 03:44:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.0% [2025-01-18 03:44:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:44:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:44:22 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.03% [2025-01-18 03:44:24 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][0/312] eta 0:12:40 lr 0.002552 time 2.4364 (2.4364) model_time 0.4923 (0.4923) loss 2.4534 (2.4534) grad_norm 2.1092 (2.1092/0.0000) mem 16099MB [2025-01-18 03:44:29 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][10/312] eta 0:03:13 lr 0.002552 time 0.4575 (0.6422) model_time 0.4573 (0.4651) loss 4.1080 (3.2820) grad_norm 1.8566 (1.5942/0.4979) mem 16099MB [2025-01-18 03:44:33 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][20/312] eta 0:02:42 lr 0.002551 time 0.4656 (0.5575) model_time 0.4654 (0.4646) loss 3.2120 (3.3021) grad_norm 1.6251 (1.5959/0.4635) mem 16099MB [2025-01-18 03:44:38 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][30/312] eta 0:02:28 lr 0.002551 time 0.4537 (0.5259) model_time 0.4533 (0.4629) loss 3.7481 (3.2796) grad_norm 1.7353 (1.6319/0.5599) mem 16099MB [2025-01-18 03:44:43 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][40/312] eta 0:02:18 lr 0.002550 time 0.4595 (0.5086) model_time 0.4591 (0.4608) loss 2.5919 (3.2542) grad_norm 2.0370 (1.5342/0.5603) mem 16099MB [2025-01-18 03:44:47 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][50/312] eta 0:02:12 lr 0.002549 time 0.4470 (0.5040) model_time 0.4468 (0.4655) loss 3.1142 (3.3482) grad_norm 2.4298 (1.6815/0.6675) mem 16099MB [2025-01-18 03:44:52 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][60/312] eta 0:02:05 lr 0.002549 time 0.4442 (0.4977) model_time 0.4440 (0.4655) loss 3.6059 (3.3525) grad_norm 2.8181 (1.6858/0.6571) mem 16099MB [2025-01-18 03:44:57 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][70/312] eta 0:01:59 lr 0.002548 time 0.4582 (0.4935) model_time 0.4577 (0.4658) loss 2.8101 (3.3393) grad_norm 1.6672 (1.7132/0.6735) mem 16099MB [2025-01-18 03:45:01 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][80/312] eta 0:01:53 lr 0.002547 time 0.4404 (0.4907) model_time 0.4402 (0.4663) loss 2.0443 (3.2836) grad_norm 1.1451 (1.6856/0.6797) mem 16099MB [2025-01-18 03:45:06 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][90/312] eta 0:01:48 lr 0.002547 time 0.4546 (0.4878) model_time 0.4544 (0.4661) loss 3.5726 (3.2893) grad_norm 1.5647 (1.6861/0.6600) mem 16099MB [2025-01-18 03:45:11 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][100/312] eta 0:01:42 lr 0.002546 time 0.4524 (0.4852) model_time 0.4519 (0.4656) loss 4.0324 (3.2905) grad_norm 0.6419 (1.7160/0.7331) mem 16099MB [2025-01-18 03:45:15 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][110/312] eta 0:01:37 lr 0.002545 time 0.4736 (0.4827) model_time 0.4734 (0.4648) loss 4.0151 (3.3188) grad_norm 2.6388 (1.7509/0.8361) mem 16099MB [2025-01-18 03:45:20 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][120/312] eta 0:01:32 lr 0.002545 time 0.4508 (0.4808) model_time 0.4506 (0.4644) loss 3.8915 (3.3145) grad_norm 2.3610 (1.7702/0.8354) mem 16099MB [2025-01-18 03:45:25 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][130/312] eta 0:01:27 lr 0.002544 time 0.4609 (0.4807) model_time 0.4604 (0.4655) loss 2.8781 (3.2875) grad_norm 2.7914 (1.7563/0.8184) mem 16099MB [2025-01-18 03:45:29 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][140/312] eta 0:01:22 lr 0.002543 time 0.4424 (0.4805) model_time 0.4422 (0.4663) loss 3.2206 (3.2659) grad_norm 1.3394 (1.7511/0.8138) mem 16099MB [2025-01-18 03:45:34 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][150/312] eta 0:01:17 lr 0.002543 time 0.4434 (0.4807) model_time 0.4429 (0.4675) loss 3.4043 (3.2680) grad_norm 3.7487 (1.7452/0.8168) mem 16099MB [2025-01-18 03:45:39 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][160/312] eta 0:01:13 lr 0.002542 time 0.4684 (0.4810) model_time 0.4680 (0.4686) loss 3.4552 (3.2548) grad_norm 0.9233 (1.7375/0.8067) mem 16099MB [2025-01-18 03:45:44 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][170/312] eta 0:01:08 lr 0.002542 time 0.4465 (0.4799) model_time 0.4460 (0.4682) loss 3.1971 (3.2510) grad_norm 1.0835 (1.7084/0.7932) mem 16099MB [2025-01-18 03:45:48 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][180/312] eta 0:01:03 lr 0.002541 time 0.4508 (0.4787) model_time 0.4504 (0.4676) loss 4.2301 (3.2604) grad_norm 1.7250 (1.6778/0.7855) mem 16099MB [2025-01-18 03:45:53 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][190/312] eta 0:00:58 lr 0.002540 time 0.4451 (0.4778) model_time 0.4447 (0.4673) loss 3.7758 (3.2725) grad_norm 0.7714 (1.6713/0.7772) mem 16099MB [2025-01-18 03:45:58 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][200/312] eta 0:00:53 lr 0.002540 time 0.4495 (0.4767) model_time 0.4493 (0.4666) loss 4.1759 (3.2863) grad_norm 0.8309 (1.6508/0.7659) mem 16099MB [2025-01-18 03:46:02 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][210/312] eta 0:00:48 lr 0.002539 time 0.4506 (0.4757) model_time 0.4505 (0.4661) loss 3.4447 (3.2980) grad_norm 1.0178 (1.6569/0.7662) mem 16099MB [2025-01-18 03:46:07 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][220/312] eta 0:00:43 lr 0.002538 time 0.4707 (0.4751) model_time 0.4705 (0.4659) loss 4.1165 (3.3095) grad_norm 1.2358 (1.6564/0.7599) mem 16099MB [2025-01-18 03:46:11 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][230/312] eta 0:00:38 lr 0.002538 time 0.4458 (0.4743) model_time 0.4457 (0.4655) loss 3.5894 (3.3092) grad_norm 1.7128 (1.6505/0.7471) mem 16099MB [2025-01-18 03:46:16 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][240/312] eta 0:00:34 lr 0.002537 time 0.4494 (0.4745) model_time 0.4493 (0.4660) loss 4.5126 (3.3031) grad_norm 1.2414 (1.6878/0.7877) mem 16099MB [2025-01-18 03:46:21 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][250/312] eta 0:00:29 lr 0.002536 time 0.4445 (0.4742) model_time 0.4443 (0.4660) loss 2.9727 (3.3019) grad_norm 2.0497 (1.6897/0.7797) mem 16099MB [2025-01-18 03:46:25 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][260/312] eta 0:00:24 lr 0.002536 time 0.4493 (0.4739) model_time 0.4489 (0.4660) loss 3.0248 (3.3003) grad_norm 1.4563 (1.6771/0.7706) mem 16099MB [2025-01-18 03:46:30 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][270/312] eta 0:00:19 lr 0.002535 time 0.4583 (0.4733) model_time 0.4582 (0.4657) loss 3.8030 (3.3151) grad_norm 0.8781 (1.6689/0.7608) mem 16099MB [2025-01-18 03:46:35 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][280/312] eta 0:00:15 lr 0.002535 time 0.4789 (0.4730) model_time 0.4787 (0.4657) loss 2.8474 (3.3082) grad_norm 1.0407 (1.6570/0.7542) mem 16099MB [2025-01-18 03:46:39 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][290/312] eta 0:00:10 lr 0.002534 time 0.4542 (0.4735) model_time 0.4538 (0.4663) loss 4.0027 (3.3084) grad_norm 1.4080 (1.6504/0.7447) mem 16099MB [2025-01-18 03:46:44 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][300/312] eta 0:00:05 lr 0.002533 time 0.4396 (0.4728) model_time 0.4395 (0.4659) loss 3.4816 (3.3159) grad_norm 2.0367 (1.6689/0.7771) mem 16099MB [2025-01-18 03:46:49 internimage_t_1k_224] (main.py 510): INFO Train: [124/300][310/312] eta 0:00:00 lr 0.002533 time 0.4395 (0.4730) model_time 0.4394 (0.4663) loss 3.5999 (3.3141) grad_norm 2.6332 (1.6676/0.7784) mem 16099MB [2025-01-18 03:46:49 internimage_t_1k_224] (main.py 519): INFO EPOCH 124 training takes 0:02:27 [2025-01-18 03:46:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_124.pth saving...... [2025-01-18 03:46:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_124.pth saved !!! [2025-01-18 03:46:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.236 (7.236) Loss 0.8526 (0.8526) Acc@1 81.836 (81.836) Acc@5 96.265 (96.265) Mem 16099MB [2025-01-18 03:47:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.977) Loss 1.1696 (0.9931) Acc@1 73.169 (78.400) Acc@5 92.896 (94.556) Mem 16099MB [2025-01-18 03:47:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:124] * Acc@1 78.309 Acc@5 94.562 [2025-01-18 03:47:01 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.3% [2025-01-18 03:47:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:47:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:47:02 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.31% [2025-01-18 03:47:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.536 (7.536) Loss 0.8299 (0.8299) Acc@1 82.178 (82.178) Acc@5 96.802 (96.802) Mem 16099MB [2025-01-18 03:47:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.009) Loss 1.1859 (0.9782) Acc@1 73.389 (79.219) Acc@5 92.578 (94.844) Mem 16099MB [2025-01-18 03:47:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:124] * Acc@1 79.115 Acc@5 94.868 [2025-01-18 03:47:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.1% [2025-01-18 03:47:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:47:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:47:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.11% [2025-01-18 03:47:18 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][0/312] eta 0:12:04 lr 0.002532 time 2.3233 (2.3233) model_time 0.5041 (0.5041) loss 3.8675 (3.8675) grad_norm 3.0936 (3.0936/0.0000) mem 16099MB [2025-01-18 03:47:22 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][10/312] eta 0:03:12 lr 0.002532 time 0.4672 (0.6373) model_time 0.4670 (0.4716) loss 3.4809 (3.1872) grad_norm 1.1462 (2.0397/0.7475) mem 16099MB [2025-01-18 03:47:27 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][20/312] eta 0:02:43 lr 0.002531 time 0.5693 (0.5611) model_time 0.5692 (0.4742) loss 3.0875 (3.0791) grad_norm 1.0982 (1.6517/0.7119) mem 16099MB [2025-01-18 03:47:32 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][30/312] eta 0:02:28 lr 0.002531 time 0.4598 (0.5264) model_time 0.4597 (0.4673) loss 3.5585 (3.1533) grad_norm 1.7730 (1.7875/0.7204) mem 16099MB [2025-01-18 03:47:36 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][40/312] eta 0:02:18 lr 0.002530 time 0.4501 (0.5088) model_time 0.4499 (0.4640) loss 1.8806 (3.2043) grad_norm 1.3759 (1.8505/0.7527) mem 16099MB [2025-01-18 03:47:41 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][50/312] eta 0:02:11 lr 0.002529 time 0.4447 (0.5012) model_time 0.4442 (0.4652) loss 2.4960 (3.2938) grad_norm 1.0877 (1.7371/0.7217) mem 16099MB [2025-01-18 03:47:45 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][60/312] eta 0:02:04 lr 0.002529 time 0.4946 (0.4950) model_time 0.4941 (0.4648) loss 3.7777 (3.2760) grad_norm 0.7245 (1.6692/0.7099) mem 16099MB [2025-01-18 03:47:50 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][70/312] eta 0:01:58 lr 0.002528 time 0.4562 (0.4909) model_time 0.4558 (0.4650) loss 2.6091 (3.3026) grad_norm 3.9492 (1.7963/0.8485) mem 16099MB [2025-01-18 03:47:55 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][80/312] eta 0:01:53 lr 0.002527 time 0.4420 (0.4878) model_time 0.4418 (0.4649) loss 3.2436 (3.3397) grad_norm 1.3732 (1.7735/0.8130) mem 16099MB [2025-01-18 03:47:59 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][90/312] eta 0:01:47 lr 0.002527 time 0.5468 (0.4854) model_time 0.5466 (0.4650) loss 3.5709 (3.3497) grad_norm 0.7917 (1.7197/0.7976) mem 16099MB [2025-01-18 03:48:04 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][100/312] eta 0:01:42 lr 0.002526 time 0.4603 (0.4840) model_time 0.4598 (0.4656) loss 3.1149 (3.3402) grad_norm 1.2474 (1.7438/0.7812) mem 16099MB [2025-01-18 03:48:09 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][110/312] eta 0:01:37 lr 0.002525 time 0.5037 (0.4818) model_time 0.5032 (0.4650) loss 4.1460 (3.3599) grad_norm 2.6006 (1.7692/0.8085) mem 16099MB [2025-01-18 03:48:13 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][120/312] eta 0:01:32 lr 0.002525 time 0.4421 (0.4794) model_time 0.4417 (0.4640) loss 2.4242 (3.3579) grad_norm 1.9266 (1.7473/0.7951) mem 16099MB [2025-01-18 03:48:18 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][130/312] eta 0:01:27 lr 0.002524 time 0.4605 (0.4792) model_time 0.4603 (0.4650) loss 3.0580 (3.3485) grad_norm 0.8296 (1.7321/0.7850) mem 16099MB [2025-01-18 03:48:23 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][140/312] eta 0:01:22 lr 0.002523 time 0.5486 (0.4805) model_time 0.5484 (0.4673) loss 3.9201 (3.3361) grad_norm 1.0053 (1.7091/0.7730) mem 16099MB [2025-01-18 03:48:28 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][150/312] eta 0:01:17 lr 0.002523 time 0.5480 (0.4807) model_time 0.5479 (0.4683) loss 3.5394 (3.3211) grad_norm 1.5434 (1.7269/0.7680) mem 16099MB [2025-01-18 03:48:33 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][160/312] eta 0:01:13 lr 0.002522 time 0.5028 (0.4814) model_time 0.5024 (0.4697) loss 3.7905 (3.3220) grad_norm 1.1896 (1.7228/0.7498) mem 16099MB [2025-01-18 03:48:37 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][170/312] eta 0:01:08 lr 0.002522 time 0.4493 (0.4800) model_time 0.4491 (0.4690) loss 3.1463 (3.3164) grad_norm 2.4251 (1.7351/0.7542) mem 16099MB [2025-01-18 03:48:42 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][180/312] eta 0:01:03 lr 0.002521 time 0.4539 (0.4796) model_time 0.4538 (0.4692) loss 4.4140 (3.3381) grad_norm 1.3457 (1.7165/0.7431) mem 16099MB [2025-01-18 03:48:47 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][190/312] eta 0:00:58 lr 0.002520 time 0.4463 (0.4781) model_time 0.4461 (0.4682) loss 2.6980 (3.3354) grad_norm 1.2900 (1.6822/0.7400) mem 16099MB [2025-01-18 03:48:51 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][200/312] eta 0:00:53 lr 0.002520 time 0.4501 (0.4772) model_time 0.4497 (0.4677) loss 2.4549 (3.3426) grad_norm 2.3833 (1.6811/0.7280) mem 16099MB [2025-01-18 03:48:56 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][210/312] eta 0:00:48 lr 0.002519 time 0.4483 (0.4765) model_time 0.4478 (0.4675) loss 2.9570 (3.3423) grad_norm 1.2082 (1.6975/0.7509) mem 16099MB [2025-01-18 03:49:00 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][220/312] eta 0:00:43 lr 0.002518 time 0.4488 (0.4758) model_time 0.4483 (0.4672) loss 3.7361 (3.3488) grad_norm 1.0174 (1.6824/0.7442) mem 16099MB [2025-01-18 03:49:05 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][230/312] eta 0:00:38 lr 0.002518 time 0.4837 (0.4751) model_time 0.4835 (0.4669) loss 3.5978 (3.3487) grad_norm 3.2599 (1.6951/0.7670) mem 16099MB [2025-01-18 03:49:10 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][240/312] eta 0:00:34 lr 0.002517 time 0.5158 (0.4747) model_time 0.5157 (0.4667) loss 3.2689 (3.3422) grad_norm 1.4226 (1.7126/0.7781) mem 16099MB [2025-01-18 03:49:14 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][250/312] eta 0:00:29 lr 0.002516 time 0.4417 (0.4743) model_time 0.4412 (0.4667) loss 3.8921 (3.3394) grad_norm 1.0337 (1.7120/0.7697) mem 16099MB [2025-01-18 03:49:19 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][260/312] eta 0:00:24 lr 0.002516 time 0.4535 (0.4735) model_time 0.4530 (0.4661) loss 3.7422 (3.3483) grad_norm 1.0488 (1.6953/0.7629) mem 16099MB [2025-01-18 03:49:23 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][270/312] eta 0:00:19 lr 0.002515 time 0.4518 (0.4729) model_time 0.4517 (0.4658) loss 3.3916 (3.3399) grad_norm 1.2644 (1.6942/0.7710) mem 16099MB [2025-01-18 03:49:28 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][280/312] eta 0:00:15 lr 0.002514 time 0.4469 (0.4727) model_time 0.4467 (0.4658) loss 3.1467 (3.3409) grad_norm 0.7218 (1.6956/0.7661) mem 16099MB [2025-01-18 03:49:33 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][290/312] eta 0:00:10 lr 0.002514 time 0.4406 (0.4725) model_time 0.4402 (0.4659) loss 2.3943 (3.3367) grad_norm 2.8570 (1.7054/0.7658) mem 16099MB [2025-01-18 03:49:37 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][300/312] eta 0:00:05 lr 0.002513 time 0.4499 (0.4727) model_time 0.4498 (0.4662) loss 3.5130 (3.3303) grad_norm 1.0339 (1.7127/0.7681) mem 16099MB [2025-01-18 03:49:42 internimage_t_1k_224] (main.py 510): INFO Train: [125/300][310/312] eta 0:00:00 lr 0.002513 time 0.4375 (0.4725) model_time 0.4374 (0.4663) loss 3.2943 (3.3367) grad_norm 1.9649 (1.6958/0.7616) mem 16099MB [2025-01-18 03:49:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 125 training takes 0:02:27 [2025-01-18 03:49:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_125.pth saving...... [2025-01-18 03:49:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_125.pth saved !!! [2025-01-18 03:49:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.465 (7.465) Loss 0.8632 (0.8632) Acc@1 81.909 (81.909) Acc@5 96.338 (96.338) Mem 16099MB [2025-01-18 03:49:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.004) Loss 1.2316 (1.0454) Acc@1 74.072 (78.305) Acc@5 92.261 (94.471) Mem 16099MB [2025-01-18 03:49:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:125] * Acc@1 78.205 Acc@5 94.504 [2025-01-18 03:49:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.2% [2025-01-18 03:49:55 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.31% [2025-01-18 03:50:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.247 (8.247) Loss 0.8284 (0.8284) Acc@1 82.202 (82.202) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 03:50:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.113) Loss 1.1824 (0.9759) Acc@1 73.413 (79.277) Acc@5 92.651 (94.889) Mem 16099MB [2025-01-18 03:50:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:125] * Acc@1 79.175 Acc@5 94.910 [2025-01-18 03:50:07 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.2% [2025-01-18 03:50:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:50:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:50:09 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.17% [2025-01-18 03:50:12 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][0/312] eta 0:14:23 lr 0.002512 time 2.7678 (2.7678) model_time 0.4833 (0.4833) loss 3.2053 (3.2053) grad_norm 1.5817 (1.5817/0.0000) mem 16099MB [2025-01-18 03:50:16 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][10/312] eta 0:03:24 lr 0.002512 time 0.4641 (0.6764) model_time 0.4637 (0.4683) loss 3.9606 (3.5051) grad_norm 1.7589 (1.8827/0.8552) mem 16099MB [2025-01-18 03:50:21 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][20/312] eta 0:02:48 lr 0.002511 time 0.4507 (0.5777) model_time 0.4503 (0.4686) loss 4.3622 (3.2773) grad_norm 3.1962 (1.9233/0.7822) mem 16099MB [2025-01-18 03:50:26 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][30/312] eta 0:02:31 lr 0.002510 time 0.4493 (0.5389) model_time 0.4491 (0.4649) loss 3.2456 (3.2840) grad_norm 2.7087 (2.4111/1.4781) mem 16099MB [2025-01-18 03:50:30 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][40/312] eta 0:02:23 lr 0.002510 time 0.4682 (0.5274) model_time 0.4681 (0.4714) loss 4.2194 (3.3619) grad_norm 1.4143 (2.1660/1.3600) mem 16099MB [2025-01-18 03:50:35 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][50/312] eta 0:02:15 lr 0.002509 time 0.4491 (0.5165) model_time 0.4487 (0.4713) loss 3.9616 (3.3906) grad_norm 1.2348 (2.0390/1.2729) mem 16099MB [2025-01-18 03:50:40 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][60/312] eta 0:02:08 lr 0.002509 time 0.4545 (0.5099) model_time 0.4544 (0.4720) loss 2.8369 (3.3852) grad_norm 1.4931 (1.9211/1.1978) mem 16099MB [2025-01-18 03:50:45 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][70/312] eta 0:02:01 lr 0.002508 time 0.4544 (0.5037) model_time 0.4543 (0.4712) loss 4.3644 (3.3939) grad_norm 2.3340 (1.8526/1.1337) mem 16099MB [2025-01-18 03:50:49 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][80/312] eta 0:01:56 lr 0.002507 time 0.4403 (0.5001) model_time 0.4401 (0.4716) loss 3.4910 (3.3870) grad_norm 1.2242 (1.8480/1.0757) mem 16099MB [2025-01-18 03:50:54 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][90/312] eta 0:01:50 lr 0.002507 time 0.4541 (0.4959) model_time 0.4536 (0.4704) loss 3.2139 (3.4196) grad_norm 1.4997 (1.8100/1.0271) mem 16099MB [2025-01-18 03:50:59 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][100/312] eta 0:01:44 lr 0.002506 time 0.4753 (0.4924) model_time 0.4752 (0.4694) loss 2.2972 (3.4102) grad_norm 2.3983 (1.7554/0.9999) mem 16099MB [2025-01-18 03:51:03 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][110/312] eta 0:01:38 lr 0.002505 time 0.5402 (0.4897) model_time 0.5398 (0.4687) loss 3.5420 (3.4195) grad_norm 2.4877 (1.7601/0.9698) mem 16099MB [2025-01-18 03:51:08 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][120/312] eta 0:01:33 lr 0.002505 time 0.4709 (0.4876) model_time 0.4707 (0.4683) loss 3.5897 (3.4086) grad_norm 1.1603 (1.7901/0.9630) mem 16099MB [2025-01-18 03:51:12 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][130/312] eta 0:01:28 lr 0.002504 time 0.4450 (0.4854) model_time 0.4446 (0.4676) loss 3.4656 (3.3930) grad_norm 1.1185 (1.7703/0.9389) mem 16099MB [2025-01-18 03:51:17 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][140/312] eta 0:01:23 lr 0.002503 time 0.4498 (0.4838) model_time 0.4494 (0.4672) loss 3.3734 (3.3951) grad_norm 1.9231 (1.7424/0.9161) mem 16099MB [2025-01-18 03:51:22 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][150/312] eta 0:01:18 lr 0.002503 time 0.4508 (0.4824) model_time 0.4506 (0.4669) loss 3.5003 (3.3835) grad_norm 2.3846 (1.7244/0.8994) mem 16099MB [2025-01-18 03:51:26 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][160/312] eta 0:01:13 lr 0.002502 time 0.4426 (0.4823) model_time 0.4424 (0.4678) loss 3.1537 (3.3822) grad_norm 2.3752 (1.7393/0.8928) mem 16099MB [2025-01-18 03:51:31 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][170/312] eta 0:01:08 lr 0.002501 time 0.4413 (0.4820) model_time 0.4411 (0.4683) loss 3.5358 (3.3879) grad_norm 2.6695 (1.7274/0.8755) mem 16099MB [2025-01-18 03:51:36 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][180/312] eta 0:01:03 lr 0.002501 time 0.4506 (0.4804) model_time 0.4501 (0.4674) loss 3.6869 (3.3745) grad_norm 3.8193 (1.7579/0.9051) mem 16099MB [2025-01-18 03:51:40 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][190/312] eta 0:00:58 lr 0.002500 time 0.4856 (0.4792) model_time 0.4854 (0.4669) loss 3.3706 (3.3782) grad_norm 1.1858 (1.7546/0.8886) mem 16099MB [2025-01-18 03:51:45 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][200/312] eta 0:00:53 lr 0.002500 time 0.4548 (0.4782) model_time 0.4546 (0.4664) loss 3.7069 (3.3817) grad_norm 0.8166 (1.7465/0.8736) mem 16099MB [2025-01-18 03:51:50 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][210/312] eta 0:00:48 lr 0.002499 time 0.4732 (0.4776) model_time 0.4730 (0.4664) loss 4.0777 (3.3965) grad_norm 1.2908 (1.7609/0.8819) mem 16099MB [2025-01-18 03:51:54 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][220/312] eta 0:00:43 lr 0.002498 time 0.4513 (0.4769) model_time 0.4509 (0.4662) loss 2.0942 (3.3876) grad_norm 1.1504 (1.7879/0.8932) mem 16099MB [2025-01-18 03:51:59 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][230/312] eta 0:00:39 lr 0.002498 time 0.4461 (0.4769) model_time 0.4459 (0.4666) loss 2.8612 (3.3753) grad_norm 1.5123 (1.7636/0.8831) mem 16099MB [2025-01-18 03:52:04 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][240/312] eta 0:00:34 lr 0.002497 time 0.4609 (0.4763) model_time 0.4605 (0.4664) loss 3.5069 (3.3632) grad_norm 3.2794 (1.7535/0.8779) mem 16099MB [2025-01-18 03:52:08 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][250/312] eta 0:00:29 lr 0.002496 time 0.4548 (0.4764) model_time 0.4544 (0.4669) loss 3.9351 (3.3601) grad_norm 1.1895 (1.7496/0.8712) mem 16099MB [2025-01-18 03:52:13 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][260/312] eta 0:00:24 lr 0.002496 time 0.4416 (0.4764) model_time 0.4411 (0.4672) loss 3.3774 (3.3605) grad_norm 2.7580 (1.7454/0.8607) mem 16099MB [2025-01-18 03:52:18 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][270/312] eta 0:00:19 lr 0.002495 time 0.4496 (0.4757) model_time 0.4494 (0.4669) loss 3.7391 (3.3710) grad_norm 1.0191 (1.7482/0.8653) mem 16099MB [2025-01-18 03:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][280/312] eta 0:00:15 lr 0.002494 time 0.4413 (0.4759) model_time 0.4408 (0.4673) loss 3.7749 (3.3781) grad_norm 0.9202 (1.7382/0.8569) mem 16099MB [2025-01-18 03:52:27 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][290/312] eta 0:00:10 lr 0.002494 time 0.4588 (0.4763) model_time 0.4586 (0.4680) loss 3.3753 (3.3789) grad_norm 2.2998 (1.7404/0.8501) mem 16099MB [2025-01-18 03:52:32 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][300/312] eta 0:00:05 lr 0.002493 time 0.4387 (0.4764) model_time 0.4386 (0.4685) loss 3.5386 (3.3709) grad_norm 1.0255 (1.7250/0.8415) mem 16099MB [2025-01-18 03:52:37 internimage_t_1k_224] (main.py 510): INFO Train: [126/300][310/312] eta 0:00:00 lr 0.002492 time 0.4385 (0.4759) model_time 0.4384 (0.4681) loss 3.3173 (3.3731) grad_norm 1.1945 (1.7210/0.8309) mem 16099MB [2025-01-18 03:52:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 126 training takes 0:02:28 [2025-01-18 03:52:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_126.pth saving...... [2025-01-18 03:52:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_126.pth saved !!! [2025-01-18 03:52:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.498 (7.498) Loss 0.8860 (0.8860) Acc@1 81.787 (81.787) Acc@5 96.265 (96.265) Mem 16099MB [2025-01-18 03:52:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.025) Loss 1.2045 (1.0348) Acc@1 73.560 (78.445) Acc@5 92.554 (94.411) Mem 16099MB [2025-01-18 03:52:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:126] * Acc@1 78.363 Acc@5 94.464 [2025-01-18 03:52:50 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.4% [2025-01-18 03:52:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:52:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:52:51 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.36% [2025-01-18 03:52:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.700 (7.700) Loss 0.8271 (0.8271) Acc@1 82.251 (82.251) Acc@5 96.802 (96.802) Mem 16099MB [2025-01-18 03:53:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (1.038) Loss 1.1787 (0.9738) Acc@1 73.535 (79.343) Acc@5 92.700 (94.926) Mem 16099MB [2025-01-18 03:53:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:126] * Acc@1 79.245 Acc@5 94.938 [2025-01-18 03:53:03 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.2% [2025-01-18 03:53:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:53:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:53:04 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.24% [2025-01-18 03:53:06 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][0/312] eta 0:11:15 lr 0.002492 time 2.1660 (2.1660) model_time 0.4986 (0.4986) loss 3.5741 (3.5741) grad_norm 1.0170 (1.0170/0.0000) mem 16099MB [2025-01-18 03:53:11 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][10/312] eta 0:03:05 lr 0.002492 time 0.4544 (0.6137) model_time 0.4543 (0.4618) loss 3.1992 (3.3722) grad_norm 1.6603 (1.2970/0.3257) mem 16099MB [2025-01-18 03:53:16 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][20/312] eta 0:02:37 lr 0.002491 time 0.4764 (0.5397) model_time 0.4759 (0.4600) loss 3.5410 (3.4127) grad_norm 1.5233 (1.4953/0.5966) mem 16099MB [2025-01-18 03:53:20 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][30/312] eta 0:02:25 lr 0.002490 time 0.4470 (0.5143) model_time 0.4463 (0.4602) loss 2.3815 (3.3814) grad_norm 0.8212 (1.7161/0.8215) mem 16099MB [2025-01-18 03:53:25 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][40/312] eta 0:02:17 lr 0.002490 time 0.4521 (0.5037) model_time 0.4516 (0.4627) loss 2.3432 (3.3212) grad_norm 3.0384 (1.7173/0.7944) mem 16099MB [2025-01-18 03:53:30 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][50/312] eta 0:02:09 lr 0.002489 time 0.4550 (0.4952) model_time 0.4543 (0.4622) loss 3.0468 (3.3471) grad_norm 1.4031 (1.7163/0.8224) mem 16099MB [2025-01-18 03:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][60/312] eta 0:02:03 lr 0.002488 time 0.5402 (0.4911) model_time 0.5401 (0.4634) loss 3.5438 (3.3681) grad_norm 1.0158 (1.7360/0.8261) mem 16099MB [2025-01-18 03:53:39 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][70/312] eta 0:01:58 lr 0.002488 time 0.4537 (0.4887) model_time 0.4535 (0.4648) loss 3.3663 (3.3659) grad_norm 1.1343 (1.6784/0.7984) mem 16099MB [2025-01-18 03:53:44 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][80/312] eta 0:01:52 lr 0.002487 time 0.4627 (0.4845) model_time 0.4623 (0.4636) loss 2.5933 (3.3457) grad_norm 0.9317 (1.6976/0.7853) mem 16099MB [2025-01-18 03:53:48 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][90/312] eta 0:01:47 lr 0.002486 time 0.4561 (0.4823) model_time 0.4560 (0.4636) loss 3.5913 (3.3307) grad_norm 1.3470 (1.6913/0.7809) mem 16099MB [2025-01-18 03:53:53 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][100/312] eta 0:01:41 lr 0.002486 time 0.4487 (0.4810) model_time 0.4485 (0.4641) loss 3.6033 (3.3517) grad_norm 1.4629 (1.7018/0.7977) mem 16099MB [2025-01-18 03:53:58 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][110/312] eta 0:01:36 lr 0.002485 time 0.4507 (0.4796) model_time 0.4502 (0.4642) loss 3.8946 (3.3491) grad_norm 1.3188 (1.7161/0.7899) mem 16099MB [2025-01-18 03:54:02 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][120/312] eta 0:01:31 lr 0.002485 time 0.4583 (0.4781) model_time 0.4582 (0.4640) loss 3.5186 (3.3416) grad_norm 1.2905 (1.7009/0.7636) mem 16099MB [2025-01-18 03:54:07 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][130/312] eta 0:01:26 lr 0.002484 time 0.4575 (0.4776) model_time 0.4574 (0.4645) loss 3.8897 (3.3421) grad_norm 1.6914 (1.7583/0.8114) mem 16099MB [2025-01-18 03:54:12 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][140/312] eta 0:01:22 lr 0.002483 time 0.4523 (0.4773) model_time 0.4518 (0.4651) loss 2.4974 (3.3427) grad_norm 4.6035 (1.8236/0.8989) mem 16099MB [2025-01-18 03:54:16 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][150/312] eta 0:01:17 lr 0.002483 time 0.4442 (0.4782) model_time 0.4441 (0.4668) loss 2.8274 (3.3335) grad_norm 1.0498 (1.8249/0.8964) mem 16099MB [2025-01-18 03:54:21 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][160/312] eta 0:01:12 lr 0.002482 time 0.4487 (0.4777) model_time 0.4482 (0.4669) loss 2.7243 (3.3228) grad_norm 0.9286 (1.8003/0.8823) mem 16099MB [2025-01-18 03:54:26 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][170/312] eta 0:01:07 lr 0.002481 time 0.4678 (0.4779) model_time 0.4676 (0.4677) loss 3.8941 (3.3150) grad_norm 1.1923 (1.7565/0.8748) mem 16099MB [2025-01-18 03:54:31 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][180/312] eta 0:01:02 lr 0.002481 time 0.4702 (0.4768) model_time 0.4697 (0.4673) loss 2.3274 (3.3126) grad_norm 1.0255 (1.7253/0.8615) mem 16099MB [2025-01-18 03:54:35 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][190/312] eta 0:00:58 lr 0.002480 time 0.4441 (0.4758) model_time 0.4436 (0.4667) loss 3.6344 (3.3313) grad_norm 1.4947 (1.6985/0.8509) mem 16099MB [2025-01-18 03:54:40 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][200/312] eta 0:00:53 lr 0.002479 time 0.4614 (0.4748) model_time 0.4612 (0.4661) loss 2.2815 (3.3229) grad_norm 1.1084 (1.6757/0.8369) mem 16099MB [2025-01-18 03:54:44 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][210/312] eta 0:00:48 lr 0.002479 time 0.4508 (0.4743) model_time 0.4504 (0.4660) loss 3.4745 (3.3234) grad_norm 1.0384 (1.6556/0.8247) mem 16099MB [2025-01-18 03:54:49 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][220/312] eta 0:00:43 lr 0.002478 time 0.4493 (0.4739) model_time 0.4488 (0.4660) loss 2.5033 (3.3119) grad_norm 2.3519 (1.6670/0.8213) mem 16099MB [2025-01-18 03:54:54 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][230/312] eta 0:00:38 lr 0.002477 time 0.4495 (0.4742) model_time 0.4490 (0.4666) loss 3.6019 (3.3185) grad_norm 1.7844 (1.6579/0.8060) mem 16099MB [2025-01-18 03:54:58 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][240/312] eta 0:00:34 lr 0.002477 time 0.5416 (0.4738) model_time 0.5414 (0.4665) loss 3.4954 (3.3186) grad_norm 2.1171 (1.6503/0.7947) mem 16099MB [2025-01-18 03:55:03 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][250/312] eta 0:00:29 lr 0.002476 time 0.4484 (0.4731) model_time 0.4482 (0.4661) loss 3.3076 (3.3275) grad_norm 3.4886 (1.6739/0.8172) mem 16099MB [2025-01-18 03:55:08 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][260/312] eta 0:00:24 lr 0.002475 time 0.4530 (0.4724) model_time 0.4525 (0.4656) loss 3.3370 (3.3163) grad_norm 2.4240 (1.7108/0.8689) mem 16099MB [2025-01-18 03:55:12 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][270/312] eta 0:00:19 lr 0.002475 time 0.4604 (0.4721) model_time 0.4600 (0.4656) loss 3.0972 (3.3109) grad_norm 1.4070 (1.7000/0.8558) mem 16099MB [2025-01-18 03:55:17 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][280/312] eta 0:00:15 lr 0.002474 time 0.4448 (0.4721) model_time 0.4446 (0.4658) loss 3.3873 (3.3082) grad_norm 0.8941 (1.6955/0.8453) mem 16099MB [2025-01-18 03:55:21 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][290/312] eta 0:00:10 lr 0.002474 time 0.4534 (0.4714) model_time 0.4532 (0.4653) loss 3.5153 (3.3079) grad_norm 1.1183 (1.6766/0.8382) mem 16099MB [2025-01-18 03:55:26 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][300/312] eta 0:00:05 lr 0.002473 time 0.4391 (0.4708) model_time 0.4390 (0.4649) loss 3.4523 (3.3084) grad_norm 1.8511 (1.6678/0.8291) mem 16099MB [2025-01-18 03:55:31 internimage_t_1k_224] (main.py 510): INFO Train: [127/300][310/312] eta 0:00:00 lr 0.002472 time 0.4375 (0.4705) model_time 0.4374 (0.4647) loss 3.5162 (3.3031) grad_norm 3.5562 (1.6870/0.8398) mem 16099MB [2025-01-18 03:55:31 internimage_t_1k_224] (main.py 519): INFO EPOCH 127 training takes 0:02:26 [2025-01-18 03:55:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_127.pth saving...... [2025-01-18 03:55:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_127.pth saved !!! [2025-01-18 03:55:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.248 (7.248) Loss 0.8078 (0.8078) Acc@1 81.812 (81.812) Acc@5 96.289 (96.289) Mem 16099MB [2025-01-18 03:55:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.974) Loss 1.2038 (0.9847) Acc@1 72.754 (78.285) Acc@5 92.285 (94.513) Mem 16099MB [2025-01-18 03:55:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:127] * Acc@1 78.211 Acc@5 94.524 [2025-01-18 03:55:43 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.2% [2025-01-18 03:55:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.36% [2025-01-18 03:55:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.351 (8.351) Loss 0.8255 (0.8255) Acc@1 82.422 (82.422) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 03:55:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.132) Loss 1.1756 (0.9716) Acc@1 73.682 (79.423) Acc@5 92.749 (94.957) Mem 16099MB [2025-01-18 03:55:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:127] * Acc@1 79.323 Acc@5 94.960 [2025-01-18 03:55:56 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.3% [2025-01-18 03:55:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:55:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:55:57 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.32% [2025-01-18 03:56:00 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][0/312] eta 0:12:50 lr 0.002472 time 2.4710 (2.4710) model_time 0.4783 (0.4783) loss 3.6270 (3.6270) grad_norm 1.3582 (1.3582/0.0000) mem 16099MB [2025-01-18 03:56:04 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][10/312] eta 0:03:16 lr 0.002471 time 0.4489 (0.6499) model_time 0.4487 (0.4685) loss 4.0365 (3.5772) grad_norm 1.0921 (1.8017/0.7450) mem 16099MB [2025-01-18 03:56:09 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][20/312] eta 0:02:45 lr 0.002471 time 0.4496 (0.5671) model_time 0.4491 (0.4720) loss 2.5406 (3.4338) grad_norm 2.3751 (1.7545/0.7706) mem 16099MB [2025-01-18 03:56:14 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][30/312] eta 0:02:33 lr 0.002470 time 0.4444 (0.5431) model_time 0.4442 (0.4786) loss 2.9620 (3.3438) grad_norm 1.6410 (1.6954/0.6922) mem 16099MB [2025-01-18 03:56:19 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][40/312] eta 0:02:22 lr 0.002470 time 0.4433 (0.5223) model_time 0.4429 (0.4734) loss 4.0178 (3.3158) grad_norm 0.8709 (1.6265/0.6766) mem 16099MB [2025-01-18 03:56:23 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][50/312] eta 0:02:13 lr 0.002469 time 0.4522 (0.5101) model_time 0.4520 (0.4707) loss 3.4614 (3.3781) grad_norm 1.8864 (1.6091/0.6310) mem 16099MB [2025-01-18 03:56:28 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][60/312] eta 0:02:06 lr 0.002468 time 0.4507 (0.5023) model_time 0.4502 (0.4693) loss 3.4267 (3.3866) grad_norm 1.6237 (1.5838/0.6019) mem 16099MB [2025-01-18 03:56:33 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][70/312] eta 0:02:00 lr 0.002468 time 0.4710 (0.4972) model_time 0.4706 (0.4688) loss 3.9454 (3.3621) grad_norm 2.1143 (1.5396/0.5965) mem 16099MB [2025-01-18 03:56:37 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][80/312] eta 0:01:54 lr 0.002467 time 0.4518 (0.4916) model_time 0.4516 (0.4667) loss 3.3955 (3.3511) grad_norm 1.4744 (1.5699/0.6103) mem 16099MB [2025-01-18 03:56:42 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][90/312] eta 0:01:48 lr 0.002466 time 0.4578 (0.4893) model_time 0.4577 (0.4671) loss 2.5910 (3.3201) grad_norm 0.8788 (1.5182/0.6000) mem 16099MB [2025-01-18 03:56:46 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][100/312] eta 0:01:43 lr 0.002466 time 0.4575 (0.4862) model_time 0.4570 (0.4662) loss 4.0615 (3.3142) grad_norm 1.2594 (1.5055/0.5923) mem 16099MB [2025-01-18 03:56:51 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][110/312] eta 0:01:37 lr 0.002465 time 0.4507 (0.4840) model_time 0.4502 (0.4657) loss 3.7294 (3.2970) grad_norm 1.6041 (1.5437/0.5975) mem 16099MB [2025-01-18 03:56:56 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][120/312] eta 0:01:32 lr 0.002464 time 0.4542 (0.4830) model_time 0.4538 (0.4662) loss 3.2385 (3.2995) grad_norm 2.3333 (1.5673/0.6102) mem 16099MB [2025-01-18 03:57:01 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][130/312] eta 0:01:27 lr 0.002464 time 0.4628 (0.4829) model_time 0.4626 (0.4673) loss 3.4359 (3.3014) grad_norm 3.6190 (1.6195/0.6436) mem 16099MB [2025-01-18 03:57:05 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][140/312] eta 0:01:23 lr 0.002463 time 0.5307 (0.4836) model_time 0.5305 (0.4691) loss 2.3905 (3.3083) grad_norm 1.8733 (1.6251/0.6315) mem 16099MB [2025-01-18 03:57:10 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][150/312] eta 0:01:18 lr 0.002462 time 0.5398 (0.4835) model_time 0.5393 (0.4700) loss 2.6689 (3.3028) grad_norm 1.0364 (1.6658/0.6520) mem 16099MB [2025-01-18 03:57:15 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][160/312] eta 0:01:13 lr 0.002462 time 0.4858 (0.4824) model_time 0.4856 (0.4697) loss 4.0483 (3.3174) grad_norm 2.3836 (1.6444/0.6494) mem 16099MB [2025-01-18 03:57:20 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][170/312] eta 0:01:08 lr 0.002461 time 0.4549 (0.4812) model_time 0.4547 (0.4692) loss 3.7930 (3.3099) grad_norm 3.2286 (1.7331/0.8387) mem 16099MB [2025-01-18 03:57:24 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][180/312] eta 0:01:03 lr 0.002460 time 0.4400 (0.4806) model_time 0.4398 (0.4693) loss 3.8512 (3.3147) grad_norm 1.0575 (1.7551/0.8445) mem 16099MB [2025-01-18 03:57:29 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][190/312] eta 0:00:58 lr 0.002460 time 0.4623 (0.4791) model_time 0.4618 (0.4683) loss 2.9746 (3.2997) grad_norm 0.8158 (1.7486/0.8387) mem 16099MB [2025-01-18 03:57:33 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][200/312] eta 0:00:53 lr 0.002459 time 0.4481 (0.4786) model_time 0.4476 (0.4683) loss 3.9410 (3.2986) grad_norm 1.2598 (1.7232/0.8269) mem 16099MB [2025-01-18 03:57:38 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][210/312] eta 0:00:48 lr 0.002459 time 0.4397 (0.4774) model_time 0.4396 (0.4675) loss 3.5949 (3.3080) grad_norm 1.8166 (1.7135/0.8133) mem 16099MB [2025-01-18 03:57:43 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][220/312] eta 0:00:43 lr 0.002458 time 0.4421 (0.4764) model_time 0.4418 (0.4670) loss 3.1754 (3.3097) grad_norm 2.0822 (1.7041/0.8001) mem 16099MB [2025-01-18 03:57:47 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][230/312] eta 0:00:39 lr 0.002457 time 0.4768 (0.4760) model_time 0.4767 (0.4670) loss 3.9888 (3.3057) grad_norm 1.1659 (1.6905/0.7928) mem 16099MB [2025-01-18 03:57:52 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][240/312] eta 0:00:34 lr 0.002457 time 0.4559 (0.4753) model_time 0.4554 (0.4666) loss 2.6405 (3.3071) grad_norm 1.2230 (1.6731/0.7818) mem 16099MB [2025-01-18 03:57:56 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][250/312] eta 0:00:29 lr 0.002456 time 0.5356 (0.4747) model_time 0.5355 (0.4664) loss 2.7931 (3.3028) grad_norm 2.6155 (1.6686/0.7739) mem 16099MB [2025-01-18 03:58:01 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][260/312] eta 0:00:24 lr 0.002455 time 0.4621 (0.4750) model_time 0.4619 (0.4670) loss 4.0478 (3.3024) grad_norm 0.8520 (1.6535/0.7683) mem 16099MB [2025-01-18 03:58:06 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][270/312] eta 0:00:19 lr 0.002455 time 0.4793 (0.4746) model_time 0.4791 (0.4669) loss 3.2496 (3.3070) grad_norm 5.1610 (1.6829/0.8100) mem 16099MB [2025-01-18 03:58:11 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][280/312] eta 0:00:15 lr 0.002454 time 0.4442 (0.4745) model_time 0.4438 (0.4670) loss 3.5890 (3.3044) grad_norm 1.2934 (1.6959/0.8174) mem 16099MB [2025-01-18 03:58:15 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][290/312] eta 0:00:10 lr 0.002453 time 0.4504 (0.4745) model_time 0.4502 (0.4672) loss 3.5712 (3.3016) grad_norm 1.2560 (1.6874/0.8083) mem 16099MB [2025-01-18 03:58:20 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][300/312] eta 0:00:05 lr 0.002453 time 0.4380 (0.4743) model_time 0.4379 (0.4673) loss 2.4204 (3.2974) grad_norm 1.2099 (1.6816/0.7982) mem 16099MB [2025-01-18 03:58:25 internimage_t_1k_224] (main.py 510): INFO Train: [128/300][310/312] eta 0:00:00 lr 0.002452 time 0.5161 (0.4742) model_time 0.5160 (0.4674) loss 3.6541 (3.2953) grad_norm 1.2790 (1.6634/0.7894) mem 16099MB [2025-01-18 03:58:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 128 training takes 0:02:27 [2025-01-18 03:58:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_128.pth saving...... [2025-01-18 03:58:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_128.pth saved !!! [2025-01-18 03:58:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.476 (7.476) Loss 0.8798 (0.8798) Acc@1 81.641 (81.641) Acc@5 96.143 (96.143) Mem 16099MB [2025-01-18 03:58:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.014) Loss 1.1933 (1.0161) Acc@1 74.072 (78.880) Acc@5 92.798 (94.600) Mem 16099MB [2025-01-18 03:58:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:128] * Acc@1 78.739 Acc@5 94.596 [2025-01-18 03:58:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.7% [2025-01-18 03:58:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 03:58:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 03:58:39 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 03:58:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.573 (7.573) Loss 0.8238 (0.8238) Acc@1 82.544 (82.544) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 03:58:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.005) Loss 1.1721 (0.9694) Acc@1 73.853 (79.510) Acc@5 92.871 (94.995) Mem 16099MB [2025-01-18 03:58:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:128] * Acc@1 79.411 Acc@5 94.998 [2025-01-18 03:58:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.4% [2025-01-18 03:58:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 03:58:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 03:58:52 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.41% [2025-01-18 03:58:54 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][0/312] eta 0:14:17 lr 0.002452 time 2.7472 (2.7472) model_time 0.4626 (0.4626) loss 3.4812 (3.4812) grad_norm 1.0542 (1.0542/0.0000) mem 16099MB [2025-01-18 03:58:59 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][10/312] eta 0:03:25 lr 0.002451 time 0.4458 (0.6793) model_time 0.4456 (0.4618) loss 3.0614 (3.3499) grad_norm 1.1360 (1.2899/0.4632) mem 16099MB [2025-01-18 03:59:04 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][20/312] eta 0:02:48 lr 0.002451 time 0.4576 (0.5779) model_time 0.4574 (0.4638) loss 3.9048 (3.4891) grad_norm 1.1796 (1.5402/0.6235) mem 16099MB [2025-01-18 03:59:08 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][30/312] eta 0:02:31 lr 0.002450 time 0.4449 (0.5386) model_time 0.4444 (0.4611) loss 3.8469 (3.4626) grad_norm 1.3142 (1.5293/0.5516) mem 16099MB [2025-01-18 03:59:13 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][40/312] eta 0:02:21 lr 0.002449 time 0.4428 (0.5217) model_time 0.4427 (0.4630) loss 3.5921 (3.4878) grad_norm 1.3014 (1.5383/0.5273) mem 16099MB [2025-01-18 03:59:18 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][50/312] eta 0:02:13 lr 0.002449 time 0.4497 (0.5113) model_time 0.4496 (0.4641) loss 3.2416 (3.4708) grad_norm 1.1809 (1.7294/0.7831) mem 16099MB [2025-01-18 03:59:22 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][60/312] eta 0:02:07 lr 0.002448 time 0.5657 (0.5040) model_time 0.5655 (0.4645) loss 3.9979 (3.4841) grad_norm 3.3651 (1.7016/0.7787) mem 16099MB [2025-01-18 03:59:27 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][70/312] eta 0:02:00 lr 0.002447 time 0.4604 (0.4967) model_time 0.4603 (0.4627) loss 2.9451 (3.4578) grad_norm 0.9847 (1.7009/0.7429) mem 16099MB [2025-01-18 03:59:32 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][80/312] eta 0:01:54 lr 0.002447 time 0.4517 (0.4941) model_time 0.4514 (0.4642) loss 3.5260 (3.4309) grad_norm 1.2026 (1.6422/0.7283) mem 16099MB [2025-01-18 03:59:36 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][90/312] eta 0:01:48 lr 0.002446 time 0.4543 (0.4899) model_time 0.4541 (0.4632) loss 3.0733 (3.3978) grad_norm 2.4787 (1.6348/0.7073) mem 16099MB [2025-01-18 03:59:41 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][100/312] eta 0:01:43 lr 0.002445 time 0.4666 (0.4872) model_time 0.4665 (0.4632) loss 2.4889 (3.3740) grad_norm 1.4502 (1.6402/0.6789) mem 16099MB [2025-01-18 03:59:45 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][110/312] eta 0:01:38 lr 0.002445 time 0.4566 (0.4855) model_time 0.4564 (0.4637) loss 3.0761 (3.3615) grad_norm 1.2737 (1.6271/0.6574) mem 16099MB [2025-01-18 03:59:50 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][120/312] eta 0:01:32 lr 0.002444 time 0.4630 (0.4830) model_time 0.4626 (0.4629) loss 3.2576 (3.3523) grad_norm 2.2017 (1.6891/0.7369) mem 16099MB [2025-01-18 03:59:55 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][130/312] eta 0:01:27 lr 0.002443 time 0.4952 (0.4827) model_time 0.4948 (0.4641) loss 2.9151 (3.3548) grad_norm 1.6824 (1.6838/0.7329) mem 16099MB [2025-01-18 03:59:59 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][140/312] eta 0:01:22 lr 0.002443 time 0.4486 (0.4818) model_time 0.4481 (0.4645) loss 3.3364 (3.3616) grad_norm 1.2760 (1.7139/0.7431) mem 16099MB [2025-01-18 04:00:04 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][150/312] eta 0:01:17 lr 0.002442 time 0.4602 (0.4813) model_time 0.4597 (0.4651) loss 2.8221 (3.3569) grad_norm 1.3501 (1.6985/0.7352) mem 16099MB [2025-01-18 04:00:09 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][160/312] eta 0:01:12 lr 0.002442 time 0.4493 (0.4796) model_time 0.4491 (0.4644) loss 3.4168 (3.3380) grad_norm 1.0362 (1.6622/0.7276) mem 16099MB [2025-01-18 04:00:14 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][170/312] eta 0:01:08 lr 0.002441 time 0.4544 (0.4795) model_time 0.4540 (0.4652) loss 4.2750 (3.3335) grad_norm 1.0845 (1.6731/0.7351) mem 16099MB [2025-01-18 04:00:18 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][180/312] eta 0:01:03 lr 0.002440 time 0.4661 (0.4791) model_time 0.4657 (0.4655) loss 3.3078 (3.3324) grad_norm 1.9301 (1.6692/0.7194) mem 16099MB [2025-01-18 04:00:23 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][190/312] eta 0:00:58 lr 0.002440 time 0.4475 (0.4779) model_time 0.4474 (0.4650) loss 2.2760 (3.3243) grad_norm 2.1126 (1.6674/0.7161) mem 16099MB [2025-01-18 04:00:28 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][200/312] eta 0:00:53 lr 0.002439 time 0.4840 (0.4774) model_time 0.4836 (0.4651) loss 3.7125 (3.3304) grad_norm 1.6654 (1.6743/0.7259) mem 16099MB [2025-01-18 04:00:32 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][210/312] eta 0:00:48 lr 0.002438 time 0.4626 (0.4784) model_time 0.4621 (0.4666) loss 3.2945 (3.3386) grad_norm 0.9318 (1.6734/0.7134) mem 16099MB [2025-01-18 04:00:37 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][220/312] eta 0:00:43 lr 0.002438 time 0.4495 (0.4776) model_time 0.4491 (0.4664) loss 2.6501 (3.3510) grad_norm 2.0886 (1.6678/0.7029) mem 16099MB [2025-01-18 04:00:42 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][230/312] eta 0:00:39 lr 0.002437 time 0.4526 (0.4769) model_time 0.4524 (0.4662) loss 4.2013 (3.3524) grad_norm 1.3171 (1.6625/0.6979) mem 16099MB [2025-01-18 04:00:46 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][240/312] eta 0:00:34 lr 0.002436 time 0.4570 (0.4761) model_time 0.4566 (0.4658) loss 3.1881 (3.3587) grad_norm 1.2478 (1.6735/0.7119) mem 16099MB [2025-01-18 04:00:51 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][250/312] eta 0:00:29 lr 0.002436 time 0.4672 (0.4755) model_time 0.4670 (0.4656) loss 3.1271 (3.3592) grad_norm 1.0080 (1.6562/0.7079) mem 16099MB [2025-01-18 04:00:56 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][260/312] eta 0:00:24 lr 0.002435 time 0.4439 (0.4750) model_time 0.4437 (0.4654) loss 3.6471 (3.3590) grad_norm 1.7317 (1.6653/0.7185) mem 16099MB [2025-01-18 04:01:00 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][270/312] eta 0:00:19 lr 0.002434 time 0.4520 (0.4745) model_time 0.4515 (0.4653) loss 3.7165 (3.3641) grad_norm 1.4523 (1.6546/0.7095) mem 16099MB [2025-01-18 04:01:05 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][280/312] eta 0:00:15 lr 0.002434 time 0.4550 (0.4747) model_time 0.4546 (0.4658) loss 3.3766 (3.3686) grad_norm 1.5805 (1.6786/0.7535) mem 16099MB [2025-01-18 04:01:10 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][290/312] eta 0:00:10 lr 0.002433 time 0.4528 (0.4742) model_time 0.4526 (0.4656) loss 3.3022 (3.3617) grad_norm 0.8768 (1.6721/0.7487) mem 16099MB [2025-01-18 04:01:14 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][300/312] eta 0:00:05 lr 0.002432 time 0.4431 (0.4740) model_time 0.4430 (0.4657) loss 2.6482 (3.3531) grad_norm 2.1423 (1.6723/0.7422) mem 16099MB [2025-01-18 04:01:19 internimage_t_1k_224] (main.py 510): INFO Train: [129/300][310/312] eta 0:00:00 lr 0.002432 time 0.4396 (0.4738) model_time 0.4395 (0.4658) loss 3.0327 (3.3451) grad_norm 1.3117 (1.6716/0.7402) mem 16099MB [2025-01-18 04:01:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 129 training takes 0:02:27 [2025-01-18 04:01:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_129.pth saving...... [2025-01-18 04:01:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_129.pth saved !!! [2025-01-18 04:01:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.398 (7.398) Loss 0.8664 (0.8664) Acc@1 81.689 (81.689) Acc@5 96.338 (96.338) Mem 16099MB [2025-01-18 04:01:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.002) Loss 1.2357 (1.0334) Acc@1 72.998 (78.194) Acc@5 92.725 (94.454) Mem 16099MB [2025-01-18 04:01:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:129] * Acc@1 78.129 Acc@5 94.472 [2025-01-18 04:01:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.1% [2025-01-18 04:01:32 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:01:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.004 (8.004) Loss 0.8225 (0.8225) Acc@1 82.642 (82.642) Acc@5 96.899 (96.899) Mem 16099MB [2025-01-18 04:01:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.089) Loss 1.1688 (0.9673) Acc@1 73.926 (79.543) Acc@5 92.847 (95.020) Mem 16099MB [2025-01-18 04:01:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:129] * Acc@1 79.433 Acc@5 95.032 [2025-01-18 04:01:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.4% [2025-01-18 04:01:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:01:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:01:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.43% [2025-01-18 04:01:48 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][0/312] eta 0:14:15 lr 0.002432 time 2.7431 (2.7431) model_time 0.4942 (0.4942) loss 3.0699 (3.0699) grad_norm 2.1403 (2.1403/0.0000) mem 16099MB [2025-01-18 04:01:53 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][10/312] eta 0:03:20 lr 0.002431 time 0.4569 (0.6644) model_time 0.4567 (0.4596) loss 3.9566 (3.5152) grad_norm 1.0771 (2.7945/1.1247) mem 16099MB [2025-01-18 04:01:58 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][20/312] eta 0:02:49 lr 0.002430 time 0.4485 (0.5805) model_time 0.4483 (0.4730) loss 3.6679 (3.4775) grad_norm 1.2701 (2.3006/1.0773) mem 16099MB [2025-01-18 04:02:02 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][30/312] eta 0:02:33 lr 0.002430 time 0.4394 (0.5461) model_time 0.4389 (0.4731) loss 3.3772 (3.3937) grad_norm 1.0205 (2.0373/1.0357) mem 16099MB [2025-01-18 04:02:07 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][40/312] eta 0:02:23 lr 0.002429 time 0.4406 (0.5262) model_time 0.4404 (0.4709) loss 3.4082 (3.3648) grad_norm 0.9511 (1.8401/0.9764) mem 16099MB [2025-01-18 04:02:12 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][50/312] eta 0:02:15 lr 0.002428 time 0.4505 (0.5160) model_time 0.4504 (0.4716) loss 3.3977 (3.3351) grad_norm 2.3139 (1.8804/0.9432) mem 16099MB [2025-01-18 04:02:16 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][60/312] eta 0:02:07 lr 0.002428 time 0.4533 (0.5061) model_time 0.4527 (0.4689) loss 3.3858 (3.3329) grad_norm 2.3204 (1.8272/0.8868) mem 16099MB [2025-01-18 04:02:21 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][70/312] eta 0:02:01 lr 0.002427 time 0.4910 (0.5000) model_time 0.4906 (0.4680) loss 2.8659 (3.3112) grad_norm 2.1430 (1.8290/0.8473) mem 16099MB [2025-01-18 04:02:25 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][80/312] eta 0:01:54 lr 0.002426 time 0.4426 (0.4954) model_time 0.4422 (0.4672) loss 3.2638 (3.3094) grad_norm 2.0188 (1.8640/0.8362) mem 16099MB [2025-01-18 04:02:30 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][90/312] eta 0:01:48 lr 0.002426 time 0.4609 (0.4908) model_time 0.4605 (0.4656) loss 3.6731 (3.3081) grad_norm 1.2035 (1.8215/0.8136) mem 16099MB [2025-01-18 04:02:35 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][100/312] eta 0:01:43 lr 0.002425 time 0.4509 (0.4890) model_time 0.4507 (0.4663) loss 3.3789 (3.3010) grad_norm 1.3545 (1.7770/0.7931) mem 16099MB [2025-01-18 04:02:39 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][110/312] eta 0:01:38 lr 0.002425 time 0.4494 (0.4856) model_time 0.4492 (0.4650) loss 3.3819 (3.3206) grad_norm 1.3521 (1.8095/0.7992) mem 16099MB [2025-01-18 04:02:44 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][120/312] eta 0:01:32 lr 0.002424 time 0.4593 (0.4831) model_time 0.4591 (0.4641) loss 3.1349 (3.3104) grad_norm 1.2446 (1.8154/0.8085) mem 16099MB [2025-01-18 04:02:49 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][130/312] eta 0:01:27 lr 0.002423 time 0.4514 (0.4823) model_time 0.4509 (0.4647) loss 4.1525 (3.2880) grad_norm 1.9341 (1.7992/0.7963) mem 16099MB [2025-01-18 04:02:53 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][140/312] eta 0:01:22 lr 0.002423 time 0.4471 (0.4810) model_time 0.4469 (0.4647) loss 2.4234 (3.2849) grad_norm 1.4214 (1.7597/0.7851) mem 16099MB [2025-01-18 04:02:58 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][150/312] eta 0:01:17 lr 0.002422 time 0.5553 (0.4809) model_time 0.5547 (0.4656) loss 3.5543 (3.2885) grad_norm 1.5889 (1.7351/0.7743) mem 16099MB [2025-01-18 04:03:03 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][160/312] eta 0:01:13 lr 0.002421 time 0.5503 (0.4815) model_time 0.5501 (0.4671) loss 3.1557 (3.2970) grad_norm 2.3692 (1.7206/0.7658) mem 16099MB [2025-01-18 04:03:08 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][170/312] eta 0:01:08 lr 0.002421 time 0.4443 (0.4804) model_time 0.4439 (0.4669) loss 2.9012 (3.3031) grad_norm 2.0871 (1.7554/0.7701) mem 16099MB [2025-01-18 04:03:12 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][180/312] eta 0:01:03 lr 0.002420 time 0.4476 (0.4796) model_time 0.4474 (0.4668) loss 2.1470 (3.2945) grad_norm 1.2184 (1.7498/0.7633) mem 16099MB [2025-01-18 04:03:17 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][190/312] eta 0:00:58 lr 0.002419 time 0.4569 (0.4792) model_time 0.4565 (0.4670) loss 3.8155 (3.3022) grad_norm 3.5734 (1.7511/0.7649) mem 16099MB [2025-01-18 04:03:21 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][200/312] eta 0:00:53 lr 0.002419 time 0.4436 (0.4778) model_time 0.4431 (0.4662) loss 3.1075 (3.2991) grad_norm 1.1333 (1.7920/0.8310) mem 16099MB [2025-01-18 04:03:26 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][210/312] eta 0:00:48 lr 0.002418 time 0.4397 (0.4772) model_time 0.4393 (0.4661) loss 2.7163 (3.2905) grad_norm 0.8870 (1.7944/0.8375) mem 16099MB [2025-01-18 04:03:31 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][220/312] eta 0:00:43 lr 0.002417 time 0.4613 (0.4768) model_time 0.4608 (0.4662) loss 2.7236 (3.2924) grad_norm 2.0478 (1.7878/0.8327) mem 16099MB [2025-01-18 04:03:35 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][230/312] eta 0:00:39 lr 0.002417 time 0.4515 (0.4759) model_time 0.4513 (0.4658) loss 3.2253 (3.2865) grad_norm 1.7787 (1.7703/0.8201) mem 16099MB [2025-01-18 04:03:40 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][240/312] eta 0:00:34 lr 0.002416 time 0.5460 (0.4765) model_time 0.5458 (0.4668) loss 3.1068 (3.2801) grad_norm 0.7265 (1.7596/0.8097) mem 16099MB [2025-01-18 04:03:45 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][250/312] eta 0:00:29 lr 0.002415 time 0.4454 (0.4759) model_time 0.4449 (0.4665) loss 3.8346 (3.2828) grad_norm 1.9482 (1.7681/0.8097) mem 16099MB [2025-01-18 04:03:50 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][260/312] eta 0:00:24 lr 0.002415 time 0.4624 (0.4762) model_time 0.4622 (0.4672) loss 3.5285 (3.2862) grad_norm 1.4865 (1.7548/0.8000) mem 16099MB [2025-01-18 04:03:54 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][270/312] eta 0:00:19 lr 0.002414 time 0.4579 (0.4761) model_time 0.4575 (0.4674) loss 3.6273 (3.2767) grad_norm 4.0772 (1.7663/0.8027) mem 16099MB [2025-01-18 04:03:59 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][280/312] eta 0:00:15 lr 0.002413 time 0.4531 (0.4754) model_time 0.4529 (0.4670) loss 3.1805 (3.2695) grad_norm 3.3077 (1.7683/0.7993) mem 16099MB [2025-01-18 04:04:04 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][290/312] eta 0:00:10 lr 0.002413 time 0.4449 (0.4751) model_time 0.4447 (0.4669) loss 3.0161 (3.2648) grad_norm 2.1085 (1.7605/0.7900) mem 16099MB [2025-01-18 04:04:08 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][300/312] eta 0:00:05 lr 0.002412 time 0.4388 (0.4744) model_time 0.4387 (0.4665) loss 3.2087 (3.2720) grad_norm 2.3280 (1.7751/0.7975) mem 16099MB [2025-01-18 04:04:13 internimage_t_1k_224] (main.py 510): INFO Train: [130/300][310/312] eta 0:00:00 lr 0.002411 time 0.4374 (0.4734) model_time 0.4373 (0.4657) loss 3.9577 (3.2804) grad_norm 1.1940 (1.7494/0.7678) mem 16099MB [2025-01-18 04:04:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 130 training takes 0:02:27 [2025-01-18 04:04:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_130.pth saving...... [2025-01-18 04:04:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_130.pth saved !!! [2025-01-18 04:04:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.372 (7.372) Loss 0.8575 (0.8575) Acc@1 82.007 (82.007) Acc@5 96.289 (96.289) Mem 16099MB [2025-01-18 04:04:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.981) Loss 1.1745 (0.9972) Acc@1 73.975 (78.624) Acc@5 92.432 (94.518) Mem 16099MB [2025-01-18 04:04:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:130] * Acc@1 78.571 Acc@5 94.574 [2025-01-18 04:04:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.6% [2025-01-18 04:04:25 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:04:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.221 (8.221) Loss 0.8213 (0.8213) Acc@1 82.690 (82.690) Acc@5 96.973 (96.973) Mem 16099MB [2025-01-18 04:04:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.102) Loss 1.1654 (0.9652) Acc@1 74.048 (79.603) Acc@5 92.920 (95.066) Mem 16099MB [2025-01-18 04:04:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:130] * Acc@1 79.501 Acc@5 95.074 [2025-01-18 04:04:37 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.5% [2025-01-18 04:04:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:04:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:04:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.50% [2025-01-18 04:04:41 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][0/312] eta 0:12:31 lr 0.002411 time 2.4098 (2.4098) model_time 0.4907 (0.4907) loss 2.6837 (2.6837) grad_norm 1.3263 (1.3263/0.0000) mem 16099MB [2025-01-18 04:04:46 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][10/312] eta 0:03:14 lr 0.002411 time 0.4539 (0.6426) model_time 0.4521 (0.4677) loss 3.8172 (3.2263) grad_norm 0.8729 (1.1823/0.2725) mem 16099MB [2025-01-18 04:04:51 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][20/312] eta 0:02:43 lr 0.002410 time 0.4415 (0.5594) model_time 0.4411 (0.4676) loss 3.3378 (3.0901) grad_norm 1.2461 (1.4012/0.4561) mem 16099MB [2025-01-18 04:04:55 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][30/312] eta 0:02:29 lr 0.002409 time 0.4515 (0.5285) model_time 0.4514 (0.4662) loss 4.1619 (3.1975) grad_norm 1.1921 (1.5149/0.4875) mem 16099MB [2025-01-18 04:05:00 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][40/312] eta 0:02:20 lr 0.002409 time 0.4452 (0.5147) model_time 0.4447 (0.4675) loss 3.7054 (3.1544) grad_norm 1.8048 (1.5775/0.4688) mem 16099MB [2025-01-18 04:05:05 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][50/312] eta 0:02:11 lr 0.002408 time 0.4542 (0.5031) model_time 0.4537 (0.4651) loss 3.3316 (3.1924) grad_norm 1.3374 (1.5975/0.4691) mem 16099MB [2025-01-18 04:05:09 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][60/312] eta 0:02:05 lr 0.002407 time 0.5407 (0.4972) model_time 0.5402 (0.4654) loss 3.5508 (3.1879) grad_norm 1.1571 (1.6479/0.5088) mem 16099MB [2025-01-18 04:05:14 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][70/312] eta 0:01:58 lr 0.002407 time 0.4541 (0.4915) model_time 0.4536 (0.4640) loss 2.9009 (3.1752) grad_norm 2.0919 (1.6880/0.5546) mem 16099MB [2025-01-18 04:05:18 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][80/312] eta 0:01:53 lr 0.002406 time 0.4532 (0.4882) model_time 0.4528 (0.4641) loss 3.4684 (3.1662) grad_norm 1.0648 (1.6936/0.5366) mem 16099MB [2025-01-18 04:05:23 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][90/312] eta 0:01:47 lr 0.002405 time 0.4626 (0.4860) model_time 0.4622 (0.4645) loss 4.2344 (3.1807) grad_norm 1.0517 (1.6941/0.5597) mem 16099MB [2025-01-18 04:05:28 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][100/312] eta 0:01:42 lr 0.002405 time 0.4505 (0.4839) model_time 0.4501 (0.4645) loss 3.7586 (3.1995) grad_norm 0.8656 (1.6861/0.5821) mem 16099MB [2025-01-18 04:05:32 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][110/312] eta 0:01:37 lr 0.002404 time 0.4454 (0.4826) model_time 0.4453 (0.4648) loss 3.8868 (3.2282) grad_norm 1.1243 (1.6714/0.5728) mem 16099MB [2025-01-18 04:05:37 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][120/312] eta 0:01:32 lr 0.002404 time 0.4492 (0.4808) model_time 0.4486 (0.4645) loss 3.7057 (3.2404) grad_norm 2.4421 (1.6835/0.6012) mem 16099MB [2025-01-18 04:05:42 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][130/312] eta 0:01:27 lr 0.002403 time 0.4509 (0.4805) model_time 0.4507 (0.4654) loss 3.4695 (3.2411) grad_norm 1.2690 (1.6809/0.5906) mem 16099MB [2025-01-18 04:05:47 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][140/312] eta 0:01:22 lr 0.002402 time 0.5423 (0.4804) model_time 0.5419 (0.4664) loss 3.3250 (3.2476) grad_norm 1.1074 (1.6964/0.6160) mem 16099MB [2025-01-18 04:05:51 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][150/312] eta 0:01:17 lr 0.002402 time 0.4545 (0.4793) model_time 0.4541 (0.4662) loss 3.4377 (3.2554) grad_norm 3.0763 (1.7111/0.6383) mem 16099MB [2025-01-18 04:05:56 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][160/312] eta 0:01:12 lr 0.002401 time 0.5370 (0.4801) model_time 0.5365 (0.4678) loss 3.3489 (3.2714) grad_norm 1.0406 (1.7427/0.7037) mem 16099MB [2025-01-18 04:06:01 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][170/312] eta 0:01:08 lr 0.002400 time 0.4656 (0.4804) model_time 0.4654 (0.4688) loss 3.6657 (3.2715) grad_norm 1.1397 (1.7348/0.7029) mem 16099MB [2025-01-18 04:06:06 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][180/312] eta 0:01:03 lr 0.002400 time 0.4494 (0.4790) model_time 0.4492 (0.4680) loss 2.7512 (3.2770) grad_norm 1.6650 (1.7290/0.6847) mem 16099MB [2025-01-18 04:06:10 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][190/312] eta 0:00:58 lr 0.002399 time 0.4440 (0.4778) model_time 0.4438 (0.4674) loss 3.1604 (3.2772) grad_norm 1.5587 (1.7013/0.6825) mem 16099MB [2025-01-18 04:06:15 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][200/312] eta 0:00:53 lr 0.002398 time 0.4534 (0.4769) model_time 0.4530 (0.4670) loss 3.1579 (3.2843) grad_norm 0.9740 (1.6702/0.6820) mem 16099MB [2025-01-18 04:06:19 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][210/312] eta 0:00:48 lr 0.002398 time 0.4621 (0.4765) model_time 0.4617 (0.4670) loss 2.3738 (3.2871) grad_norm 1.2288 (1.6556/0.6742) mem 16099MB [2025-01-18 04:06:24 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][220/312] eta 0:00:43 lr 0.002397 time 0.4561 (0.4753) model_time 0.4557 (0.4662) loss 3.6270 (3.3007) grad_norm 1.7531 (1.6492/0.6624) mem 16099MB [2025-01-18 04:06:29 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][230/312] eta 0:00:38 lr 0.002396 time 0.4575 (0.4754) model_time 0.4573 (0.4666) loss 2.8910 (3.3103) grad_norm 2.5343 (1.6827/0.6765) mem 16099MB [2025-01-18 04:06:33 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][240/312] eta 0:00:34 lr 0.002396 time 0.4894 (0.4746) model_time 0.4892 (0.4662) loss 3.5392 (3.3129) grad_norm 0.8982 (1.6733/0.6696) mem 16099MB [2025-01-18 04:06:38 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][250/312] eta 0:00:29 lr 0.002395 time 0.4634 (0.4738) model_time 0.4630 (0.4657) loss 2.0665 (3.3160) grad_norm 1.3927 (1.6692/0.6615) mem 16099MB [2025-01-18 04:06:43 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][260/312] eta 0:00:24 lr 0.002394 time 0.4473 (0.4747) model_time 0.4469 (0.4669) loss 3.5465 (3.3240) grad_norm 1.4096 (1.6836/0.6677) mem 16099MB [2025-01-18 04:06:47 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][270/312] eta 0:00:19 lr 0.002394 time 0.4701 (0.4743) model_time 0.4696 (0.4668) loss 2.1541 (3.3366) grad_norm 1.2242 (1.6924/0.6679) mem 16099MB [2025-01-18 04:06:52 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][280/312] eta 0:00:15 lr 0.002393 time 0.4533 (0.4739) model_time 0.4531 (0.4666) loss 3.7755 (3.3424) grad_norm 1.5951 (1.6871/0.6602) mem 16099MB [2025-01-18 04:06:57 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][290/312] eta 0:00:10 lr 0.002392 time 0.4599 (0.4737) model_time 0.4598 (0.4666) loss 3.5713 (3.3386) grad_norm 1.3236 (1.6953/0.6744) mem 16099MB [2025-01-18 04:07:01 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][300/312] eta 0:00:05 lr 0.002392 time 0.4406 (0.4729) model_time 0.4405 (0.4661) loss 2.2313 (3.3346) grad_norm 3.0639 (1.7372/0.7322) mem 16099MB [2025-01-18 04:07:06 internimage_t_1k_224] (main.py 510): INFO Train: [131/300][310/312] eta 0:00:00 lr 0.002391 time 0.5656 (0.4728) model_time 0.5655 (0.4662) loss 3.3328 (3.3348) grad_norm 1.1137 (1.7631/0.7315) mem 16099MB [2025-01-18 04:07:06 internimage_t_1k_224] (main.py 519): INFO EPOCH 131 training takes 0:02:27 [2025-01-18 04:07:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_131.pth saving...... [2025-01-18 04:07:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_131.pth saved !!! [2025-01-18 04:07:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.388 (7.388) Loss 0.8514 (0.8514) Acc@1 81.885 (81.885) Acc@5 96.411 (96.411) Mem 16099MB [2025-01-18 04:07:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.994) Loss 1.2220 (1.0182) Acc@1 72.095 (78.343) Acc@5 92.480 (94.533) Mem 16099MB [2025-01-18 04:07:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:131] * Acc@1 78.247 Acc@5 94.542 [2025-01-18 04:07:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.2% [2025-01-18 04:07:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:07:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.122 (8.122) Loss 0.8203 (0.8203) Acc@1 82.788 (82.788) Acc@5 96.948 (96.948) Mem 16099MB [2025-01-18 04:07:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.091) Loss 1.1622 (0.9635) Acc@1 74.121 (79.676) Acc@5 92.920 (95.106) Mem 16099MB [2025-01-18 04:07:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:131] * Acc@1 79.575 Acc@5 95.114 [2025-01-18 04:07:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.6% [2025-01-18 04:07:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:07:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:07:32 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.57% [2025-01-18 04:07:35 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][0/312] eta 0:13:22 lr 0.002391 time 2.5705 (2.5705) model_time 0.4619 (0.4619) loss 2.4452 (2.4452) grad_norm 1.3838 (1.3838/0.0000) mem 16099MB [2025-01-18 04:07:39 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][10/312] eta 0:03:23 lr 0.002390 time 0.5379 (0.6734) model_time 0.5377 (0.4813) loss 3.2570 (3.2764) grad_norm 2.9245 (1.7075/0.6692) mem 16099MB [2025-01-18 04:07:44 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][20/312] eta 0:02:49 lr 0.002390 time 0.4534 (0.5816) model_time 0.4532 (0.4809) loss 4.0900 (3.3246) grad_norm 1.2865 (1.5798/0.5572) mem 16099MB [2025-01-18 04:07:49 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][30/312] eta 0:02:33 lr 0.002389 time 0.4403 (0.5434) model_time 0.4399 (0.4751) loss 3.4589 (3.3235) grad_norm 1.0955 (1.6011/0.5660) mem 16099MB [2025-01-18 04:07:53 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][40/312] eta 0:02:21 lr 0.002388 time 0.4451 (0.5212) model_time 0.4450 (0.4695) loss 2.5656 (3.2707) grad_norm 1.5640 (1.6036/0.5079) mem 16099MB [2025-01-18 04:07:58 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][50/312] eta 0:02:14 lr 0.002388 time 0.5001 (0.5141) model_time 0.4999 (0.4724) loss 3.4073 (3.2406) grad_norm 1.0336 (1.5193/0.5034) mem 16099MB [2025-01-18 04:08:03 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][60/312] eta 0:02:07 lr 0.002387 time 0.5429 (0.5058) model_time 0.5427 (0.4709) loss 3.4757 (3.2275) grad_norm 2.0144 (1.4896/0.5028) mem 16099MB [2025-01-18 04:08:07 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][70/312] eta 0:02:00 lr 0.002386 time 0.4415 (0.4985) model_time 0.4414 (0.4684) loss 2.7425 (3.2081) grad_norm 1.6477 (1.5400/0.5634) mem 16099MB [2025-01-18 04:08:12 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][80/312] eta 0:01:54 lr 0.002386 time 0.4699 (0.4942) model_time 0.4694 (0.4678) loss 2.2076 (3.2202) grad_norm 2.6476 (1.6281/0.6329) mem 16099MB [2025-01-18 04:08:17 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][90/312] eta 0:01:48 lr 0.002385 time 0.4588 (0.4909) model_time 0.4586 (0.4674) loss 3.1071 (3.2502) grad_norm 1.3697 (1.6256/0.6496) mem 16099MB [2025-01-18 04:08:21 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][100/312] eta 0:01:43 lr 0.002384 time 0.4626 (0.4891) model_time 0.4625 (0.4679) loss 3.5600 (3.2854) grad_norm 1.2986 (1.6783/0.7059) mem 16099MB [2025-01-18 04:08:26 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][110/312] eta 0:01:38 lr 0.002384 time 0.4552 (0.4876) model_time 0.4551 (0.4682) loss 3.9834 (3.3022) grad_norm 1.0833 (1.6614/0.6851) mem 16099MB [2025-01-18 04:08:31 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][120/312] eta 0:01:33 lr 0.002383 time 0.5334 (0.4860) model_time 0.5329 (0.4681) loss 2.7473 (3.3032) grad_norm 2.2088 (1.6877/0.7167) mem 16099MB [2025-01-18 04:08:35 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][130/312] eta 0:01:28 lr 0.002383 time 0.4706 (0.4841) model_time 0.4701 (0.4676) loss 3.3227 (3.2954) grad_norm 1.7413 (1.6930/0.7079) mem 16099MB [2025-01-18 04:08:40 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][140/312] eta 0:01:23 lr 0.002382 time 0.5683 (0.4831) model_time 0.5678 (0.4677) loss 3.4316 (3.2862) grad_norm 3.4097 (1.6934/0.7070) mem 16099MB [2025-01-18 04:08:45 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][150/312] eta 0:01:18 lr 0.002381 time 0.4458 (0.4821) model_time 0.4454 (0.4677) loss 3.4564 (3.2864) grad_norm 1.0635 (1.7086/0.7162) mem 16099MB [2025-01-18 04:08:50 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][160/312] eta 0:01:13 lr 0.002381 time 0.4547 (0.4812) model_time 0.4542 (0.4676) loss 3.2920 (3.2727) grad_norm 1.4254 (1.7062/0.6992) mem 16099MB [2025-01-18 04:08:54 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][170/312] eta 0:01:08 lr 0.002380 time 0.4505 (0.4797) model_time 0.4500 (0.4670) loss 2.2345 (3.2703) grad_norm 1.2158 (1.6860/0.6901) mem 16099MB [2025-01-18 04:08:59 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][180/312] eta 0:01:03 lr 0.002379 time 0.4647 (0.4788) model_time 0.4643 (0.4667) loss 2.1320 (3.2809) grad_norm 0.8557 (1.6812/0.6922) mem 16099MB [2025-01-18 04:09:03 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][190/312] eta 0:00:58 lr 0.002379 time 0.4395 (0.4774) model_time 0.4390 (0.4660) loss 3.2052 (3.2897) grad_norm 0.9907 (1.6751/0.6835) mem 16099MB [2025-01-18 04:09:08 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][200/312] eta 0:00:53 lr 0.002378 time 0.4568 (0.4762) model_time 0.4563 (0.4653) loss 2.9319 (3.2966) grad_norm 1.6844 (1.6602/0.6732) mem 16099MB [2025-01-18 04:09:13 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][210/312] eta 0:00:48 lr 0.002377 time 0.4491 (0.4762) model_time 0.4487 (0.4658) loss 3.1409 (3.2989) grad_norm 4.2835 (1.7067/0.7389) mem 16099MB [2025-01-18 04:09:17 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][220/312] eta 0:00:43 lr 0.002377 time 0.4496 (0.4752) model_time 0.4494 (0.4652) loss 2.6518 (3.3010) grad_norm 1.9154 (1.7188/0.7417) mem 16099MB [2025-01-18 04:09:22 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][230/312] eta 0:00:38 lr 0.002376 time 0.4558 (0.4750) model_time 0.4552 (0.4654) loss 3.4609 (3.3027) grad_norm 1.1493 (1.7018/0.7332) mem 16099MB [2025-01-18 04:09:26 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][240/312] eta 0:00:34 lr 0.002375 time 0.4443 (0.4746) model_time 0.4438 (0.4654) loss 2.5203 (3.2890) grad_norm 1.5395 (1.6903/0.7252) mem 16099MB [2025-01-18 04:09:31 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][250/312] eta 0:00:29 lr 0.002375 time 0.4747 (0.4744) model_time 0.4743 (0.4655) loss 2.3247 (3.2867) grad_norm 1.3138 (1.6774/0.7167) mem 16099MB [2025-01-18 04:09:36 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][260/312] eta 0:00:24 lr 0.002374 time 0.4497 (0.4735) model_time 0.4492 (0.4650) loss 3.9371 (3.2940) grad_norm 1.1755 (1.6761/0.7238) mem 16099MB [2025-01-18 04:09:40 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][270/312] eta 0:00:19 lr 0.002373 time 0.4609 (0.4735) model_time 0.4607 (0.4653) loss 3.2132 (3.2904) grad_norm 2.2667 (1.7085/0.7702) mem 16099MB [2025-01-18 04:09:45 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][280/312] eta 0:00:15 lr 0.002373 time 0.4545 (0.4735) model_time 0.4543 (0.4656) loss 2.0511 (3.2809) grad_norm 2.2571 (1.7043/0.7622) mem 16099MB [2025-01-18 04:09:50 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][290/312] eta 0:00:10 lr 0.002372 time 0.4405 (0.4736) model_time 0.4403 (0.4659) loss 3.5116 (3.2837) grad_norm 0.8736 (1.6927/0.7673) mem 16099MB [2025-01-18 04:09:54 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][300/312] eta 0:00:05 lr 0.002371 time 0.4417 (0.4729) model_time 0.4416 (0.4654) loss 4.1924 (3.2863) grad_norm 0.9478 (1.6864/0.7637) mem 16099MB [2025-01-18 04:09:59 internimage_t_1k_224] (main.py 510): INFO Train: [132/300][310/312] eta 0:00:00 lr 0.002371 time 0.4372 (0.4729) model_time 0.4371 (0.4657) loss 3.5556 (3.2842) grad_norm 2.8698 (1.6808/0.7597) mem 16099MB [2025-01-18 04:10:00 internimage_t_1k_224] (main.py 519): INFO EPOCH 132 training takes 0:02:27 [2025-01-18 04:10:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_132.pth saving...... [2025-01-18 04:10:01 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_132.pth saved !!! [2025-01-18 04:10:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.349 (7.349) Loss 0.8366 (0.8366) Acc@1 81.885 (81.885) Acc@5 96.509 (96.509) Mem 16099MB [2025-01-18 04:10:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.991) Loss 1.2404 (1.0171) Acc@1 72.729 (78.405) Acc@5 91.870 (94.367) Mem 16099MB [2025-01-18 04:10:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:132] * Acc@1 78.325 Acc@5 94.438 [2025-01-18 04:10:12 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.3% [2025-01-18 04:10:12 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:10:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.061 (8.061) Loss 0.8193 (0.8193) Acc@1 82.886 (82.886) Acc@5 96.948 (96.948) Mem 16099MB [2025-01-18 04:10:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.089) Loss 1.1591 (0.9618) Acc@1 74.170 (79.752) Acc@5 92.896 (95.122) Mem 16099MB [2025-01-18 04:10:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:132] * Acc@1 79.653 Acc@5 95.132 [2025-01-18 04:10:24 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.7% [2025-01-18 04:10:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:10:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:10:25 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.65% [2025-01-18 04:10:28 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][0/312] eta 0:14:08 lr 0.002371 time 2.7208 (2.7208) model_time 0.4704 (0.4704) loss 2.3643 (2.3643) grad_norm 3.0766 (3.0766/0.0000) mem 16099MB [2025-01-18 04:10:33 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][10/312] eta 0:03:26 lr 0.002370 time 0.5353 (0.6840) model_time 0.5351 (0.4792) loss 3.6546 (3.0975) grad_norm 1.5454 (2.1574/0.9963) mem 16099MB [2025-01-18 04:10:38 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][20/312] eta 0:02:50 lr 0.002369 time 0.4702 (0.5836) model_time 0.4700 (0.4761) loss 3.5297 (3.2141) grad_norm 1.1312 (1.8235/0.8399) mem 16099MB [2025-01-18 04:10:42 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][30/312] eta 0:02:33 lr 0.002369 time 0.4854 (0.5454) model_time 0.4852 (0.4725) loss 3.3810 (3.1249) grad_norm 1.3516 (1.6641/0.7394) mem 16099MB [2025-01-18 04:10:47 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][40/312] eta 0:02:23 lr 0.002368 time 0.4536 (0.5263) model_time 0.4534 (0.4711) loss 3.8611 (3.1539) grad_norm 3.0632 (1.6905/0.7091) mem 16099MB [2025-01-18 04:10:52 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][50/312] eta 0:02:15 lr 0.002367 time 0.4511 (0.5186) model_time 0.4506 (0.4741) loss 2.3594 (3.1604) grad_norm 1.3182 (1.7982/0.9164) mem 16099MB [2025-01-18 04:10:56 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][60/312] eta 0:02:08 lr 0.002367 time 0.4408 (0.5092) model_time 0.4405 (0.4720) loss 4.1317 (3.1859) grad_norm 0.9785 (1.7294/0.8884) mem 16099MB [2025-01-18 04:11:01 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][70/312] eta 0:02:01 lr 0.002366 time 0.4464 (0.5020) model_time 0.4462 (0.4699) loss 3.6062 (3.2556) grad_norm 3.1648 (1.8890/1.0396) mem 16099MB [2025-01-18 04:11:05 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][80/312] eta 0:01:55 lr 0.002365 time 0.4330 (0.4958) model_time 0.4328 (0.4677) loss 3.3342 (3.2776) grad_norm 1.6224 (1.8570/1.0053) mem 16099MB [2025-01-18 04:11:10 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][90/312] eta 0:01:49 lr 0.002365 time 0.4681 (0.4924) model_time 0.4679 (0.4673) loss 3.7063 (3.2981) grad_norm 3.5698 (1.8679/0.9881) mem 16099MB [2025-01-18 04:11:15 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][100/312] eta 0:01:44 lr 0.002364 time 0.4667 (0.4920) model_time 0.4665 (0.4694) loss 3.3431 (3.3022) grad_norm 1.2945 (1.8734/0.9609) mem 16099MB [2025-01-18 04:11:20 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][110/312] eta 0:01:39 lr 0.002363 time 0.7463 (0.4912) model_time 0.7461 (0.4706) loss 2.2985 (3.2756) grad_norm 1.3043 (1.8355/0.9274) mem 16099MB [2025-01-18 04:11:24 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][120/312] eta 0:01:33 lr 0.002363 time 0.4596 (0.4880) model_time 0.4594 (0.4691) loss 3.7322 (3.2800) grad_norm 1.0035 (1.7922/0.9045) mem 16099MB [2025-01-18 04:11:29 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][130/312] eta 0:01:28 lr 0.002362 time 0.4606 (0.4860) model_time 0.4601 (0.4685) loss 3.1213 (3.2832) grad_norm 0.8031 (1.7598/0.8854) mem 16099MB [2025-01-18 04:11:34 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][140/312] eta 0:01:23 lr 0.002361 time 0.4483 (0.4855) model_time 0.4481 (0.4692) loss 3.6450 (3.2694) grad_norm 0.9957 (1.7349/0.8694) mem 16099MB [2025-01-18 04:11:38 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][150/312] eta 0:01:18 lr 0.002361 time 0.4408 (0.4840) model_time 0.4405 (0.4688) loss 2.6146 (3.2471) grad_norm 4.0843 (1.7669/0.8820) mem 16099MB [2025-01-18 04:11:43 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][160/312] eta 0:01:13 lr 0.002360 time 0.4773 (0.4821) model_time 0.4771 (0.4678) loss 4.1290 (3.2557) grad_norm 2.5434 (1.7781/0.8698) mem 16099MB [2025-01-18 04:11:48 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][170/312] eta 0:01:08 lr 0.002360 time 0.4401 (0.4815) model_time 0.4400 (0.4680) loss 3.5662 (3.2541) grad_norm 1.0304 (1.7642/0.8536) mem 16099MB [2025-01-18 04:11:53 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][180/312] eta 0:01:03 lr 0.002359 time 0.4519 (0.4824) model_time 0.4518 (0.4696) loss 2.9779 (3.2506) grad_norm 1.2439 (1.7786/0.8692) mem 16099MB [2025-01-18 04:11:57 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][190/312] eta 0:00:58 lr 0.002358 time 0.4523 (0.4808) model_time 0.4518 (0.4687) loss 3.1887 (3.2448) grad_norm 1.9157 (1.7862/0.8775) mem 16099MB [2025-01-18 04:12:02 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][200/312] eta 0:00:53 lr 0.002358 time 0.4493 (0.4800) model_time 0.4490 (0.4684) loss 3.4296 (3.2500) grad_norm 1.1469 (1.7569/0.8692) mem 16099MB [2025-01-18 04:12:06 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][210/312] eta 0:00:48 lr 0.002357 time 0.4481 (0.4794) model_time 0.4479 (0.4684) loss 4.1068 (3.2408) grad_norm 1.3421 (1.7365/0.8553) mem 16099MB [2025-01-18 04:12:11 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][220/312] eta 0:00:44 lr 0.002356 time 0.4414 (0.4791) model_time 0.4412 (0.4686) loss 2.7985 (3.2398) grad_norm 1.9648 (1.7899/0.9540) mem 16099MB [2025-01-18 04:12:16 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][230/312] eta 0:00:39 lr 0.002356 time 0.4583 (0.4781) model_time 0.4581 (0.4681) loss 3.4405 (3.2392) grad_norm 1.3175 (1.7795/0.9401) mem 16099MB [2025-01-18 04:12:20 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][240/312] eta 0:00:34 lr 0.002355 time 0.4469 (0.4774) model_time 0.4467 (0.4677) loss 3.5788 (3.2401) grad_norm 1.0144 (1.7713/0.9294) mem 16099MB [2025-01-18 04:12:25 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][250/312] eta 0:00:29 lr 0.002354 time 0.4466 (0.4768) model_time 0.4461 (0.4675) loss 3.2308 (3.2410) grad_norm 0.9697 (1.7745/0.9285) mem 16099MB [2025-01-18 04:12:30 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][260/312] eta 0:00:24 lr 0.002354 time 0.4570 (0.4774) model_time 0.4563 (0.4684) loss 3.2812 (3.2301) grad_norm 1.3147 (1.7613/0.9153) mem 16099MB [2025-01-18 04:12:35 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][270/312] eta 0:00:20 lr 0.002353 time 0.4473 (0.4768) model_time 0.4471 (0.4682) loss 3.5582 (3.2315) grad_norm 2.0035 (1.7721/0.9110) mem 16099MB [2025-01-18 04:12:39 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][280/312] eta 0:00:15 lr 0.002352 time 0.4790 (0.4765) model_time 0.4788 (0.4682) loss 3.8138 (3.2278) grad_norm 2.1975 (1.7716/0.8984) mem 16099MB [2025-01-18 04:12:44 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][290/312] eta 0:00:10 lr 0.002352 time 0.4555 (0.4762) model_time 0.4550 (0.4681) loss 3.7563 (3.2343) grad_norm 1.2063 (1.7502/0.8909) mem 16099MB [2025-01-18 04:12:48 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][300/312] eta 0:00:05 lr 0.002351 time 0.4391 (0.4753) model_time 0.4390 (0.4674) loss 3.9808 (3.2382) grad_norm 1.0067 (1.7438/0.8863) mem 16099MB [2025-01-18 04:12:53 internimage_t_1k_224] (main.py 510): INFO Train: [133/300][310/312] eta 0:00:00 lr 0.002350 time 0.4449 (0.4752) model_time 0.4448 (0.4676) loss 3.2725 (3.2347) grad_norm 1.2070 (1.7375/0.8750) mem 16099MB [2025-01-18 04:12:54 internimage_t_1k_224] (main.py 519): INFO EPOCH 133 training takes 0:02:28 [2025-01-18 04:12:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_133.pth saving...... [2025-01-18 04:12:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_133.pth saved !!! [2025-01-18 04:13:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.204 (7.204) Loss 0.8918 (0.8918) Acc@1 81.519 (81.519) Acc@5 96.094 (96.094) Mem 16099MB [2025-01-18 04:13:05 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.967) Loss 1.1678 (1.0205) Acc@1 74.292 (78.489) Acc@5 93.384 (94.751) Mem 16099MB [2025-01-18 04:13:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:133] * Acc@1 78.491 Acc@5 94.764 [2025-01-18 04:13:06 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.5% [2025-01-18 04:13:06 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:13:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.130 (8.130) Loss 0.8186 (0.8186) Acc@1 82.983 (82.983) Acc@5 96.924 (96.924) Mem 16099MB [2025-01-18 04:13:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.105) Loss 1.1559 (0.9601) Acc@1 74.268 (79.843) Acc@5 93.018 (95.159) Mem 16099MB [2025-01-18 04:13:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:133] * Acc@1 79.742 Acc@5 95.168 [2025-01-18 04:13:18 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.7% [2025-01-18 04:13:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:13:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:13:19 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.74% [2025-01-18 04:13:21 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][0/312] eta 0:11:34 lr 0.002350 time 2.2253 (2.2253) model_time 0.4625 (0.4625) loss 4.4258 (4.4258) grad_norm 2.1346 (2.1346/0.0000) mem 16099MB [2025-01-18 04:13:26 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][10/312] eta 0:03:10 lr 0.002350 time 0.4475 (0.6321) model_time 0.4473 (0.4714) loss 3.4466 (3.2747) grad_norm 1.6762 (1.9836/0.4403) mem 16099MB [2025-01-18 04:13:31 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][20/312] eta 0:02:41 lr 0.002349 time 0.4537 (0.5534) model_time 0.4535 (0.4691) loss 3.9921 (3.1622) grad_norm 1.1110 (1.6884/0.5083) mem 16099MB [2025-01-18 04:13:35 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][30/312] eta 0:02:27 lr 0.002348 time 0.4471 (0.5238) model_time 0.4466 (0.4665) loss 2.1164 (3.0833) grad_norm 1.3093 (1.6358/0.4650) mem 16099MB [2025-01-18 04:13:40 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][40/312] eta 0:02:18 lr 0.002348 time 0.4564 (0.5084) model_time 0.4562 (0.4651) loss 3.2231 (3.1600) grad_norm 2.5457 (1.5784/0.5063) mem 16099MB [2025-01-18 04:13:45 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][50/312] eta 0:02:11 lr 0.002347 time 0.5381 (0.5025) model_time 0.5375 (0.4676) loss 3.4327 (3.1897) grad_norm 1.3442 (1.5422/0.4795) mem 16099MB [2025-01-18 04:13:49 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][60/312] eta 0:02:05 lr 0.002346 time 0.4703 (0.4971) model_time 0.4698 (0.4678) loss 2.7722 (3.1960) grad_norm 1.3375 (1.6006/0.5224) mem 16099MB [2025-01-18 04:13:54 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][70/312] eta 0:01:59 lr 0.002346 time 0.5138 (0.4933) model_time 0.5133 (0.4681) loss 3.3082 (3.2165) grad_norm 2.9591 (1.6384/0.5362) mem 16099MB [2025-01-18 04:13:59 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][80/312] eta 0:01:53 lr 0.002345 time 0.4773 (0.4906) model_time 0.4771 (0.4684) loss 3.0655 (3.2186) grad_norm 1.2612 (1.7336/0.6937) mem 16099MB [2025-01-18 04:14:04 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][90/312] eta 0:01:48 lr 0.002344 time 0.4385 (0.4886) model_time 0.4383 (0.4689) loss 3.4729 (3.2203) grad_norm 0.9364 (1.7163/0.6827) mem 16099MB [2025-01-18 04:14:08 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][100/312] eta 0:01:42 lr 0.002344 time 0.4505 (0.4853) model_time 0.4500 (0.4674) loss 3.4440 (3.2598) grad_norm 1.9800 (1.7642/0.7116) mem 16099MB [2025-01-18 04:14:13 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][110/312] eta 0:01:37 lr 0.002343 time 0.4497 (0.4840) model_time 0.4487 (0.4677) loss 3.1144 (3.2595) grad_norm 1.1337 (1.7501/0.7017) mem 16099MB [2025-01-18 04:14:18 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][120/312] eta 0:01:32 lr 0.002342 time 0.4562 (0.4827) model_time 0.4560 (0.4678) loss 2.0083 (3.2528) grad_norm 0.9593 (1.7395/0.6837) mem 16099MB [2025-01-18 04:14:22 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][130/312] eta 0:01:27 lr 0.002342 time 0.4373 (0.4834) model_time 0.4371 (0.4696) loss 3.6773 (3.2437) grad_norm 1.5360 (1.7209/0.6820) mem 16099MB [2025-01-18 04:14:27 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][140/312] eta 0:01:23 lr 0.002341 time 0.4524 (0.4827) model_time 0.4522 (0.4698) loss 3.5670 (3.2547) grad_norm 3.3780 (1.6964/0.6882) mem 16099MB [2025-01-18 04:14:32 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][150/312] eta 0:01:18 lr 0.002340 time 0.4513 (0.4821) model_time 0.4509 (0.4700) loss 3.1594 (3.2746) grad_norm 4.7007 (1.7787/0.8110) mem 16099MB [2025-01-18 04:14:37 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][160/312] eta 0:01:13 lr 0.002340 time 0.4531 (0.4817) model_time 0.4529 (0.4703) loss 3.6691 (3.2747) grad_norm 2.6572 (1.8158/0.8742) mem 16099MB [2025-01-18 04:14:41 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][170/312] eta 0:01:08 lr 0.002339 time 0.4385 (0.4799) model_time 0.4381 (0.4692) loss 4.2274 (3.2675) grad_norm 2.7912 (1.8220/0.8706) mem 16099MB [2025-01-18 04:14:46 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][180/312] eta 0:01:03 lr 0.002338 time 0.4636 (0.4800) model_time 0.4634 (0.4699) loss 3.5614 (3.2941) grad_norm 1.3818 (1.8011/0.8580) mem 16099MB [2025-01-18 04:14:51 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][190/312] eta 0:00:58 lr 0.002338 time 0.4382 (0.4785) model_time 0.4379 (0.4689) loss 3.5328 (3.2919) grad_norm 0.9792 (1.7671/0.8499) mem 16099MB [2025-01-18 04:14:55 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][200/312] eta 0:00:53 lr 0.002337 time 0.4588 (0.4786) model_time 0.4583 (0.4695) loss 3.2595 (3.2963) grad_norm 1.7361 (1.7403/0.8402) mem 16099MB [2025-01-18 04:15:00 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][210/312] eta 0:00:48 lr 0.002336 time 0.4457 (0.4778) model_time 0.4452 (0.4690) loss 3.6315 (3.2890) grad_norm 1.1341 (1.7389/0.8421) mem 16099MB [2025-01-18 04:15:04 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][220/312] eta 0:00:43 lr 0.002336 time 0.4467 (0.4766) model_time 0.4462 (0.4682) loss 2.0879 (3.2851) grad_norm 2.3075 (1.7387/0.8319) mem 16099MB [2025-01-18 04:15:09 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][230/312] eta 0:00:39 lr 0.002335 time 0.4505 (0.4761) model_time 0.4500 (0.4680) loss 4.1165 (3.2919) grad_norm 2.1850 (1.7451/0.8258) mem 16099MB [2025-01-18 04:15:14 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][240/312] eta 0:00:34 lr 0.002334 time 0.4565 (0.4754) model_time 0.4560 (0.4677) loss 3.2261 (3.2944) grad_norm 1.2552 (1.7395/0.8131) mem 16099MB [2025-01-18 04:15:18 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][250/312] eta 0:00:29 lr 0.002334 time 0.4486 (0.4746) model_time 0.4484 (0.4671) loss 3.3689 (3.2958) grad_norm 0.8842 (1.7393/0.8024) mem 16099MB [2025-01-18 04:15:23 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][260/312] eta 0:00:24 lr 0.002333 time 0.4503 (0.4746) model_time 0.4498 (0.4674) loss 3.0541 (3.2954) grad_norm 3.6795 (1.7507/0.8062) mem 16099MB [2025-01-18 04:15:28 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][270/312] eta 0:00:19 lr 0.002332 time 0.4785 (0.4738) model_time 0.4780 (0.4669) loss 3.0553 (3.2909) grad_norm 2.5326 (1.7561/0.8030) mem 16099MB [2025-01-18 04:15:32 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][280/312] eta 0:00:15 lr 0.002332 time 0.4465 (0.4735) model_time 0.4460 (0.4668) loss 3.4163 (3.2875) grad_norm 2.6647 (1.7735/0.8163) mem 16099MB [2025-01-18 04:15:37 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][290/312] eta 0:00:10 lr 0.002331 time 0.4472 (0.4734) model_time 0.4467 (0.4670) loss 3.3574 (3.2831) grad_norm 2.7104 (1.7710/0.8145) mem 16099MB [2025-01-18 04:15:41 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][300/312] eta 0:00:05 lr 0.002331 time 0.4390 (0.4729) model_time 0.4389 (0.4666) loss 2.8978 (3.2799) grad_norm 1.4097 (1.7604/0.8136) mem 16099MB [2025-01-18 04:15:46 internimage_t_1k_224] (main.py 510): INFO Train: [134/300][310/312] eta 0:00:00 lr 0.002330 time 0.4392 (0.4730) model_time 0.4391 (0.4669) loss 3.3755 (3.2872) grad_norm 0.9533 (1.7371/0.8145) mem 16099MB [2025-01-18 04:15:47 internimage_t_1k_224] (main.py 519): INFO EPOCH 134 training takes 0:02:27 [2025-01-18 04:15:47 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_134.pth saving...... [2025-01-18 04:15:48 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_134.pth saved !!! [2025-01-18 04:15:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.537 (7.537) Loss 0.8647 (0.8647) Acc@1 81.494 (81.494) Acc@5 96.143 (96.143) Mem 16099MB [2025-01-18 04:15:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.016) Loss 1.1907 (0.9961) Acc@1 73.291 (78.471) Acc@5 92.651 (94.507) Mem 16099MB [2025-01-18 04:15:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:134] * Acc@1 78.401 Acc@5 94.578 [2025-01-18 04:15:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.4% [2025-01-18 04:15:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:16:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.390 (8.390) Loss 0.8179 (0.8179) Acc@1 82.983 (82.983) Acc@5 96.973 (96.973) Mem 16099MB [2025-01-18 04:16:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.107) Loss 1.1525 (0.9583) Acc@1 74.316 (79.883) Acc@5 93.091 (95.206) Mem 16099MB [2025-01-18 04:16:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:134] * Acc@1 79.782 Acc@5 95.206 [2025-01-18 04:16:12 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.8% [2025-01-18 04:16:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:16:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:16:13 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.78% [2025-01-18 04:16:15 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][0/312] eta 0:10:50 lr 0.002330 time 2.0835 (2.0835) model_time 0.4893 (0.4893) loss 4.1055 (4.1055) grad_norm 1.1640 (1.1640/0.0000) mem 16099MB [2025-01-18 04:16:20 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][10/312] eta 0:03:10 lr 0.002329 time 0.4512 (0.6309) model_time 0.4510 (0.4857) loss 2.9256 (3.0979) grad_norm 2.8164 (1.6527/0.4279) mem 16099MB [2025-01-18 04:16:24 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][20/312] eta 0:02:40 lr 0.002328 time 0.4736 (0.5482) model_time 0.4734 (0.4719) loss 2.7405 (3.2535) grad_norm 1.3658 (1.5970/0.5091) mem 16099MB [2025-01-18 04:16:29 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][30/312] eta 0:02:26 lr 0.002328 time 0.4593 (0.5206) model_time 0.4591 (0.4689) loss 3.1259 (3.2307) grad_norm 1.4254 (1.4713/0.4949) mem 16099MB [2025-01-18 04:16:34 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][40/312] eta 0:02:18 lr 0.002327 time 0.4562 (0.5096) model_time 0.4557 (0.4704) loss 2.5662 (3.1926) grad_norm 1.1875 (1.5527/0.6692) mem 16099MB [2025-01-18 04:16:38 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][50/312] eta 0:02:11 lr 0.002326 time 0.4376 (0.5015) model_time 0.4374 (0.4699) loss 3.9325 (3.1988) grad_norm 1.0999 (1.5960/0.6367) mem 16099MB [2025-01-18 04:16:43 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][60/312] eta 0:02:05 lr 0.002326 time 0.5319 (0.4971) model_time 0.5314 (0.4706) loss 3.7121 (3.2567) grad_norm 1.0359 (1.6171/0.6453) mem 16099MB [2025-01-18 04:16:48 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][70/312] eta 0:01:59 lr 0.002325 time 0.4731 (0.4929) model_time 0.4729 (0.4701) loss 3.4053 (3.2562) grad_norm 1.6866 (1.5943/0.6179) mem 16099MB [2025-01-18 04:16:53 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][80/312] eta 0:01:54 lr 0.002324 time 0.4497 (0.4938) model_time 0.4496 (0.4738) loss 2.6221 (3.2991) grad_norm 2.8326 (1.5932/0.6425) mem 16099MB [2025-01-18 04:16:57 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][90/312] eta 0:01:48 lr 0.002324 time 0.4696 (0.4898) model_time 0.4694 (0.4719) loss 2.0588 (3.2864) grad_norm 2.0343 (1.6793/0.7257) mem 16099MB [2025-01-18 04:17:02 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][100/312] eta 0:01:43 lr 0.002323 time 0.4788 (0.4870) model_time 0.4783 (0.4709) loss 2.9619 (3.2946) grad_norm 1.1895 (1.6641/0.7051) mem 16099MB [2025-01-18 04:17:07 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][110/312] eta 0:01:38 lr 0.002323 time 0.5387 (0.4858) model_time 0.5385 (0.4711) loss 3.3080 (3.3033) grad_norm 2.0894 (1.6652/0.7042) mem 16099MB [2025-01-18 04:17:11 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][120/312] eta 0:01:32 lr 0.002322 time 0.4507 (0.4839) model_time 0.4506 (0.4704) loss 2.8952 (3.3122) grad_norm 0.9172 (1.6529/0.6875) mem 16099MB [2025-01-18 04:17:16 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][130/312] eta 0:01:27 lr 0.002321 time 0.5936 (0.4824) model_time 0.5931 (0.4699) loss 3.9374 (3.2911) grad_norm 2.7110 (1.6773/0.6921) mem 16099MB [2025-01-18 04:17:21 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][140/312] eta 0:01:22 lr 0.002321 time 0.4439 (0.4813) model_time 0.4436 (0.4697) loss 3.2437 (3.3205) grad_norm 1.2560 (1.6880/0.6943) mem 16099MB [2025-01-18 04:17:25 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][150/312] eta 0:01:17 lr 0.002320 time 0.4578 (0.4809) model_time 0.4573 (0.4700) loss 2.3503 (3.2895) grad_norm 1.4430 (1.6916/0.6965) mem 16099MB [2025-01-18 04:17:30 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][160/312] eta 0:01:12 lr 0.002319 time 0.4562 (0.4791) model_time 0.4557 (0.4688) loss 3.6043 (3.2897) grad_norm 0.8424 (1.6967/0.6961) mem 16099MB [2025-01-18 04:17:35 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][170/312] eta 0:01:08 lr 0.002319 time 0.4638 (0.4793) model_time 0.4635 (0.4696) loss 2.5922 (3.2765) grad_norm 2.0119 (1.7047/0.6992) mem 16099MB [2025-01-18 04:17:39 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][180/312] eta 0:01:03 lr 0.002318 time 0.4545 (0.4782) model_time 0.4543 (0.4690) loss 3.7141 (3.2773) grad_norm 3.1053 (1.7426/0.7249) mem 16099MB [2025-01-18 04:17:44 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][190/312] eta 0:00:58 lr 0.002317 time 0.4961 (0.4772) model_time 0.4956 (0.4685) loss 2.7154 (3.2819) grad_norm 2.4081 (1.7346/0.7131) mem 16099MB [2025-01-18 04:17:49 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][200/312] eta 0:00:53 lr 0.002317 time 0.4515 (0.4760) model_time 0.4513 (0.4677) loss 3.3569 (3.2876) grad_norm 1.4496 (1.7355/0.7095) mem 16099MB [2025-01-18 04:17:54 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][210/312] eta 0:00:48 lr 0.002316 time 0.4638 (0.4771) model_time 0.4636 (0.4691) loss 3.5240 (3.2990) grad_norm 1.1031 (1.7479/0.7087) mem 16099MB [2025-01-18 04:17:58 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][220/312] eta 0:00:43 lr 0.002315 time 0.4532 (0.4763) model_time 0.4527 (0.4687) loss 3.7210 (3.2986) grad_norm 1.1910 (1.7402/0.7084) mem 16099MB [2025-01-18 04:18:03 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][230/312] eta 0:00:39 lr 0.002315 time 0.4495 (0.4759) model_time 0.4490 (0.4686) loss 3.6538 (3.2968) grad_norm 1.4587 (1.7284/0.6990) mem 16099MB [2025-01-18 04:18:08 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][240/312] eta 0:00:34 lr 0.002314 time 0.5497 (0.4762) model_time 0.5495 (0.4692) loss 2.6385 (3.2936) grad_norm 4.8457 (1.7615/0.7396) mem 16099MB [2025-01-18 04:18:12 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][250/312] eta 0:00:29 lr 0.002313 time 0.4499 (0.4757) model_time 0.4494 (0.4689) loss 3.5113 (3.2910) grad_norm 2.6145 (1.7659/0.7367) mem 16099MB [2025-01-18 04:18:17 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][260/312] eta 0:00:24 lr 0.002313 time 0.4467 (0.4749) model_time 0.4465 (0.4684) loss 3.7011 (3.2858) grad_norm 1.5219 (1.7534/0.7276) mem 16099MB [2025-01-18 04:18:22 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][270/312] eta 0:00:19 lr 0.002312 time 0.4471 (0.4748) model_time 0.4470 (0.4685) loss 3.0067 (3.2841) grad_norm 0.9426 (1.7387/0.7197) mem 16099MB [2025-01-18 04:18:26 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][280/312] eta 0:00:15 lr 0.002311 time 0.4427 (0.4755) model_time 0.4422 (0.4694) loss 3.6535 (3.2855) grad_norm 1.7360 (1.7688/0.7480) mem 16099MB [2025-01-18 04:18:31 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][290/312] eta 0:00:10 lr 0.002311 time 0.4536 (0.4747) model_time 0.4376 (0.4688) loss 4.1084 (3.2917) grad_norm 1.9228 (1.7775/0.7497) mem 16099MB [2025-01-18 04:18:36 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][300/312] eta 0:00:05 lr 0.002310 time 0.4378 (0.4745) model_time 0.4377 (0.4687) loss 3.4896 (3.2876) grad_norm 0.8417 (1.7802/0.7508) mem 16099MB [2025-01-18 04:18:40 internimage_t_1k_224] (main.py 510): INFO Train: [135/300][310/312] eta 0:00:00 lr 0.002309 time 0.5166 (0.4737) model_time 0.5165 (0.4682) loss 2.6585 (3.2884) grad_norm 3.2200 (1.7975/0.7666) mem 16099MB [2025-01-18 04:18:41 internimage_t_1k_224] (main.py 519): INFO EPOCH 135 training takes 0:02:27 [2025-01-18 04:18:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_135.pth saving...... [2025-01-18 04:18:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_135.pth saved !!! [2025-01-18 04:18:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.149 (7.149) Loss 0.8333 (0.8333) Acc@1 81.372 (81.372) Acc@5 96.094 (96.094) Mem 16099MB [2025-01-18 04:18:53 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.988) Loss 1.1596 (0.9782) Acc@1 74.048 (78.589) Acc@5 92.700 (94.502) Mem 16099MB [2025-01-18 04:18:53 internimage_t_1k_224] (main.py 575): INFO [Epoch:135] * Acc@1 78.477 Acc@5 94.548 [2025-01-18 04:18:53 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.5% [2025-01-18 04:18:53 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:19:01 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.132 (8.132) Loss 0.8172 (0.8172) Acc@1 83.130 (83.130) Acc@5 96.997 (96.997) Mem 16099MB [2025-01-18 04:19:05 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.082) Loss 1.1494 (0.9569) Acc@1 74.390 (79.989) Acc@5 93.140 (95.233) Mem 16099MB [2025-01-18 04:19:05 internimage_t_1k_224] (main.py 575): INFO [Epoch:135] * Acc@1 79.888 Acc@5 95.234 [2025-01-18 04:19:05 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.9% [2025-01-18 04:19:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:19:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:19:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.89% [2025-01-18 04:19:08 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][0/312] eta 0:12:38 lr 0.002309 time 2.4316 (2.4316) model_time 0.4793 (0.4793) loss 3.5388 (3.5388) grad_norm 2.8107 (2.8107/0.0000) mem 16099MB [2025-01-18 04:19:13 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][10/312] eta 0:03:15 lr 0.002309 time 0.4569 (0.6487) model_time 0.4565 (0.4709) loss 2.3691 (3.1811) grad_norm 1.3076 (1.5734/0.5352) mem 16099MB [2025-01-18 04:19:18 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][20/312] eta 0:02:43 lr 0.002308 time 0.4623 (0.5601) model_time 0.4619 (0.4668) loss 2.5832 (3.3055) grad_norm 1.7533 (1.6284/0.5441) mem 16099MB [2025-01-18 04:19:22 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][30/312] eta 0:02:28 lr 0.002307 time 0.4486 (0.5274) model_time 0.4482 (0.4640) loss 3.8346 (3.2766) grad_norm 1.5111 (1.5753/0.4978) mem 16099MB [2025-01-18 04:19:27 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][40/312] eta 0:02:19 lr 0.002307 time 0.4606 (0.5140) model_time 0.4604 (0.4661) loss 3.3165 (3.2647) grad_norm 3.1628 (1.5470/0.5583) mem 16099MB [2025-01-18 04:19:32 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][50/312] eta 0:02:12 lr 0.002306 time 0.4401 (0.5056) model_time 0.4396 (0.4670) loss 3.3489 (3.2885) grad_norm 0.7511 (1.4630/0.5468) mem 16099MB [2025-01-18 04:19:36 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][60/312] eta 0:02:05 lr 0.002305 time 0.5462 (0.4988) model_time 0.5458 (0.4664) loss 3.9988 (3.3038) grad_norm 1.5897 (1.5287/0.5729) mem 16099MB [2025-01-18 04:19:41 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][70/312] eta 0:01:59 lr 0.002305 time 0.4553 (0.4936) model_time 0.4551 (0.4657) loss 3.8016 (3.3485) grad_norm 2.0402 (1.5839/0.6711) mem 16099MB [2025-01-18 04:19:46 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][80/312] eta 0:01:53 lr 0.002304 time 0.4603 (0.4886) model_time 0.4601 (0.4641) loss 3.1271 (3.3467) grad_norm 1.0753 (1.6478/0.7397) mem 16099MB [2025-01-18 04:19:50 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][90/312] eta 0:01:47 lr 0.002303 time 0.4523 (0.4855) model_time 0.4521 (0.4637) loss 3.1510 (3.3490) grad_norm 2.1086 (1.6497/0.7173) mem 16099MB [2025-01-18 04:19:55 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][100/312] eta 0:01:42 lr 0.002303 time 0.4548 (0.4831) model_time 0.4546 (0.4635) loss 3.1366 (3.3271) grad_norm 1.1154 (1.6253/0.6936) mem 16099MB [2025-01-18 04:20:00 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][110/312] eta 0:01:37 lr 0.002302 time 0.5312 (0.4823) model_time 0.5310 (0.4644) loss 4.4415 (3.3315) grad_norm 1.1600 (1.5826/0.6809) mem 16099MB [2025-01-18 04:20:04 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][120/312] eta 0:01:32 lr 0.002301 time 0.5358 (0.4812) model_time 0.5354 (0.4647) loss 2.5068 (3.3184) grad_norm 1.9863 (1.6275/0.6902) mem 16099MB [2025-01-18 04:20:09 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][130/312] eta 0:01:27 lr 0.002301 time 0.4602 (0.4798) model_time 0.4600 (0.4646) loss 2.2670 (3.2691) grad_norm 0.8820 (1.6489/0.7188) mem 16099MB [2025-01-18 04:20:14 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][140/312] eta 0:01:22 lr 0.002300 time 0.4611 (0.4794) model_time 0.4607 (0.4652) loss 3.5193 (3.2913) grad_norm 4.1388 (1.6930/0.7581) mem 16099MB [2025-01-18 04:20:18 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][150/312] eta 0:01:17 lr 0.002299 time 0.4483 (0.4779) model_time 0.4481 (0.4646) loss 3.4550 (3.2848) grad_norm 2.2105 (1.7012/0.7499) mem 16099MB [2025-01-18 04:20:23 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][160/312] eta 0:01:12 lr 0.002299 time 0.4444 (0.4772) model_time 0.4439 (0.4647) loss 3.1597 (3.2762) grad_norm 1.4259 (1.6803/0.7361) mem 16099MB [2025-01-18 04:20:27 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][170/312] eta 0:01:07 lr 0.002298 time 0.4509 (0.4761) model_time 0.4504 (0.4643) loss 3.7585 (3.2668) grad_norm 2.5114 (1.7051/0.7360) mem 16099MB [2025-01-18 04:20:32 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][180/312] eta 0:01:02 lr 0.002297 time 0.4558 (0.4752) model_time 0.4553 (0.4640) loss 2.6911 (3.2591) grad_norm 1.0349 (1.6812/0.7320) mem 16099MB [2025-01-18 04:20:37 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][190/312] eta 0:00:57 lr 0.002297 time 0.4497 (0.4747) model_time 0.4493 (0.4641) loss 2.8975 (3.2602) grad_norm 0.7480 (1.6710/0.7259) mem 16099MB [2025-01-18 04:20:41 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][200/312] eta 0:00:53 lr 0.002296 time 0.4502 (0.4747) model_time 0.4500 (0.4646) loss 3.3218 (3.2585) grad_norm 1.9355 (1.6649/0.7163) mem 16099MB [2025-01-18 04:20:46 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][210/312] eta 0:00:48 lr 0.002295 time 0.4482 (0.4743) model_time 0.4481 (0.4647) loss 2.2147 (3.2620) grad_norm 1.0975 (1.6569/0.7059) mem 16099MB [2025-01-18 04:20:51 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][220/312] eta 0:00:43 lr 0.002295 time 0.4628 (0.4741) model_time 0.4623 (0.4649) loss 3.8186 (3.2754) grad_norm 1.7144 (1.6412/0.6966) mem 16099MB [2025-01-18 04:20:55 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][230/312] eta 0:00:38 lr 0.002294 time 0.4551 (0.4735) model_time 0.4549 (0.4647) loss 3.2056 (3.2672) grad_norm 3.0830 (1.6439/0.6934) mem 16099MB [2025-01-18 04:21:00 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][240/312] eta 0:00:34 lr 0.002293 time 0.4430 (0.4734) model_time 0.4425 (0.4649) loss 3.3615 (3.2621) grad_norm 2.5283 (1.6895/0.7339) mem 16099MB [2025-01-18 04:21:05 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][250/312] eta 0:00:29 lr 0.002293 time 0.4489 (0.4726) model_time 0.4484 (0.4644) loss 2.9965 (3.2660) grad_norm 1.5224 (1.6774/0.7247) mem 16099MB [2025-01-18 04:21:09 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][260/312] eta 0:00:24 lr 0.002292 time 0.4428 (0.4723) model_time 0.4427 (0.4645) loss 2.9918 (3.2590) grad_norm 3.1060 (1.6842/0.7218) mem 16099MB [2025-01-18 04:21:14 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][270/312] eta 0:00:19 lr 0.002291 time 0.4699 (0.4720) model_time 0.4694 (0.4645) loss 3.5244 (3.2542) grad_norm 2.2550 (1.7179/0.7598) mem 16099MB [2025-01-18 04:21:19 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][280/312] eta 0:00:15 lr 0.002291 time 0.4465 (0.4720) model_time 0.4463 (0.4647) loss 3.2313 (3.2496) grad_norm 1.5353 (1.7198/0.7509) mem 16099MB [2025-01-18 04:21:23 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][290/312] eta 0:00:10 lr 0.002290 time 0.4444 (0.4720) model_time 0.4443 (0.4650) loss 2.4394 (3.2520) grad_norm 1.3531 (1.7160/0.7420) mem 16099MB [2025-01-18 04:21:28 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][300/312] eta 0:00:05 lr 0.002290 time 0.5213 (0.4718) model_time 0.5212 (0.4650) loss 3.5583 (3.2562) grad_norm 2.3675 (1.7219/0.7479) mem 16099MB [2025-01-18 04:21:33 internimage_t_1k_224] (main.py 510): INFO Train: [136/300][310/312] eta 0:00:00 lr 0.002289 time 0.4402 (0.4709) model_time 0.4401 (0.4643) loss 3.9254 (3.2643) grad_norm 1.0200 (1.7245/0.7477) mem 16099MB [2025-01-18 04:21:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 136 training takes 0:02:26 [2025-01-18 04:21:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_136.pth saving...... [2025-01-18 04:21:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_136.pth saved !!! [2025-01-18 04:21:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.295 (7.295) Loss 0.8506 (0.8506) Acc@1 81.787 (81.787) Acc@5 96.313 (96.313) Mem 16099MB [2025-01-18 04:21:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.998) Loss 1.1543 (1.0012) Acc@1 74.243 (78.667) Acc@5 93.213 (94.591) Mem 16099MB [2025-01-18 04:21:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:136] * Acc@1 78.483 Acc@5 94.590 [2025-01-18 04:21:45 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.5% [2025-01-18 04:21:45 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:21:53 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.157 (8.157) Loss 0.8167 (0.8167) Acc@1 83.252 (83.252) Acc@5 96.973 (96.973) Mem 16099MB [2025-01-18 04:21:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.099) Loss 1.1464 (0.9556) Acc@1 74.438 (80.049) Acc@5 93.237 (95.250) Mem 16099MB [2025-01-18 04:21:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:136] * Acc@1 79.942 Acc@5 95.254 [2025-01-18 04:21:57 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 79.9% [2025-01-18 04:21:57 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:21:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:21:59 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 79.94% [2025-01-18 04:22:01 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][0/312] eta 0:11:31 lr 0.002289 time 2.2148 (2.2148) model_time 0.4861 (0.4861) loss 3.9704 (3.9704) grad_norm 1.7804 (1.7804/0.0000) mem 16099MB [2025-01-18 04:22:05 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][10/312] eta 0:03:10 lr 0.002288 time 0.4570 (0.6293) model_time 0.4568 (0.4717) loss 2.3361 (3.2053) grad_norm 1.5543 (1.2970/0.2458) mem 16099MB [2025-01-18 04:22:10 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][20/312] eta 0:02:40 lr 0.002287 time 0.4393 (0.5512) model_time 0.4388 (0.4684) loss 3.8018 (3.2731) grad_norm 1.2802 (1.4831/0.3524) mem 16099MB [2025-01-18 04:22:15 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][30/312] eta 0:02:27 lr 0.002287 time 0.4490 (0.5243) model_time 0.4489 (0.4681) loss 3.7764 (3.2684) grad_norm 1.4275 (1.4364/0.3365) mem 16099MB [2025-01-18 04:22:19 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][40/312] eta 0:02:17 lr 0.002286 time 0.4358 (0.5071) model_time 0.4356 (0.4645) loss 3.7706 (3.2217) grad_norm 1.2475 (1.7745/0.9347) mem 16099MB [2025-01-18 04:22:24 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][50/312] eta 0:02:11 lr 0.002285 time 0.4467 (0.5030) model_time 0.4465 (0.4687) loss 3.1423 (3.2261) grad_norm 1.0516 (1.7287/0.8607) mem 16099MB [2025-01-18 04:22:29 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][60/312] eta 0:02:04 lr 0.002285 time 0.4551 (0.4946) model_time 0.4550 (0.4658) loss 3.5899 (3.2691) grad_norm 1.2776 (1.6762/0.8212) mem 16099MB [2025-01-18 04:22:33 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][70/312] eta 0:01:58 lr 0.002284 time 0.4523 (0.4903) model_time 0.4519 (0.4656) loss 2.4976 (3.2562) grad_norm 1.1150 (1.6570/0.7941) mem 16099MB [2025-01-18 04:22:38 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][80/312] eta 0:01:52 lr 0.002283 time 0.4524 (0.4862) model_time 0.4519 (0.4644) loss 3.6655 (3.2868) grad_norm 1.1663 (1.7116/0.8417) mem 16099MB [2025-01-18 04:22:43 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][90/312] eta 0:01:47 lr 0.002283 time 0.4562 (0.4837) model_time 0.4558 (0.4643) loss 3.4551 (3.2792) grad_norm 1.7359 (1.6777/0.8106) mem 16099MB [2025-01-18 04:22:47 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][100/312] eta 0:01:42 lr 0.002282 time 0.4411 (0.4816) model_time 0.4407 (0.4641) loss 3.6077 (3.2802) grad_norm 0.9288 (1.7141/0.8348) mem 16099MB [2025-01-18 04:22:52 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][110/312] eta 0:01:37 lr 0.002281 time 0.5383 (0.4810) model_time 0.5378 (0.4651) loss 3.6588 (3.2659) grad_norm 2.8067 (1.7342/0.8284) mem 16099MB [2025-01-18 04:22:57 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][120/312] eta 0:01:31 lr 0.002281 time 0.4444 (0.4790) model_time 0.4439 (0.4643) loss 3.0956 (3.2852) grad_norm 0.8830 (1.7224/0.8107) mem 16099MB [2025-01-18 04:23:01 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][130/312] eta 0:01:27 lr 0.002280 time 0.4423 (0.4785) model_time 0.4422 (0.4649) loss 3.4486 (3.2933) grad_norm 2.5440 (1.7583/0.8302) mem 16099MB [2025-01-18 04:23:06 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][140/312] eta 0:01:22 lr 0.002279 time 0.4508 (0.4778) model_time 0.4506 (0.4651) loss 3.4027 (3.2888) grad_norm 1.8504 (1.7582/0.8064) mem 16099MB [2025-01-18 04:23:11 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][150/312] eta 0:01:17 lr 0.002279 time 0.4579 (0.4767) model_time 0.4574 (0.4648) loss 2.9946 (3.2672) grad_norm 2.4499 (1.7849/0.8339) mem 16099MB [2025-01-18 04:23:15 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][160/312] eta 0:01:12 lr 0.002278 time 0.4592 (0.4758) model_time 0.4587 (0.4646) loss 3.7978 (3.2738) grad_norm 2.7397 (1.7768/0.8243) mem 16099MB [2025-01-18 04:23:20 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][170/312] eta 0:01:07 lr 0.002278 time 0.4608 (0.4745) model_time 0.4607 (0.4640) loss 4.1978 (3.2843) grad_norm 1.5686 (1.7645/0.8056) mem 16099MB [2025-01-18 04:23:24 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][180/312] eta 0:01:02 lr 0.002277 time 0.4537 (0.4735) model_time 0.4534 (0.4636) loss 4.0913 (3.2698) grad_norm 2.3830 (1.7471/0.7952) mem 16099MB [2025-01-18 04:23:29 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][190/312] eta 0:00:57 lr 0.002276 time 0.4516 (0.4731) model_time 0.4512 (0.4637) loss 2.8176 (3.2608) grad_norm 0.9854 (1.7655/0.7962) mem 16099MB [2025-01-18 04:23:34 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][200/312] eta 0:00:52 lr 0.002276 time 0.4531 (0.4725) model_time 0.4529 (0.4635) loss 2.5843 (3.2402) grad_norm 0.7906 (1.7413/0.7908) mem 16099MB [2025-01-18 04:23:38 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][210/312] eta 0:00:48 lr 0.002275 time 0.4515 (0.4730) model_time 0.4511 (0.4644) loss 3.6048 (3.2452) grad_norm 0.6426 (1.7223/0.7860) mem 16099MB [2025-01-18 04:23:43 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][220/312] eta 0:00:43 lr 0.002274 time 0.4472 (0.4720) model_time 0.4468 (0.4638) loss 3.2818 (3.2378) grad_norm 1.3207 (1.7016/0.7761) mem 16099MB [2025-01-18 04:23:48 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][230/312] eta 0:00:38 lr 0.002274 time 0.5262 (0.4721) model_time 0.5260 (0.4643) loss 2.0678 (3.2341) grad_norm 1.6778 (1.6865/0.7644) mem 16099MB [2025-01-18 04:23:52 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][240/312] eta 0:00:33 lr 0.002273 time 0.4496 (0.4715) model_time 0.4495 (0.4639) loss 2.5899 (3.2384) grad_norm 3.0378 (1.7006/0.7692) mem 16099MB [2025-01-18 04:23:57 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][250/312] eta 0:00:29 lr 0.002272 time 0.4558 (0.4713) model_time 0.4554 (0.4640) loss 2.5006 (3.2302) grad_norm 1.9260 (1.6952/0.7594) mem 16099MB [2025-01-18 04:24:02 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][260/312] eta 0:00:24 lr 0.002272 time 0.5861 (0.4716) model_time 0.5855 (0.4646) loss 2.6207 (3.2342) grad_norm 1.3610 (1.6946/0.7505) mem 16099MB [2025-01-18 04:24:06 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][270/312] eta 0:00:19 lr 0.002271 time 0.4508 (0.4714) model_time 0.4507 (0.4646) loss 3.4587 (3.2374) grad_norm 1.1499 (1.6890/0.7409) mem 16099MB [2025-01-18 04:24:11 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][280/312] eta 0:00:15 lr 0.002270 time 0.4494 (0.4717) model_time 0.4493 (0.4651) loss 3.7555 (3.2359) grad_norm 1.1938 (1.6700/0.7359) mem 16099MB [2025-01-18 04:24:16 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][290/312] eta 0:00:10 lr 0.002270 time 0.4527 (0.4713) model_time 0.4525 (0.4650) loss 3.3651 (3.2445) grad_norm 1.2687 (1.6728/0.7343) mem 16099MB [2025-01-18 04:24:20 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][300/312] eta 0:00:05 lr 0.002269 time 0.4416 (0.4710) model_time 0.4416 (0.4648) loss 3.5263 (3.2457) grad_norm 2.0502 (1.6899/0.7476) mem 16099MB [2025-01-18 04:24:25 internimage_t_1k_224] (main.py 510): INFO Train: [137/300][310/312] eta 0:00:00 lr 0.002268 time 0.5214 (0.4706) model_time 0.5213 (0.4647) loss 4.0960 (3.2477) grad_norm 0.7952 (1.7154/0.7572) mem 16099MB [2025-01-18 04:24:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 137 training takes 0:02:26 [2025-01-18 04:24:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_137.pth saving...... [2025-01-18 04:24:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_137.pth saved !!! [2025-01-18 04:24:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.415 (7.415) Loss 0.8661 (0.8661) Acc@1 82.031 (82.031) Acc@5 96.045 (96.045) Mem 16099MB [2025-01-18 04:24:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.018) Loss 1.2128 (1.0177) Acc@1 73.145 (78.553) Acc@5 92.993 (94.673) Mem 16099MB [2025-01-18 04:24:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:137] * Acc@1 78.477 Acc@5 94.740 [2025-01-18 04:24:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.5% [2025-01-18 04:24:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:24:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.095 (8.095) Loss 0.8163 (0.8163) Acc@1 83.276 (83.276) Acc@5 96.997 (96.997) Mem 16099MB [2025-01-18 04:24:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.087) Loss 1.1435 (0.9544) Acc@1 74.609 (80.111) Acc@5 93.262 (95.281) Mem 16099MB [2025-01-18 04:24:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:137] * Acc@1 79.996 Acc@5 95.282 [2025-01-18 04:24:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.0% [2025-01-18 04:24:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:24:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:24:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.00% [2025-01-18 04:24:53 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][0/312] eta 0:10:27 lr 0.002268 time 2.0116 (2.0116) model_time 0.4656 (0.4656) loss 3.3235 (3.3235) grad_norm 1.4570 (1.4570/0.0000) mem 16099MB [2025-01-18 04:24:58 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][10/312] eta 0:03:05 lr 0.002268 time 0.4499 (0.6146) model_time 0.4497 (0.4737) loss 2.5167 (3.2683) grad_norm 0.9886 (1.5840/0.6483) mem 16099MB [2025-01-18 04:25:03 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][20/312] eta 0:02:39 lr 0.002267 time 0.4542 (0.5467) model_time 0.4541 (0.4727) loss 3.9061 (3.3778) grad_norm 6.1534 (2.0758/1.2086) mem 16099MB [2025-01-18 04:25:07 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][30/312] eta 0:02:27 lr 0.002266 time 0.4646 (0.5219) model_time 0.4644 (0.4717) loss 3.9951 (3.4277) grad_norm 2.4121 (2.0661/1.0763) mem 16099MB [2025-01-18 04:25:12 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][40/312] eta 0:02:18 lr 0.002266 time 0.4532 (0.5085) model_time 0.4528 (0.4704) loss 3.9629 (3.4545) grad_norm 1.6125 (1.8951/1.0036) mem 16099MB [2025-01-18 04:25:17 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][50/312] eta 0:02:10 lr 0.002265 time 0.4533 (0.4981) model_time 0.4532 (0.4675) loss 3.5458 (3.3987) grad_norm 1.1508 (1.7903/0.9635) mem 16099MB [2025-01-18 04:25:21 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][60/312] eta 0:02:04 lr 0.002264 time 0.4520 (0.4923) model_time 0.4515 (0.4665) loss 3.7159 (3.4044) grad_norm 1.6254 (1.7692/0.8943) mem 16099MB [2025-01-18 04:25:26 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][70/312] eta 0:01:58 lr 0.002264 time 0.4569 (0.4879) model_time 0.4567 (0.4658) loss 3.4284 (3.3523) grad_norm 2.1212 (1.7472/0.8510) mem 16099MB [2025-01-18 04:25:30 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][80/312] eta 0:01:52 lr 0.002263 time 0.4631 (0.4851) model_time 0.4630 (0.4656) loss 2.2124 (3.2956) grad_norm 0.7873 (1.7896/0.8399) mem 16099MB [2025-01-18 04:25:35 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][90/312] eta 0:01:47 lr 0.002262 time 0.4411 (0.4854) model_time 0.4410 (0.4681) loss 3.5542 (3.3021) grad_norm 1.8978 (1.7576/0.8071) mem 16099MB [2025-01-18 04:25:40 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][100/312] eta 0:01:42 lr 0.002262 time 0.4481 (0.4828) model_time 0.4480 (0.4671) loss 3.1868 (3.2871) grad_norm 1.8540 (1.7222/0.8010) mem 16099MB [2025-01-18 04:25:45 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][110/312] eta 0:01:37 lr 0.002261 time 0.4557 (0.4814) model_time 0.4555 (0.4671) loss 3.2255 (3.2709) grad_norm 2.1544 (1.7380/0.7733) mem 16099MB [2025-01-18 04:25:49 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][120/312] eta 0:01:31 lr 0.002260 time 0.4654 (0.4791) model_time 0.4652 (0.4660) loss 3.9014 (3.2942) grad_norm 1.6154 (1.7976/0.8447) mem 16099MB [2025-01-18 04:25:54 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][130/312] eta 0:01:27 lr 0.002260 time 0.4537 (0.4785) model_time 0.4533 (0.4663) loss 3.7579 (3.3020) grad_norm 2.4426 (1.7654/0.8301) mem 16099MB [2025-01-18 04:25:59 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][140/312] eta 0:01:22 lr 0.002259 time 0.5148 (0.4786) model_time 0.5143 (0.4672) loss 3.1911 (3.3008) grad_norm 2.4861 (1.7538/0.8160) mem 16099MB [2025-01-18 04:26:03 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][150/312] eta 0:01:17 lr 0.002258 time 0.4580 (0.4790) model_time 0.4579 (0.4684) loss 2.8206 (3.3004) grad_norm 1.5664 (1.7281/0.7966) mem 16099MB [2025-01-18 04:26:08 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][160/312] eta 0:01:12 lr 0.002258 time 0.4619 (0.4782) model_time 0.4615 (0.4682) loss 3.0823 (3.3088) grad_norm 1.3342 (1.7713/0.8430) mem 16099MB [2025-01-18 04:26:13 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][170/312] eta 0:01:07 lr 0.002257 time 0.4485 (0.4773) model_time 0.4484 (0.4679) loss 2.2722 (3.3036) grad_norm 1.4843 (1.7693/0.8305) mem 16099MB [2025-01-18 04:26:17 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][180/312] eta 0:01:02 lr 0.002256 time 0.4497 (0.4766) model_time 0.4495 (0.4677) loss 3.9608 (3.3167) grad_norm 2.9523 (1.7726/0.8391) mem 16099MB [2025-01-18 04:26:22 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][190/312] eta 0:00:57 lr 0.002256 time 0.4508 (0.4752) model_time 0.4507 (0.4667) loss 2.7702 (3.3245) grad_norm 1.5167 (1.7535/0.8267) mem 16099MB [2025-01-18 04:26:27 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][200/312] eta 0:00:53 lr 0.002255 time 0.5308 (0.4749) model_time 0.5306 (0.4669) loss 4.0301 (3.3348) grad_norm 2.6343 (1.7625/0.8243) mem 16099MB [2025-01-18 04:26:31 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][210/312] eta 0:00:48 lr 0.002254 time 0.4409 (0.4745) model_time 0.4408 (0.4668) loss 3.2978 (3.3306) grad_norm 1.0204 (1.7517/0.8226) mem 16099MB [2025-01-18 04:26:36 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][220/312] eta 0:00:43 lr 0.002254 time 0.4548 (0.4735) model_time 0.4546 (0.4661) loss 3.8611 (3.3311) grad_norm 1.1694 (1.7572/0.8162) mem 16099MB [2025-01-18 04:26:41 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][230/312] eta 0:00:38 lr 0.002253 time 0.4578 (0.4741) model_time 0.4573 (0.4670) loss 3.1260 (3.3354) grad_norm 1.7886 (1.7388/0.8048) mem 16099MB [2025-01-18 04:26:45 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][240/312] eta 0:00:34 lr 0.002252 time 0.4555 (0.4740) model_time 0.4553 (0.4673) loss 3.7052 (3.3427) grad_norm 1.8222 (1.7321/0.7967) mem 16099MB [2025-01-18 04:26:50 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][250/312] eta 0:00:29 lr 0.002252 time 0.4533 (0.4735) model_time 0.4532 (0.4670) loss 3.5066 (3.3260) grad_norm 1.6207 (1.7311/0.7862) mem 16099MB [2025-01-18 04:26:55 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][260/312] eta 0:00:24 lr 0.002251 time 0.4455 (0.4734) model_time 0.4453 (0.4671) loss 2.5045 (3.3274) grad_norm 3.9655 (1.7344/0.7948) mem 16099MB [2025-01-18 04:26:59 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][270/312] eta 0:00:19 lr 0.002250 time 0.4510 (0.4729) model_time 0.4506 (0.4668) loss 3.7041 (3.3249) grad_norm 1.8288 (1.7432/0.8006) mem 16099MB [2025-01-18 04:27:04 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][280/312] eta 0:00:15 lr 0.002250 time 0.4463 (0.4731) model_time 0.4459 (0.4673) loss 3.5700 (3.3239) grad_norm 1.9673 (1.7538/0.8046) mem 16099MB [2025-01-18 04:27:09 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][290/312] eta 0:00:10 lr 0.002249 time 0.4465 (0.4724) model_time 0.4463 (0.4667) loss 3.4944 (3.3288) grad_norm 1.0691 (1.7723/0.8152) mem 16099MB [2025-01-18 04:27:13 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][300/312] eta 0:00:05 lr 0.002248 time 0.4378 (0.4719) model_time 0.4377 (0.4664) loss 3.5693 (3.3222) grad_norm 0.8232 (1.7805/0.8278) mem 16099MB [2025-01-18 04:27:18 internimage_t_1k_224] (main.py 510): INFO Train: [138/300][310/312] eta 0:00:00 lr 0.002248 time 0.4386 (0.4711) model_time 0.4385 (0.4658) loss 3.9689 (3.3199) grad_norm 3.9878 (1.7976/0.8344) mem 16099MB [2025-01-18 04:27:18 internimage_t_1k_224] (main.py 519): INFO EPOCH 138 training takes 0:02:26 [2025-01-18 04:27:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_138.pth saving...... [2025-01-18 04:27:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_138.pth saved !!! [2025-01-18 04:27:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.514 (7.514) Loss 0.8523 (0.8523) Acc@1 81.738 (81.738) Acc@5 96.289 (96.289) Mem 16099MB [2025-01-18 04:27:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.028) Loss 1.1556 (0.9939) Acc@1 73.779 (78.795) Acc@5 92.969 (94.742) Mem 16099MB [2025-01-18 04:27:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:138] * Acc@1 78.665 Acc@5 94.750 [2025-01-18 04:27:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.7% [2025-01-18 04:27:31 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:27:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.172 (8.172) Loss 0.8156 (0.8156) Acc@1 83.301 (83.301) Acc@5 96.997 (96.997) Mem 16099MB [2025-01-18 04:27:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.101) Loss 1.1405 (0.9532) Acc@1 74.707 (80.147) Acc@5 93.384 (95.306) Mem 16099MB [2025-01-18 04:27:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:138] * Acc@1 80.028 Acc@5 95.310 [2025-01-18 04:27:43 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.0% [2025-01-18 04:27:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:27:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:27:44 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.03% [2025-01-18 04:27:47 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][0/312] eta 0:12:17 lr 0.002248 time 2.3643 (2.3643) model_time 0.4664 (0.4664) loss 3.9681 (3.9681) grad_norm 4.5913 (4.5913/0.0000) mem 16099MB [2025-01-18 04:27:51 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][10/312] eta 0:03:15 lr 0.002247 time 0.4460 (0.6462) model_time 0.4458 (0.4734) loss 3.8685 (3.2672) grad_norm 2.8971 (2.3960/1.6924) mem 16099MB [2025-01-18 04:27:56 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][20/312] eta 0:02:43 lr 0.002246 time 0.4493 (0.5596) model_time 0.4492 (0.4690) loss 2.8909 (3.3882) grad_norm 1.0003 (2.0086/1.3500) mem 16099MB [2025-01-18 04:28:01 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][30/312] eta 0:02:32 lr 0.002246 time 0.7345 (0.5391) model_time 0.7341 (0.4776) loss 3.4439 (3.3130) grad_norm 1.6461 (1.9959/1.2009) mem 16099MB [2025-01-18 04:28:06 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][40/312] eta 0:02:20 lr 0.002245 time 0.4615 (0.5182) model_time 0.4613 (0.4716) loss 3.0480 (3.3001) grad_norm 1.5493 (1.9735/1.0898) mem 16099MB [2025-01-18 04:28:10 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][50/312] eta 0:02:12 lr 0.002244 time 0.4569 (0.5068) model_time 0.4567 (0.4692) loss 3.5659 (3.2971) grad_norm 2.2564 (1.9495/1.0230) mem 16099MB [2025-01-18 04:28:15 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][60/312] eta 0:02:05 lr 0.002244 time 0.4531 (0.4983) model_time 0.4529 (0.4668) loss 3.5629 (3.3288) grad_norm 1.0872 (1.8353/0.9751) mem 16099MB [2025-01-18 04:28:19 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][70/312] eta 0:01:59 lr 0.002243 time 0.4553 (0.4919) model_time 0.4549 (0.4648) loss 3.4133 (3.3267) grad_norm 1.8016 (1.8960/0.9841) mem 16099MB [2025-01-18 04:28:24 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][80/312] eta 0:01:53 lr 0.002242 time 0.4431 (0.4890) model_time 0.4429 (0.4652) loss 2.8255 (3.3126) grad_norm 0.8461 (1.8926/0.9689) mem 16099MB [2025-01-18 04:28:29 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][90/312] eta 0:01:47 lr 0.002242 time 0.4448 (0.4856) model_time 0.4446 (0.4644) loss 3.5073 (3.3247) grad_norm 1.0783 (1.8628/0.9648) mem 16099MB [2025-01-18 04:28:33 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][100/312] eta 0:01:42 lr 0.002241 time 0.4402 (0.4834) model_time 0.4398 (0.4643) loss 4.1050 (3.3224) grad_norm 3.5979 (1.8961/0.9793) mem 16099MB [2025-01-18 04:28:38 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][110/312] eta 0:01:37 lr 0.002240 time 0.4399 (0.4807) model_time 0.4395 (0.4632) loss 3.5833 (3.3293) grad_norm 1.4463 (1.8626/0.9494) mem 16099MB [2025-01-18 04:28:42 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][120/312] eta 0:01:32 lr 0.002240 time 0.4537 (0.4799) model_time 0.4533 (0.4638) loss 3.1760 (3.3039) grad_norm 1.4786 (1.8066/0.9302) mem 16099MB [2025-01-18 04:28:47 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][130/312] eta 0:01:27 lr 0.002239 time 0.4496 (0.4815) model_time 0.4492 (0.4667) loss 2.5660 (3.2838) grad_norm 1.0293 (1.7984/0.9075) mem 16099MB [2025-01-18 04:28:52 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][140/312] eta 0:01:22 lr 0.002238 time 0.4634 (0.4810) model_time 0.4633 (0.4671) loss 3.0639 (3.2844) grad_norm 1.8148 (1.8161/0.9091) mem 16099MB [2025-01-18 04:28:57 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][150/312] eta 0:01:18 lr 0.002238 time 0.4452 (0.4824) model_time 0.4447 (0.4695) loss 2.1921 (3.2711) grad_norm 1.9691 (1.8094/0.8957) mem 16099MB [2025-01-18 04:29:02 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][160/312] eta 0:01:13 lr 0.002237 time 0.4533 (0.4815) model_time 0.4528 (0.4694) loss 2.6582 (3.2812) grad_norm 1.7476 (1.7905/0.8813) mem 16099MB [2025-01-18 04:29:06 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][170/312] eta 0:01:08 lr 0.002236 time 0.4563 (0.4800) model_time 0.4558 (0.4685) loss 3.9139 (3.2796) grad_norm 1.5000 (1.7842/0.8684) mem 16099MB [2025-01-18 04:29:11 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][180/312] eta 0:01:03 lr 0.002236 time 0.4511 (0.4786) model_time 0.4510 (0.4677) loss 3.5342 (3.2833) grad_norm 1.8725 (1.7741/0.8486) mem 16099MB [2025-01-18 04:29:16 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][190/312] eta 0:00:58 lr 0.002235 time 0.5002 (0.4781) model_time 0.4998 (0.4678) loss 2.7841 (3.2875) grad_norm 1.1384 (1.7608/0.8345) mem 16099MB [2025-01-18 04:29:20 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][200/312] eta 0:00:53 lr 0.002234 time 0.4570 (0.4768) model_time 0.4565 (0.4670) loss 3.2323 (3.2806) grad_norm 4.1732 (1.7821/0.8564) mem 16099MB [2025-01-18 04:29:25 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][210/312] eta 0:00:48 lr 0.002234 time 0.5692 (0.4769) model_time 0.5690 (0.4675) loss 2.9343 (3.2696) grad_norm 2.5743 (1.7985/0.8624) mem 16099MB [2025-01-18 04:29:30 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][220/312] eta 0:00:43 lr 0.002233 time 0.4488 (0.4758) model_time 0.4487 (0.4668) loss 3.6593 (3.2715) grad_norm 2.1443 (1.7974/0.8490) mem 16099MB [2025-01-18 04:29:34 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][230/312] eta 0:00:38 lr 0.002232 time 0.4506 (0.4753) model_time 0.4501 (0.4667) loss 3.5472 (3.2733) grad_norm 1.4399 (1.7960/0.8371) mem 16099MB [2025-01-18 04:29:39 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][240/312] eta 0:00:34 lr 0.002232 time 0.4463 (0.4758) model_time 0.4461 (0.4676) loss 3.7856 (3.2735) grad_norm 0.8736 (1.7807/0.8274) mem 16099MB [2025-01-18 04:29:44 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][250/312] eta 0:00:29 lr 0.002231 time 0.4425 (0.4752) model_time 0.4421 (0.4673) loss 3.0102 (3.2696) grad_norm 1.5882 (1.8049/0.8362) mem 16099MB [2025-01-18 04:29:48 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][260/312] eta 0:00:24 lr 0.002230 time 0.4416 (0.4751) model_time 0.4412 (0.4675) loss 3.5558 (3.2621) grad_norm 1.2433 (1.8214/0.8446) mem 16099MB [2025-01-18 04:29:53 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][270/312] eta 0:00:19 lr 0.002230 time 0.4494 (0.4750) model_time 0.4490 (0.4676) loss 2.1883 (3.2537) grad_norm 0.9211 (1.8181/0.8403) mem 16099MB [2025-01-18 04:29:58 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][280/312] eta 0:00:15 lr 0.002229 time 0.4535 (0.4743) model_time 0.4534 (0.4672) loss 3.0496 (3.2658) grad_norm 1.5500 (1.8081/0.8334) mem 16099MB [2025-01-18 04:30:02 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][290/312] eta 0:00:10 lr 0.002228 time 0.4387 (0.4739) model_time 0.4385 (0.4670) loss 3.1546 (3.2638) grad_norm 1.2196 (1.7898/0.8273) mem 16099MB [2025-01-18 04:30:07 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][300/312] eta 0:00:05 lr 0.002228 time 0.4434 (0.4742) model_time 0.4433 (0.4676) loss 3.4060 (3.2687) grad_norm 2.8683 (1.7835/0.8042) mem 16099MB [2025-01-18 04:30:12 internimage_t_1k_224] (main.py 510): INFO Train: [139/300][310/312] eta 0:00:00 lr 0.002227 time 0.4388 (0.4731) model_time 0.4388 (0.4667) loss 2.9928 (3.2650) grad_norm 1.6460 (1.7891/0.7665) mem 16099MB [2025-01-18 04:30:12 internimage_t_1k_224] (main.py 519): INFO EPOCH 139 training takes 0:02:27 [2025-01-18 04:30:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_139.pth saving...... [2025-01-18 04:30:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_139.pth saved !!! [2025-01-18 04:30:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.251 (7.251) Loss 0.8673 (0.8673) Acc@1 82.568 (82.568) Acc@5 96.558 (96.558) Mem 16099MB [2025-01-18 04:30:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.997) Loss 1.2054 (1.0116) Acc@1 73.755 (78.793) Acc@5 92.944 (94.687) Mem 16099MB [2025-01-18 04:30:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:139] * Acc@1 78.727 Acc@5 94.726 [2025-01-18 04:30:24 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.7% [2025-01-18 04:30:24 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.74% [2025-01-18 04:30:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.242 (8.242) Loss 0.8150 (0.8150) Acc@1 83.325 (83.325) Acc@5 96.997 (96.997) Mem 16099MB [2025-01-18 04:30:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.110) Loss 1.1378 (0.9521) Acc@1 74.878 (80.238) Acc@5 93.408 (95.330) Mem 16099MB [2025-01-18 04:30:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:139] * Acc@1 80.100 Acc@5 95.333 [2025-01-18 04:30:37 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.1% [2025-01-18 04:30:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:30:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:30:38 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.10% [2025-01-18 04:30:40 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][0/312] eta 0:13:03 lr 0.002227 time 2.5112 (2.5112) model_time 0.4591 (0.4591) loss 2.9249 (2.9249) grad_norm 1.8356 (1.8356/0.0000) mem 16099MB [2025-01-18 04:30:45 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][10/312] eta 0:03:22 lr 0.002226 time 0.7315 (0.6718) model_time 0.7313 (0.4849) loss 3.3163 (3.4305) grad_norm 1.8277 (1.7486/0.4415) mem 16099MB [2025-01-18 04:30:50 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][20/312] eta 0:02:49 lr 0.002226 time 0.4528 (0.5790) model_time 0.4526 (0.4810) loss 2.7725 (3.4269) grad_norm 1.3049 (1.9837/0.6585) mem 16099MB [2025-01-18 04:30:55 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][30/312] eta 0:02:31 lr 0.002225 time 0.4574 (0.5388) model_time 0.4573 (0.4722) loss 3.5181 (3.3295) grad_norm 1.2531 (1.9936/0.7799) mem 16099MB [2025-01-18 04:30:59 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][40/312] eta 0:02:20 lr 0.002224 time 0.4631 (0.5175) model_time 0.4629 (0.4671) loss 3.2875 (3.3602) grad_norm 1.3556 (1.9126/0.7161) mem 16099MB [2025-01-18 04:31:04 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][50/312] eta 0:02:16 lr 0.002224 time 0.7147 (0.5196) model_time 0.7143 (0.4790) loss 3.8960 (3.2995) grad_norm 1.1059 (1.8120/0.7483) mem 16099MB [2025-01-18 04:31:09 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][60/312] eta 0:02:08 lr 0.002223 time 0.4562 (0.5103) model_time 0.4560 (0.4763) loss 3.6174 (3.2850) grad_norm 1.0159 (1.7553/0.7200) mem 16099MB [2025-01-18 04:31:14 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][70/312] eta 0:02:01 lr 0.002222 time 0.4608 (0.5034) model_time 0.4606 (0.4741) loss 2.7706 (3.2844) grad_norm 0.8754 (1.7169/0.7126) mem 16099MB [2025-01-18 04:31:18 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][80/312] eta 0:01:55 lr 0.002222 time 0.4481 (0.4979) model_time 0.4477 (0.4721) loss 3.3957 (3.2891) grad_norm 1.0972 (1.7244/0.7540) mem 16099MB [2025-01-18 04:31:23 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][90/312] eta 0:01:49 lr 0.002221 time 0.4522 (0.4940) model_time 0.4521 (0.4710) loss 3.6766 (3.2568) grad_norm 1.4260 (1.6695/0.7369) mem 16099MB [2025-01-18 04:31:28 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][100/312] eta 0:01:44 lr 0.002220 time 0.4428 (0.4928) model_time 0.4424 (0.4720) loss 3.3681 (3.2457) grad_norm 1.2384 (1.6891/0.7360) mem 16099MB [2025-01-18 04:31:32 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][110/312] eta 0:01:39 lr 0.002220 time 0.4632 (0.4904) model_time 0.4630 (0.4715) loss 3.6456 (3.2437) grad_norm 1.0756 (1.6955/0.7522) mem 16099MB [2025-01-18 04:31:37 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][120/312] eta 0:01:33 lr 0.002219 time 0.4556 (0.4873) model_time 0.4554 (0.4700) loss 2.5321 (3.2153) grad_norm 1.4473 (1.7023/0.7347) mem 16099MB [2025-01-18 04:31:42 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][130/312] eta 0:01:28 lr 0.002218 time 0.4417 (0.4880) model_time 0.4413 (0.4719) loss 2.9708 (3.2108) grad_norm 3.8802 (1.7602/0.8160) mem 16099MB [2025-01-18 04:31:47 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][140/312] eta 0:01:23 lr 0.002218 time 0.4479 (0.4865) model_time 0.4478 (0.4715) loss 3.5906 (3.2365) grad_norm 1.8301 (1.7649/0.7933) mem 16099MB [2025-01-18 04:31:51 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][150/312] eta 0:01:18 lr 0.002217 time 0.4450 (0.4851) model_time 0.4448 (0.4712) loss 3.5404 (3.2482) grad_norm 1.0699 (1.7201/0.7868) mem 16099MB [2025-01-18 04:31:56 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][160/312] eta 0:01:13 lr 0.002216 time 0.4687 (0.4851) model_time 0.4682 (0.4720) loss 3.9886 (3.2418) grad_norm 2.3235 (1.7285/0.7834) mem 16099MB [2025-01-18 04:32:01 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][170/312] eta 0:01:08 lr 0.002216 time 0.4503 (0.4835) model_time 0.4499 (0.4711) loss 3.3255 (3.2478) grad_norm 0.6017 (1.7290/0.7696) mem 16099MB [2025-01-18 04:32:05 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][180/312] eta 0:01:03 lr 0.002215 time 0.4396 (0.4830) model_time 0.4395 (0.4712) loss 4.2486 (3.2500) grad_norm 2.4565 (1.7807/0.8093) mem 16099MB [2025-01-18 04:32:10 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][190/312] eta 0:00:58 lr 0.002214 time 0.4677 (0.4816) model_time 0.4676 (0.4704) loss 3.0555 (3.2452) grad_norm 1.4077 (1.7773/0.8044) mem 16099MB [2025-01-18 04:32:15 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][200/312] eta 0:00:53 lr 0.002214 time 0.4734 (0.4806) model_time 0.4730 (0.4700) loss 2.6935 (3.2463) grad_norm 1.6080 (1.7555/0.7932) mem 16099MB [2025-01-18 04:32:19 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][210/312] eta 0:00:49 lr 0.002213 time 0.4505 (0.4805) model_time 0.4500 (0.4704) loss 2.2586 (3.2407) grad_norm 1.2198 (1.7445/0.7793) mem 16099MB [2025-01-18 04:32:24 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][220/312] eta 0:00:44 lr 0.002212 time 0.4527 (0.4797) model_time 0.4526 (0.4700) loss 2.6166 (3.2378) grad_norm 1.8198 (1.7509/0.7680) mem 16099MB [2025-01-18 04:32:29 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][230/312] eta 0:00:39 lr 0.002212 time 0.4784 (0.4787) model_time 0.4782 (0.4695) loss 3.8102 (3.2493) grad_norm 0.7964 (1.7275/0.7632) mem 16099MB [2025-01-18 04:32:33 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][240/312] eta 0:00:34 lr 0.002211 time 0.4413 (0.4781) model_time 0.4411 (0.4692) loss 3.2771 (3.2569) grad_norm 1.5453 (1.7180/0.7505) mem 16099MB [2025-01-18 04:32:38 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][250/312] eta 0:00:29 lr 0.002210 time 0.4462 (0.4771) model_time 0.4460 (0.4685) loss 3.3282 (3.2635) grad_norm 0.7507 (1.6981/0.7458) mem 16099MB [2025-01-18 04:32:42 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][260/312] eta 0:00:24 lr 0.002210 time 0.4869 (0.4771) model_time 0.4864 (0.4689) loss 2.6328 (3.2624) grad_norm 2.8097 (1.7279/0.7676) mem 16099MB [2025-01-18 04:32:47 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][270/312] eta 0:00:20 lr 0.002209 time 0.4534 (0.4766) model_time 0.4530 (0.4686) loss 3.0740 (3.2613) grad_norm 0.9448 (1.7152/0.7590) mem 16099MB [2025-01-18 04:32:52 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][280/312] eta 0:00:15 lr 0.002208 time 0.5071 (0.4777) model_time 0.5066 (0.4700) loss 3.4124 (3.2525) grad_norm 1.6521 (1.7227/0.7539) mem 16099MB [2025-01-18 04:32:57 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][290/312] eta 0:00:10 lr 0.002208 time 0.4426 (0.4780) model_time 0.4422 (0.4706) loss 4.0830 (3.2585) grad_norm 3.0164 (1.7332/0.7596) mem 16099MB [2025-01-18 04:33:02 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][300/312] eta 0:00:05 lr 0.002207 time 0.4367 (0.4770) model_time 0.4365 (0.4698) loss 4.0426 (3.2639) grad_norm 3.4461 (1.7415/0.7588) mem 16099MB [2025-01-18 04:33:06 internimage_t_1k_224] (main.py 510): INFO Train: [140/300][310/312] eta 0:00:00 lr 0.002206 time 0.4377 (0.4760) model_time 0.4377 (0.4690) loss 3.2996 (3.2611) grad_norm 2.1061 (1.7383/0.7613) mem 16099MB [2025-01-18 04:33:06 internimage_t_1k_224] (main.py 519): INFO EPOCH 140 training takes 0:02:28 [2025-01-18 04:33:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_140.pth saving...... [2025-01-18 04:33:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_140.pth saved !!! [2025-01-18 04:33:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.644 (7.644) Loss 0.8678 (0.8678) Acc@1 81.812 (81.812) Acc@5 96.289 (96.289) Mem 16099MB [2025-01-18 04:33:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.009) Loss 1.1903 (0.9923) Acc@1 73.560 (78.806) Acc@5 92.725 (94.818) Mem 16099MB [2025-01-18 04:33:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:140] * Acc@1 78.759 Acc@5 94.860 [2025-01-18 04:33:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.8% [2025-01-18 04:33:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 04:33:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 04:33:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.76% [2025-01-18 04:33:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.352 (7.352) Loss 0.8144 (0.8144) Acc@1 83.447 (83.447) Acc@5 97.046 (97.046) Mem 16099MB [2025-01-18 04:33:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.008) Loss 1.1353 (0.9510) Acc@1 74.902 (80.285) Acc@5 93.506 (95.355) Mem 16099MB [2025-01-18 04:33:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:140] * Acc@1 80.152 Acc@5 95.351 [2025-01-18 04:33:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.2% [2025-01-18 04:33:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:33:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:33:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.15% [2025-01-18 04:33:35 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][0/312] eta 0:13:17 lr 0.002206 time 2.5564 (2.5564) model_time 0.4825 (0.4825) loss 3.6207 (3.6207) grad_norm 1.1499 (1.1499/0.0000) mem 16099MB [2025-01-18 04:33:40 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][10/312] eta 0:03:19 lr 0.002206 time 0.4522 (0.6601) model_time 0.4521 (0.4714) loss 4.1892 (3.4137) grad_norm 2.0921 (1.9714/0.8847) mem 16099MB [2025-01-18 04:33:45 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][20/312] eta 0:02:46 lr 0.002205 time 0.4532 (0.5699) model_time 0.4530 (0.4708) loss 2.9793 (3.2790) grad_norm 1.4611 (1.8434/0.7364) mem 16099MB [2025-01-18 04:33:49 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][30/312] eta 0:02:30 lr 0.002204 time 0.4573 (0.5350) model_time 0.4572 (0.4678) loss 3.0908 (3.1924) grad_norm 4.5449 (1.8692/0.9195) mem 16099MB [2025-01-18 04:33:54 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][40/312] eta 0:02:21 lr 0.002204 time 0.5521 (0.5199) model_time 0.5520 (0.4690) loss 4.0482 (3.2615) grad_norm 2.4316 (1.9743/0.9121) mem 16099MB [2025-01-18 04:33:59 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][50/312] eta 0:02:13 lr 0.002203 time 0.4436 (0.5093) model_time 0.4431 (0.4683) loss 3.8552 (3.3196) grad_norm 2.3095 (1.9714/0.9455) mem 16099MB [2025-01-18 04:34:04 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][60/312] eta 0:02:06 lr 0.002202 time 0.4509 (0.5033) model_time 0.4504 (0.4689) loss 3.9931 (3.3303) grad_norm 1.5704 (1.8771/0.9008) mem 16099MB [2025-01-18 04:34:08 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][70/312] eta 0:02:00 lr 0.002202 time 0.4530 (0.4966) model_time 0.4529 (0.4670) loss 3.3705 (3.3186) grad_norm 1.0027 (1.8121/0.8568) mem 16099MB [2025-01-18 04:34:13 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][80/312] eta 0:01:54 lr 0.002201 time 0.4575 (0.4926) model_time 0.4573 (0.4666) loss 3.0572 (3.3189) grad_norm 1.9115 (1.7935/0.8466) mem 16099MB [2025-01-18 04:34:17 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][90/312] eta 0:01:48 lr 0.002200 time 0.4421 (0.4901) model_time 0.4419 (0.4669) loss 4.1261 (3.3176) grad_norm 1.0820 (1.7437/0.8217) mem 16099MB [2025-01-18 04:34:22 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][100/312] eta 0:01:43 lr 0.002200 time 0.4726 (0.4874) model_time 0.4721 (0.4665) loss 3.5475 (3.3003) grad_norm 1.0734 (1.6950/0.7976) mem 16099MB [2025-01-18 04:34:27 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][110/312] eta 0:01:37 lr 0.002199 time 0.4674 (0.4843) model_time 0.4669 (0.4652) loss 2.7929 (3.3010) grad_norm 2.3771 (1.6514/0.7846) mem 16099MB [2025-01-18 04:34:32 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][120/312] eta 0:01:33 lr 0.002198 time 0.4938 (0.4860) model_time 0.4934 (0.4685) loss 3.2187 (3.3196) grad_norm 2.0287 (1.6564/0.7658) mem 16099MB [2025-01-18 04:34:36 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][130/312] eta 0:01:28 lr 0.002198 time 0.4447 (0.4840) model_time 0.4446 (0.4678) loss 3.2628 (3.3290) grad_norm 1.0474 (1.7342/0.8964) mem 16099MB [2025-01-18 04:34:41 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][140/312] eta 0:01:23 lr 0.002197 time 0.4543 (0.4832) model_time 0.4542 (0.4682) loss 3.4459 (3.3225) grad_norm 4.2921 (1.7947/0.9443) mem 16099MB [2025-01-18 04:34:46 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][150/312] eta 0:01:18 lr 0.002196 time 0.4555 (0.4820) model_time 0.4551 (0.4680) loss 3.4375 (3.3136) grad_norm 0.9438 (1.7815/0.9306) mem 16099MB [2025-01-18 04:34:50 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][160/312] eta 0:01:13 lr 0.002196 time 0.5325 (0.4825) model_time 0.5321 (0.4692) loss 3.2177 (3.3170) grad_norm 1.0648 (1.7607/0.9105) mem 16099MB [2025-01-18 04:34:55 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][170/312] eta 0:01:08 lr 0.002195 time 0.5304 (0.4819) model_time 0.5303 (0.4694) loss 3.1335 (3.3265) grad_norm 1.2234 (1.7831/0.9313) mem 16099MB [2025-01-18 04:35:00 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][180/312] eta 0:01:03 lr 0.002194 time 0.4584 (0.4822) model_time 0.4583 (0.4704) loss 3.7955 (3.3256) grad_norm 1.1247 (1.7696/0.9111) mem 16099MB [2025-01-18 04:35:05 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][190/312] eta 0:00:58 lr 0.002194 time 0.4499 (0.4808) model_time 0.4498 (0.4696) loss 3.4272 (3.3251) grad_norm 0.9730 (1.7517/0.8962) mem 16099MB [2025-01-18 04:35:09 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][200/312] eta 0:00:53 lr 0.002193 time 0.4516 (0.4802) model_time 0.4514 (0.4695) loss 4.0150 (3.3385) grad_norm 3.3832 (1.7839/0.9167) mem 16099MB [2025-01-18 04:35:14 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][210/312] eta 0:00:48 lr 0.002192 time 0.4462 (0.4793) model_time 0.4461 (0.4691) loss 2.2546 (3.3475) grad_norm 1.9519 (1.7988/0.9141) mem 16099MB [2025-01-18 04:35:19 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][220/312] eta 0:00:44 lr 0.002192 time 0.4455 (0.4785) model_time 0.4453 (0.4688) loss 3.1000 (3.3371) grad_norm 2.9051 (1.8131/0.9100) mem 16099MB [2025-01-18 04:35:23 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][230/312] eta 0:00:39 lr 0.002191 time 0.4665 (0.4785) model_time 0.4660 (0.4692) loss 3.2759 (3.3349) grad_norm 2.3813 (1.8146/0.8983) mem 16099MB [2025-01-18 04:35:28 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][240/312] eta 0:00:34 lr 0.002190 time 0.4489 (0.4773) model_time 0.4485 (0.4684) loss 3.2042 (3.3298) grad_norm 1.1985 (1.8047/0.8853) mem 16099MB [2025-01-18 04:35:32 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][250/312] eta 0:00:29 lr 0.002190 time 0.4443 (0.4766) model_time 0.4441 (0.4680) loss 3.4162 (3.3381) grad_norm 2.3635 (1.7990/0.8761) mem 16099MB [2025-01-18 04:35:37 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][260/312] eta 0:00:24 lr 0.002189 time 0.4412 (0.4763) model_time 0.4408 (0.4680) loss 3.2011 (3.3378) grad_norm 1.1349 (1.7963/0.8633) mem 16099MB [2025-01-18 04:35:42 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][270/312] eta 0:00:19 lr 0.002188 time 0.4453 (0.4754) model_time 0.4448 (0.4674) loss 2.8915 (3.3355) grad_norm 1.7444 (1.8050/0.8505) mem 16099MB [2025-01-18 04:35:47 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][280/312] eta 0:00:15 lr 0.002188 time 0.4620 (0.4759) model_time 0.4616 (0.4682) loss 3.4717 (3.3395) grad_norm 0.8393 (1.7935/0.8466) mem 16099MB [2025-01-18 04:35:51 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][290/312] eta 0:00:10 lr 0.002187 time 0.4499 (0.4761) model_time 0.4497 (0.4686) loss 3.2917 (3.3260) grad_norm 0.8839 (1.7957/0.8384) mem 16099MB [2025-01-18 04:35:56 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][300/312] eta 0:00:05 lr 0.002186 time 0.4458 (0.4752) model_time 0.4457 (0.4680) loss 3.1358 (3.3210) grad_norm 0.9446 (1.7935/0.8336) mem 16099MB [2025-01-18 04:36:00 internimage_t_1k_224] (main.py 510): INFO Train: [141/300][310/312] eta 0:00:00 lr 0.002186 time 0.4371 (0.4746) model_time 0.4370 (0.4676) loss 3.3645 (3.3252) grad_norm 3.4524 (1.8135/0.8489) mem 16099MB [2025-01-18 04:36:01 internimage_t_1k_224] (main.py 519): INFO EPOCH 141 training takes 0:02:28 [2025-01-18 04:36:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_141.pth saving...... [2025-01-18 04:36:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_141.pth saved !!! [2025-01-18 04:36:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.536 (7.536) Loss 0.8338 (0.8338) Acc@1 82.104 (82.104) Acc@5 96.265 (96.265) Mem 16099MB [2025-01-18 04:36:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.010) Loss 1.1650 (0.9663) Acc@1 73.975 (78.802) Acc@5 92.773 (94.711) Mem 16099MB [2025-01-18 04:36:13 internimage_t_1k_224] (main.py 575): INFO [Epoch:141] * Acc@1 78.707 Acc@5 94.744 [2025-01-18 04:36:13 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.7% [2025-01-18 04:36:13 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.76% [2025-01-18 04:36:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.393 (8.393) Loss 0.8142 (0.8142) Acc@1 83.618 (83.618) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 04:36:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.115) Loss 1.1331 (0.9500) Acc@1 74.854 (80.327) Acc@5 93.579 (95.379) Mem 16099MB [2025-01-18 04:36:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:141] * Acc@1 80.196 Acc@5 95.381 [2025-01-18 04:36:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.2% [2025-01-18 04:36:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:36:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:36:27 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.20% [2025-01-18 04:36:30 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][0/312] eta 0:13:57 lr 0.002186 time 2.6831 (2.6831) model_time 0.4672 (0.4672) loss 2.2825 (2.2825) grad_norm 2.5344 (2.5344/0.0000) mem 16099MB [2025-01-18 04:36:34 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][10/312] eta 0:03:18 lr 0.002185 time 0.4533 (0.6560) model_time 0.4528 (0.4542) loss 3.4194 (3.1634) grad_norm 0.7391 (2.3580/1.2569) mem 16099MB [2025-01-18 04:36:39 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][20/312] eta 0:02:47 lr 0.002184 time 0.5691 (0.5725) model_time 0.5689 (0.4667) loss 2.8291 (3.1184) grad_norm 2.4944 (2.0256/1.0428) mem 16099MB [2025-01-18 04:36:44 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][30/312] eta 0:02:32 lr 0.002184 time 0.4656 (0.5393) model_time 0.4651 (0.4674) loss 3.0991 (3.2231) grad_norm 1.5517 (1.9069/0.9142) mem 16099MB [2025-01-18 04:36:48 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][40/312] eta 0:02:21 lr 0.002183 time 0.4650 (0.5196) model_time 0.4649 (0.4652) loss 3.6155 (3.2288) grad_norm 1.2658 (1.7766/0.8461) mem 16099MB [2025-01-18 04:36:53 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][50/312] eta 0:02:13 lr 0.002182 time 0.4510 (0.5084) model_time 0.4508 (0.4646) loss 3.8764 (3.3132) grad_norm 1.6034 (1.7329/0.7776) mem 16099MB [2025-01-18 04:36:58 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][60/312] eta 0:02:06 lr 0.002182 time 0.4550 (0.5022) model_time 0.4548 (0.4655) loss 3.8241 (3.3237) grad_norm 1.6107 (1.7383/0.7924) mem 16099MB [2025-01-18 04:37:02 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][70/312] eta 0:02:00 lr 0.002181 time 0.4789 (0.4961) model_time 0.4787 (0.4646) loss 3.3584 (3.2979) grad_norm 3.3909 (1.7804/0.8076) mem 16099MB [2025-01-18 04:37:07 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][80/312] eta 0:01:54 lr 0.002180 time 0.4709 (0.4914) model_time 0.4707 (0.4637) loss 3.1854 (3.3209) grad_norm 1.8904 (1.7611/0.7717) mem 16099MB [2025-01-18 04:37:11 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][90/312] eta 0:01:48 lr 0.002180 time 0.4689 (0.4873) model_time 0.4687 (0.4626) loss 3.4341 (3.3176) grad_norm 1.7947 (1.7220/0.7488) mem 16099MB [2025-01-18 04:37:16 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][100/312] eta 0:01:42 lr 0.002179 time 0.4721 (0.4851) model_time 0.4720 (0.4629) loss 3.7578 (3.3135) grad_norm 2.4591 (1.8281/0.8950) mem 16099MB [2025-01-18 04:37:21 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][110/312] eta 0:01:37 lr 0.002178 time 0.5422 (0.4845) model_time 0.5420 (0.4642) loss 2.5978 (3.2844) grad_norm 1.1373 (1.8029/0.8699) mem 16099MB [2025-01-18 04:37:26 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][120/312] eta 0:01:32 lr 0.002178 time 0.5735 (0.4830) model_time 0.5730 (0.4644) loss 2.5947 (3.2645) grad_norm 1.7123 (1.8003/0.8569) mem 16099MB [2025-01-18 04:37:30 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][130/312] eta 0:01:27 lr 0.002177 time 0.4405 (0.4815) model_time 0.4403 (0.4643) loss 2.8753 (3.2652) grad_norm 3.0505 (1.7958/0.8510) mem 16099MB [2025-01-18 04:37:35 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][140/312] eta 0:01:22 lr 0.002176 time 0.5635 (0.4818) model_time 0.5634 (0.4657) loss 3.2205 (3.2545) grad_norm 1.0722 (1.7763/0.8358) mem 16099MB [2025-01-18 04:37:40 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][150/312] eta 0:01:17 lr 0.002176 time 0.4551 (0.4812) model_time 0.4549 (0.4662) loss 3.1662 (3.2380) grad_norm 0.9709 (1.7477/0.8227) mem 16099MB [2025-01-18 04:37:45 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][160/312] eta 0:01:13 lr 0.002175 time 0.4550 (0.4807) model_time 0.4546 (0.4666) loss 3.4481 (3.2460) grad_norm 3.1296 (1.7645/0.8134) mem 16099MB [2025-01-18 04:37:49 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][170/312] eta 0:01:08 lr 0.002174 time 0.4406 (0.4802) model_time 0.4404 (0.4669) loss 2.4854 (3.2424) grad_norm 3.0451 (1.7784/0.8135) mem 16099MB [2025-01-18 04:37:54 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][180/312] eta 0:01:03 lr 0.002174 time 0.4718 (0.4797) model_time 0.4716 (0.4671) loss 2.3566 (3.2347) grad_norm 1.2764 (1.7896/0.8283) mem 16099MB [2025-01-18 04:37:59 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][190/312] eta 0:00:58 lr 0.002173 time 0.7664 (0.4805) model_time 0.7662 (0.4685) loss 3.3899 (3.2438) grad_norm 1.0178 (1.8075/0.8758) mem 16099MB [2025-01-18 04:38:04 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][200/312] eta 0:00:53 lr 0.002172 time 0.4620 (0.4803) model_time 0.4616 (0.4689) loss 2.1904 (3.2380) grad_norm 0.8868 (1.7808/0.8637) mem 16099MB [2025-01-18 04:38:08 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][210/312] eta 0:00:48 lr 0.002172 time 0.4421 (0.4798) model_time 0.4417 (0.4689) loss 3.9726 (3.2325) grad_norm 1.2955 (1.7529/0.8535) mem 16099MB [2025-01-18 04:38:13 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][220/312] eta 0:00:44 lr 0.002171 time 0.4664 (0.4789) model_time 0.4662 (0.4685) loss 2.6118 (3.2254) grad_norm 1.4480 (1.7498/0.8430) mem 16099MB [2025-01-18 04:38:18 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][230/312] eta 0:00:39 lr 0.002170 time 0.4501 (0.4784) model_time 0.4499 (0.4684) loss 3.4374 (3.2166) grad_norm 1.1771 (1.7522/0.8336) mem 16099MB [2025-01-18 04:38:22 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][240/312] eta 0:00:34 lr 0.002170 time 0.4576 (0.4779) model_time 0.4572 (0.4683) loss 3.3709 (3.2295) grad_norm 0.8065 (1.7633/0.8477) mem 16099MB [2025-01-18 04:38:27 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][250/312] eta 0:00:29 lr 0.002169 time 0.4468 (0.4770) model_time 0.4463 (0.4678) loss 2.5599 (3.2279) grad_norm 1.1477 (1.7482/0.8388) mem 16099MB [2025-01-18 04:38:32 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][260/312] eta 0:00:24 lr 0.002168 time 0.4546 (0.4767) model_time 0.4544 (0.4678) loss 2.5251 (3.2247) grad_norm 1.3608 (1.7535/0.8348) mem 16099MB [2025-01-18 04:38:36 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][270/312] eta 0:00:20 lr 0.002168 time 0.4664 (0.4762) model_time 0.4659 (0.4677) loss 3.5079 (3.2267) grad_norm 2.0207 (1.7762/0.8454) mem 16099MB [2025-01-18 04:38:41 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][280/312] eta 0:00:15 lr 0.002167 time 0.4450 (0.4762) model_time 0.4446 (0.4680) loss 4.1437 (3.2303) grad_norm 1.1438 (1.7736/0.8415) mem 16099MB [2025-01-18 04:38:46 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][290/312] eta 0:00:10 lr 0.002166 time 0.4404 (0.4756) model_time 0.4400 (0.4676) loss 3.2113 (3.2341) grad_norm 2.3429 (1.7715/0.8342) mem 16099MB [2025-01-18 04:38:50 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][300/312] eta 0:00:05 lr 0.002166 time 0.4394 (0.4747) model_time 0.4393 (0.4670) loss 3.4735 (3.2376) grad_norm 1.0797 (1.7647/0.8244) mem 16099MB [2025-01-18 04:38:55 internimage_t_1k_224] (main.py 510): INFO Train: [142/300][310/312] eta 0:00:00 lr 0.002165 time 0.4372 (0.4740) model_time 0.4371 (0.4666) loss 3.3224 (3.2419) grad_norm 1.7148 (1.7442/0.7880) mem 16099MB [2025-01-18 04:38:55 internimage_t_1k_224] (main.py 519): INFO EPOCH 142 training takes 0:02:27 [2025-01-18 04:38:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_142.pth saving...... [2025-01-18 04:38:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_142.pth saved !!! [2025-01-18 04:39:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.281 (7.281) Loss 0.8224 (0.8224) Acc@1 82.007 (82.007) Acc@5 96.387 (96.387) Mem 16099MB [2025-01-18 04:39:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.960) Loss 1.1532 (0.9832) Acc@1 75.073 (78.955) Acc@5 93.018 (94.633) Mem 16099MB [2025-01-18 04:39:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:142] * Acc@1 78.849 Acc@5 94.700 [2025-01-18 04:39:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.8% [2025-01-18 04:39:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 04:39:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 04:39:08 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 78.85% [2025-01-18 04:39:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.295 (7.295) Loss 0.8135 (0.8135) Acc@1 83.691 (83.691) Acc@5 97.021 (97.021) Mem 16099MB [2025-01-18 04:39:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (1.008) Loss 1.1308 (0.9491) Acc@1 74.976 (80.351) Acc@5 93.652 (95.399) Mem 16099MB [2025-01-18 04:39:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:142] * Acc@1 80.222 Acc@5 95.401 [2025-01-18 04:39:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.2% [2025-01-18 04:39:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:39:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:39:21 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.22% [2025-01-18 04:39:24 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][0/312] eta 0:14:51 lr 0.002165 time 2.8583 (2.8583) model_time 0.4631 (0.4631) loss 3.0639 (3.0639) grad_norm 1.9285 (1.9285/0.0000) mem 16099MB [2025-01-18 04:39:28 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][10/312] eta 0:03:23 lr 0.002164 time 0.4513 (0.6727) model_time 0.4511 (0.4547) loss 3.9847 (3.3343) grad_norm 2.5725 (1.7520/0.4840) mem 16099MB [2025-01-18 04:39:33 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][20/312] eta 0:02:45 lr 0.002164 time 0.4536 (0.5683) model_time 0.4532 (0.4539) loss 3.2637 (3.2048) grad_norm 0.9064 (1.7116/0.5196) mem 16099MB [2025-01-18 04:39:38 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][30/312] eta 0:02:32 lr 0.002163 time 0.4439 (0.5394) model_time 0.4435 (0.4618) loss 3.5951 (3.2746) grad_norm 0.9207 (1.6596/0.5327) mem 16099MB [2025-01-18 04:39:42 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][40/312] eta 0:02:22 lr 0.002162 time 0.4554 (0.5235) model_time 0.4553 (0.4647) loss 1.9722 (3.2466) grad_norm 1.2266 (1.6446/0.5436) mem 16099MB [2025-01-18 04:39:47 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][50/312] eta 0:02:14 lr 0.002162 time 0.4730 (0.5121) model_time 0.4729 (0.4648) loss 2.9003 (3.2583) grad_norm 0.9077 (1.6980/0.6411) mem 16099MB [2025-01-18 04:39:52 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][60/312] eta 0:02:07 lr 0.002161 time 0.4699 (0.5066) model_time 0.4698 (0.4670) loss 2.7616 (3.2193) grad_norm 1.1543 (1.6257/0.6160) mem 16099MB [2025-01-18 04:39:57 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][70/312] eta 0:02:01 lr 0.002160 time 0.4907 (0.5025) model_time 0.4905 (0.4684) loss 4.0118 (3.2267) grad_norm 1.0540 (1.6340/0.6176) mem 16099MB [2025-01-18 04:40:01 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][80/312] eta 0:01:55 lr 0.002160 time 0.4616 (0.4999) model_time 0.4615 (0.4700) loss 2.2178 (3.2084) grad_norm 3.3513 (1.7183/0.7420) mem 16099MB [2025-01-18 04:40:06 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][90/312] eta 0:01:50 lr 0.002159 time 0.4477 (0.4955) model_time 0.4472 (0.4688) loss 3.1138 (3.2311) grad_norm 1.7986 (1.7568/0.7378) mem 16099MB [2025-01-18 04:40:11 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][100/312] eta 0:01:44 lr 0.002158 time 0.4735 (0.4935) model_time 0.4730 (0.4694) loss 3.2891 (3.2562) grad_norm 1.6010 (1.7263/0.7125) mem 16099MB [2025-01-18 04:40:15 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][110/312] eta 0:01:39 lr 0.002158 time 0.4526 (0.4905) model_time 0.4522 (0.4686) loss 3.3147 (3.2726) grad_norm 3.8165 (1.7648/0.7678) mem 16099MB [2025-01-18 04:40:20 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][120/312] eta 0:01:33 lr 0.002157 time 0.4627 (0.4876) model_time 0.4622 (0.4674) loss 2.6070 (3.2732) grad_norm 1.6718 (1.8065/0.8014) mem 16099MB [2025-01-18 04:40:25 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][130/312] eta 0:01:28 lr 0.002156 time 0.4860 (0.4855) model_time 0.4856 (0.4668) loss 3.5542 (3.2834) grad_norm 1.1654 (1.7728/0.7884) mem 16099MB [2025-01-18 04:40:30 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][140/312] eta 0:01:23 lr 0.002156 time 0.4636 (0.4860) model_time 0.4634 (0.4686) loss 4.0987 (3.2833) grad_norm 2.7785 (1.7718/0.7685) mem 16099MB [2025-01-18 04:40:34 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][150/312] eta 0:01:18 lr 0.002155 time 0.4604 (0.4843) model_time 0.4600 (0.4681) loss 3.5872 (3.2741) grad_norm 2.4745 (1.7800/0.7535) mem 16099MB [2025-01-18 04:40:39 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][160/312] eta 0:01:13 lr 0.002154 time 0.5485 (0.4865) model_time 0.5481 (0.4712) loss 3.5701 (3.2705) grad_norm 2.2380 (1.7767/0.7388) mem 16099MB [2025-01-18 04:40:44 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][170/312] eta 0:01:08 lr 0.002154 time 0.4468 (0.4856) model_time 0.4466 (0.4712) loss 3.4179 (3.2702) grad_norm 1.3154 (1.7678/0.7305) mem 16099MB [2025-01-18 04:40:49 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][180/312] eta 0:01:03 lr 0.002153 time 0.4513 (0.4843) model_time 0.4511 (0.4707) loss 3.0385 (3.2685) grad_norm 1.3222 (1.7510/0.7201) mem 16099MB [2025-01-18 04:40:53 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][190/312] eta 0:00:59 lr 0.002152 time 0.4625 (0.4839) model_time 0.4621 (0.4710) loss 2.5540 (3.2771) grad_norm 2.1644 (1.7799/0.7764) mem 16099MB [2025-01-18 04:40:58 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][200/312] eta 0:00:54 lr 0.002152 time 0.4449 (0.4829) model_time 0.4444 (0.4705) loss 3.3229 (3.2696) grad_norm 1.2093 (1.7642/0.7659) mem 16099MB [2025-01-18 04:41:03 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][210/312] eta 0:00:49 lr 0.002151 time 0.4461 (0.4826) model_time 0.4457 (0.4709) loss 3.4174 (3.2623) grad_norm 1.5735 (1.7576/0.7530) mem 16099MB [2025-01-18 04:41:07 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][220/312] eta 0:00:44 lr 0.002150 time 0.4575 (0.4819) model_time 0.4571 (0.4707) loss 2.3057 (3.2606) grad_norm 1.6962 (1.7832/0.7859) mem 16099MB [2025-01-18 04:41:12 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][230/312] eta 0:00:39 lr 0.002150 time 0.4458 (0.4816) model_time 0.4453 (0.4708) loss 3.7212 (3.2597) grad_norm 2.0484 (1.8086/0.7927) mem 16099MB [2025-01-18 04:41:17 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][240/312] eta 0:00:34 lr 0.002149 time 0.4516 (0.4806) model_time 0.4511 (0.4702) loss 2.9976 (3.2542) grad_norm 2.6973 (1.7919/0.7856) mem 16099MB [2025-01-18 04:41:21 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][250/312] eta 0:00:29 lr 0.002148 time 0.4526 (0.4801) model_time 0.4521 (0.4701) loss 2.1919 (3.2452) grad_norm 0.9407 (1.7990/0.7794) mem 16099MB [2025-01-18 04:41:26 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][260/312] eta 0:00:24 lr 0.002148 time 0.5575 (0.4802) model_time 0.5571 (0.4707) loss 3.2494 (3.2438) grad_norm 3.0186 (1.7899/0.7750) mem 16099MB [2025-01-18 04:41:31 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][270/312] eta 0:00:20 lr 0.002147 time 0.4588 (0.4803) model_time 0.4584 (0.4710) loss 2.9652 (3.2470) grad_norm 1.7720 (1.8043/0.7824) mem 16099MB [2025-01-18 04:41:36 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][280/312] eta 0:00:15 lr 0.002146 time 0.4423 (0.4798) model_time 0.4418 (0.4708) loss 2.1652 (3.2474) grad_norm 1.6859 (1.7902/0.7794) mem 16099MB [2025-01-18 04:41:41 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][290/312] eta 0:00:10 lr 0.002146 time 0.4418 (0.4797) model_time 0.4416 (0.4710) loss 3.0016 (3.2449) grad_norm 1.4027 (1.7712/0.7746) mem 16099MB [2025-01-18 04:41:45 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][300/312] eta 0:00:05 lr 0.002145 time 0.4379 (0.4790) model_time 0.4377 (0.4706) loss 3.7733 (3.2460) grad_norm 3.6445 (1.7787/0.7763) mem 16099MB [2025-01-18 04:41:50 internimage_t_1k_224] (main.py 510): INFO Train: [143/300][310/312] eta 0:00:00 lr 0.002144 time 0.4407 (0.4781) model_time 0.4406 (0.4700) loss 2.6502 (3.2450) grad_norm 0.8162 (1.7932/0.8196) mem 16099MB [2025-01-18 04:41:50 internimage_t_1k_224] (main.py 519): INFO EPOCH 143 training takes 0:02:29 [2025-01-18 04:41:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_143.pth saving...... [2025-01-18 04:41:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_143.pth saved !!! [2025-01-18 04:41:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 6.979 (6.979) Loss 0.7901 (0.7901) Acc@1 82.495 (82.495) Acc@5 96.436 (96.436) Mem 16099MB [2025-01-18 04:42:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.952) Loss 1.1318 (0.9622) Acc@1 75.000 (79.215) Acc@5 93.091 (94.829) Mem 16099MB [2025-01-18 04:42:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:143] * Acc@1 79.189 Acc@5 94.884 [2025-01-18 04:42:02 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.2% [2025-01-18 04:42:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 04:42:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 04:42:03 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.19% [2025-01-18 04:42:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.182 (7.182) Loss 0.8128 (0.8128) Acc@1 83.765 (83.765) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 04:42:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.969) Loss 1.1286 (0.9480) Acc@1 75.073 (80.418) Acc@5 93.677 (95.423) Mem 16099MB [2025-01-18 04:42:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:143] * Acc@1 80.290 Acc@5 95.431 [2025-01-18 04:42:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.3% [2025-01-18 04:42:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:42:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:42:16 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.29% [2025-01-18 04:42:18 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][0/312] eta 0:14:40 lr 0.002144 time 2.8236 (2.8236) model_time 0.4657 (0.4657) loss 3.2705 (3.2705) grad_norm 2.6354 (2.6354/0.0000) mem 16099MB [2025-01-18 04:42:23 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][10/312] eta 0:03:24 lr 0.002144 time 0.4600 (0.6761) model_time 0.4596 (0.4614) loss 4.0060 (3.2758) grad_norm 2.3045 (1.9774/0.4923) mem 16099MB [2025-01-18 04:42:28 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][20/312] eta 0:02:46 lr 0.002143 time 0.4618 (0.5703) model_time 0.4614 (0.4576) loss 3.8117 (3.3482) grad_norm 1.4801 (1.7533/0.5000) mem 16099MB [2025-01-18 04:42:32 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][30/312] eta 0:02:31 lr 0.002142 time 0.4561 (0.5370) model_time 0.4559 (0.4606) loss 3.0838 (3.3485) grad_norm 0.9095 (1.7348/0.5459) mem 16099MB [2025-01-18 04:42:37 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][40/312] eta 0:02:21 lr 0.002142 time 0.4634 (0.5190) model_time 0.4630 (0.4611) loss 3.3592 (3.3092) grad_norm 3.7828 (1.7121/0.6129) mem 16099MB [2025-01-18 04:42:41 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][50/312] eta 0:02:13 lr 0.002141 time 0.4586 (0.5087) model_time 0.4584 (0.4621) loss 3.0321 (3.2765) grad_norm 2.7557 (1.8653/0.7043) mem 16099MB [2025-01-18 04:42:46 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][60/312] eta 0:02:06 lr 0.002140 time 0.4456 (0.5024) model_time 0.4454 (0.4634) loss 3.4334 (3.2485) grad_norm 1.6335 (1.8238/0.7040) mem 16099MB [2025-01-18 04:42:51 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][70/312] eta 0:02:00 lr 0.002140 time 0.4817 (0.4965) model_time 0.4816 (0.4629) loss 4.2198 (3.2687) grad_norm 2.0535 (1.8247/0.6988) mem 16099MB [2025-01-18 04:42:56 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][80/312] eta 0:01:54 lr 0.002139 time 0.5546 (0.4940) model_time 0.5544 (0.4645) loss 3.8438 (3.2960) grad_norm 1.2022 (1.7766/0.7163) mem 16099MB [2025-01-18 04:43:00 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][90/312] eta 0:01:49 lr 0.002138 time 0.4525 (0.4913) model_time 0.4523 (0.4651) loss 2.6217 (3.2800) grad_norm 1.4629 (1.7571/0.7146) mem 16099MB [2025-01-18 04:43:05 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][100/312] eta 0:01:43 lr 0.002138 time 0.4651 (0.4885) model_time 0.4647 (0.4648) loss 3.5180 (3.2791) grad_norm 1.0517 (1.7368/0.6961) mem 16099MB [2025-01-18 04:43:10 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][110/312] eta 0:01:38 lr 0.002137 time 0.4510 (0.4861) model_time 0.4505 (0.4645) loss 3.6627 (3.2846) grad_norm 2.1221 (1.8068/0.7909) mem 16099MB [2025-01-18 04:43:14 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][120/312] eta 0:01:32 lr 0.002136 time 0.4409 (0.4838) model_time 0.4407 (0.4640) loss 3.7948 (3.2796) grad_norm 1.7376 (1.8182/0.7804) mem 16099MB [2025-01-18 04:43:19 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][130/312] eta 0:01:27 lr 0.002136 time 0.5530 (0.4825) model_time 0.5528 (0.4641) loss 3.1677 (3.2634) grad_norm 2.9431 (1.8533/0.8067) mem 16099MB [2025-01-18 04:43:23 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][140/312] eta 0:01:22 lr 0.002135 time 0.4791 (0.4813) model_time 0.4789 (0.4642) loss 2.8950 (3.2700) grad_norm 0.8866 (1.8941/0.8588) mem 16099MB [2025-01-18 04:43:28 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][150/312] eta 0:01:17 lr 0.002134 time 0.4557 (0.4795) model_time 0.4555 (0.4635) loss 3.7050 (3.2889) grad_norm 2.2259 (1.9296/0.8769) mem 16099MB [2025-01-18 04:43:33 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][160/312] eta 0:01:12 lr 0.002134 time 0.5719 (0.4797) model_time 0.5714 (0.4647) loss 3.2658 (3.3014) grad_norm 1.6055 (1.9001/0.8735) mem 16099MB [2025-01-18 04:43:37 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][170/312] eta 0:01:07 lr 0.002133 time 0.4422 (0.4786) model_time 0.4420 (0.4644) loss 4.1988 (3.3120) grad_norm 0.9869 (1.8604/0.8640) mem 16099MB [2025-01-18 04:43:42 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][180/312] eta 0:01:03 lr 0.002132 time 0.4661 (0.4786) model_time 0.4659 (0.4652) loss 3.7481 (3.3106) grad_norm 1.4205 (1.8266/0.8540) mem 16099MB [2025-01-18 04:43:47 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][190/312] eta 0:00:58 lr 0.002132 time 0.4474 (0.4783) model_time 0.4470 (0.4655) loss 3.2875 (3.3074) grad_norm 1.9606 (1.8113/0.8396) mem 16099MB [2025-01-18 04:43:51 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][200/312] eta 0:00:53 lr 0.002131 time 0.4473 (0.4773) model_time 0.4469 (0.4652) loss 3.4557 (3.2992) grad_norm 3.1788 (1.8194/0.8332) mem 16099MB [2025-01-18 04:43:56 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][210/312] eta 0:00:48 lr 0.002130 time 0.4534 (0.4778) model_time 0.4532 (0.4662) loss 2.4327 (3.3023) grad_norm 3.6840 (1.8212/0.8344) mem 16099MB [2025-01-18 04:44:01 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][220/312] eta 0:00:43 lr 0.002130 time 0.4519 (0.4772) model_time 0.4517 (0.4661) loss 3.7097 (3.3106) grad_norm 2.8574 (1.8201/0.8280) mem 16099MB [2025-01-18 04:44:06 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][230/312] eta 0:00:39 lr 0.002129 time 0.4491 (0.4781) model_time 0.4487 (0.4676) loss 2.2262 (3.2997) grad_norm 2.0262 (1.8391/0.8316) mem 16099MB [2025-01-18 04:44:11 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][240/312] eta 0:00:34 lr 0.002128 time 0.4498 (0.4772) model_time 0.4496 (0.4670) loss 2.8151 (3.2966) grad_norm 1.9342 (1.8429/0.8233) mem 16099MB [2025-01-18 04:44:15 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][250/312] eta 0:00:29 lr 0.002128 time 0.4487 (0.4768) model_time 0.4483 (0.4670) loss 3.4699 (3.3020) grad_norm 0.9498 (1.8252/0.8217) mem 16099MB [2025-01-18 04:44:20 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][260/312] eta 0:00:24 lr 0.002127 time 0.4551 (0.4761) model_time 0.4550 (0.4667) loss 3.1937 (3.3037) grad_norm 0.9176 (1.8094/0.8147) mem 16099MB [2025-01-18 04:44:24 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][270/312] eta 0:00:19 lr 0.002126 time 0.4565 (0.4753) model_time 0.4560 (0.4662) loss 3.3069 (3.2940) grad_norm 0.9489 (1.8041/0.8067) mem 16099MB [2025-01-18 04:44:29 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][280/312] eta 0:00:15 lr 0.002126 time 0.4402 (0.4745) model_time 0.4400 (0.4657) loss 3.1277 (3.2944) grad_norm 4.2711 (1.8182/0.8198) mem 16099MB [2025-01-18 04:44:34 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][290/312] eta 0:00:10 lr 0.002125 time 0.4477 (0.4751) model_time 0.4475 (0.4666) loss 4.0289 (3.2914) grad_norm 1.0058 (1.8175/0.8343) mem 16099MB [2025-01-18 04:44:38 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][300/312] eta 0:00:05 lr 0.002124 time 0.4392 (0.4746) model_time 0.4391 (0.4664) loss 3.1544 (3.2901) grad_norm 2.1254 (1.7998/0.8287) mem 16099MB [2025-01-18 04:44:43 internimage_t_1k_224] (main.py 510): INFO Train: [144/300][310/312] eta 0:00:00 lr 0.002124 time 0.4398 (0.4735) model_time 0.4397 (0.4656) loss 3.5258 (3.2915) grad_norm 1.3892 (1.7920/0.8372) mem 16099MB [2025-01-18 04:44:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 144 training takes 0:02:27 [2025-01-18 04:44:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_144.pth saving...... [2025-01-18 04:44:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_144.pth saved !!! [2025-01-18 04:44:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.404 (7.404) Loss 0.8670 (0.8670) Acc@1 82.056 (82.056) Acc@5 96.118 (96.118) Mem 16099MB [2025-01-18 04:44:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.002) Loss 1.1887 (1.0059) Acc@1 73.999 (79.204) Acc@5 93.042 (94.806) Mem 16099MB [2025-01-18 04:44:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:144] * Acc@1 79.067 Acc@5 94.848 [2025-01-18 04:44:56 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.1% [2025-01-18 04:44:56 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.19% [2025-01-18 04:45:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.092 (8.092) Loss 0.8124 (0.8124) Acc@1 83.765 (83.765) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 04:45:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.098) Loss 1.1263 (0.9473) Acc@1 75.122 (80.480) Acc@5 93.701 (95.441) Mem 16099MB [2025-01-18 04:45:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:144] * Acc@1 80.348 Acc@5 95.455 [2025-01-18 04:45:08 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.3% [2025-01-18 04:45:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:45:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:45:09 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.35% [2025-01-18 04:45:12 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][0/312] eta 0:13:54 lr 0.002124 time 2.6745 (2.6745) model_time 0.4705 (0.4705) loss 2.3854 (2.3854) grad_norm 1.4579 (1.4579/0.0000) mem 16099MB [2025-01-18 04:45:17 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][10/312] eta 0:03:26 lr 0.002123 time 0.6819 (0.6844) model_time 0.6817 (0.4837) loss 2.4270 (2.8631) grad_norm 2.3183 (1.5189/0.4851) mem 16099MB [2025-01-18 04:45:22 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][20/312] eta 0:02:50 lr 0.002122 time 0.4653 (0.5831) model_time 0.4651 (0.4778) loss 2.4455 (3.0951) grad_norm 1.4216 (1.9961/1.0673) mem 16099MB [2025-01-18 04:45:26 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][30/312] eta 0:02:32 lr 0.002122 time 0.4592 (0.5422) model_time 0.4588 (0.4708) loss 3.3700 (3.1982) grad_norm 2.4503 (2.1204/1.0346) mem 16099MB [2025-01-18 04:45:31 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][40/312] eta 0:02:22 lr 0.002121 time 0.4695 (0.5222) model_time 0.4693 (0.4681) loss 3.6523 (3.2058) grad_norm 1.6555 (1.9491/0.9751) mem 16099MB [2025-01-18 04:45:35 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][50/312] eta 0:02:13 lr 0.002120 time 0.4504 (0.5107) model_time 0.4499 (0.4671) loss 3.4497 (3.2429) grad_norm 2.3972 (1.8684/0.9103) mem 16099MB [2025-01-18 04:45:40 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][60/312] eta 0:02:06 lr 0.002120 time 0.4754 (0.5023) model_time 0.4752 (0.4658) loss 3.6550 (3.2923) grad_norm 2.9380 (1.8131/0.8672) mem 16099MB [2025-01-18 04:45:45 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][70/312] eta 0:02:00 lr 0.002119 time 0.4515 (0.4966) model_time 0.4511 (0.4652) loss 3.4012 (3.3194) grad_norm 3.1358 (1.8622/0.8474) mem 16099MB [2025-01-18 04:45:49 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][80/312] eta 0:01:54 lr 0.002118 time 0.4493 (0.4940) model_time 0.4491 (0.4664) loss 2.5770 (3.3061) grad_norm 1.3406 (1.8155/0.8342) mem 16099MB [2025-01-18 04:45:54 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][90/312] eta 0:01:48 lr 0.002118 time 0.4710 (0.4899) model_time 0.4708 (0.4653) loss 3.5374 (3.2669) grad_norm 1.1083 (1.8311/0.8406) mem 16099MB [2025-01-18 04:45:59 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][100/312] eta 0:01:43 lr 0.002117 time 0.5291 (0.4893) model_time 0.5289 (0.4671) loss 3.3939 (3.2632) grad_norm 2.2903 (1.8465/0.8434) mem 16099MB [2025-01-18 04:46:03 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][110/312] eta 0:01:38 lr 0.002116 time 0.4545 (0.4871) model_time 0.4541 (0.4669) loss 2.3082 (3.2508) grad_norm 1.9249 (1.7902/0.8317) mem 16099MB [2025-01-18 04:46:08 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][120/312] eta 0:01:33 lr 0.002116 time 0.5027 (0.4871) model_time 0.5026 (0.4685) loss 3.7563 (3.2426) grad_norm 0.9257 (1.7658/0.8142) mem 16099MB [2025-01-18 04:46:13 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][130/312] eta 0:01:28 lr 0.002115 time 0.5330 (0.4867) model_time 0.5329 (0.4695) loss 4.0236 (3.2412) grad_norm 1.1216 (1.7449/0.8013) mem 16099MB [2025-01-18 04:46:18 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][140/312] eta 0:01:23 lr 0.002114 time 0.4535 (0.4864) model_time 0.4534 (0.4704) loss 2.6457 (3.2065) grad_norm 1.4167 (1.7642/0.8080) mem 16099MB [2025-01-18 04:46:23 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][150/312] eta 0:01:18 lr 0.002114 time 0.4797 (0.4850) model_time 0.4795 (0.4701) loss 2.7004 (3.2376) grad_norm 1.3160 (1.7453/0.7899) mem 16099MB [2025-01-18 04:46:28 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][160/312] eta 0:01:13 lr 0.002113 time 0.4506 (0.4867) model_time 0.4504 (0.4726) loss 3.6634 (3.2501) grad_norm 0.7725 (1.7374/0.7779) mem 16099MB [2025-01-18 04:46:33 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][170/312] eta 0:01:09 lr 0.002112 time 0.4660 (0.4860) model_time 0.4659 (0.4727) loss 3.2399 (3.2451) grad_norm 1.1438 (1.7455/0.7794) mem 16099MB [2025-01-18 04:46:37 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][180/312] eta 0:01:04 lr 0.002112 time 0.4479 (0.4850) model_time 0.4478 (0.4724) loss 2.6563 (3.2511) grad_norm 1.1397 (1.7354/0.7661) mem 16099MB [2025-01-18 04:46:42 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][190/312] eta 0:00:59 lr 0.002111 time 0.4550 (0.4836) model_time 0.4545 (0.4717) loss 3.5567 (3.2561) grad_norm 6.4507 (1.7688/0.8269) mem 16099MB [2025-01-18 04:46:46 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][200/312] eta 0:00:54 lr 0.002110 time 0.4521 (0.4823) model_time 0.4516 (0.4710) loss 3.0207 (3.2520) grad_norm 1.2846 (1.7714/0.8265) mem 16099MB [2025-01-18 04:46:51 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][210/312] eta 0:00:49 lr 0.002110 time 0.4594 (0.4814) model_time 0.4589 (0.4706) loss 2.8083 (3.2474) grad_norm 1.4402 (1.7779/0.8231) mem 16099MB [2025-01-18 04:46:56 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][220/312] eta 0:00:44 lr 0.002109 time 0.4541 (0.4807) model_time 0.4536 (0.4703) loss 3.0118 (3.2464) grad_norm 2.2681 (1.7842/0.8167) mem 16099MB [2025-01-18 04:47:00 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][230/312] eta 0:00:39 lr 0.002108 time 0.4454 (0.4796) model_time 0.4452 (0.4697) loss 2.8101 (3.2450) grad_norm 1.4272 (1.7700/0.8103) mem 16099MB [2025-01-18 04:47:05 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][240/312] eta 0:00:34 lr 0.002108 time 0.4511 (0.4801) model_time 0.4507 (0.4706) loss 3.4580 (3.2513) grad_norm 1.3916 (1.7560/0.8001) mem 16099MB [2025-01-18 04:47:10 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][250/312] eta 0:00:29 lr 0.002107 time 0.4485 (0.4796) model_time 0.4480 (0.4704) loss 2.0509 (3.2591) grad_norm 1.0160 (1.7427/0.7927) mem 16099MB [2025-01-18 04:47:14 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][260/312] eta 0:00:24 lr 0.002106 time 0.4708 (0.4789) model_time 0.4706 (0.4700) loss 3.7946 (3.2510) grad_norm 0.8896 (1.7408/0.7841) mem 16099MB [2025-01-18 04:47:19 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][270/312] eta 0:00:20 lr 0.002106 time 0.4433 (0.4784) model_time 0.4428 (0.4699) loss 2.6451 (3.2498) grad_norm 1.6915 (1.7394/0.7717) mem 16099MB [2025-01-18 04:47:24 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][280/312] eta 0:00:15 lr 0.002105 time 0.4480 (0.4780) model_time 0.4478 (0.4697) loss 2.8462 (3.2465) grad_norm 3.0615 (1.7743/0.8152) mem 16099MB [2025-01-18 04:47:28 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][290/312] eta 0:00:10 lr 0.002104 time 0.5509 (0.4774) model_time 0.5505 (0.4694) loss 3.3587 (3.2384) grad_norm 2.0802 (1.7958/0.8387) mem 16099MB [2025-01-18 04:47:33 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][300/312] eta 0:00:05 lr 0.002104 time 0.4407 (0.4770) model_time 0.4406 (0.4693) loss 2.8198 (3.2250) grad_norm 1.4864 (1.7981/0.8325) mem 16099MB [2025-01-18 04:47:37 internimage_t_1k_224] (main.py 510): INFO Train: [145/300][310/312] eta 0:00:00 lr 0.002103 time 0.4428 (0.4762) model_time 0.4427 (0.4687) loss 2.3712 (3.2315) grad_norm 1.4833 (1.8067/0.8357) mem 16099MB [2025-01-18 04:47:38 internimage_t_1k_224] (main.py 519): INFO EPOCH 145 training takes 0:02:28 [2025-01-18 04:47:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_145.pth saving...... [2025-01-18 04:47:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_145.pth saved !!! [2025-01-18 04:47:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.367 (7.367) Loss 0.8161 (0.8161) Acc@1 82.129 (82.129) Acc@5 96.777 (96.777) Mem 16099MB [2025-01-18 04:47:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.990) Loss 1.1542 (0.9664) Acc@1 73.682 (79.024) Acc@5 93.408 (94.858) Mem 16099MB [2025-01-18 04:47:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:145] * Acc@1 78.971 Acc@5 94.940 [2025-01-18 04:47:50 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.0% [2025-01-18 04:47:50 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.19% [2025-01-18 04:47:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.061 (8.061) Loss 0.8121 (0.8121) Acc@1 83.765 (83.765) Acc@5 97.095 (97.095) Mem 16099MB [2025-01-18 04:48:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.079) Loss 1.1245 (0.9466) Acc@1 75.195 (80.522) Acc@5 93.750 (95.437) Mem 16099MB [2025-01-18 04:48:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:145] * Acc@1 80.392 Acc@5 95.451 [2025-01-18 04:48:02 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.4% [2025-01-18 04:48:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:48:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:48:04 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.39% [2025-01-18 04:48:06 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][0/312] eta 0:15:15 lr 0.002103 time 2.9333 (2.9333) model_time 0.4693 (0.4693) loss 3.9110 (3.9110) grad_norm 1.2248 (1.2248/0.0000) mem 16099MB [2025-01-18 04:48:11 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][10/312] eta 0:03:28 lr 0.002102 time 0.4540 (0.6901) model_time 0.4538 (0.4658) loss 3.5393 (3.3071) grad_norm 2.8317 (1.6973/0.7704) mem 16099MB [2025-01-18 04:48:16 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][20/312] eta 0:02:49 lr 0.002102 time 0.5274 (0.5818) model_time 0.5270 (0.4642) loss 2.4503 (3.0880) grad_norm 1.2058 (1.5925/0.7355) mem 16099MB [2025-01-18 04:48:20 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][30/312] eta 0:02:33 lr 0.002101 time 0.4578 (0.5437) model_time 0.4573 (0.4639) loss 3.4487 (3.1207) grad_norm 0.9791 (1.5775/0.6699) mem 16099MB [2025-01-18 04:48:25 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][40/312] eta 0:02:21 lr 0.002100 time 0.4521 (0.5219) model_time 0.4519 (0.4615) loss 3.7397 (3.1787) grad_norm 1.8720 (1.7857/0.8044) mem 16099MB [2025-01-18 04:48:30 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][50/312] eta 0:02:14 lr 0.002100 time 0.4450 (0.5121) model_time 0.4446 (0.4634) loss 4.1090 (3.1762) grad_norm 1.5383 (1.8413/0.7872) mem 16099MB [2025-01-18 04:48:34 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][60/312] eta 0:02:07 lr 0.002099 time 0.4452 (0.5063) model_time 0.4448 (0.4655) loss 3.5498 (3.1991) grad_norm 1.5975 (1.7597/0.7562) mem 16099MB [2025-01-18 04:48:39 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][70/312] eta 0:02:00 lr 0.002098 time 0.4646 (0.4998) model_time 0.4642 (0.4647) loss 3.1751 (3.1956) grad_norm 0.9755 (1.7848/0.7574) mem 16099MB [2025-01-18 04:48:44 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][80/312] eta 0:01:55 lr 0.002098 time 0.4465 (0.4961) model_time 0.4464 (0.4653) loss 2.7891 (3.1901) grad_norm 3.0357 (1.8255/0.7865) mem 16099MB [2025-01-18 04:48:48 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][90/312] eta 0:01:49 lr 0.002097 time 0.4763 (0.4921) model_time 0.4759 (0.4646) loss 3.3566 (3.1828) grad_norm 1.4274 (1.7703/0.7721) mem 16099MB [2025-01-18 04:48:53 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][100/312] eta 0:01:43 lr 0.002096 time 0.4681 (0.4905) model_time 0.4677 (0.4657) loss 2.9165 (3.1540) grad_norm 1.3706 (1.7396/0.7468) mem 16099MB [2025-01-18 04:48:58 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][110/312] eta 0:01:38 lr 0.002096 time 0.4623 (0.4896) model_time 0.4621 (0.4670) loss 3.9022 (3.1687) grad_norm 1.1825 (1.7239/0.7333) mem 16099MB [2025-01-18 04:49:03 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][120/312] eta 0:01:33 lr 0.002095 time 0.4541 (0.4874) model_time 0.4540 (0.4667) loss 3.8860 (3.1977) grad_norm 0.9317 (1.7455/0.7562) mem 16099MB [2025-01-18 04:49:07 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][130/312] eta 0:01:28 lr 0.002094 time 0.4682 (0.4848) model_time 0.4678 (0.4656) loss 3.2283 (3.2034) grad_norm 1.5197 (1.7370/0.7520) mem 16099MB [2025-01-18 04:49:12 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][140/312] eta 0:01:23 lr 0.002094 time 0.5453 (0.4857) model_time 0.5449 (0.4678) loss 3.5731 (3.2070) grad_norm 1.4283 (1.7512/0.7739) mem 16099MB [2025-01-18 04:49:17 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][150/312] eta 0:01:18 lr 0.002093 time 0.4472 (0.4844) model_time 0.4467 (0.4677) loss 3.5978 (3.2295) grad_norm 2.6729 (1.7465/0.7629) mem 16099MB [2025-01-18 04:49:21 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][160/312] eta 0:01:13 lr 0.002092 time 0.5002 (0.4832) model_time 0.4997 (0.4674) loss 3.2337 (3.2113) grad_norm 1.7929 (1.7455/0.7501) mem 16099MB [2025-01-18 04:49:26 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][170/312] eta 0:01:08 lr 0.002092 time 0.4462 (0.4823) model_time 0.4460 (0.4675) loss 4.2483 (3.2322) grad_norm 1.1050 (1.7223/0.7383) mem 16099MB [2025-01-18 04:49:31 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][180/312] eta 0:01:03 lr 0.002091 time 0.4539 (0.4815) model_time 0.4534 (0.4675) loss 2.8560 (3.2301) grad_norm 1.5323 (1.7178/0.7380) mem 16099MB [2025-01-18 04:49:35 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][190/312] eta 0:00:58 lr 0.002090 time 0.4411 (0.4802) model_time 0.4409 (0.4669) loss 2.3545 (3.2280) grad_norm 1.0462 (1.7012/0.7272) mem 16099MB [2025-01-18 04:49:40 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][200/312] eta 0:00:53 lr 0.002090 time 0.4775 (0.4792) model_time 0.4771 (0.4665) loss 3.4042 (3.2191) grad_norm 1.7009 (1.7348/0.7653) mem 16099MB [2025-01-18 04:49:44 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][210/312] eta 0:00:48 lr 0.002089 time 0.4805 (0.4782) model_time 0.4800 (0.4661) loss 3.0127 (3.2199) grad_norm 2.4564 (1.7579/0.8015) mem 16099MB [2025-01-18 04:49:49 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][220/312] eta 0:00:43 lr 0.002088 time 0.4432 (0.4774) model_time 0.4431 (0.4659) loss 3.7205 (3.2237) grad_norm 2.4126 (1.7606/0.7924) mem 16099MB [2025-01-18 04:49:54 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][230/312] eta 0:00:39 lr 0.002088 time 0.4420 (0.4768) model_time 0.4419 (0.4657) loss 3.3858 (3.2274) grad_norm 3.6066 (1.7879/0.7937) mem 16099MB [2025-01-18 04:49:58 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][240/312] eta 0:00:34 lr 0.002087 time 0.4519 (0.4763) model_time 0.4514 (0.4657) loss 2.4852 (3.2237) grad_norm 1.0879 (1.7681/0.7876) mem 16099MB [2025-01-18 04:50:03 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][250/312] eta 0:00:29 lr 0.002086 time 0.5566 (0.4763) model_time 0.5565 (0.4661) loss 3.4119 (3.2201) grad_norm 1.2045 (1.7554/0.7788) mem 16099MB [2025-01-18 04:50:08 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][260/312] eta 0:00:24 lr 0.002086 time 0.4507 (0.4755) model_time 0.4505 (0.4656) loss 2.9457 (3.2125) grad_norm 1.3105 (1.7378/0.7754) mem 16099MB [2025-01-18 04:50:12 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][270/312] eta 0:00:19 lr 0.002085 time 0.4477 (0.4757) model_time 0.4472 (0.4662) loss 4.0334 (3.2147) grad_norm 2.1008 (1.7627/0.8031) mem 16099MB [2025-01-18 04:50:17 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][280/312] eta 0:00:15 lr 0.002084 time 0.4430 (0.4754) model_time 0.4428 (0.4663) loss 3.5072 (3.2181) grad_norm 2.5232 (1.7693/0.7983) mem 16099MB [2025-01-18 04:50:22 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][290/312] eta 0:00:10 lr 0.002084 time 0.4473 (0.4750) model_time 0.4471 (0.4661) loss 2.8896 (3.2157) grad_norm 1.3511 (1.7619/0.7937) mem 16099MB [2025-01-18 04:50:26 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][300/312] eta 0:00:05 lr 0.002083 time 0.4432 (0.4744) model_time 0.4431 (0.4658) loss 3.2438 (3.2186) grad_norm 4.7115 (1.7748/0.8105) mem 16099MB [2025-01-18 04:50:31 internimage_t_1k_224] (main.py 510): INFO Train: [146/300][310/312] eta 0:00:00 lr 0.002082 time 0.4498 (0.4738) model_time 0.4497 (0.4655) loss 3.3035 (3.2102) grad_norm 1.0529 (1.7782/0.8072) mem 16099MB [2025-01-18 04:50:31 internimage_t_1k_224] (main.py 519): INFO EPOCH 146 training takes 0:02:27 [2025-01-18 04:50:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_146.pth saving...... [2025-01-18 04:50:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_146.pth saved !!! [2025-01-18 04:50:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.291 (7.291) Loss 0.8234 (0.8234) Acc@1 82.349 (82.349) Acc@5 96.777 (96.777) Mem 16099MB [2025-01-18 04:50:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.015) Loss 1.1530 (0.9822) Acc@1 75.293 (79.239) Acc@5 92.920 (94.735) Mem 16099MB [2025-01-18 04:50:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:146] * Acc@1 79.109 Acc@5 94.784 [2025-01-18 04:50:44 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.1% [2025-01-18 04:50:44 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.19% [2025-01-18 04:50:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.160 (8.160) Loss 0.8118 (0.8118) Acc@1 83.789 (83.789) Acc@5 97.095 (97.095) Mem 16099MB [2025-01-18 04:50:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.095) Loss 1.1228 (0.9460) Acc@1 75.244 (80.546) Acc@5 93.799 (95.463) Mem 16099MB [2025-01-18 04:50:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:146] * Acc@1 80.424 Acc@5 95.481 [2025-01-18 04:50:56 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.4% [2025-01-18 04:50:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:50:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:50:57 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.42% [2025-01-18 04:51:00 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][0/312] eta 0:12:52 lr 0.002082 time 2.4775 (2.4775) model_time 0.4807 (0.4807) loss 2.6146 (2.6146) grad_norm 3.1704 (3.1704/0.0000) mem 16099MB [2025-01-18 04:51:05 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][10/312] eta 0:03:19 lr 0.002082 time 0.4816 (0.6608) model_time 0.4814 (0.4788) loss 3.4191 (2.9116) grad_norm 1.0817 (2.3705/1.2363) mem 16099MB [2025-01-18 04:51:09 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][20/312] eta 0:02:46 lr 0.002081 time 0.4548 (0.5686) model_time 0.4546 (0.4732) loss 3.4447 (3.0745) grad_norm 1.3798 (2.3117/1.0735) mem 16099MB [2025-01-18 04:51:14 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][30/312] eta 0:02:31 lr 0.002080 time 0.4516 (0.5363) model_time 0.4514 (0.4715) loss 3.4267 (3.1025) grad_norm 2.3107 (2.1409/0.9620) mem 16099MB [2025-01-18 04:51:19 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][40/312] eta 0:02:21 lr 0.002080 time 0.4647 (0.5217) model_time 0.4642 (0.4726) loss 3.3976 (3.0977) grad_norm 1.7305 (2.0285/0.9182) mem 16099MB [2025-01-18 04:51:24 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][50/312] eta 0:02:13 lr 0.002079 time 0.4398 (0.5106) model_time 0.4396 (0.4710) loss 3.2760 (3.0855) grad_norm 1.4392 (1.9442/0.8729) mem 16099MB [2025-01-18 04:51:28 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][60/312] eta 0:02:06 lr 0.002078 time 0.4519 (0.5023) model_time 0.4513 (0.4692) loss 2.1834 (3.1341) grad_norm 0.7687 (1.8803/0.8596) mem 16099MB [2025-01-18 04:51:33 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][70/312] eta 0:02:00 lr 0.002078 time 0.4521 (0.4969) model_time 0.4520 (0.4684) loss 3.5256 (3.1664) grad_norm 1.1505 (1.8109/0.8272) mem 16099MB [2025-01-18 04:51:37 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][80/312] eta 0:01:54 lr 0.002077 time 0.4517 (0.4932) model_time 0.4513 (0.4681) loss 3.5475 (3.1955) grad_norm 1.6490 (1.8830/0.8781) mem 16099MB [2025-01-18 04:51:42 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][90/312] eta 0:01:48 lr 0.002076 time 0.4539 (0.4910) model_time 0.4538 (0.4687) loss 3.0783 (3.1907) grad_norm 5.3883 (1.9852/1.0129) mem 16099MB [2025-01-18 04:51:47 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][100/312] eta 0:01:43 lr 0.002076 time 0.4556 (0.4889) model_time 0.4555 (0.4688) loss 3.1905 (3.1943) grad_norm 2.0454 (2.0518/1.0799) mem 16099MB [2025-01-18 04:51:52 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][110/312] eta 0:01:38 lr 0.002075 time 0.4489 (0.4868) model_time 0.4487 (0.4684) loss 4.1963 (3.2075) grad_norm 1.9968 (2.0056/1.0576) mem 16099MB [2025-01-18 04:51:56 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][120/312] eta 0:01:33 lr 0.002074 time 0.4520 (0.4868) model_time 0.4516 (0.4700) loss 3.0498 (3.1910) grad_norm 1.0385 (1.9416/1.0394) mem 16099MB [2025-01-18 04:52:01 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][130/312] eta 0:01:28 lr 0.002074 time 0.4450 (0.4844) model_time 0.4446 (0.4687) loss 2.2686 (3.1938) grad_norm 1.0448 (1.8974/1.0168) mem 16099MB [2025-01-18 04:52:06 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][140/312] eta 0:01:23 lr 0.002073 time 0.4464 (0.4827) model_time 0.4462 (0.4682) loss 3.5355 (3.2001) grad_norm 1.8746 (1.8726/0.9884) mem 16099MB [2025-01-18 04:52:10 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][150/312] eta 0:01:17 lr 0.002072 time 0.4530 (0.4813) model_time 0.4529 (0.4677) loss 3.9994 (3.2044) grad_norm 2.2269 (1.8686/0.9794) mem 16099MB [2025-01-18 04:52:15 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][160/312] eta 0:01:12 lr 0.002072 time 0.4791 (0.4798) model_time 0.4787 (0.4670) loss 2.4343 (3.2079) grad_norm 1.9035 (1.8424/0.9602) mem 16099MB [2025-01-18 04:52:20 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][170/312] eta 0:01:08 lr 0.002071 time 0.4652 (0.4806) model_time 0.4647 (0.4686) loss 3.3550 (3.2244) grad_norm 1.8632 (1.8415/0.9513) mem 16099MB [2025-01-18 04:52:25 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][180/312] eta 0:01:03 lr 0.002070 time 0.4793 (0.4811) model_time 0.4791 (0.4697) loss 2.7919 (3.2069) grad_norm 1.1221 (1.8532/0.9469) mem 16099MB [2025-01-18 04:52:29 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][190/312] eta 0:00:58 lr 0.002070 time 0.4712 (0.4802) model_time 0.4707 (0.4693) loss 4.2897 (3.2108) grad_norm 1.6590 (1.8380/0.9287) mem 16099MB [2025-01-18 04:52:34 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][200/312] eta 0:00:53 lr 0.002069 time 0.4405 (0.4798) model_time 0.4401 (0.4695) loss 2.8326 (3.2087) grad_norm 1.1104 (1.8132/0.9153) mem 16099MB [2025-01-18 04:52:39 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][210/312] eta 0:00:48 lr 0.002068 time 0.4421 (0.4790) model_time 0.4417 (0.4691) loss 3.1929 (3.2077) grad_norm 1.6765 (1.8177/0.9027) mem 16099MB [2025-01-18 04:52:43 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][220/312] eta 0:00:43 lr 0.002068 time 0.4473 (0.4781) model_time 0.4472 (0.4686) loss 2.5683 (3.2136) grad_norm 1.5780 (1.8493/0.9199) mem 16099MB [2025-01-18 04:52:48 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][230/312] eta 0:00:39 lr 0.002067 time 0.4467 (0.4781) model_time 0.4462 (0.4690) loss 2.4688 (3.2169) grad_norm 1.8324 (1.8396/0.9084) mem 16099MB [2025-01-18 04:52:53 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][240/312] eta 0:00:34 lr 0.002066 time 0.4496 (0.4773) model_time 0.4492 (0.4686) loss 3.2159 (3.2150) grad_norm 1.1409 (1.8193/0.8973) mem 16099MB [2025-01-18 04:52:57 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][250/312] eta 0:00:29 lr 0.002066 time 0.5372 (0.4770) model_time 0.5366 (0.4686) loss 3.8767 (3.2230) grad_norm 1.0363 (1.8078/0.8842) mem 16099MB [2025-01-18 04:53:02 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][260/312] eta 0:00:24 lr 0.002065 time 0.4703 (0.4765) model_time 0.4701 (0.4684) loss 3.0452 (3.2267) grad_norm 1.1859 (1.8104/0.8768) mem 16099MB [2025-01-18 04:53:07 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][270/312] eta 0:00:20 lr 0.002064 time 0.4769 (0.4765) model_time 0.4764 (0.4687) loss 3.3744 (3.2277) grad_norm 1.3408 (1.7983/0.8689) mem 16099MB [2025-01-18 04:53:11 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][280/312] eta 0:00:15 lr 0.002064 time 0.4692 (0.4765) model_time 0.4688 (0.4690) loss 3.3083 (3.2408) grad_norm 2.1101 (1.7802/0.8624) mem 16099MB [2025-01-18 04:53:16 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][290/312] eta 0:00:10 lr 0.002063 time 0.4688 (0.4763) model_time 0.4686 (0.4691) loss 3.1980 (3.2445) grad_norm 2.2837 (1.7769/0.8528) mem 16099MB [2025-01-18 04:53:21 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][300/312] eta 0:00:05 lr 0.002062 time 0.4730 (0.4756) model_time 0.4729 (0.4686) loss 4.1029 (3.2444) grad_norm 2.5533 (1.7699/0.8412) mem 16099MB [2025-01-18 04:53:25 internimage_t_1k_224] (main.py 510): INFO Train: [147/300][310/312] eta 0:00:00 lr 0.002062 time 0.4387 (0.4747) model_time 0.4386 (0.4679) loss 3.0975 (3.2521) grad_norm 1.3869 (1.7505/0.8067) mem 16099MB [2025-01-18 04:53:26 internimage_t_1k_224] (main.py 519): INFO EPOCH 147 training takes 0:02:28 [2025-01-18 04:53:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_147.pth saving...... [2025-01-18 04:53:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_147.pth saved !!! [2025-01-18 04:53:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.119 (7.119) Loss 0.8501 (0.8501) Acc@1 81.641 (81.641) Acc@5 96.655 (96.655) Mem 16099MB [2025-01-18 04:53:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.983) Loss 1.1555 (0.9875) Acc@1 74.097 (78.997) Acc@5 93.408 (94.762) Mem 16099MB [2025-01-18 04:53:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:147] * Acc@1 78.875 Acc@5 94.814 [2025-01-18 04:53:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 78.9% [2025-01-18 04:53:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.19% [2025-01-18 04:53:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.318 (8.318) Loss 0.8117 (0.8117) Acc@1 83.813 (83.813) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 04:53:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.119) Loss 1.1215 (0.9457) Acc@1 75.293 (80.578) Acc@5 93.750 (95.459) Mem 16099MB [2025-01-18 04:53:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:147] * Acc@1 80.462 Acc@5 95.479 [2025-01-18 04:53:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.5% [2025-01-18 04:53:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:53:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:53:52 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.46% [2025-01-18 04:53:54 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][0/312] eta 0:14:50 lr 0.002061 time 2.8541 (2.8541) model_time 0.4608 (0.4608) loss 3.3511 (3.3511) grad_norm 2.3859 (2.3859/0.0000) mem 16099MB [2025-01-18 04:53:59 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][10/312] eta 0:03:25 lr 0.002061 time 0.4436 (0.6818) model_time 0.4434 (0.4640) loss 4.1055 (3.2686) grad_norm 1.0850 (1.8183/0.5228) mem 16099MB [2025-01-18 04:54:04 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][20/312] eta 0:02:51 lr 0.002060 time 0.4835 (0.5875) model_time 0.4833 (0.4732) loss 3.8317 (3.4010) grad_norm 1.4440 (1.8188/0.8107) mem 16099MB [2025-01-18 04:54:09 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][30/312] eta 0:02:35 lr 0.002059 time 0.4394 (0.5510) model_time 0.4393 (0.4735) loss 3.5634 (3.2678) grad_norm 2.4698 (1.7720/0.7287) mem 16099MB [2025-01-18 04:54:13 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][40/312] eta 0:02:23 lr 0.002059 time 0.4720 (0.5283) model_time 0.4717 (0.4695) loss 3.1141 (3.2667) grad_norm 1.1231 (1.7817/0.7395) mem 16099MB [2025-01-18 04:54:18 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][50/312] eta 0:02:15 lr 0.002058 time 0.4624 (0.5153) model_time 0.4622 (0.4680) loss 3.9875 (3.2809) grad_norm 2.1695 (1.7256/0.6941) mem 16099MB [2025-01-18 04:54:23 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][60/312] eta 0:02:08 lr 0.002057 time 0.4400 (0.5108) model_time 0.4399 (0.4712) loss 3.4891 (3.2718) grad_norm 2.3788 (1.8208/0.7769) mem 16099MB [2025-01-18 04:54:27 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][70/312] eta 0:02:02 lr 0.002057 time 0.5481 (0.5042) model_time 0.5480 (0.4701) loss 3.4278 (3.2506) grad_norm 3.1156 (1.8873/0.8185) mem 16099MB [2025-01-18 04:54:32 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][80/312] eta 0:01:56 lr 0.002056 time 0.5404 (0.5014) model_time 0.5402 (0.4714) loss 3.7399 (3.2687) grad_norm 1.9878 (1.9570/0.8442) mem 16099MB [2025-01-18 04:54:37 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][90/312] eta 0:01:50 lr 0.002055 time 0.4397 (0.4969) model_time 0.4392 (0.4702) loss 2.1727 (3.2701) grad_norm 1.8150 (1.9981/0.8786) mem 16099MB [2025-01-18 04:54:41 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][100/312] eta 0:01:44 lr 0.002055 time 0.4550 (0.4928) model_time 0.4546 (0.4687) loss 3.8689 (3.2630) grad_norm 2.2889 (1.9626/0.8531) mem 16099MB [2025-01-18 04:54:46 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][110/312] eta 0:01:39 lr 0.002054 time 0.4483 (0.4905) model_time 0.4479 (0.4685) loss 3.5997 (3.2766) grad_norm 3.6354 (1.9402/0.8484) mem 16099MB [2025-01-18 04:54:51 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][120/312] eta 0:01:33 lr 0.002053 time 0.4473 (0.4878) model_time 0.4469 (0.4676) loss 2.3292 (3.2818) grad_norm 1.4383 (1.9228/0.8418) mem 16099MB [2025-01-18 04:54:55 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][130/312] eta 0:01:28 lr 0.002053 time 0.4545 (0.4860) model_time 0.4540 (0.4673) loss 2.3831 (3.2604) grad_norm 3.9961 (1.9151/0.8402) mem 16099MB [2025-01-18 04:55:00 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][140/312] eta 0:01:23 lr 0.002052 time 0.5555 (0.4846) model_time 0.5550 (0.4672) loss 3.3861 (3.2716) grad_norm 1.3430 (1.9114/0.8584) mem 16099MB [2025-01-18 04:55:05 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][150/312] eta 0:01:18 lr 0.002051 time 0.4408 (0.4833) model_time 0.4404 (0.4670) loss 3.0838 (3.2748) grad_norm 1.3806 (1.9125/0.8454) mem 16099MB [2025-01-18 04:55:09 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][160/312] eta 0:01:13 lr 0.002051 time 0.4479 (0.4829) model_time 0.4475 (0.4677) loss 3.2358 (3.2868) grad_norm 1.0405 (1.8979/0.8276) mem 16099MB [2025-01-18 04:55:14 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][170/312] eta 0:01:08 lr 0.002050 time 0.4527 (0.4819) model_time 0.4525 (0.4675) loss 3.4242 (3.2821) grad_norm 1.4889 (1.9118/0.8359) mem 16099MB [2025-01-18 04:55:19 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][180/312] eta 0:01:03 lr 0.002050 time 0.4465 (0.4808) model_time 0.4464 (0.4672) loss 3.5459 (3.2770) grad_norm 1.2625 (1.8938/0.8273) mem 16099MB [2025-01-18 04:55:23 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][190/312] eta 0:00:58 lr 0.002049 time 0.4573 (0.4793) model_time 0.4569 (0.4664) loss 4.0403 (3.2894) grad_norm 1.4087 (1.8806/0.8214) mem 16099MB [2025-01-18 04:55:28 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][200/312] eta 0:00:53 lr 0.002048 time 0.4652 (0.4786) model_time 0.4648 (0.4662) loss 2.3604 (3.2921) grad_norm 1.0948 (1.8938/0.8467) mem 16099MB [2025-01-18 04:55:32 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][210/312] eta 0:00:48 lr 0.002048 time 0.4432 (0.4781) model_time 0.4431 (0.4663) loss 2.4354 (3.2834) grad_norm 2.0900 (1.9060/0.8525) mem 16099MB [2025-01-18 04:55:37 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][220/312] eta 0:00:43 lr 0.002047 time 0.4590 (0.4771) model_time 0.4589 (0.4659) loss 2.7244 (3.2816) grad_norm 1.4440 (1.9169/0.8573) mem 16099MB [2025-01-18 04:55:42 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][230/312] eta 0:00:39 lr 0.002046 time 0.5033 (0.4774) model_time 0.5029 (0.4666) loss 3.8233 (3.2881) grad_norm 0.9472 (1.9096/0.8504) mem 16099MB [2025-01-18 04:55:46 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][240/312] eta 0:00:34 lr 0.002046 time 0.4401 (0.4768) model_time 0.4400 (0.4665) loss 3.2334 (3.2874) grad_norm 2.8209 (1.9355/0.8838) mem 16099MB [2025-01-18 04:55:51 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][250/312] eta 0:00:29 lr 0.002045 time 0.4593 (0.4768) model_time 0.4591 (0.4668) loss 3.6231 (3.2811) grad_norm 2.3261 (1.9240/0.8767) mem 16099MB [2025-01-18 04:55:56 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][260/312] eta 0:00:24 lr 0.002044 time 0.4419 (0.4764) model_time 0.4414 (0.4669) loss 2.7800 (3.2705) grad_norm 0.8021 (1.9085/0.8713) mem 16099MB [2025-01-18 04:56:01 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][270/312] eta 0:00:20 lr 0.002044 time 0.4442 (0.4766) model_time 0.4441 (0.4673) loss 2.2765 (3.2651) grad_norm 0.8201 (1.9039/0.8647) mem 16099MB [2025-01-18 04:56:05 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][280/312] eta 0:00:15 lr 0.002043 time 0.4508 (0.4763) model_time 0.4503 (0.4674) loss 2.6174 (3.2716) grad_norm 1.4848 (1.8877/0.8569) mem 16099MB [2025-01-18 04:56:10 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][290/312] eta 0:00:10 lr 0.002042 time 0.4514 (0.4757) model_time 0.4512 (0.4671) loss 3.6710 (3.2720) grad_norm 0.9542 (1.8682/0.8505) mem 16099MB [2025-01-18 04:56:15 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][300/312] eta 0:00:05 lr 0.002042 time 0.4438 (0.4754) model_time 0.4437 (0.4670) loss 2.2021 (3.2639) grad_norm 1.1710 (1.8485/0.8451) mem 16099MB [2025-01-18 04:56:19 internimage_t_1k_224] (main.py 510): INFO Train: [148/300][310/312] eta 0:00:00 lr 0.002041 time 0.4380 (0.4748) model_time 0.4379 (0.4667) loss 3.1011 (3.2598) grad_norm 2.4882 (1.8477/0.8460) mem 16099MB [2025-01-18 04:56:20 internimage_t_1k_224] (main.py 519): INFO EPOCH 148 training takes 0:02:28 [2025-01-18 04:56:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_148.pth saving...... [2025-01-18 04:56:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_148.pth saved !!! [2025-01-18 04:56:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.591 (7.591) Loss 0.8178 (0.8178) Acc@1 82.324 (82.324) Acc@5 96.436 (96.436) Mem 16099MB [2025-01-18 04:56:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.024) Loss 1.1570 (0.9568) Acc@1 73.560 (79.270) Acc@5 92.627 (94.818) Mem 16099MB [2025-01-18 04:56:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:148] * Acc@1 79.213 Acc@5 94.854 [2025-01-18 04:56:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.2% [2025-01-18 04:56:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 04:56:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 04:56:33 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.21% [2025-01-18 04:56:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.545 (7.545) Loss 0.8114 (0.8114) Acc@1 83.862 (83.862) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 04:56:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.038) Loss 1.1199 (0.9451) Acc@1 75.342 (80.631) Acc@5 93.701 (95.466) Mem 16099MB [2025-01-18 04:56:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:148] * Acc@1 80.510 Acc@5 95.489 [2025-01-18 04:56:45 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.5% [2025-01-18 04:56:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:56:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:56:46 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.51% [2025-01-18 04:56:49 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][0/312] eta 0:13:52 lr 0.002041 time 2.6686 (2.6686) model_time 0.4774 (0.4774) loss 3.4881 (3.4881) grad_norm 3.1064 (3.1064/0.0000) mem 16099MB [2025-01-18 04:56:54 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][10/312] eta 0:03:19 lr 0.002040 time 0.4515 (0.6607) model_time 0.4514 (0.4612) loss 2.5862 (3.0838) grad_norm 2.2671 (2.2964/0.7017) mem 16099MB [2025-01-18 04:56:58 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][20/312] eta 0:02:45 lr 0.002039 time 0.4482 (0.5681) model_time 0.4481 (0.4635) loss 2.2193 (3.1106) grad_norm 1.6611 (2.1327/0.6941) mem 16099MB [2025-01-18 04:57:03 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][30/312] eta 0:02:30 lr 0.002039 time 0.4567 (0.5328) model_time 0.4563 (0.4617) loss 3.6845 (3.1535) grad_norm 1.4109 (1.9707/0.6548) mem 16099MB [2025-01-18 04:57:08 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][40/312] eta 0:02:20 lr 0.002038 time 0.4677 (0.5162) model_time 0.4675 (0.4625) loss 3.4962 (3.1427) grad_norm 1.2461 (1.8634/0.6121) mem 16099MB [2025-01-18 04:57:12 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][50/312] eta 0:02:12 lr 0.002037 time 0.4528 (0.5069) model_time 0.4524 (0.4636) loss 3.5666 (3.1487) grad_norm 1.4606 (1.8569/0.6091) mem 16099MB [2025-01-18 04:57:17 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][60/312] eta 0:02:05 lr 0.002037 time 0.4610 (0.4989) model_time 0.4605 (0.4626) loss 3.9272 (3.1802) grad_norm 1.7191 (1.8990/0.6610) mem 16099MB [2025-01-18 04:57:21 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][70/312] eta 0:01:59 lr 0.002036 time 0.5612 (0.4949) model_time 0.5610 (0.4636) loss 2.1354 (3.1452) grad_norm 1.3374 (1.9315/0.7212) mem 16099MB [2025-01-18 04:57:26 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][80/312] eta 0:01:54 lr 0.002035 time 0.4557 (0.4915) model_time 0.4553 (0.4638) loss 2.5512 (3.1728) grad_norm 1.2784 (1.8310/0.7314) mem 16099MB [2025-01-18 04:57:31 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][90/312] eta 0:01:48 lr 0.002035 time 0.4492 (0.4886) model_time 0.4486 (0.4640) loss 3.2727 (3.2023) grad_norm 2.5817 (1.8020/0.7223) mem 16099MB [2025-01-18 04:57:35 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][100/312] eta 0:01:42 lr 0.002034 time 0.4401 (0.4856) model_time 0.4396 (0.4634) loss 3.6425 (3.2059) grad_norm 2.2496 (1.8191/0.7243) mem 16099MB [2025-01-18 04:57:40 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][110/312] eta 0:01:37 lr 0.002033 time 0.4496 (0.4844) model_time 0.4494 (0.4641) loss 2.5195 (3.1998) grad_norm 2.4148 (1.7997/0.7124) mem 16099MB [2025-01-18 04:57:45 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][120/312] eta 0:01:33 lr 0.002033 time 0.4699 (0.4848) model_time 0.4695 (0.4662) loss 3.6422 (3.2153) grad_norm 2.5411 (1.8101/0.7394) mem 16099MB [2025-01-18 04:57:50 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][130/312] eta 0:01:28 lr 0.002032 time 0.4453 (0.4841) model_time 0.4448 (0.4669) loss 2.9062 (3.1963) grad_norm 2.1901 (1.8442/0.7424) mem 16099MB [2025-01-18 04:57:55 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][140/312] eta 0:01:23 lr 0.002031 time 0.4877 (0.4836) model_time 0.4873 (0.4675) loss 2.9587 (3.1917) grad_norm 3.2592 (1.8992/0.8527) mem 16099MB [2025-01-18 04:57:59 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][150/312] eta 0:01:18 lr 0.002031 time 0.4530 (0.4839) model_time 0.4528 (0.4689) loss 3.7502 (3.2169) grad_norm 1.2403 (1.9444/0.8796) mem 16099MB [2025-01-18 04:58:04 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][160/312] eta 0:01:13 lr 0.002030 time 0.4573 (0.4833) model_time 0.4571 (0.4692) loss 3.4683 (3.2228) grad_norm 0.9846 (1.9255/0.8669) mem 16099MB [2025-01-18 04:58:09 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][170/312] eta 0:01:08 lr 0.002029 time 0.4411 (0.4839) model_time 0.4409 (0.4706) loss 1.9828 (3.2101) grad_norm 1.3293 (1.9080/0.8473) mem 16099MB [2025-01-18 04:58:14 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][180/312] eta 0:01:03 lr 0.002029 time 0.4499 (0.4825) model_time 0.4495 (0.4699) loss 3.6456 (3.2143) grad_norm 4.5855 (1.8986/0.8686) mem 16099MB [2025-01-18 04:58:18 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][190/312] eta 0:00:58 lr 0.002028 time 0.4405 (0.4811) model_time 0.4404 (0.4692) loss 3.2796 (3.2154) grad_norm 0.9157 (1.8659/0.8610) mem 16099MB [2025-01-18 04:58:23 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][200/312] eta 0:00:53 lr 0.002027 time 0.4766 (0.4798) model_time 0.4764 (0.4685) loss 3.6438 (3.2034) grad_norm 1.3584 (1.8436/0.8474) mem 16099MB [2025-01-18 04:58:27 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][210/312] eta 0:00:48 lr 0.002027 time 0.4574 (0.4787) model_time 0.4572 (0.4679) loss 2.7059 (3.2016) grad_norm 3.4694 (1.8771/0.8613) mem 16099MB [2025-01-18 04:58:32 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][220/312] eta 0:00:43 lr 0.002026 time 0.4428 (0.4777) model_time 0.4424 (0.4674) loss 2.9107 (3.1873) grad_norm 1.2403 (1.8608/0.8533) mem 16099MB [2025-01-18 04:58:37 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][230/312] eta 0:00:39 lr 0.002025 time 0.4558 (0.4769) model_time 0.4557 (0.4669) loss 4.1158 (3.1976) grad_norm 1.4776 (1.8488/0.8401) mem 16099MB [2025-01-18 04:58:41 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][240/312] eta 0:00:34 lr 0.002025 time 0.4573 (0.4759) model_time 0.4568 (0.4664) loss 3.8888 (3.1974) grad_norm 0.9224 (1.8409/0.8298) mem 16099MB [2025-01-18 04:58:46 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][250/312] eta 0:00:29 lr 0.002024 time 0.4559 (0.4751) model_time 0.4557 (0.4659) loss 3.3225 (3.1910) grad_norm 1.4037 (1.8450/0.8339) mem 16099MB [2025-01-18 04:58:50 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][260/312] eta 0:00:24 lr 0.002023 time 0.4602 (0.4745) model_time 0.4600 (0.4656) loss 3.5546 (3.1798) grad_norm 2.0058 (1.8225/0.8279) mem 16099MB [2025-01-18 04:58:55 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][270/312] eta 0:00:19 lr 0.002023 time 0.4407 (0.4742) model_time 0.4402 (0.4657) loss 3.5969 (3.1789) grad_norm 2.7120 (1.8407/0.8276) mem 16099MB [2025-01-18 04:59:00 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][280/312] eta 0:00:15 lr 0.002022 time 0.5274 (0.4740) model_time 0.5273 (0.4658) loss 2.6165 (3.1897) grad_norm 0.9541 (1.8390/0.8201) mem 16099MB [2025-01-18 04:59:04 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][290/312] eta 0:00:10 lr 0.002021 time 0.4498 (0.4740) model_time 0.4496 (0.4660) loss 3.6600 (3.2022) grad_norm 1.3313 (1.8330/0.8098) mem 16099MB [2025-01-18 04:59:09 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][300/312] eta 0:00:05 lr 0.002021 time 0.4419 (0.4735) model_time 0.4418 (0.4658) loss 3.8265 (3.2128) grad_norm 2.6771 (1.8426/0.8083) mem 16099MB [2025-01-18 04:59:14 internimage_t_1k_224] (main.py 510): INFO Train: [149/300][310/312] eta 0:00:00 lr 0.002020 time 0.4403 (0.4733) model_time 0.4402 (0.4658) loss 3.5173 (3.2238) grad_norm 1.3061 (1.8341/0.8091) mem 16099MB [2025-01-18 04:59:14 internimage_t_1k_224] (main.py 519): INFO EPOCH 149 training takes 0:02:27 [2025-01-18 04:59:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_149.pth saving...... [2025-01-18 04:59:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_149.pth saved !!! [2025-01-18 04:59:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.488 (7.488) Loss 0.8232 (0.8232) Acc@1 82.300 (82.300) Acc@5 96.802 (96.802) Mem 16099MB [2025-01-18 04:59:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.015) Loss 1.1077 (0.9718) Acc@1 75.562 (79.268) Acc@5 93.701 (94.993) Mem 16099MB [2025-01-18 04:59:27 internimage_t_1k_224] (main.py 575): INFO [Epoch:149] * Acc@1 79.217 Acc@5 95.010 [2025-01-18 04:59:27 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.2% [2025-01-18 04:59:27 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 04:59:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 04:59:28 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.22% [2025-01-18 04:59:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.433 (7.433) Loss 0.8113 (0.8113) Acc@1 83.887 (83.887) Acc@5 97.095 (97.095) Mem 16099MB [2025-01-18 04:59:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.008) Loss 1.1187 (0.9447) Acc@1 75.220 (80.629) Acc@5 93.701 (95.499) Mem 16099MB [2025-01-18 04:59:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:149] * Acc@1 80.512 Acc@5 95.521 [2025-01-18 04:59:39 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.5% [2025-01-18 04:59:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 04:59:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 04:59:40 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.51% [2025-01-18 04:59:43 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][0/312] eta 0:14:19 lr 0.002020 time 2.7552 (2.7552) model_time 0.4787 (0.4787) loss 2.5013 (2.5013) grad_norm 2.2798 (2.2798/0.0000) mem 16099MB [2025-01-18 04:59:48 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][10/312] eta 0:03:25 lr 0.002019 time 0.4476 (0.6817) model_time 0.4475 (0.4743) loss 3.8514 (3.1399) grad_norm 1.5789 (1.6543/0.5422) mem 16099MB [2025-01-18 04:59:53 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][20/312] eta 0:02:52 lr 0.002019 time 0.5914 (0.5893) model_time 0.5913 (0.4797) loss 3.4190 (3.2402) grad_norm 0.8997 (1.5672/0.5090) mem 16099MB [2025-01-18 04:59:57 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][30/312] eta 0:02:33 lr 0.002018 time 0.4522 (0.5460) model_time 0.4520 (0.4716) loss 3.3877 (3.3265) grad_norm 1.5493 (1.5150/0.4706) mem 16099MB [2025-01-18 05:00:02 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][40/312] eta 0:02:23 lr 0.002017 time 0.4532 (0.5267) model_time 0.4530 (0.4704) loss 4.2173 (3.3133) grad_norm 2.4138 (1.5141/0.4726) mem 16099MB [2025-01-18 05:00:06 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][50/312] eta 0:02:14 lr 0.002017 time 0.4480 (0.5144) model_time 0.4476 (0.4691) loss 2.5451 (3.2751) grad_norm 1.7777 (1.5414/0.4694) mem 16099MB [2025-01-18 05:00:11 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][60/312] eta 0:02:07 lr 0.002016 time 0.4401 (0.5067) model_time 0.4399 (0.4687) loss 3.2880 (3.2901) grad_norm 3.9944 (1.6264/0.6015) mem 16099MB [2025-01-18 05:00:16 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][70/312] eta 0:02:00 lr 0.002015 time 0.4444 (0.4992) model_time 0.4442 (0.4665) loss 3.2356 (3.2625) grad_norm 1.0392 (1.6030/0.5754) mem 16099MB [2025-01-18 05:00:20 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][80/312] eta 0:01:55 lr 0.002015 time 0.4592 (0.4959) model_time 0.4587 (0.4672) loss 3.4105 (3.2404) grad_norm 1.3391 (1.6302/0.5656) mem 16099MB [2025-01-18 05:00:25 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][90/312] eta 0:01:49 lr 0.002014 time 0.4527 (0.4916) model_time 0.4525 (0.4660) loss 3.3905 (3.2698) grad_norm 1.7527 (1.6201/0.5598) mem 16099MB [2025-01-18 05:00:30 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][100/312] eta 0:01:43 lr 0.002013 time 0.4781 (0.4899) model_time 0.4776 (0.4668) loss 3.9553 (3.2515) grad_norm 1.3263 (1.6112/0.5410) mem 16099MB [2025-01-18 05:00:34 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][110/312] eta 0:01:38 lr 0.002013 time 0.4707 (0.4869) model_time 0.4706 (0.4659) loss 2.3277 (3.2424) grad_norm 0.9242 (1.6180/0.5677) mem 16099MB [2025-01-18 05:00:39 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][120/312] eta 0:01:33 lr 0.002012 time 0.5423 (0.4859) model_time 0.5418 (0.4666) loss 3.8486 (3.2233) grad_norm 3.6655 (1.6517/0.6091) mem 16099MB [2025-01-18 05:00:44 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][130/312] eta 0:01:28 lr 0.002011 time 0.4693 (0.4851) model_time 0.4691 (0.4672) loss 2.7898 (3.2322) grad_norm 1.9855 (1.7052/0.6631) mem 16099MB [2025-01-18 05:00:49 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][140/312] eta 0:01:23 lr 0.002011 time 0.4514 (0.4846) model_time 0.4512 (0.4679) loss 3.6978 (3.2595) grad_norm 3.5144 (1.7253/0.6744) mem 16099MB [2025-01-18 05:00:53 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][150/312] eta 0:01:18 lr 0.002010 time 0.4496 (0.4827) model_time 0.4491 (0.4671) loss 2.3432 (3.2707) grad_norm 3.3484 (1.7060/0.6833) mem 16099MB [2025-01-18 05:00:58 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][160/312] eta 0:01:13 lr 0.002009 time 0.4480 (0.4828) model_time 0.4478 (0.4681) loss 4.0179 (3.2792) grad_norm 0.9221 (1.7142/0.7030) mem 16099MB [2025-01-18 05:01:03 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][170/312] eta 0:01:08 lr 0.002009 time 0.4617 (0.4822) model_time 0.4615 (0.4684) loss 2.8139 (3.2798) grad_norm 1.7381 (1.7331/0.7027) mem 16099MB [2025-01-18 05:01:07 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][180/312] eta 0:01:03 lr 0.002008 time 0.4521 (0.4818) model_time 0.4517 (0.4687) loss 2.6104 (3.2646) grad_norm 1.7835 (1.7612/0.7183) mem 16099MB [2025-01-18 05:01:12 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][190/312] eta 0:00:58 lr 0.002007 time 0.4607 (0.4811) model_time 0.4606 (0.4687) loss 3.7670 (3.2549) grad_norm 2.2188 (1.7784/0.7275) mem 16099MB [2025-01-18 05:01:17 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][200/312] eta 0:00:53 lr 0.002007 time 0.4799 (0.4798) model_time 0.4795 (0.4681) loss 3.4421 (3.2557) grad_norm 1.3362 (1.7604/0.7157) mem 16099MB [2025-01-18 05:01:21 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][210/312] eta 0:00:48 lr 0.002006 time 0.4560 (0.4788) model_time 0.4558 (0.4675) loss 3.6936 (3.2690) grad_norm 1.1278 (1.7482/0.7086) mem 16099MB [2025-01-18 05:01:26 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][220/312] eta 0:00:43 lr 0.002005 time 0.4492 (0.4777) model_time 0.4490 (0.4669) loss 3.4665 (3.2714) grad_norm 1.6834 (1.7454/0.7052) mem 16099MB [2025-01-18 05:01:30 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][230/312] eta 0:00:39 lr 0.002005 time 0.4608 (0.4772) model_time 0.4606 (0.4669) loss 2.2331 (3.2705) grad_norm 1.1416 (1.7323/0.7000) mem 16099MB [2025-01-18 05:01:35 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][240/312] eta 0:00:34 lr 0.002004 time 0.4573 (0.4767) model_time 0.4569 (0.4668) loss 4.1841 (3.2793) grad_norm 1.1524 (1.7334/0.7007) mem 16099MB [2025-01-18 05:01:40 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][250/312] eta 0:00:29 lr 0.002003 time 0.4393 (0.4766) model_time 0.4390 (0.4671) loss 3.2217 (3.2807) grad_norm 1.9247 (1.7542/0.7034) mem 16099MB [2025-01-18 05:01:44 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][260/312] eta 0:00:24 lr 0.002003 time 0.4527 (0.4758) model_time 0.4525 (0.4666) loss 3.1619 (3.2658) grad_norm 1.2122 (1.7621/0.7041) mem 16099MB [2025-01-18 05:01:49 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][270/312] eta 0:00:19 lr 0.002002 time 0.4570 (0.4753) model_time 0.4568 (0.4665) loss 3.1559 (3.2568) grad_norm 1.8152 (1.7710/0.7091) mem 16099MB [2025-01-18 05:01:54 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][280/312] eta 0:00:15 lr 0.002001 time 0.4833 (0.4748) model_time 0.4831 (0.4663) loss 3.3814 (3.2591) grad_norm 0.9965 (1.7662/0.7093) mem 16099MB [2025-01-18 05:01:59 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][290/312] eta 0:00:10 lr 0.002001 time 0.4466 (0.4753) model_time 0.4462 (0.4670) loss 3.0466 (3.2571) grad_norm 1.8487 (1.7467/0.7063) mem 16099MB [2025-01-18 05:02:03 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][300/312] eta 0:00:05 lr 0.002000 time 0.4396 (0.4748) model_time 0.4395 (0.4668) loss 3.4064 (3.2580) grad_norm 1.6484 (1.7301/0.7045) mem 16099MB [2025-01-18 05:02:08 internimage_t_1k_224] (main.py 510): INFO Train: [150/300][310/312] eta 0:00:00 lr 0.001999 time 0.4375 (0.4742) model_time 0.4374 (0.4664) loss 3.7947 (3.2594) grad_norm 1.1027 (1.7488/0.7166) mem 16099MB [2025-01-18 05:02:08 internimage_t_1k_224] (main.py 519): INFO EPOCH 150 training takes 0:02:27 [2025-01-18 05:02:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_150.pth saving...... [2025-01-18 05:02:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_150.pth saved !!! [2025-01-18 05:02:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.591 (7.591) Loss 0.8207 (0.8207) Acc@1 82.544 (82.544) Acc@5 96.606 (96.606) Mem 16099MB [2025-01-18 05:02:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.027) Loss 1.1498 (0.9643) Acc@1 74.634 (79.368) Acc@5 93.481 (95.002) Mem 16099MB [2025-01-18 05:02:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:150] * Acc@1 79.249 Acc@5 95.012 [2025-01-18 05:02:21 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.2% [2025-01-18 05:02:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:02:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:02:22 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.25% [2025-01-18 05:02:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.347 (7.347) Loss 0.8114 (0.8114) Acc@1 83.911 (83.911) Acc@5 97.095 (97.095) Mem 16099MB [2025-01-18 05:02:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.001) Loss 1.1180 (0.9445) Acc@1 75.391 (80.680) Acc@5 93.726 (95.519) Mem 16099MB [2025-01-18 05:02:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:150] * Acc@1 80.556 Acc@5 95.545 [2025-01-18 05:02:33 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.6% [2025-01-18 05:02:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:02:35 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:02:35 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.56% [2025-01-18 05:02:37 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][0/312] eta 0:14:11 lr 0.001999 time 2.7280 (2.7280) model_time 0.4840 (0.4840) loss 2.9298 (2.9298) grad_norm 1.1887 (1.1887/0.0000) mem 16099MB [2025-01-18 05:02:42 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][10/312] eta 0:03:20 lr 0.001999 time 0.4425 (0.6652) model_time 0.4419 (0.4608) loss 3.6990 (3.0714) grad_norm 0.9449 (1.8677/1.1860) mem 16099MB [2025-01-18 05:02:47 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][20/312] eta 0:02:50 lr 0.001998 time 0.4534 (0.5836) model_time 0.4530 (0.4764) loss 2.4352 (3.0430) grad_norm 5.6550 (2.0844/1.3561) mem 16099MB [2025-01-18 05:02:52 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][30/312] eta 0:02:34 lr 0.001997 time 0.4602 (0.5493) model_time 0.4597 (0.4766) loss 2.9833 (3.1497) grad_norm 1.4723 (1.9977/1.1996) mem 16099MB [2025-01-18 05:02:56 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][40/312] eta 0:02:24 lr 0.001997 time 0.4399 (0.5294) model_time 0.4394 (0.4743) loss 3.8138 (3.1386) grad_norm 1.7069 (1.8373/1.0926) mem 16099MB [2025-01-18 05:03:01 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][50/312] eta 0:02:15 lr 0.001996 time 0.4876 (0.5156) model_time 0.4871 (0.4712) loss 3.8316 (3.2033) grad_norm 3.1632 (1.8968/1.0524) mem 16099MB [2025-01-18 05:03:06 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][60/312] eta 0:02:08 lr 0.001995 time 0.4404 (0.5080) model_time 0.4402 (0.4708) loss 3.1490 (3.1737) grad_norm 1.9621 (1.9700/1.1097) mem 16099MB [2025-01-18 05:03:10 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][70/312] eta 0:02:01 lr 0.001995 time 0.4539 (0.5013) model_time 0.4534 (0.4694) loss 3.5259 (3.2045) grad_norm 3.2030 (1.9962/1.1066) mem 16099MB [2025-01-18 05:03:15 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][80/312] eta 0:01:55 lr 0.001994 time 0.4525 (0.4981) model_time 0.4521 (0.4700) loss 3.2680 (3.1676) grad_norm 2.3147 (2.0084/1.0867) mem 16099MB [2025-01-18 05:03:19 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][90/312] eta 0:01:49 lr 0.001993 time 0.4572 (0.4935) model_time 0.4568 (0.4684) loss 3.6563 (3.1620) grad_norm 1.1466 (1.9436/1.0505) mem 16099MB [2025-01-18 05:03:24 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][100/312] eta 0:01:43 lr 0.001993 time 0.4602 (0.4894) model_time 0.4600 (0.4668) loss 2.7261 (3.1606) grad_norm 1.5052 (1.9654/1.1203) mem 16099MB [2025-01-18 05:03:29 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][110/312] eta 0:01:38 lr 0.001992 time 0.4437 (0.4871) model_time 0.4436 (0.4665) loss 3.0757 (3.1843) grad_norm 1.6477 (2.0384/1.1335) mem 16099MB [2025-01-18 05:03:33 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][120/312] eta 0:01:33 lr 0.001991 time 0.4483 (0.4856) model_time 0.4481 (0.4667) loss 2.4798 (3.1847) grad_norm 1.5969 (2.0477/1.1087) mem 16099MB [2025-01-18 05:03:38 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][130/312] eta 0:01:28 lr 0.001991 time 0.4510 (0.4838) model_time 0.4506 (0.4663) loss 2.1735 (3.2014) grad_norm 1.4177 (2.0174/1.0741) mem 16099MB [2025-01-18 05:03:43 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][140/312] eta 0:01:23 lr 0.001990 time 0.5238 (0.4833) model_time 0.5233 (0.4670) loss 4.3173 (3.2019) grad_norm 1.4746 (2.0020/1.0584) mem 16099MB [2025-01-18 05:03:47 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][150/312] eta 0:01:17 lr 0.001989 time 0.4495 (0.4813) model_time 0.4490 (0.4661) loss 4.0008 (3.2101) grad_norm 0.8507 (1.9883/1.0498) mem 16099MB [2025-01-18 05:03:52 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][160/312] eta 0:01:13 lr 0.001989 time 0.5333 (0.4812) model_time 0.5328 (0.4669) loss 3.5114 (3.2212) grad_norm 1.2454 (1.9585/1.0337) mem 16099MB [2025-01-18 05:03:57 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][170/312] eta 0:01:08 lr 0.001988 time 0.4440 (0.4801) model_time 0.4435 (0.4666) loss 3.1664 (3.2199) grad_norm 2.3715 (1.9412/1.0158) mem 16099MB [2025-01-18 05:04:01 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][180/312] eta 0:01:03 lr 0.001987 time 0.5319 (0.4798) model_time 0.5315 (0.4670) loss 3.2468 (3.2363) grad_norm 2.0536 (1.9166/0.9972) mem 16099MB [2025-01-18 05:04:06 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][190/312] eta 0:00:58 lr 0.001987 time 0.4651 (0.4790) model_time 0.4650 (0.4669) loss 3.5056 (3.2225) grad_norm 1.6376 (1.9175/0.9873) mem 16099MB [2025-01-18 05:04:11 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][200/312] eta 0:00:53 lr 0.001986 time 0.4438 (0.4789) model_time 0.4437 (0.4673) loss 2.2752 (3.2268) grad_norm 2.2956 (1.8991/0.9692) mem 16099MB [2025-01-18 05:04:15 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][210/312] eta 0:00:48 lr 0.001985 time 0.4479 (0.4779) model_time 0.4474 (0.4669) loss 3.0381 (3.2199) grad_norm 1.6744 (1.9326/1.0032) mem 16099MB [2025-01-18 05:04:20 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][220/312] eta 0:00:43 lr 0.001985 time 0.4537 (0.4769) model_time 0.4535 (0.4663) loss 2.9046 (3.2285) grad_norm 1.3913 (1.9367/0.9938) mem 16099MB [2025-01-18 05:04:25 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][230/312] eta 0:00:39 lr 0.001984 time 0.4523 (0.4764) model_time 0.4522 (0.4663) loss 3.8339 (3.2321) grad_norm 1.3657 (1.9315/0.9808) mem 16099MB [2025-01-18 05:04:29 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][240/312] eta 0:00:34 lr 0.001983 time 0.4662 (0.4757) model_time 0.4661 (0.4660) loss 3.8075 (3.2337) grad_norm 1.7005 (1.9193/0.9693) mem 16099MB [2025-01-18 05:04:34 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][250/312] eta 0:00:29 lr 0.001983 time 0.4509 (0.4749) model_time 0.4505 (0.4656) loss 3.5533 (3.2406) grad_norm 1.2839 (1.9151/0.9601) mem 16099MB [2025-01-18 05:04:38 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][260/312] eta 0:00:24 lr 0.001982 time 0.4585 (0.4746) model_time 0.4580 (0.4657) loss 3.6910 (3.2364) grad_norm 1.8169 (1.9085/0.9496) mem 16099MB [2025-01-18 05:04:43 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][270/312] eta 0:00:19 lr 0.001981 time 0.4596 (0.4741) model_time 0.4594 (0.4655) loss 3.3875 (3.2360) grad_norm 1.4574 (1.9084/0.9386) mem 16099MB [2025-01-18 05:04:48 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][280/312] eta 0:00:15 lr 0.001981 time 0.4519 (0.4737) model_time 0.4517 (0.4654) loss 4.2254 (3.2344) grad_norm 1.4412 (1.9068/0.9306) mem 16099MB [2025-01-18 05:04:52 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][290/312] eta 0:00:10 lr 0.001980 time 0.5196 (0.4736) model_time 0.5194 (0.4655) loss 3.3661 (3.2365) grad_norm 1.8904 (1.8928/0.9205) mem 16099MB [2025-01-18 05:04:57 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][300/312] eta 0:00:05 lr 0.001979 time 0.7161 (0.4741) model_time 0.7160 (0.4663) loss 3.9495 (3.2415) grad_norm 1.9743 (1.8977/0.9086) mem 16099MB [2025-01-18 05:05:02 internimage_t_1k_224] (main.py 510): INFO Train: [151/300][310/312] eta 0:00:00 lr 0.001979 time 0.4376 (0.4736) model_time 0.4375 (0.4660) loss 2.9150 (3.2435) grad_norm 1.0769 (1.8825/0.8872) mem 16099MB [2025-01-18 05:05:02 internimage_t_1k_224] (main.py 519): INFO EPOCH 151 training takes 0:02:27 [2025-01-18 05:05:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_151.pth saving...... [2025-01-18 05:05:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_151.pth saved !!! [2025-01-18 05:05:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.408 (7.408) Loss 0.8379 (0.8379) Acc@1 82.788 (82.788) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 05:05:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.005) Loss 1.1623 (0.9847) Acc@1 74.561 (79.301) Acc@5 93.213 (94.833) Mem 16099MB [2025-01-18 05:05:15 internimage_t_1k_224] (main.py 575): INFO [Epoch:151] * Acc@1 79.103 Acc@5 94.846 [2025-01-18 05:05:15 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.1% [2025-01-18 05:05:15 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.25% [2025-01-18 05:05:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.368 (8.368) Loss 0.8109 (0.8109) Acc@1 83.984 (83.984) Acc@5 97.119 (97.119) Mem 16099MB [2025-01-18 05:05:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.126) Loss 1.1169 (0.9441) Acc@1 75.342 (80.708) Acc@5 93.823 (95.581) Mem 16099MB [2025-01-18 05:05:27 internimage_t_1k_224] (main.py 575): INFO [Epoch:151] * Acc@1 80.588 Acc@5 95.603 [2025-01-18 05:05:27 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.6% [2025-01-18 05:05:27 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:05:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:05:29 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.59% [2025-01-18 05:05:31 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][0/312] eta 0:12:01 lr 0.001979 time 2.3120 (2.3120) model_time 0.4991 (0.4991) loss 3.5408 (3.5408) grad_norm 0.9296 (0.9296/0.0000) mem 16099MB [2025-01-18 05:05:36 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][10/312] eta 0:03:19 lr 0.001978 time 0.5475 (0.6599) model_time 0.5474 (0.4948) loss 3.5189 (3.3577) grad_norm 0.9437 (1.9551/0.9408) mem 16099MB [2025-01-18 05:05:41 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][20/312] eta 0:02:45 lr 0.001977 time 0.4477 (0.5656) model_time 0.4474 (0.4789) loss 3.7409 (3.3042) grad_norm 1.5735 (1.9967/0.7968) mem 16099MB [2025-01-18 05:05:45 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][30/312] eta 0:02:31 lr 0.001977 time 0.4544 (0.5365) model_time 0.4542 (0.4776) loss 2.8409 (3.2341) grad_norm 2.3971 (1.9789/0.7729) mem 16099MB [2025-01-18 05:05:50 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][40/312] eta 0:02:20 lr 0.001976 time 0.4472 (0.5168) model_time 0.4470 (0.4722) loss 3.4093 (3.2145) grad_norm 2.3917 (1.9514/0.7361) mem 16099MB [2025-01-18 05:05:55 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][50/312] eta 0:02:12 lr 0.001975 time 0.4512 (0.5049) model_time 0.4511 (0.4690) loss 3.6048 (3.2763) grad_norm 1.0584 (1.8653/0.7342) mem 16099MB [2025-01-18 05:05:59 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][60/312] eta 0:02:06 lr 0.001975 time 0.5471 (0.5015) model_time 0.5466 (0.4714) loss 3.2094 (3.2795) grad_norm 2.8963 (1.9726/0.8357) mem 16099MB [2025-01-18 05:06:04 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][70/312] eta 0:01:59 lr 0.001974 time 0.4504 (0.4949) model_time 0.4503 (0.4690) loss 3.8768 (3.2894) grad_norm 2.3280 (1.9740/0.8470) mem 16099MB [2025-01-18 05:06:09 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][80/312] eta 0:01:53 lr 0.001973 time 0.4525 (0.4909) model_time 0.4521 (0.4681) loss 2.8470 (3.2708) grad_norm 1.1789 (1.8719/0.8430) mem 16099MB [2025-01-18 05:06:13 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][90/312] eta 0:01:47 lr 0.001973 time 0.4457 (0.4865) model_time 0.4452 (0.4662) loss 2.4413 (3.2391) grad_norm 1.2914 (1.8192/0.8240) mem 16099MB [2025-01-18 05:06:18 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][100/312] eta 0:01:42 lr 0.001972 time 0.4479 (0.4841) model_time 0.4477 (0.4658) loss 2.3411 (3.2490) grad_norm 1.0488 (1.7790/0.7952) mem 16099MB [2025-01-18 05:06:22 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][110/312] eta 0:01:37 lr 0.001971 time 0.4708 (0.4835) model_time 0.4707 (0.4668) loss 3.1594 (3.2566) grad_norm 2.5088 (1.7725/0.7814) mem 16099MB [2025-01-18 05:06:27 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][120/312] eta 0:01:32 lr 0.001971 time 0.4441 (0.4828) model_time 0.4440 (0.4674) loss 3.4360 (3.2637) grad_norm 2.3947 (1.8091/0.7893) mem 16099MB [2025-01-18 05:06:32 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][130/312] eta 0:01:27 lr 0.001970 time 0.5452 (0.4821) model_time 0.5447 (0.4679) loss 3.7459 (3.2568) grad_norm 2.4428 (1.7923/0.7706) mem 16099MB [2025-01-18 05:06:37 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][140/312] eta 0:01:22 lr 0.001969 time 0.4683 (0.4801) model_time 0.4681 (0.4669) loss 3.1585 (3.2462) grad_norm 2.0250 (1.8295/0.7923) mem 16099MB [2025-01-18 05:06:41 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][150/312] eta 0:01:17 lr 0.001969 time 0.4497 (0.4796) model_time 0.4493 (0.4672) loss 3.2713 (3.2299) grad_norm 1.4305 (1.8588/0.8054) mem 16099MB [2025-01-18 05:06:46 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][160/312] eta 0:01:12 lr 0.001968 time 0.5536 (0.4794) model_time 0.5534 (0.4678) loss 3.4800 (3.2311) grad_norm 1.1725 (1.8516/0.8002) mem 16099MB [2025-01-18 05:06:51 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][170/312] eta 0:01:07 lr 0.001967 time 0.4906 (0.4786) model_time 0.4904 (0.4677) loss 3.7398 (3.2357) grad_norm 1.0566 (1.8276/0.7899) mem 16099MB [2025-01-18 05:06:55 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][180/312] eta 0:01:03 lr 0.001967 time 0.4463 (0.4788) model_time 0.4458 (0.4684) loss 3.3357 (3.2379) grad_norm 1.9369 (1.8067/0.7778) mem 16099MB [2025-01-18 05:07:00 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][190/312] eta 0:00:58 lr 0.001966 time 0.4606 (0.4786) model_time 0.4601 (0.4687) loss 3.2752 (3.2372) grad_norm 1.1518 (1.7994/0.7712) mem 16099MB [2025-01-18 05:07:05 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][200/312] eta 0:00:53 lr 0.001965 time 0.4574 (0.4776) model_time 0.4569 (0.4682) loss 3.7787 (3.2393) grad_norm 1.7321 (1.8105/0.7700) mem 16099MB [2025-01-18 05:07:09 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][210/312] eta 0:00:48 lr 0.001965 time 0.4506 (0.4766) model_time 0.4502 (0.4677) loss 3.6417 (3.2351) grad_norm 1.0745 (1.7904/0.7621) mem 16099MB [2025-01-18 05:07:14 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][220/312] eta 0:00:43 lr 0.001964 time 0.4640 (0.4757) model_time 0.4636 (0.4671) loss 2.6830 (3.2399) grad_norm 3.2517 (1.8532/0.8442) mem 16099MB [2025-01-18 05:07:19 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][230/312] eta 0:00:39 lr 0.001963 time 0.5434 (0.4759) model_time 0.5429 (0.4676) loss 2.6526 (3.2333) grad_norm 0.7236 (1.8548/0.8500) mem 16099MB [2025-01-18 05:07:23 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][240/312] eta 0:00:34 lr 0.001963 time 0.4883 (0.4753) model_time 0.4878 (0.4674) loss 3.3668 (3.2392) grad_norm 1.2595 (1.8373/0.8417) mem 16099MB [2025-01-18 05:07:28 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][250/312] eta 0:00:29 lr 0.001962 time 0.4632 (0.4746) model_time 0.4627 (0.4670) loss 2.9298 (3.2442) grad_norm 1.8891 (1.8187/0.8336) mem 16099MB [2025-01-18 05:07:33 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][260/312] eta 0:00:24 lr 0.001961 time 0.4426 (0.4748) model_time 0.4421 (0.4675) loss 3.6021 (3.2362) grad_norm 2.5842 (1.8376/0.8310) mem 16099MB [2025-01-18 05:07:37 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][270/312] eta 0:00:19 lr 0.001961 time 0.4791 (0.4742) model_time 0.4789 (0.4671) loss 3.4035 (3.2400) grad_norm 1.5892 (1.8593/0.8606) mem 16099MB [2025-01-18 05:07:42 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][280/312] eta 0:00:15 lr 0.001960 time 0.4414 (0.4733) model_time 0.4412 (0.4665) loss 2.7261 (3.2417) grad_norm 2.9993 (1.8528/0.8541) mem 16099MB [2025-01-18 05:07:47 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][290/312] eta 0:00:10 lr 0.001959 time 0.4603 (0.4736) model_time 0.4599 (0.4670) loss 3.3948 (3.2462) grad_norm 1.2111 (1.8475/0.8467) mem 16099MB [2025-01-18 05:07:51 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][300/312] eta 0:00:05 lr 0.001959 time 0.4380 (0.4732) model_time 0.4379 (0.4668) loss 2.6560 (3.2477) grad_norm 1.6111 (1.8315/0.8404) mem 16099MB [2025-01-18 05:07:56 internimage_t_1k_224] (main.py 510): INFO Train: [152/300][310/312] eta 0:00:00 lr 0.001958 time 0.4382 (0.4726) model_time 0.4381 (0.4664) loss 2.6218 (3.2399) grad_norm 0.8901 (1.8046/0.8319) mem 16099MB [2025-01-18 05:07:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 152 training takes 0:02:27 [2025-01-18 05:07:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_152.pth saving...... [2025-01-18 05:07:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_152.pth saved !!! [2025-01-18 05:08:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.446 (7.446) Loss 0.8721 (0.8721) Acc@1 83.252 (83.252) Acc@5 96.558 (96.558) Mem 16099MB [2025-01-18 05:08:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.992) Loss 1.2032 (1.0054) Acc@1 73.779 (79.375) Acc@5 93.408 (95.077) Mem 16099MB [2025-01-18 05:08:09 internimage_t_1k_224] (main.py 575): INFO [Epoch:152] * Acc@1 79.305 Acc@5 95.076 [2025-01-18 05:08:09 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.3% [2025-01-18 05:08:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:08:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:08:10 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.30% [2025-01-18 05:08:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.404 (7.404) Loss 0.8109 (0.8109) Acc@1 84.131 (84.131) Acc@5 97.095 (97.095) Mem 16099MB [2025-01-18 05:08:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.002) Loss 1.1159 (0.9438) Acc@1 75.439 (80.757) Acc@5 93.774 (95.574) Mem 16099MB [2025-01-18 05:08:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:152] * Acc@1 80.636 Acc@5 95.601 [2025-01-18 05:08:21 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.6% [2025-01-18 05:08:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:08:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:08:22 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.64% [2025-01-18 05:08:26 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][0/312] eta 0:17:39 lr 0.001958 time 3.3962 (3.3962) model_time 0.4576 (0.4576) loss 2.9537 (2.9537) grad_norm 1.4731 (1.4731/0.0000) mem 16099MB [2025-01-18 05:08:30 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][10/312] eta 0:03:39 lr 0.001957 time 0.4658 (0.7279) model_time 0.4651 (0.4604) loss 3.0294 (3.3019) grad_norm 1.8974 (2.1394/0.8711) mem 16099MB [2025-01-18 05:08:35 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][20/312] eta 0:02:57 lr 0.001956 time 0.4531 (0.6070) model_time 0.4529 (0.4667) loss 2.8151 (3.3983) grad_norm 1.0330 (1.9487/0.9750) mem 16099MB [2025-01-18 05:08:40 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][30/312] eta 0:02:38 lr 0.001956 time 0.5042 (0.5605) model_time 0.5040 (0.4654) loss 2.2374 (3.3503) grad_norm 1.6956 (1.8659/0.8707) mem 16099MB [2025-01-18 05:08:44 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][40/312] eta 0:02:26 lr 0.001955 time 0.4604 (0.5388) model_time 0.4600 (0.4667) loss 3.0465 (3.3532) grad_norm 2.9891 (1.8774/0.8112) mem 16099MB [2025-01-18 05:08:49 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][50/312] eta 0:02:18 lr 0.001954 time 0.4521 (0.5278) model_time 0.4520 (0.4698) loss 2.8478 (3.3414) grad_norm 1.1001 (1.8952/0.8016) mem 16099MB [2025-01-18 05:08:54 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][60/312] eta 0:02:10 lr 0.001954 time 0.4508 (0.5189) model_time 0.4507 (0.4703) loss 3.6687 (3.3820) grad_norm 1.1618 (1.8563/0.7973) mem 16099MB [2025-01-18 05:08:59 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][70/312] eta 0:02:04 lr 0.001953 time 0.4500 (0.5144) model_time 0.4496 (0.4726) loss 3.7324 (3.3395) grad_norm 1.4564 (1.9198/0.8133) mem 16099MB [2025-01-18 05:09:03 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][80/312] eta 0:01:57 lr 0.001952 time 0.4541 (0.5077) model_time 0.4539 (0.4710) loss 2.4190 (3.3139) grad_norm 0.8881 (1.9160/0.8020) mem 16099MB [2025-01-18 05:09:08 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][90/312] eta 0:01:51 lr 0.001952 time 0.4482 (0.5034) model_time 0.4480 (0.4707) loss 3.8638 (3.3128) grad_norm 1.6137 (1.9036/0.8276) mem 16099MB [2025-01-18 05:09:13 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][100/312] eta 0:01:45 lr 0.001951 time 0.4483 (0.4998) model_time 0.4481 (0.4703) loss 2.6817 (3.2922) grad_norm 1.3601 (1.9025/0.8238) mem 16099MB [2025-01-18 05:09:17 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][110/312] eta 0:01:40 lr 0.001951 time 0.4461 (0.4967) model_time 0.4457 (0.4698) loss 3.3761 (3.2838) grad_norm 1.3857 (1.9247/0.8170) mem 16099MB [2025-01-18 05:09:22 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][120/312] eta 0:01:34 lr 0.001950 time 0.4444 (0.4946) model_time 0.4440 (0.4699) loss 3.0996 (3.2898) grad_norm 1.1694 (1.9034/0.8045) mem 16099MB [2025-01-18 05:09:27 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][130/312] eta 0:01:29 lr 0.001949 time 0.4608 (0.4930) model_time 0.4604 (0.4701) loss 3.7321 (3.2933) grad_norm 1.3327 (1.8652/0.7900) mem 16099MB [2025-01-18 05:09:32 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][140/312] eta 0:01:24 lr 0.001949 time 0.4532 (0.4926) model_time 0.4528 (0.4713) loss 3.4043 (3.3040) grad_norm 1.2677 (1.8289/0.7748) mem 16099MB [2025-01-18 05:09:36 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][150/312] eta 0:01:19 lr 0.001948 time 0.4466 (0.4915) model_time 0.4464 (0.4716) loss 3.9874 (3.2969) grad_norm 0.8935 (1.8456/0.7870) mem 16099MB [2025-01-18 05:09:41 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][160/312] eta 0:01:14 lr 0.001947 time 0.4442 (0.4901) model_time 0.4438 (0.4714) loss 3.8276 (3.2909) grad_norm 1.3856 (1.8225/0.7757) mem 16099MB [2025-01-18 05:09:46 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][170/312] eta 0:01:09 lr 0.001947 time 0.4530 (0.4884) model_time 0.4525 (0.4708) loss 3.3811 (3.2981) grad_norm 1.8396 (1.8169/0.7614) mem 16099MB [2025-01-18 05:09:50 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][180/312] eta 0:01:04 lr 0.001946 time 0.4764 (0.4874) model_time 0.4758 (0.4708) loss 3.0653 (3.2973) grad_norm 0.9009 (1.8047/0.7530) mem 16099MB [2025-01-18 05:09:55 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][190/312] eta 0:00:59 lr 0.001945 time 0.4800 (0.4876) model_time 0.4795 (0.4718) loss 3.8068 (3.2813) grad_norm 1.3034 (1.7898/0.7425) mem 16099MB [2025-01-18 05:10:00 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][200/312] eta 0:00:54 lr 0.001945 time 0.4499 (0.4865) model_time 0.4495 (0.4715) loss 3.8658 (3.2866) grad_norm 1.2311 (1.7920/0.7379) mem 16099MB [2025-01-18 05:10:05 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][210/312] eta 0:00:49 lr 0.001944 time 0.4478 (0.4855) model_time 0.4474 (0.4712) loss 3.2483 (3.2835) grad_norm 2.4867 (1.7875/0.7332) mem 16099MB [2025-01-18 05:10:09 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][220/312] eta 0:00:44 lr 0.001943 time 0.4520 (0.4843) model_time 0.4519 (0.4706) loss 2.7768 (3.2735) grad_norm 1.4337 (1.8042/0.7430) mem 16099MB [2025-01-18 05:10:14 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][230/312] eta 0:00:39 lr 0.001943 time 0.4608 (0.4834) model_time 0.4604 (0.4703) loss 3.2510 (3.2694) grad_norm 1.4277 (1.8040/0.7306) mem 16099MB [2025-01-18 05:10:19 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][240/312] eta 0:00:34 lr 0.001942 time 0.4440 (0.4825) model_time 0.4439 (0.4699) loss 2.6154 (3.2583) grad_norm 2.2104 (1.8015/0.7265) mem 16099MB [2025-01-18 05:10:23 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][250/312] eta 0:00:29 lr 0.001941 time 0.4439 (0.4816) model_time 0.4435 (0.4695) loss 3.2956 (3.2575) grad_norm 2.6649 (1.8079/0.7220) mem 16099MB [2025-01-18 05:10:28 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][260/312] eta 0:00:25 lr 0.001941 time 0.4536 (0.4814) model_time 0.4535 (0.4698) loss 2.5216 (3.2632) grad_norm 1.5763 (1.8008/0.7169) mem 16099MB [2025-01-18 05:10:33 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][270/312] eta 0:00:20 lr 0.001940 time 0.4535 (0.4808) model_time 0.4533 (0.4696) loss 3.8696 (3.2661) grad_norm 0.9659 (1.8180/0.7263) mem 16099MB [2025-01-18 05:10:37 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][280/312] eta 0:00:15 lr 0.001939 time 0.4418 (0.4801) model_time 0.4414 (0.4693) loss 3.8197 (3.2703) grad_norm 1.7438 (1.8245/0.7330) mem 16099MB [2025-01-18 05:10:42 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][290/312] eta 0:00:10 lr 0.001939 time 0.4709 (0.4797) model_time 0.4705 (0.4692) loss 4.0067 (3.2680) grad_norm 0.7813 (1.8142/0.7262) mem 16099MB [2025-01-18 05:10:46 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][300/312] eta 0:00:05 lr 0.001938 time 0.4325 (0.4787) model_time 0.4324 (0.4686) loss 3.9486 (3.2706) grad_norm 2.0645 (1.8159/0.7194) mem 16099MB [2025-01-18 05:10:51 internimage_t_1k_224] (main.py 510): INFO Train: [153/300][310/312] eta 0:00:00 lr 0.001937 time 0.5223 (0.4778) model_time 0.5222 (0.4679) loss 3.9070 (3.2736) grad_norm 2.0470 (1.8091/0.7093) mem 16099MB [2025-01-18 05:10:51 internimage_t_1k_224] (main.py 519): INFO EPOCH 153 training takes 0:02:29 [2025-01-18 05:10:51 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_153.pth saving...... [2025-01-18 05:10:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_153.pth saved !!! [2025-01-18 05:11:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.210 (7.210) Loss 0.8398 (0.8398) Acc@1 82.471 (82.471) Acc@5 96.631 (96.631) Mem 16099MB [2025-01-18 05:11:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.985) Loss 1.1734 (0.9813) Acc@1 74.023 (79.319) Acc@5 92.822 (94.940) Mem 16099MB [2025-01-18 05:11:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:153] * Acc@1 79.219 Acc@5 94.936 [2025-01-18 05:11:03 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.2% [2025-01-18 05:11:03 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.30% [2025-01-18 05:11:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.467 (8.467) Loss 0.8105 (0.8105) Acc@1 84.106 (84.106) Acc@5 97.095 (97.095) Mem 16099MB [2025-01-18 05:11:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.126) Loss 1.1148 (0.9433) Acc@1 75.513 (80.808) Acc@5 93.872 (95.590) Mem 16099MB [2025-01-18 05:11:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:153] * Acc@1 80.686 Acc@5 95.619 [2025-01-18 05:11:16 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.7% [2025-01-18 05:11:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:11:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:11:17 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.69% [2025-01-18 05:11:20 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][0/312] eta 0:12:11 lr 0.001937 time 2.3430 (2.3430) model_time 0.5241 (0.5241) loss 3.3931 (3.3931) grad_norm 1.0610 (1.0610/0.0000) mem 16099MB [2025-01-18 05:11:25 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][10/312] eta 0:03:18 lr 0.001936 time 0.4700 (0.6566) model_time 0.4698 (0.4800) loss 4.0018 (3.1648) grad_norm 2.7259 (1.7566/0.5885) mem 16099MB [2025-01-18 05:11:29 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][20/312] eta 0:02:44 lr 0.001936 time 0.4497 (0.5640) model_time 0.4492 (0.4713) loss 4.0769 (3.1895) grad_norm 2.8333 (1.6986/0.5729) mem 16099MB [2025-01-18 05:11:34 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][30/312] eta 0:02:31 lr 0.001935 time 0.5547 (0.5378) model_time 0.5545 (0.4749) loss 2.5214 (3.1498) grad_norm 3.9620 (1.8662/0.8071) mem 16099MB [2025-01-18 05:11:39 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][40/312] eta 0:02:20 lr 0.001934 time 0.4489 (0.5178) model_time 0.4487 (0.4702) loss 2.5171 (3.1344) grad_norm 3.7264 (1.9566/0.8451) mem 16099MB [2025-01-18 05:11:44 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][50/312] eta 0:02:14 lr 0.001934 time 0.4513 (0.5119) model_time 0.4508 (0.4735) loss 2.3372 (3.0757) grad_norm 1.9594 (1.9618/0.8418) mem 16099MB [2025-01-18 05:11:48 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][60/312] eta 0:02:07 lr 0.001933 time 0.4545 (0.5052) model_time 0.4544 (0.4731) loss 3.2503 (3.1112) grad_norm 1.6978 (1.9423/0.7862) mem 16099MB [2025-01-18 05:11:53 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][70/312] eta 0:02:00 lr 0.001932 time 0.4471 (0.4993) model_time 0.4469 (0.4716) loss 3.7228 (3.1149) grad_norm 2.4447 (1.9226/0.7524) mem 16099MB [2025-01-18 05:11:57 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][80/312] eta 0:01:54 lr 0.001932 time 0.4429 (0.4936) model_time 0.4425 (0.4693) loss 3.0515 (3.1494) grad_norm 2.7634 (1.8988/0.7470) mem 16099MB [2025-01-18 05:12:02 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][90/312] eta 0:01:49 lr 0.001931 time 0.5394 (0.4927) model_time 0.5390 (0.4710) loss 4.0352 (3.1529) grad_norm 3.1023 (1.9140/0.7779) mem 16099MB [2025-01-18 05:12:07 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][100/312] eta 0:01:44 lr 0.001930 time 0.4473 (0.4912) model_time 0.4469 (0.4716) loss 3.2362 (3.1428) grad_norm 1.6875 (1.8659/0.7677) mem 16099MB [2025-01-18 05:12:12 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][110/312] eta 0:01:38 lr 0.001930 time 0.4624 (0.4879) model_time 0.4623 (0.4701) loss 3.9627 (3.1745) grad_norm 3.0685 (1.8305/0.7715) mem 16099MB [2025-01-18 05:12:16 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][120/312] eta 0:01:33 lr 0.001929 time 0.4595 (0.4865) model_time 0.4590 (0.4701) loss 3.5801 (3.1838) grad_norm 3.8648 (1.8675/0.7909) mem 16099MB [2025-01-18 05:12:21 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][130/312] eta 0:01:28 lr 0.001928 time 0.5769 (0.4850) model_time 0.5765 (0.4698) loss 2.8098 (3.1696) grad_norm 1.6804 (1.8873/0.8013) mem 16099MB [2025-01-18 05:12:26 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][140/312] eta 0:01:23 lr 0.001928 time 0.4460 (0.4833) model_time 0.4455 (0.4692) loss 3.6605 (3.1792) grad_norm 1.6839 (1.8544/0.7869) mem 16099MB [2025-01-18 05:12:30 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][150/312] eta 0:01:17 lr 0.001927 time 0.4409 (0.4813) model_time 0.4404 (0.4681) loss 3.0402 (3.1549) grad_norm 1.0596 (1.8139/0.7791) mem 16099MB [2025-01-18 05:12:35 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][160/312] eta 0:01:13 lr 0.001926 time 0.4564 (0.4809) model_time 0.4560 (0.4684) loss 3.1990 (3.1596) grad_norm 0.9206 (1.7964/0.7756) mem 16099MB [2025-01-18 05:12:39 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][170/312] eta 0:01:08 lr 0.001926 time 0.4494 (0.4800) model_time 0.4492 (0.4683) loss 2.3998 (3.1770) grad_norm 2.2932 (1.8187/0.7794) mem 16099MB [2025-01-18 05:12:44 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][180/312] eta 0:01:03 lr 0.001925 time 0.4495 (0.4792) model_time 0.4491 (0.4680) loss 2.9117 (3.1798) grad_norm 1.4636 (1.8204/0.7823) mem 16099MB [2025-01-18 05:12:49 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][190/312] eta 0:00:58 lr 0.001924 time 0.4695 (0.4784) model_time 0.4691 (0.4677) loss 3.9250 (3.1999) grad_norm 1.7104 (1.8050/0.7672) mem 16099MB [2025-01-18 05:12:53 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][200/312] eta 0:00:53 lr 0.001924 time 0.4498 (0.4776) model_time 0.4494 (0.4674) loss 3.4270 (3.2107) grad_norm 3.3337 (1.8231/0.7878) mem 16099MB [2025-01-18 05:12:58 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][210/312] eta 0:00:48 lr 0.001923 time 0.4488 (0.4766) model_time 0.4487 (0.4669) loss 3.3158 (3.2039) grad_norm 2.2164 (1.8351/0.7900) mem 16099MB [2025-01-18 05:13:03 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][220/312] eta 0:00:43 lr 0.001922 time 0.4531 (0.4760) model_time 0.4529 (0.4667) loss 4.1407 (3.2004) grad_norm 1.9759 (1.8357/0.7806) mem 16099MB [2025-01-18 05:13:07 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][230/312] eta 0:00:38 lr 0.001922 time 0.4598 (0.4751) model_time 0.4594 (0.4662) loss 2.5057 (3.1988) grad_norm 2.5365 (1.8592/0.8028) mem 16099MB [2025-01-18 05:13:12 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][240/312] eta 0:00:34 lr 0.001921 time 0.4545 (0.4742) model_time 0.4543 (0.4657) loss 4.2126 (3.2158) grad_norm 0.8562 (1.8542/0.7956) mem 16099MB [2025-01-18 05:13:16 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][250/312] eta 0:00:29 lr 0.001920 time 0.4495 (0.4744) model_time 0.4493 (0.4662) loss 2.5777 (3.2103) grad_norm 0.8795 (1.8369/0.7864) mem 16099MB [2025-01-18 05:13:21 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][260/312] eta 0:00:24 lr 0.001920 time 0.4433 (0.4740) model_time 0.4429 (0.4661) loss 3.3020 (3.2042) grad_norm 2.8889 (1.8347/0.7819) mem 16099MB [2025-01-18 05:13:26 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][270/312] eta 0:00:19 lr 0.001919 time 0.4450 (0.4743) model_time 0.4449 (0.4667) loss 3.0960 (3.1967) grad_norm 0.9885 (1.8449/0.7966) mem 16099MB [2025-01-18 05:13:31 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][280/312] eta 0:00:15 lr 0.001918 time 0.4477 (0.4740) model_time 0.4472 (0.4666) loss 2.6113 (3.1963) grad_norm 1.2581 (1.8428/0.7905) mem 16099MB [2025-01-18 05:13:35 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][290/312] eta 0:00:10 lr 0.001918 time 0.4448 (0.4738) model_time 0.4446 (0.4667) loss 2.9405 (3.2062) grad_norm 1.3048 (1.8484/0.7934) mem 16099MB [2025-01-18 05:13:40 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][300/312] eta 0:00:05 lr 0.001917 time 0.4410 (0.4730) model_time 0.4409 (0.4661) loss 2.3856 (3.2043) grad_norm 1.1946 (1.8630/0.7976) mem 16099MB [2025-01-18 05:13:44 internimage_t_1k_224] (main.py 510): INFO Train: [154/300][310/312] eta 0:00:00 lr 0.001917 time 0.5225 (0.4725) model_time 0.5224 (0.4659) loss 2.8889 (3.2003) grad_norm 1.2269 (1.8572/0.7987) mem 16099MB [2025-01-18 05:13:45 internimage_t_1k_224] (main.py 519): INFO EPOCH 154 training takes 0:02:27 [2025-01-18 05:13:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_154.pth saving...... [2025-01-18 05:13:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_154.pth saved !!! [2025-01-18 05:13:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.539 (7.539) Loss 0.8092 (0.8092) Acc@1 83.228 (83.228) Acc@5 96.753 (96.753) Mem 16099MB [2025-01-18 05:13:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.025) Loss 1.1748 (0.9772) Acc@1 73.877 (79.450) Acc@5 93.115 (94.982) Mem 16099MB [2025-01-18 05:13:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:154] * Acc@1 79.417 Acc@5 95.040 [2025-01-18 05:13:57 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.4% [2025-01-18 05:13:57 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:13:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:13:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.42% [2025-01-18 05:14:06 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.418 (7.418) Loss 0.8104 (0.8104) Acc@1 84.180 (84.180) Acc@5 97.119 (97.119) Mem 16099MB [2025-01-18 05:14:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.016) Loss 1.1136 (0.9431) Acc@1 75.562 (80.839) Acc@5 93.896 (95.610) Mem 16099MB [2025-01-18 05:14:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:154] * Acc@1 80.728 Acc@5 95.637 [2025-01-18 05:14:10 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.7% [2025-01-18 05:14:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:14:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:14:11 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.73% [2025-01-18 05:14:14 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][0/312] eta 0:11:21 lr 0.001916 time 2.1846 (2.1846) model_time 0.4682 (0.4682) loss 3.2065 (3.2065) grad_norm 2.2344 (2.2344/0.0000) mem 16099MB [2025-01-18 05:14:19 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][10/312] eta 0:03:14 lr 0.001916 time 0.4507 (0.6430) model_time 0.4503 (0.4565) loss 3.4818 (3.3880) grad_norm 1.2852 (1.8381/0.6294) mem 16099MB [2025-01-18 05:14:23 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][20/312] eta 0:02:43 lr 0.001915 time 0.4479 (0.5590) model_time 0.4477 (0.4612) loss 2.7017 (3.3984) grad_norm 1.8997 (1.6060/0.5651) mem 16099MB [2025-01-18 05:14:28 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][30/312] eta 0:02:30 lr 0.001914 time 0.4499 (0.5328) model_time 0.4498 (0.4664) loss 2.8778 (3.3636) grad_norm 1.2145 (1.5937/0.6492) mem 16099MB [2025-01-18 05:14:32 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][40/312] eta 0:02:19 lr 0.001914 time 0.4511 (0.5134) model_time 0.4509 (0.4631) loss 3.6583 (3.4041) grad_norm 1.7820 (1.5507/0.5944) mem 16099MB [2025-01-18 05:14:37 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][50/312] eta 0:02:11 lr 0.001913 time 0.4496 (0.5016) model_time 0.4494 (0.4611) loss 3.5763 (3.3485) grad_norm 1.2690 (1.5977/0.5824) mem 16099MB [2025-01-18 05:14:42 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][60/312] eta 0:02:05 lr 0.001912 time 0.4514 (0.4964) model_time 0.4512 (0.4625) loss 3.7156 (3.3287) grad_norm 1.2173 (1.6646/0.7189) mem 16099MB [2025-01-18 05:14:46 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][70/312] eta 0:01:59 lr 0.001912 time 0.4408 (0.4920) model_time 0.4406 (0.4628) loss 3.4166 (3.2960) grad_norm 1.1194 (1.6968/0.7431) mem 16099MB [2025-01-18 05:14:51 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][80/312] eta 0:01:53 lr 0.001911 time 0.4518 (0.4892) model_time 0.4516 (0.4636) loss 3.8455 (3.3409) grad_norm 2.3605 (1.6683/0.7250) mem 16099MB [2025-01-18 05:14:56 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][90/312] eta 0:01:47 lr 0.001910 time 0.4524 (0.4861) model_time 0.4522 (0.4632) loss 2.8390 (3.3291) grad_norm 1.3834 (1.6750/0.7119) mem 16099MB [2025-01-18 05:15:00 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][100/312] eta 0:01:42 lr 0.001910 time 0.4556 (0.4839) model_time 0.4554 (0.4633) loss 3.5486 (3.3221) grad_norm 1.3651 (1.6873/0.7104) mem 16099MB [2025-01-18 05:15:05 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][110/312] eta 0:01:37 lr 0.001909 time 0.5588 (0.4838) model_time 0.5587 (0.4650) loss 2.1333 (3.2912) grad_norm 1.3214 (1.6892/0.7365) mem 16099MB [2025-01-18 05:15:10 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][120/312] eta 0:01:32 lr 0.001908 time 0.4605 (0.4814) model_time 0.4603 (0.4641) loss 3.6253 (3.3033) grad_norm 1.5319 (1.7231/0.7946) mem 16099MB [2025-01-18 05:15:14 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][130/312] eta 0:01:27 lr 0.001908 time 0.4611 (0.4800) model_time 0.4606 (0.4640) loss 3.1452 (3.2971) grad_norm 1.0326 (1.7334/0.8075) mem 16099MB [2025-01-18 05:15:19 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][140/312] eta 0:01:22 lr 0.001907 time 0.5464 (0.4795) model_time 0.5460 (0.4646) loss 3.2832 (3.2946) grad_norm 1.8312 (1.7097/0.7875) mem 16099MB [2025-01-18 05:15:24 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][150/312] eta 0:01:17 lr 0.001906 time 0.4395 (0.4797) model_time 0.4393 (0.4657) loss 2.7752 (3.2929) grad_norm 1.2670 (1.7451/0.8037) mem 16099MB [2025-01-18 05:15:29 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][160/312] eta 0:01:13 lr 0.001906 time 0.7339 (0.4808) model_time 0.7334 (0.4677) loss 2.7552 (3.2767) grad_norm 3.1413 (1.7814/0.8136) mem 16099MB [2025-01-18 05:15:34 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][170/312] eta 0:01:08 lr 0.001905 time 0.4526 (0.4809) model_time 0.4524 (0.4686) loss 3.2759 (3.2679) grad_norm 2.0664 (1.7896/0.8006) mem 16099MB [2025-01-18 05:15:38 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][180/312] eta 0:01:03 lr 0.001904 time 0.4645 (0.4799) model_time 0.4643 (0.4683) loss 2.4726 (3.2563) grad_norm 1.9253 (1.8207/0.8165) mem 16099MB [2025-01-18 05:15:43 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][190/312] eta 0:00:58 lr 0.001904 time 0.4506 (0.4793) model_time 0.4501 (0.4682) loss 2.6334 (3.2441) grad_norm 1.2001 (1.8280/0.8123) mem 16099MB [2025-01-18 05:15:48 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][200/312] eta 0:00:53 lr 0.001903 time 0.4430 (0.4783) model_time 0.4428 (0.4678) loss 3.4760 (3.2553) grad_norm 1.5717 (1.8152/0.8003) mem 16099MB [2025-01-18 05:15:52 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][210/312] eta 0:00:48 lr 0.001902 time 0.5134 (0.4777) model_time 0.5132 (0.4676) loss 3.8413 (3.2507) grad_norm 1.7139 (1.8130/0.7899) mem 16099MB [2025-01-18 05:15:57 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][220/312] eta 0:00:43 lr 0.001902 time 0.4610 (0.4770) model_time 0.4608 (0.4674) loss 2.7355 (3.2484) grad_norm 2.0281 (1.7864/0.7840) mem 16099MB [2025-01-18 05:16:01 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][230/312] eta 0:00:39 lr 0.001901 time 0.4513 (0.4764) model_time 0.4509 (0.4671) loss 3.2696 (3.2458) grad_norm 2.2176 (1.7777/0.7757) mem 16099MB [2025-01-18 05:16:06 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][240/312] eta 0:00:34 lr 0.001900 time 0.4491 (0.4759) model_time 0.4490 (0.4670) loss 3.1133 (3.2402) grad_norm 2.1027 (1.7864/0.7870) mem 16099MB [2025-01-18 05:16:11 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][250/312] eta 0:00:29 lr 0.001900 time 0.4571 (0.4761) model_time 0.4569 (0.4675) loss 3.7183 (3.2420) grad_norm 0.9650 (1.7995/0.7867) mem 16099MB [2025-01-18 05:16:15 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][260/312] eta 0:00:24 lr 0.001899 time 0.4418 (0.4751) model_time 0.4416 (0.4669) loss 2.8114 (3.2460) grad_norm 1.9218 (1.7806/0.7784) mem 16099MB [2025-01-18 05:16:20 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][270/312] eta 0:00:19 lr 0.001898 time 0.4448 (0.4758) model_time 0.4446 (0.4679) loss 2.9687 (3.2498) grad_norm 3.4584 (1.7773/0.7750) mem 16099MB [2025-01-18 05:16:25 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][280/312] eta 0:00:15 lr 0.001898 time 0.4490 (0.4752) model_time 0.4485 (0.4675) loss 3.8063 (3.2404) grad_norm 2.3017 (1.7804/0.7693) mem 16099MB [2025-01-18 05:16:30 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][290/312] eta 0:00:10 lr 0.001897 time 0.4475 (0.4747) model_time 0.4474 (0.4673) loss 3.8978 (3.2463) grad_norm 1.1040 (1.7700/0.7642) mem 16099MB [2025-01-18 05:16:34 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][300/312] eta 0:00:05 lr 0.001896 time 0.4377 (0.4742) model_time 0.4376 (0.4670) loss 3.1869 (3.2374) grad_norm 1.2924 (1.7703/0.7638) mem 16099MB [2025-01-18 05:16:39 internimage_t_1k_224] (main.py 510): INFO Train: [155/300][310/312] eta 0:00:00 lr 0.001896 time 0.4386 (0.4740) model_time 0.4385 (0.4671) loss 3.6822 (3.2290) grad_norm 1.2235 (1.7772/0.7715) mem 16099MB [2025-01-18 05:16:39 internimage_t_1k_224] (main.py 519): INFO EPOCH 155 training takes 0:02:27 [2025-01-18 05:16:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_155.pth saving...... [2025-01-18 05:16:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_155.pth saved !!! [2025-01-18 05:16:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.239 (7.239) Loss 0.8387 (0.8387) Acc@1 82.642 (82.642) Acc@5 96.436 (96.436) Mem 16099MB [2025-01-18 05:16:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.001) Loss 1.1575 (0.9825) Acc@1 74.536 (79.470) Acc@5 92.725 (94.800) Mem 16099MB [2025-01-18 05:16:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:155] * Acc@1 79.373 Acc@5 94.818 [2025-01-18 05:16:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.4% [2025-01-18 05:16:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.42% [2025-01-18 05:17:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.377 (8.377) Loss 0.8106 (0.8106) Acc@1 84.131 (84.131) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:17:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.125) Loss 1.1127 (0.9431) Acc@1 75.684 (80.897) Acc@5 93.945 (95.619) Mem 16099MB [2025-01-18 05:17:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:155] * Acc@1 80.786 Acc@5 95.641 [2025-01-18 05:17:04 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.8% [2025-01-18 05:17:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:17:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:17:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.79% [2025-01-18 05:17:08 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][0/312] eta 0:13:42 lr 0.001896 time 2.6355 (2.6355) model_time 0.4535 (0.4535) loss 3.4422 (3.4422) grad_norm 1.3789 (1.3789/0.0000) mem 16099MB [2025-01-18 05:17:13 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][10/312] eta 0:03:26 lr 0.001895 time 0.4400 (0.6833) model_time 0.4396 (0.4846) loss 3.8424 (3.4597) grad_norm 2.2733 (1.7729/0.5460) mem 16099MB [2025-01-18 05:17:18 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][20/312] eta 0:02:49 lr 0.001894 time 0.4508 (0.5819) model_time 0.4506 (0.4777) loss 2.5251 (3.2655) grad_norm 3.6040 (2.0484/0.7648) mem 16099MB [2025-01-18 05:17:22 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][30/312] eta 0:02:33 lr 0.001894 time 0.4495 (0.5434) model_time 0.4493 (0.4727) loss 3.5216 (3.1865) grad_norm 1.9266 (2.1106/0.7140) mem 16099MB [2025-01-18 05:17:27 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][40/312] eta 0:02:21 lr 0.001893 time 0.4628 (0.5216) model_time 0.4627 (0.4681) loss 2.7640 (3.1597) grad_norm 1.7275 (2.0919/0.8551) mem 16099MB [2025-01-18 05:17:32 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][50/312] eta 0:02:13 lr 0.001892 time 0.4637 (0.5093) model_time 0.4635 (0.4662) loss 3.7189 (3.1451) grad_norm 1.3054 (1.9432/0.8396) mem 16099MB [2025-01-18 05:17:36 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][60/312] eta 0:02:06 lr 0.001892 time 0.4441 (0.5009) model_time 0.4440 (0.4648) loss 3.4477 (3.1463) grad_norm 1.1461 (1.8609/0.8044) mem 16099MB [2025-01-18 05:17:41 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][70/312] eta 0:02:00 lr 0.001891 time 0.4594 (0.4996) model_time 0.4590 (0.4685) loss 3.1853 (3.1547) grad_norm 1.2278 (1.8319/0.7580) mem 16099MB [2025-01-18 05:17:46 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][80/312] eta 0:01:54 lr 0.001890 time 0.4516 (0.4954) model_time 0.4512 (0.4681) loss 2.8849 (3.1739) grad_norm 1.2159 (1.7885/0.7255) mem 16099MB [2025-01-18 05:17:50 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][90/312] eta 0:01:49 lr 0.001890 time 0.4404 (0.4926) model_time 0.4400 (0.4683) loss 3.6939 (3.2029) grad_norm 3.3282 (1.8089/0.7274) mem 16099MB [2025-01-18 05:17:55 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][100/312] eta 0:01:43 lr 0.001889 time 0.5703 (0.4899) model_time 0.5697 (0.4680) loss 3.2187 (3.1920) grad_norm 1.0730 (1.7643/0.7152) mem 16099MB [2025-01-18 05:18:00 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][110/312] eta 0:01:38 lr 0.001888 time 0.4603 (0.4900) model_time 0.4598 (0.4700) loss 2.3384 (3.1956) grad_norm 1.2553 (1.7590/0.7019) mem 16099MB [2025-01-18 05:18:05 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][120/312] eta 0:01:33 lr 0.001888 time 0.4801 (0.4880) model_time 0.4799 (0.4696) loss 3.3527 (3.1811) grad_norm 1.2575 (1.8184/0.7663) mem 16099MB [2025-01-18 05:18:09 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][130/312] eta 0:01:28 lr 0.001887 time 0.4522 (0.4861) model_time 0.4520 (0.4691) loss 3.2127 (3.1882) grad_norm 2.0531 (1.8621/0.7986) mem 16099MB [2025-01-18 05:18:14 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][140/312] eta 0:01:23 lr 0.001886 time 0.4419 (0.4865) model_time 0.4417 (0.4707) loss 3.5546 (3.2019) grad_norm 2.8928 (1.8721/0.8003) mem 16099MB [2025-01-18 05:18:19 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][150/312] eta 0:01:18 lr 0.001886 time 0.4852 (0.4855) model_time 0.4847 (0.4707) loss 2.3827 (3.2027) grad_norm 0.9047 (1.8848/0.8191) mem 16099MB [2025-01-18 05:18:24 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][160/312] eta 0:01:13 lr 0.001885 time 0.4407 (0.4845) model_time 0.4405 (0.4706) loss 3.6137 (3.1891) grad_norm 2.7609 (1.8861/0.8113) mem 16099MB [2025-01-18 05:18:28 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][170/312] eta 0:01:08 lr 0.001884 time 0.4524 (0.4837) model_time 0.4519 (0.4706) loss 2.5673 (3.1722) grad_norm 2.7700 (1.8809/0.8031) mem 16099MB [2025-01-18 05:18:33 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][180/312] eta 0:01:03 lr 0.001884 time 0.4770 (0.4828) model_time 0.4769 (0.4704) loss 2.5727 (3.1674) grad_norm 1.6136 (1.8606/0.7919) mem 16099MB [2025-01-18 05:18:37 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][190/312] eta 0:00:58 lr 0.001883 time 0.4491 (0.4811) model_time 0.4489 (0.4693) loss 2.9261 (3.1712) grad_norm 3.6038 (1.8605/0.7901) mem 16099MB [2025-01-18 05:18:42 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][200/312] eta 0:00:53 lr 0.001882 time 0.5652 (0.4803) model_time 0.5650 (0.4691) loss 3.7648 (3.1738) grad_norm 1.9102 (1.8677/0.7780) mem 16099MB [2025-01-18 05:18:47 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][210/312] eta 0:00:48 lr 0.001882 time 0.4606 (0.4790) model_time 0.4602 (0.4683) loss 3.7916 (3.1906) grad_norm 1.0053 (1.8551/0.7686) mem 16099MB [2025-01-18 05:18:51 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][220/312] eta 0:00:43 lr 0.001881 time 0.4501 (0.4780) model_time 0.4500 (0.4677) loss 3.9026 (3.2033) grad_norm 2.5406 (1.8416/0.7600) mem 16099MB [2025-01-18 05:18:56 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][230/312] eta 0:00:39 lr 0.001880 time 0.4394 (0.4769) model_time 0.4393 (0.4671) loss 3.4580 (3.2073) grad_norm 1.9302 (1.8304/0.7472) mem 16099MB [2025-01-18 05:19:00 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][240/312] eta 0:00:34 lr 0.001880 time 0.5452 (0.4766) model_time 0.5451 (0.4672) loss 3.2852 (3.2210) grad_norm 0.8578 (1.8114/0.7412) mem 16099MB [2025-01-18 05:19:05 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][250/312] eta 0:00:29 lr 0.001879 time 0.4503 (0.4766) model_time 0.4502 (0.4675) loss 3.6150 (3.2312) grad_norm 2.5509 (1.8066/0.7357) mem 16099MB [2025-01-18 05:19:10 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][260/312] eta 0:00:24 lr 0.001878 time 0.4514 (0.4758) model_time 0.4510 (0.4671) loss 3.6242 (3.2293) grad_norm 2.5647 (1.7954/0.7295) mem 16099MB [2025-01-18 05:19:14 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][270/312] eta 0:00:19 lr 0.001878 time 0.4514 (0.4752) model_time 0.4509 (0.4668) loss 3.4652 (3.2343) grad_norm 1.0860 (1.7999/0.7288) mem 16099MB [2025-01-18 05:19:19 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][280/312] eta 0:00:15 lr 0.001877 time 0.4496 (0.4745) model_time 0.4492 (0.4664) loss 2.2545 (3.2191) grad_norm 1.2554 (1.8134/0.7605) mem 16099MB [2025-01-18 05:19:24 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][290/312] eta 0:00:10 lr 0.001876 time 0.4674 (0.4742) model_time 0.4672 (0.4664) loss 2.8107 (3.2232) grad_norm 1.5617 (1.8020/0.7512) mem 16099MB [2025-01-18 05:19:28 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][300/312] eta 0:00:05 lr 0.001876 time 0.4374 (0.4733) model_time 0.4373 (0.4657) loss 2.6515 (3.2261) grad_norm 2.1310 (1.7958/0.7480) mem 16099MB [2025-01-18 05:19:33 internimage_t_1k_224] (main.py 510): INFO Train: [156/300][310/312] eta 0:00:00 lr 0.001875 time 0.4378 (0.4725) model_time 0.4377 (0.4651) loss 3.9027 (3.2353) grad_norm 2.3894 (1.7962/0.7486) mem 16099MB [2025-01-18 05:19:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 156 training takes 0:02:27 [2025-01-18 05:19:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_156.pth saving...... [2025-01-18 05:19:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_156.pth saved !!! [2025-01-18 05:19:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.296 (7.296) Loss 0.8402 (0.8402) Acc@1 82.764 (82.764) Acc@5 96.240 (96.240) Mem 16099MB [2025-01-18 05:19:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.994) Loss 1.1188 (0.9596) Acc@1 75.024 (79.610) Acc@5 93.457 (94.993) Mem 16099MB [2025-01-18 05:19:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:156] * Acc@1 79.471 Acc@5 95.010 [2025-01-18 05:19:45 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.5% [2025-01-18 05:19:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:19:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:19:46 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.47% [2025-01-18 05:19:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.597 (7.597) Loss 0.8108 (0.8108) Acc@1 84.033 (84.033) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:19:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.011) Loss 1.1119 (0.9431) Acc@1 75.757 (80.915) Acc@5 93.945 (95.643) Mem 16099MB [2025-01-18 05:19:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:156] * Acc@1 80.804 Acc@5 95.669 [2025-01-18 05:19:58 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.8% [2025-01-18 05:19:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:19:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:19:59 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.80% [2025-01-18 05:20:02 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][0/312] eta 0:13:58 lr 0.001875 time 2.6882 (2.6882) model_time 0.5988 (0.5988) loss 3.5065 (3.5065) grad_norm 1.1074 (1.1074/0.0000) mem 16099MB [2025-01-18 05:20:06 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][10/312] eta 0:03:21 lr 0.001874 time 0.5315 (0.6659) model_time 0.5311 (0.4756) loss 3.3595 (3.1107) grad_norm 1.6799 (2.1330/1.0817) mem 16099MB [2025-01-18 05:20:11 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][20/312] eta 0:02:49 lr 0.001874 time 0.5447 (0.5800) model_time 0.5445 (0.4802) loss 3.7006 (3.0719) grad_norm 1.1003 (1.9249/0.8842) mem 16099MB [2025-01-18 05:20:16 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][30/312] eta 0:02:32 lr 0.001873 time 0.4499 (0.5415) model_time 0.4495 (0.4738) loss 3.4524 (3.2088) grad_norm 1.5340 (1.7977/0.7866) mem 16099MB [2025-01-18 05:20:20 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][40/312] eta 0:02:21 lr 0.001872 time 0.4393 (0.5218) model_time 0.4392 (0.4705) loss 3.1841 (3.2241) grad_norm 2.0979 (2.2369/1.4006) mem 16099MB [2025-01-18 05:20:25 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][50/312] eta 0:02:14 lr 0.001872 time 0.4900 (0.5141) model_time 0.4896 (0.4728) loss 3.1388 (3.1981) grad_norm 1.4617 (2.1512/1.3068) mem 16099MB [2025-01-18 05:20:30 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][60/312] eta 0:02:07 lr 0.001871 time 0.4739 (0.5069) model_time 0.4737 (0.4724) loss 3.5617 (3.1733) grad_norm 1.4824 (2.0263/1.2423) mem 16099MB [2025-01-18 05:20:35 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][70/312] eta 0:02:01 lr 0.001870 time 0.4561 (0.5004) model_time 0.4559 (0.4706) loss 3.0819 (3.1868) grad_norm 1.0658 (1.9650/1.1712) mem 16099MB [2025-01-18 05:20:39 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][80/312] eta 0:01:55 lr 0.001870 time 0.4492 (0.4986) model_time 0.4490 (0.4725) loss 3.2386 (3.1911) grad_norm 0.8970 (1.9409/1.1294) mem 16099MB [2025-01-18 05:20:44 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][90/312] eta 0:01:49 lr 0.001869 time 0.4486 (0.4936) model_time 0.4482 (0.4703) loss 3.1945 (3.1681) grad_norm 1.7744 (2.0128/1.1541) mem 16099MB [2025-01-18 05:20:49 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][100/312] eta 0:01:43 lr 0.001868 time 0.4777 (0.4903) model_time 0.4773 (0.4692) loss 2.9336 (3.1647) grad_norm 1.8115 (1.9805/1.1081) mem 16099MB [2025-01-18 05:20:53 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][110/312] eta 0:01:38 lr 0.001868 time 0.4428 (0.4890) model_time 0.4423 (0.4698) loss 3.2792 (3.1843) grad_norm 2.5438 (1.9409/1.0724) mem 16099MB [2025-01-18 05:20:58 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][120/312] eta 0:01:33 lr 0.001867 time 0.4590 (0.4870) model_time 0.4588 (0.4694) loss 3.2181 (3.1815) grad_norm 1.4469 (1.9365/1.0598) mem 16099MB [2025-01-18 05:21:03 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][130/312] eta 0:01:28 lr 0.001866 time 0.4839 (0.4849) model_time 0.4837 (0.4685) loss 3.3086 (3.1949) grad_norm 3.2578 (1.9300/1.0370) mem 16099MB [2025-01-18 05:21:07 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][140/312] eta 0:01:23 lr 0.001866 time 0.5470 (0.4836) model_time 0.5468 (0.4684) loss 3.3244 (3.1757) grad_norm 2.0538 (1.9049/1.0121) mem 16099MB [2025-01-18 05:21:12 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][150/312] eta 0:01:18 lr 0.001865 time 0.5286 (0.4826) model_time 0.5282 (0.4684) loss 3.2935 (3.1727) grad_norm 1.7274 (1.8931/1.0179) mem 16099MB [2025-01-18 05:21:16 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][160/312] eta 0:01:13 lr 0.001864 time 0.4684 (0.4808) model_time 0.4678 (0.4674) loss 2.5960 (3.1726) grad_norm 2.7960 (1.8765/0.9999) mem 16099MB [2025-01-18 05:21:21 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][170/312] eta 0:01:08 lr 0.001864 time 0.4532 (0.4795) model_time 0.4530 (0.4669) loss 3.5574 (3.1724) grad_norm 1.2920 (1.8827/0.9852) mem 16099MB [2025-01-18 05:21:26 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][180/312] eta 0:01:03 lr 0.001863 time 0.4509 (0.4784) model_time 0.4507 (0.4665) loss 3.6872 (3.1791) grad_norm 1.0011 (1.9010/1.0211) mem 16099MB [2025-01-18 05:21:30 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][190/312] eta 0:00:58 lr 0.001862 time 0.4497 (0.4774) model_time 0.4493 (0.4661) loss 3.4576 (3.1862) grad_norm 1.4227 (1.9016/0.9990) mem 16099MB [2025-01-18 05:21:35 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][200/312] eta 0:00:53 lr 0.001862 time 0.4687 (0.4767) model_time 0.4685 (0.4659) loss 4.0206 (3.1921) grad_norm 1.4272 (1.8754/0.9822) mem 16099MB [2025-01-18 05:21:40 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][210/312] eta 0:00:48 lr 0.001861 time 0.4615 (0.4762) model_time 0.4611 (0.4659) loss 3.3880 (3.2040) grad_norm 1.0626 (1.8592/0.9677) mem 16099MB [2025-01-18 05:21:44 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][220/312] eta 0:00:43 lr 0.001860 time 0.4499 (0.4754) model_time 0.4497 (0.4655) loss 3.9015 (3.2030) grad_norm 1.7060 (1.8405/0.9535) mem 16099MB [2025-01-18 05:21:49 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][230/312] eta 0:00:38 lr 0.001860 time 0.4428 (0.4749) model_time 0.4426 (0.4655) loss 3.4914 (3.2132) grad_norm 1.0937 (1.8325/0.9451) mem 16099MB [2025-01-18 05:21:53 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][240/312] eta 0:00:34 lr 0.001859 time 0.4400 (0.4743) model_time 0.4396 (0.4653) loss 3.7586 (3.2181) grad_norm 2.1788 (1.8360/0.9512) mem 16099MB [2025-01-18 05:21:58 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][250/312] eta 0:00:29 lr 0.001858 time 0.4452 (0.4746) model_time 0.4450 (0.4659) loss 3.6216 (3.2150) grad_norm 2.3485 (1.8494/0.9751) mem 16099MB [2025-01-18 05:22:03 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][260/312] eta 0:00:24 lr 0.001858 time 0.4531 (0.4737) model_time 0.4529 (0.4653) loss 3.5135 (3.2051) grad_norm 2.5651 (1.8414/0.9677) mem 16099MB [2025-01-18 05:22:07 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][270/312] eta 0:00:19 lr 0.001857 time 0.4858 (0.4732) model_time 0.4852 (0.4651) loss 3.6015 (3.2010) grad_norm 1.8504 (1.8674/0.9953) mem 16099MB [2025-01-18 05:22:12 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][280/312] eta 0:00:15 lr 0.001856 time 0.4445 (0.4737) model_time 0.4443 (0.4659) loss 4.0542 (3.2044) grad_norm 2.2220 (1.8677/0.9899) mem 16099MB [2025-01-18 05:22:17 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][290/312] eta 0:00:10 lr 0.001856 time 0.4549 (0.4736) model_time 0.4544 (0.4660) loss 3.2944 (3.2140) grad_norm 1.3597 (1.8463/0.9813) mem 16099MB [2025-01-18 05:22:21 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][300/312] eta 0:00:05 lr 0.001855 time 0.4398 (0.4730) model_time 0.4397 (0.4657) loss 2.2320 (3.2090) grad_norm 1.3973 (1.8283/0.9734) mem 16099MB [2025-01-18 05:22:26 internimage_t_1k_224] (main.py 510): INFO Train: [157/300][310/312] eta 0:00:00 lr 0.001854 time 0.4417 (0.4728) model_time 0.4416 (0.4657) loss 2.6410 (3.2087) grad_norm 2.8413 (1.8105/0.9554) mem 16099MB [2025-01-18 05:22:27 internimage_t_1k_224] (main.py 519): INFO EPOCH 157 training takes 0:02:27 [2025-01-18 05:22:27 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_157.pth saving...... [2025-01-18 05:22:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_157.pth saved !!! [2025-01-18 05:22:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.422 (7.422) Loss 0.7803 (0.7803) Acc@1 82.422 (82.422) Acc@5 96.753 (96.753) Mem 16099MB [2025-01-18 05:22:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.000) Loss 1.1139 (0.9167) Acc@1 74.756 (79.843) Acc@5 93.457 (95.133) Mem 16099MB [2025-01-18 05:22:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:157] * Acc@1 79.698 Acc@5 95.144 [2025-01-18 05:22:39 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.7% [2025-01-18 05:22:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:22:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:22:40 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.70% [2025-01-18 05:22:47 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.213 (7.213) Loss 0.8107 (0.8107) Acc@1 84.106 (84.106) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:22:51 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.983) Loss 1.1104 (0.9428) Acc@1 75.952 (80.968) Acc@5 94.019 (95.648) Mem 16099MB [2025-01-18 05:22:51 internimage_t_1k_224] (main.py 575): INFO [Epoch:157] * Acc@1 80.856 Acc@5 95.673 [2025-01-18 05:22:51 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.9% [2025-01-18 05:22:51 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:22:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:22:52 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.86% [2025-01-18 05:22:55 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][0/312] eta 0:14:16 lr 0.001854 time 2.7441 (2.7441) model_time 0.4658 (0.4658) loss 4.0574 (4.0574) grad_norm 2.8032 (2.8032/0.0000) mem 16099MB [2025-01-18 05:23:00 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][10/312] eta 0:03:22 lr 0.001854 time 0.4460 (0.6709) model_time 0.4459 (0.4634) loss 3.1317 (3.4840) grad_norm 2.7737 (2.5343/1.3964) mem 16099MB [2025-01-18 05:23:04 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][20/312] eta 0:02:46 lr 0.001853 time 0.4388 (0.5704) model_time 0.4384 (0.4616) loss 2.9494 (3.2413) grad_norm 1.0740 (2.3899/1.1448) mem 16099MB [2025-01-18 05:23:09 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][30/312] eta 0:02:31 lr 0.001852 time 0.4465 (0.5362) model_time 0.4462 (0.4624) loss 2.7422 (3.1800) grad_norm 1.3074 (2.3428/1.0266) mem 16099MB [2025-01-18 05:23:14 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][40/312] eta 0:02:21 lr 0.001852 time 0.4539 (0.5187) model_time 0.4534 (0.4628) loss 2.2952 (3.1943) grad_norm 0.8553 (2.1098/1.0329) mem 16099MB [2025-01-18 05:23:18 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][50/312] eta 0:02:12 lr 0.001851 time 0.4584 (0.5075) model_time 0.4582 (0.4625) loss 3.4177 (3.2279) grad_norm 2.2074 (2.0301/0.9637) mem 16099MB [2025-01-18 05:23:23 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][60/312] eta 0:02:05 lr 0.001850 time 0.4664 (0.4987) model_time 0.4661 (0.4610) loss 3.6491 (3.2394) grad_norm 1.3444 (2.0077/0.9416) mem 16099MB [2025-01-18 05:23:28 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][70/312] eta 0:02:00 lr 0.001850 time 0.5583 (0.4963) model_time 0.5582 (0.4638) loss 3.7866 (3.2445) grad_norm 1.4087 (1.9596/0.9027) mem 16099MB [2025-01-18 05:23:32 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][80/312] eta 0:01:54 lr 0.001849 time 0.4494 (0.4956) model_time 0.4492 (0.4671) loss 2.1388 (3.2636) grad_norm 2.3096 (1.9411/0.8739) mem 16099MB [2025-01-18 05:23:37 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][90/312] eta 0:01:49 lr 0.001848 time 0.4480 (0.4913) model_time 0.4479 (0.4659) loss 3.4731 (3.2801) grad_norm 2.7452 (1.8948/0.8579) mem 16099MB [2025-01-18 05:23:42 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][100/312] eta 0:01:43 lr 0.001848 time 0.4600 (0.4887) model_time 0.4599 (0.4657) loss 3.6365 (3.3100) grad_norm 2.0764 (1.9527/0.8548) mem 16099MB [2025-01-18 05:23:46 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][110/312] eta 0:01:38 lr 0.001847 time 0.4607 (0.4872) model_time 0.4602 (0.4663) loss 2.7455 (3.3018) grad_norm 3.1153 (1.9885/0.8725) mem 16099MB [2025-01-18 05:23:51 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][120/312] eta 0:01:33 lr 0.001846 time 0.4526 (0.4854) model_time 0.4521 (0.4662) loss 3.6573 (3.2844) grad_norm 1.4380 (2.0258/0.8893) mem 16099MB [2025-01-18 05:23:56 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][130/312] eta 0:01:27 lr 0.001846 time 0.4625 (0.4833) model_time 0.4622 (0.4655) loss 3.2400 (3.2734) grad_norm 2.8155 (1.9975/0.8772) mem 16099MB [2025-01-18 05:24:00 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][140/312] eta 0:01:22 lr 0.001845 time 0.5536 (0.4821) model_time 0.5535 (0.4656) loss 2.3690 (3.2656) grad_norm 3.0669 (1.9967/0.8631) mem 16099MB [2025-01-18 05:24:05 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][150/312] eta 0:01:17 lr 0.001844 time 0.4478 (0.4802) model_time 0.4473 (0.4647) loss 2.1715 (3.2559) grad_norm 1.8440 (2.0051/0.8596) mem 16099MB [2025-01-18 05:24:09 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][160/312] eta 0:01:12 lr 0.001844 time 0.4501 (0.4791) model_time 0.4499 (0.4645) loss 3.1854 (3.2646) grad_norm 2.9724 (1.9923/0.8554) mem 16099MB [2025-01-18 05:24:14 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][170/312] eta 0:01:07 lr 0.001843 time 0.4395 (0.4775) model_time 0.4393 (0.4638) loss 3.3554 (3.2615) grad_norm 2.8830 (1.9889/0.8491) mem 16099MB [2025-01-18 05:24:19 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][180/312] eta 0:01:02 lr 0.001842 time 0.4461 (0.4765) model_time 0.4459 (0.4636) loss 3.5368 (3.2520) grad_norm 1.5391 (1.9728/0.8361) mem 16099MB [2025-01-18 05:24:23 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][190/312] eta 0:00:58 lr 0.001842 time 0.4499 (0.4764) model_time 0.4497 (0.4641) loss 3.4474 (3.2395) grad_norm 1.5622 (1.9742/0.8243) mem 16099MB [2025-01-18 05:24:28 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][200/312] eta 0:00:53 lr 0.001841 time 0.4953 (0.4767) model_time 0.4948 (0.4650) loss 3.5897 (3.2330) grad_norm 1.3756 (1.9515/0.8226) mem 16099MB [2025-01-18 05:24:33 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][210/312] eta 0:00:48 lr 0.001840 time 0.4491 (0.4766) model_time 0.4489 (0.4654) loss 2.8446 (3.2317) grad_norm 1.0428 (1.9131/0.8233) mem 16099MB [2025-01-18 05:24:37 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][220/312] eta 0:00:43 lr 0.001840 time 0.4525 (0.4757) model_time 0.4523 (0.4650) loss 3.2106 (3.2373) grad_norm 1.0264 (1.9128/0.8265) mem 16099MB [2025-01-18 05:24:42 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][230/312] eta 0:00:39 lr 0.001839 time 0.4353 (0.4761) model_time 0.4351 (0.4659) loss 2.5436 (3.2280) grad_norm 0.8217 (1.9137/0.8221) mem 16099MB [2025-01-18 05:24:47 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][240/312] eta 0:00:34 lr 0.001838 time 0.5717 (0.4760) model_time 0.5712 (0.4662) loss 2.8826 (3.2184) grad_norm 2.6186 (1.9045/0.8168) mem 16099MB [2025-01-18 05:24:52 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][250/312] eta 0:00:29 lr 0.001838 time 0.4506 (0.4758) model_time 0.4504 (0.4663) loss 2.1658 (3.2184) grad_norm 3.9224 (1.9101/0.8153) mem 16099MB [2025-01-18 05:24:56 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][260/312] eta 0:00:24 lr 0.001837 time 0.4861 (0.4751) model_time 0.4859 (0.4660) loss 2.9201 (3.2172) grad_norm 1.4542 (1.9198/0.8258) mem 16099MB [2025-01-18 05:25:01 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][270/312] eta 0:00:19 lr 0.001836 time 0.4554 (0.4745) model_time 0.4552 (0.4658) loss 4.0721 (3.2081) grad_norm 1.2272 (1.9206/0.8324) mem 16099MB [2025-01-18 05:25:05 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][280/312] eta 0:00:15 lr 0.001836 time 0.4497 (0.4738) model_time 0.4495 (0.4654) loss 3.6566 (3.2094) grad_norm 1.4378 (1.9278/0.8446) mem 16099MB [2025-01-18 05:25:10 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][290/312] eta 0:00:10 lr 0.001835 time 0.4449 (0.4734) model_time 0.4447 (0.4652) loss 2.9055 (3.2055) grad_norm 0.9078 (1.8980/0.8469) mem 16099MB [2025-01-18 05:25:15 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][300/312] eta 0:00:05 lr 0.001834 time 0.4378 (0.4729) model_time 0.4377 (0.4650) loss 3.4197 (3.2125) grad_norm 3.0661 (1.8906/0.8428) mem 16099MB [2025-01-18 05:25:19 internimage_t_1k_224] (main.py 510): INFO Train: [158/300][310/312] eta 0:00:00 lr 0.001834 time 0.4386 (0.4719) model_time 0.4385 (0.4642) loss 2.9504 (3.2053) grad_norm 1.2767 (1.9026/0.8457) mem 16099MB [2025-01-18 05:25:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 158 training takes 0:02:27 [2025-01-18 05:25:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_158.pth saving...... [2025-01-18 05:25:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_158.pth saved !!! [2025-01-18 05:25:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.196 (7.196) Loss 0.8289 (0.8289) Acc@1 83.252 (83.252) Acc@5 96.680 (96.680) Mem 16099MB [2025-01-18 05:25:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (0.980) Loss 1.1232 (0.9648) Acc@1 75.342 (79.707) Acc@5 93.457 (94.988) Mem 16099MB [2025-01-18 05:25:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:158] * Acc@1 79.553 Acc@5 95.034 [2025-01-18 05:25:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.6% [2025-01-18 05:25:32 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.70% [2025-01-18 05:25:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.229 (8.229) Loss 0.8110 (0.8110) Acc@1 84.155 (84.155) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:25:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.101) Loss 1.1094 (0.9426) Acc@1 76.074 (81.015) Acc@5 94.043 (95.650) Mem 16099MB [2025-01-18 05:25:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:158] * Acc@1 80.900 Acc@5 95.677 [2025-01-18 05:25:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.9% [2025-01-18 05:25:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:25:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:25:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.90% [2025-01-18 05:25:48 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][0/312] eta 0:13:50 lr 0.001834 time 2.6629 (2.6629) model_time 0.4805 (0.4805) loss 4.0906 (4.0906) grad_norm 2.4336 (2.4336/0.0000) mem 16099MB [2025-01-18 05:25:53 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][10/312] eta 0:03:24 lr 0.001833 time 0.4449 (0.6766) model_time 0.4447 (0.4780) loss 2.0674 (3.2058) grad_norm 1.1285 (1.8433/0.5507) mem 16099MB [2025-01-18 05:25:57 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][20/312] eta 0:02:49 lr 0.001832 time 0.4542 (0.5800) model_time 0.4540 (0.4755) loss 3.0327 (3.1271) grad_norm 1.8750 (1.6966/0.4678) mem 16099MB [2025-01-18 05:26:02 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][30/312] eta 0:02:32 lr 0.001832 time 0.4495 (0.5420) model_time 0.4494 (0.4711) loss 2.4259 (3.1124) grad_norm 2.7451 (1.7724/0.5752) mem 16099MB [2025-01-18 05:26:07 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][40/312] eta 0:02:22 lr 0.001831 time 0.4591 (0.5240) model_time 0.4588 (0.4703) loss 3.3958 (3.1754) grad_norm 1.7595 (1.8481/0.6521) mem 16099MB [2025-01-18 05:26:12 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][50/312] eta 0:02:15 lr 0.001830 time 0.4682 (0.5159) model_time 0.4680 (0.4726) loss 4.0696 (3.1866) grad_norm 1.2331 (1.8527/0.6970) mem 16099MB [2025-01-18 05:26:16 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][60/312] eta 0:02:09 lr 0.001830 time 0.4489 (0.5120) model_time 0.4487 (0.4757) loss 2.6794 (3.1623) grad_norm 1.4736 (1.8643/0.7186) mem 16099MB [2025-01-18 05:26:21 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][70/312] eta 0:02:02 lr 0.001829 time 0.4534 (0.5055) model_time 0.4532 (0.4743) loss 2.2952 (3.1708) grad_norm 1.4889 (1.8495/0.6818) mem 16099MB [2025-01-18 05:26:26 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][80/312] eta 0:01:56 lr 0.001828 time 0.5397 (0.5014) model_time 0.5395 (0.4740) loss 3.6789 (3.2091) grad_norm 1.3636 (1.7950/0.6825) mem 16099MB [2025-01-18 05:26:30 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][90/312] eta 0:01:50 lr 0.001828 time 0.4520 (0.4963) model_time 0.4518 (0.4719) loss 3.3562 (3.1993) grad_norm 2.5116 (1.8489/0.6995) mem 16099MB [2025-01-18 05:26:35 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][100/312] eta 0:01:44 lr 0.001827 time 0.4408 (0.4951) model_time 0.4406 (0.4731) loss 2.9272 (3.1779) grad_norm 1.4609 (1.8856/0.7707) mem 16099MB [2025-01-18 05:26:40 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][110/312] eta 0:01:39 lr 0.001826 time 0.4923 (0.4923) model_time 0.4921 (0.4722) loss 3.4049 (3.1584) grad_norm 1.7427 (1.8617/0.7518) mem 16099MB [2025-01-18 05:26:45 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][120/312] eta 0:01:34 lr 0.001826 time 0.4506 (0.4902) model_time 0.4504 (0.4717) loss 2.6499 (3.1576) grad_norm 3.5411 (1.8599/0.7666) mem 16099MB [2025-01-18 05:26:49 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][130/312] eta 0:01:28 lr 0.001825 time 0.4640 (0.4887) model_time 0.4639 (0.4717) loss 3.7947 (3.1740) grad_norm 2.0129 (1.8748/0.7514) mem 16099MB [2025-01-18 05:26:54 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][140/312] eta 0:01:23 lr 0.001824 time 0.4517 (0.4874) model_time 0.4515 (0.4715) loss 3.3431 (3.1716) grad_norm 1.3719 (1.8760/0.7491) mem 16099MB [2025-01-18 05:26:59 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][150/312] eta 0:01:18 lr 0.001824 time 0.4807 (0.4854) model_time 0.4805 (0.4706) loss 2.6602 (3.1586) grad_norm 3.1954 (1.8803/0.7436) mem 16099MB [2025-01-18 05:27:03 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][160/312] eta 0:01:13 lr 0.001823 time 0.4448 (0.4838) model_time 0.4446 (0.4699) loss 3.9693 (3.1708) grad_norm 1.0885 (1.8594/0.7469) mem 16099MB [2025-01-18 05:27:08 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][170/312] eta 0:01:08 lr 0.001822 time 0.5804 (0.4830) model_time 0.5802 (0.4698) loss 3.4007 (3.1567) grad_norm 1.2344 (1.8555/0.7343) mem 16099MB [2025-01-18 05:27:13 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][180/312] eta 0:01:03 lr 0.001822 time 0.4570 (0.4824) model_time 0.4569 (0.4700) loss 2.2647 (3.1653) grad_norm 3.9403 (1.8665/0.7346) mem 16099MB [2025-01-18 05:27:17 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][190/312] eta 0:00:58 lr 0.001821 time 0.4488 (0.4816) model_time 0.4486 (0.4698) loss 3.3336 (3.1680) grad_norm 2.2576 (1.8989/0.7439) mem 16099MB [2025-01-18 05:27:22 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][200/312] eta 0:00:53 lr 0.001820 time 0.4498 (0.4821) model_time 0.4496 (0.4709) loss 3.5129 (3.1723) grad_norm 2.8518 (1.8986/0.7375) mem 16099MB [2025-01-18 05:27:27 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][210/312] eta 0:00:49 lr 0.001820 time 0.4668 (0.4809) model_time 0.4663 (0.4702) loss 3.0424 (3.1855) grad_norm 0.8543 (1.8921/0.7381) mem 16099MB [2025-01-18 05:27:31 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][220/312] eta 0:00:44 lr 0.001819 time 0.4931 (0.4803) model_time 0.4925 (0.4701) loss 2.8986 (3.1889) grad_norm 1.6072 (1.8798/0.7320) mem 16099MB [2025-01-18 05:27:36 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][230/312] eta 0:00:39 lr 0.001818 time 0.4494 (0.4799) model_time 0.4492 (0.4700) loss 3.0375 (3.1898) grad_norm 1.1237 (1.8571/0.7290) mem 16099MB [2025-01-18 05:27:41 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][240/312] eta 0:00:34 lr 0.001818 time 0.4491 (0.4792) model_time 0.4489 (0.4697) loss 3.3262 (3.1904) grad_norm 2.2629 (1.8475/0.7181) mem 16099MB [2025-01-18 05:27:45 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][250/312] eta 0:00:29 lr 0.001817 time 0.4491 (0.4785) model_time 0.4489 (0.4694) loss 3.1236 (3.1814) grad_norm 1.0130 (1.8610/0.7358) mem 16099MB [2025-01-18 05:27:50 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][260/312] eta 0:00:24 lr 0.001816 time 0.4478 (0.4783) model_time 0.4477 (0.4695) loss 3.3565 (3.1885) grad_norm 1.6740 (1.8655/0.7504) mem 16099MB [2025-01-18 05:27:55 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][270/312] eta 0:00:20 lr 0.001816 time 0.4494 (0.4786) model_time 0.4492 (0.4701) loss 3.4535 (3.1951) grad_norm 1.4814 (1.8518/0.7444) mem 16099MB [2025-01-18 05:27:59 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][280/312] eta 0:00:15 lr 0.001815 time 0.4666 (0.4776) model_time 0.4664 (0.4695) loss 3.4354 (3.1963) grad_norm 3.8841 (1.8658/0.7895) mem 16099MB [2025-01-18 05:28:04 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][290/312] eta 0:00:10 lr 0.001814 time 0.4458 (0.4773) model_time 0.4454 (0.4694) loss 3.8077 (3.1993) grad_norm 2.8723 (1.8821/0.8090) mem 16099MB [2025-01-18 05:28:09 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][300/312] eta 0:00:05 lr 0.001814 time 0.4402 (0.4765) model_time 0.4401 (0.4689) loss 2.2924 (3.2004) grad_norm 1.4225 (1.8713/0.8039) mem 16099MB [2025-01-18 05:28:13 internimage_t_1k_224] (main.py 510): INFO Train: [159/300][310/312] eta 0:00:00 lr 0.001813 time 0.4385 (0.4763) model_time 0.4384 (0.4689) loss 3.8584 (3.2093) grad_norm 1.0388 (1.8577/0.8052) mem 16099MB [2025-01-18 05:28:14 internimage_t_1k_224] (main.py 519): INFO EPOCH 159 training takes 0:02:28 [2025-01-18 05:28:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_159.pth saving...... [2025-01-18 05:28:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_159.pth saved !!! [2025-01-18 05:28:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.511 (7.511) Loss 0.8239 (0.8239) Acc@1 82.422 (82.422) Acc@5 96.777 (96.777) Mem 16099MB [2025-01-18 05:28:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.011) Loss 1.1034 (0.9541) Acc@1 74.927 (79.410) Acc@5 93.750 (95.044) Mem 16099MB [2025-01-18 05:28:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:159] * Acc@1 79.305 Acc@5 95.088 [2025-01-18 05:28:26 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.3% [2025-01-18 05:28:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.70% [2025-01-18 05:28:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.437 (8.437) Loss 0.8109 (0.8109) Acc@1 84.131 (84.131) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 05:28:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.115) Loss 1.1082 (0.9422) Acc@1 76.025 (81.050) Acc@5 94.067 (95.659) Mem 16099MB [2025-01-18 05:28:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:159] * Acc@1 80.934 Acc@5 95.691 [2025-01-18 05:28:39 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 80.9% [2025-01-18 05:28:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:28:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:28:40 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.93% [2025-01-18 05:28:42 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][0/312] eta 0:13:03 lr 0.001813 time 2.5112 (2.5112) model_time 0.4802 (0.4802) loss 2.8540 (2.8540) grad_norm 1.0891 (1.0891/0.0000) mem 16099MB [2025-01-18 05:28:47 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][10/312] eta 0:03:19 lr 0.001812 time 0.4592 (0.6605) model_time 0.4587 (0.4755) loss 3.9840 (3.3239) grad_norm 1.4088 (1.0503/0.2315) mem 16099MB [2025-01-18 05:28:52 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][20/312] eta 0:02:45 lr 0.001812 time 0.4412 (0.5668) model_time 0.4409 (0.4697) loss 3.8299 (3.4584) grad_norm 1.6699 (1.4881/0.8583) mem 16099MB [2025-01-18 05:28:56 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][30/312] eta 0:02:30 lr 0.001811 time 0.4512 (0.5344) model_time 0.4510 (0.4686) loss 3.1071 (3.4307) grad_norm 2.2899 (1.7543/0.9427) mem 16099MB [2025-01-18 05:29:01 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][40/312] eta 0:02:20 lr 0.001810 time 0.4668 (0.5167) model_time 0.4666 (0.4668) loss 3.3709 (3.3382) grad_norm 1.7514 (1.7466/0.8607) mem 16099MB [2025-01-18 05:29:06 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][50/312] eta 0:02:13 lr 0.001810 time 0.4518 (0.5086) model_time 0.4516 (0.4684) loss 3.1674 (3.2626) grad_norm 4.7239 (1.8200/0.9198) mem 16099MB [2025-01-18 05:29:10 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][60/312] eta 0:02:05 lr 0.001809 time 0.4547 (0.4995) model_time 0.4545 (0.4659) loss 3.2226 (3.3082) grad_norm 0.9500 (1.7903/0.8639) mem 16099MB [2025-01-18 05:29:15 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][70/312] eta 0:01:59 lr 0.001808 time 0.4552 (0.4947) model_time 0.4550 (0.4657) loss 2.7911 (3.3147) grad_norm 3.4173 (1.8400/0.8609) mem 16099MB [2025-01-18 05:29:20 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][80/312] eta 0:01:53 lr 0.001808 time 0.4612 (0.4908) model_time 0.4608 (0.4654) loss 2.2569 (3.2620) grad_norm 1.0907 (1.8304/0.8297) mem 16099MB [2025-01-18 05:29:24 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][90/312] eta 0:01:48 lr 0.001807 time 0.4395 (0.4890) model_time 0.4394 (0.4663) loss 2.9814 (3.2394) grad_norm 1.4898 (1.8169/0.7925) mem 16099MB [2025-01-18 05:29:29 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][100/312] eta 0:01:43 lr 0.001806 time 0.4518 (0.4864) model_time 0.4516 (0.4659) loss 2.2998 (3.2226) grad_norm 0.9248 (1.8565/0.8899) mem 16099MB [2025-01-18 05:29:34 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][110/312] eta 0:01:38 lr 0.001806 time 0.4379 (0.4855) model_time 0.4376 (0.4669) loss 2.7464 (3.2381) grad_norm 1.9164 (1.8206/0.8663) mem 16099MB [2025-01-18 05:29:39 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][120/312] eta 0:01:33 lr 0.001805 time 0.4707 (0.4852) model_time 0.4704 (0.4681) loss 2.1704 (3.2028) grad_norm 2.1953 (1.8162/0.8435) mem 16099MB [2025-01-18 05:29:43 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][130/312] eta 0:01:27 lr 0.001804 time 0.4599 (0.4835) model_time 0.4594 (0.4676) loss 2.9893 (3.2038) grad_norm 1.2747 (1.8212/0.8703) mem 16099MB [2025-01-18 05:29:48 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][140/312] eta 0:01:23 lr 0.001804 time 0.4415 (0.4827) model_time 0.4412 (0.4679) loss 3.4608 (3.2167) grad_norm 3.4530 (1.8963/0.9533) mem 16099MB [2025-01-18 05:29:52 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][150/312] eta 0:01:17 lr 0.001803 time 0.4423 (0.4807) model_time 0.4416 (0.4669) loss 2.8381 (3.2308) grad_norm 2.1200 (1.9015/0.9349) mem 16099MB [2025-01-18 05:29:57 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][160/312] eta 0:01:13 lr 0.001802 time 0.4392 (0.4804) model_time 0.4391 (0.4674) loss 4.1284 (3.2305) grad_norm 2.2978 (1.8910/0.9150) mem 16099MB [2025-01-18 05:30:02 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][170/312] eta 0:01:08 lr 0.001802 time 0.4407 (0.4802) model_time 0.4404 (0.4679) loss 2.3117 (3.2248) grad_norm 2.0809 (1.8982/0.9010) mem 16099MB [2025-01-18 05:30:07 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][180/312] eta 0:01:03 lr 0.001801 time 0.4501 (0.4789) model_time 0.4496 (0.4673) loss 2.0624 (3.2230) grad_norm 1.4407 (1.8801/0.8828) mem 16099MB [2025-01-18 05:30:11 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][190/312] eta 0:00:58 lr 0.001800 time 0.4344 (0.4775) model_time 0.4340 (0.4665) loss 3.0376 (3.1988) grad_norm 1.1660 (1.8573/0.8730) mem 16099MB [2025-01-18 05:30:16 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][200/312] eta 0:00:53 lr 0.001800 time 0.4515 (0.4764) model_time 0.4510 (0.4659) loss 3.2448 (3.2053) grad_norm 0.9711 (1.8970/0.9240) mem 16099MB [2025-01-18 05:30:20 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][210/312] eta 0:00:48 lr 0.001799 time 0.5347 (0.4761) model_time 0.5345 (0.4661) loss 3.6315 (3.1891) grad_norm 1.2270 (1.8838/0.9102) mem 16099MB [2025-01-18 05:30:25 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][220/312] eta 0:00:43 lr 0.001798 time 0.4586 (0.4750) model_time 0.4584 (0.4655) loss 3.7445 (3.1873) grad_norm 1.6600 (1.8640/0.8975) mem 16099MB [2025-01-18 05:30:29 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][230/312] eta 0:00:38 lr 0.001798 time 0.4498 (0.4742) model_time 0.4493 (0.4650) loss 2.1501 (3.1839) grad_norm 0.9937 (1.8657/0.8863) mem 16099MB [2025-01-18 05:30:34 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][240/312] eta 0:00:34 lr 0.001797 time 0.4426 (0.4744) model_time 0.4424 (0.4656) loss 3.9440 (3.1905) grad_norm 1.1322 (1.8763/0.8783) mem 16099MB [2025-01-18 05:30:39 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][250/312] eta 0:00:29 lr 0.001797 time 0.4506 (0.4740) model_time 0.4505 (0.4655) loss 2.6223 (3.1898) grad_norm 2.1109 (1.9119/0.9107) mem 16099MB [2025-01-18 05:30:44 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][260/312] eta 0:00:24 lr 0.001796 time 0.4638 (0.4742) model_time 0.4636 (0.4661) loss 3.5100 (3.1856) grad_norm 1.2014 (1.9028/0.9067) mem 16099MB [2025-01-18 05:30:48 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][270/312] eta 0:00:19 lr 0.001795 time 0.4414 (0.4737) model_time 0.4412 (0.4659) loss 3.3715 (3.1922) grad_norm 2.6569 (1.8907/0.9049) mem 16099MB [2025-01-18 05:30:53 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][280/312] eta 0:00:15 lr 0.001795 time 0.4523 (0.4737) model_time 0.4521 (0.4661) loss 3.5132 (3.1868) grad_norm 1.5886 (1.8929/0.8978) mem 16099MB [2025-01-18 05:30:58 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][290/312] eta 0:00:10 lr 0.001794 time 0.4402 (0.4733) model_time 0.4400 (0.4659) loss 3.4718 (3.1914) grad_norm 1.7804 (1.8724/0.8913) mem 16099MB [2025-01-18 05:31:02 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][300/312] eta 0:00:05 lr 0.001793 time 0.4406 (0.4724) model_time 0.4405 (0.4653) loss 2.7697 (3.1893) grad_norm 1.4308 (1.8779/0.8877) mem 16099MB [2025-01-18 05:31:07 internimage_t_1k_224] (main.py 510): INFO Train: [160/300][310/312] eta 0:00:00 lr 0.001793 time 0.4378 (0.4717) model_time 0.4376 (0.4648) loss 2.8294 (3.1866) grad_norm 1.1059 (1.8932/0.8793) mem 16099MB [2025-01-18 05:31:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 160 training takes 0:02:27 [2025-01-18 05:31:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_160.pth saving...... [2025-01-18 05:31:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_160.pth saved !!! [2025-01-18 05:31:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.654 (7.654) Loss 0.8425 (0.8425) Acc@1 82.324 (82.324) Acc@5 96.484 (96.484) Mem 16099MB [2025-01-18 05:31:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.001) Loss 1.1221 (0.9555) Acc@1 75.708 (79.690) Acc@5 93.604 (95.093) Mem 16099MB [2025-01-18 05:31:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:160] * Acc@1 79.615 Acc@5 95.128 [2025-01-18 05:31:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.6% [2025-01-18 05:31:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.70% [2025-01-18 05:31:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.255 (8.255) Loss 0.8110 (0.8110) Acc@1 84.155 (84.155) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:31:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.109) Loss 1.1072 (0.9417) Acc@1 76.074 (81.086) Acc@5 94.116 (95.672) Mem 16099MB [2025-01-18 05:31:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:160] * Acc@1 80.972 Acc@5 95.699 [2025-01-18 05:31:32 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.0% [2025-01-18 05:31:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:31:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:31:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 80.97% [2025-01-18 05:31:35 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][0/312] eta 0:13:28 lr 0.001792 time 2.5901 (2.5901) model_time 0.4686 (0.4686) loss 2.6798 (2.6798) grad_norm 1.6277 (1.6277/0.0000) mem 16099MB [2025-01-18 05:31:40 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][10/312] eta 0:03:23 lr 0.001792 time 0.4465 (0.6723) model_time 0.4461 (0.4790) loss 3.5557 (3.0430) grad_norm 1.2170 (1.6089/0.4853) mem 16099MB [2025-01-18 05:31:45 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][20/312] eta 0:02:47 lr 0.001791 time 0.5416 (0.5740) model_time 0.5414 (0.4727) loss 2.8814 (3.1027) grad_norm 1.2732 (1.7297/0.6088) mem 16099MB [2025-01-18 05:31:50 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][30/312] eta 0:02:32 lr 0.001790 time 0.5381 (0.5415) model_time 0.5377 (0.4727) loss 2.5972 (3.0909) grad_norm 1.7053 (1.6570/0.5387) mem 16099MB [2025-01-18 05:31:54 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][40/312] eta 0:02:21 lr 0.001790 time 0.4604 (0.5220) model_time 0.4599 (0.4699) loss 3.6058 (3.1603) grad_norm 1.0820 (1.6288/0.5054) mem 16099MB [2025-01-18 05:31:59 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][50/312] eta 0:02:15 lr 0.001789 time 0.4611 (0.5168) model_time 0.4609 (0.4748) loss 2.9762 (3.1592) grad_norm 1.8055 (1.6686/0.5415) mem 16099MB [2025-01-18 05:32:04 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][60/312] eta 0:02:08 lr 0.001788 time 0.5734 (0.5112) model_time 0.5732 (0.4761) loss 3.0426 (3.1880) grad_norm 1.3729 (1.6089/0.5300) mem 16099MB [2025-01-18 05:32:09 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][70/312] eta 0:02:02 lr 0.001788 time 0.4585 (0.5060) model_time 0.4583 (0.4757) loss 2.1933 (3.1676) grad_norm 2.4469 (1.7264/0.7429) mem 16099MB [2025-01-18 05:32:13 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][80/312] eta 0:01:56 lr 0.001787 time 0.4495 (0.5004) model_time 0.4494 (0.4738) loss 2.9487 (3.1477) grad_norm 1.6315 (1.7325/0.7437) mem 16099MB [2025-01-18 05:32:18 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][90/312] eta 0:01:50 lr 0.001786 time 0.4535 (0.4963) model_time 0.4528 (0.4726) loss 3.3847 (3.1446) grad_norm 1.3025 (1.7213/0.7124) mem 16099MB [2025-01-18 05:32:23 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][100/312] eta 0:01:44 lr 0.001786 time 0.4518 (0.4927) model_time 0.4513 (0.4713) loss 2.9049 (3.1714) grad_norm 2.5616 (1.8283/0.8423) mem 16099MB [2025-01-18 05:32:27 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][110/312] eta 0:01:38 lr 0.001785 time 0.4502 (0.4897) model_time 0.4500 (0.4702) loss 3.3647 (3.1837) grad_norm 1.4234 (1.8663/0.8675) mem 16099MB [2025-01-18 05:32:32 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][120/312] eta 0:01:33 lr 0.001785 time 0.4464 (0.4868) model_time 0.4462 (0.4689) loss 2.6858 (3.1850) grad_norm 2.5192 (1.8723/0.8590) mem 16099MB [2025-01-18 05:32:36 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][130/312] eta 0:01:28 lr 0.001784 time 0.5343 (0.4855) model_time 0.5342 (0.4689) loss 3.9014 (3.1719) grad_norm 2.2788 (1.8758/0.8338) mem 16099MB [2025-01-18 05:32:41 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][140/312] eta 0:01:23 lr 0.001783 time 0.4601 (0.4849) model_time 0.4599 (0.4694) loss 3.8508 (3.1765) grad_norm 1.4716 (1.8507/0.8314) mem 16099MB [2025-01-18 05:32:46 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][150/312] eta 0:01:18 lr 0.001783 time 0.4440 (0.4835) model_time 0.4438 (0.4691) loss 2.4489 (3.1836) grad_norm 1.4434 (1.8195/0.8159) mem 16099MB [2025-01-18 05:32:50 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][160/312] eta 0:01:13 lr 0.001782 time 0.4541 (0.4818) model_time 0.4539 (0.4683) loss 3.4353 (3.1891) grad_norm 3.5103 (1.8491/0.8360) mem 16099MB [2025-01-18 05:32:55 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][170/312] eta 0:01:08 lr 0.001781 time 0.4567 (0.4805) model_time 0.4565 (0.4677) loss 3.5832 (3.2098) grad_norm 1.6012 (1.8798/0.8824) mem 16099MB [2025-01-18 05:33:00 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][180/312] eta 0:01:03 lr 0.001781 time 0.4564 (0.4791) model_time 0.4560 (0.4670) loss 3.8367 (3.2245) grad_norm 1.7010 (1.8630/0.8647) mem 16099MB [2025-01-18 05:33:04 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][190/312] eta 0:00:58 lr 0.001780 time 0.4445 (0.4784) model_time 0.4439 (0.4669) loss 3.8602 (3.2355) grad_norm 1.4166 (1.8719/0.8640) mem 16099MB [2025-01-18 05:33:09 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][200/312] eta 0:00:53 lr 0.001779 time 0.4508 (0.4789) model_time 0.4504 (0.4680) loss 3.6048 (3.2446) grad_norm 2.0874 (1.8553/0.8473) mem 16099MB [2025-01-18 05:33:14 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][210/312] eta 0:00:48 lr 0.001779 time 0.4508 (0.4793) model_time 0.4506 (0.4689) loss 2.2273 (3.2488) grad_norm 2.5576 (1.8649/0.8387) mem 16099MB [2025-01-18 05:33:18 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][220/312] eta 0:00:43 lr 0.001778 time 0.4831 (0.4782) model_time 0.4829 (0.4682) loss 3.5553 (3.2564) grad_norm 1.5336 (1.8543/0.8241) mem 16099MB [2025-01-18 05:33:23 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][230/312] eta 0:00:39 lr 0.001777 time 0.4507 (0.4778) model_time 0.4505 (0.4682) loss 3.4594 (3.2614) grad_norm 1.9763 (1.8768/0.8380) mem 16099MB [2025-01-18 05:33:28 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][240/312] eta 0:00:34 lr 0.001777 time 0.4473 (0.4781) model_time 0.4471 (0.4690) loss 2.7974 (3.2646) grad_norm 1.4140 (1.8517/0.8342) mem 16099MB [2025-01-18 05:33:33 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][250/312] eta 0:00:29 lr 0.001776 time 0.4377 (0.4786) model_time 0.4375 (0.4698) loss 2.1106 (3.2580) grad_norm 1.6880 (1.8399/0.8249) mem 16099MB [2025-01-18 05:33:38 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][260/312] eta 0:00:24 lr 0.001775 time 0.4479 (0.4780) model_time 0.4474 (0.4695) loss 4.0124 (3.2512) grad_norm 1.5185 (1.8430/0.8154) mem 16099MB [2025-01-18 05:33:42 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][270/312] eta 0:00:20 lr 0.001775 time 0.4458 (0.4774) model_time 0.4456 (0.4692) loss 3.5635 (3.2548) grad_norm 1.1097 (1.8310/0.8123) mem 16099MB [2025-01-18 05:33:47 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][280/312] eta 0:00:15 lr 0.001774 time 0.5288 (0.4779) model_time 0.5286 (0.4699) loss 3.4596 (3.2518) grad_norm 1.8667 (1.8295/0.8016) mem 16099MB [2025-01-18 05:33:52 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][290/312] eta 0:00:10 lr 0.001773 time 0.4418 (0.4775) model_time 0.4414 (0.4699) loss 2.8869 (3.2454) grad_norm 1.3883 (1.8464/0.8145) mem 16099MB [2025-01-18 05:33:56 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][300/312] eta 0:00:05 lr 0.001773 time 0.4382 (0.4769) model_time 0.4381 (0.4694) loss 2.8707 (3.2423) grad_norm 2.1034 (1.8494/0.8260) mem 16099MB [2025-01-18 05:34:01 internimage_t_1k_224] (main.py 510): INFO Train: [161/300][310/312] eta 0:00:00 lr 0.001772 time 0.4357 (0.4759) model_time 0.4356 (0.4687) loss 3.8887 (3.2522) grad_norm 4.8049 (1.8864/0.8586) mem 16099MB [2025-01-18 05:34:01 internimage_t_1k_224] (main.py 519): INFO EPOCH 161 training takes 0:02:28 [2025-01-18 05:34:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_161.pth saving...... [2025-01-18 05:34:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_161.pth saved !!! [2025-01-18 05:34:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.534 (7.534) Loss 0.8046 (0.8046) Acc@1 82.739 (82.739) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 05:34:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.016) Loss 1.1211 (0.9375) Acc@1 74.365 (79.599) Acc@5 93.433 (95.157) Mem 16099MB [2025-01-18 05:34:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:161] * Acc@1 79.541 Acc@5 95.188 [2025-01-18 05:34:14 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.5% [2025-01-18 05:34:14 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.70% [2025-01-18 05:34:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.249 (8.249) Loss 0.8111 (0.8111) Acc@1 84.204 (84.204) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:34:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.118) Loss 1.1063 (0.9415) Acc@1 76.123 (81.146) Acc@5 94.141 (95.670) Mem 16099MB [2025-01-18 05:34:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:161] * Acc@1 81.028 Acc@5 95.697 [2025-01-18 05:34:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.0% [2025-01-18 05:34:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:34:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:34:27 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.03% [2025-01-18 05:34:29 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][0/312] eta 0:10:28 lr 0.001772 time 2.0129 (2.0129) model_time 0.4878 (0.4878) loss 3.5596 (3.5596) grad_norm 1.9432 (1.9432/0.0000) mem 16099MB [2025-01-18 05:34:34 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][10/312] eta 0:03:05 lr 0.001771 time 0.4543 (0.6153) model_time 0.4539 (0.4763) loss 3.3946 (3.4164) grad_norm 2.6766 (2.1224/0.6701) mem 16099MB [2025-01-18 05:34:39 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][20/312] eta 0:02:39 lr 0.001771 time 0.4496 (0.5453) model_time 0.4494 (0.4724) loss 2.7003 (3.2827) grad_norm 1.9871 (1.8853/0.6404) mem 16099MB [2025-01-18 05:34:43 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][30/312] eta 0:02:25 lr 0.001770 time 0.4659 (0.5162) model_time 0.4654 (0.4667) loss 3.4217 (3.3078) grad_norm 0.9435 (1.7212/0.6199) mem 16099MB [2025-01-18 05:34:48 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][40/312] eta 0:02:17 lr 0.001769 time 0.4554 (0.5041) model_time 0.4552 (0.4665) loss 3.9395 (3.2926) grad_norm 2.0212 (1.8016/0.7659) mem 16099MB [2025-01-18 05:34:53 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][50/312] eta 0:02:09 lr 0.001769 time 0.4495 (0.4955) model_time 0.4489 (0.4652) loss 2.7351 (3.2605) grad_norm 1.2929 (1.7193/0.7137) mem 16099MB [2025-01-18 05:34:57 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][60/312] eta 0:02:03 lr 0.001768 time 0.4475 (0.4893) model_time 0.4473 (0.4639) loss 3.8221 (3.2020) grad_norm 1.5009 (1.8191/0.7462) mem 16099MB [2025-01-18 05:35:02 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][70/312] eta 0:01:57 lr 0.001767 time 0.4530 (0.4868) model_time 0.4526 (0.4649) loss 3.2889 (3.1878) grad_norm 1.1154 (1.8710/0.8034) mem 16099MB [2025-01-18 05:35:07 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][80/312] eta 0:01:52 lr 0.001767 time 0.4382 (0.4839) model_time 0.4377 (0.4647) loss 2.7843 (3.1572) grad_norm 0.7974 (1.8618/0.7837) mem 16099MB [2025-01-18 05:35:11 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][90/312] eta 0:01:46 lr 0.001766 time 0.4494 (0.4814) model_time 0.4493 (0.4642) loss 2.5786 (3.1296) grad_norm 1.7932 (1.8828/0.8018) mem 16099MB [2025-01-18 05:35:16 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][100/312] eta 0:01:41 lr 0.001765 time 0.4640 (0.4804) model_time 0.4638 (0.4649) loss 3.3360 (3.1530) grad_norm 1.2139 (1.8854/0.8029) mem 16099MB [2025-01-18 05:35:21 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][110/312] eta 0:01:36 lr 0.001765 time 0.4540 (0.4784) model_time 0.4539 (0.4643) loss 2.6562 (3.1237) grad_norm 1.2575 (1.8402/0.7829) mem 16099MB [2025-01-18 05:35:25 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][120/312] eta 0:01:31 lr 0.001764 time 0.4740 (0.4771) model_time 0.4738 (0.4642) loss 3.5832 (3.1400) grad_norm 3.3229 (1.8408/0.7818) mem 16099MB [2025-01-18 05:35:30 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][130/312] eta 0:01:26 lr 0.001763 time 0.4540 (0.4764) model_time 0.4538 (0.4644) loss 3.8535 (3.1523) grad_norm 1.5372 (1.8073/0.7711) mem 16099MB [2025-01-18 05:35:35 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][140/312] eta 0:01:22 lr 0.001763 time 0.5698 (0.4780) model_time 0.5697 (0.4668) loss 3.7533 (3.1545) grad_norm 1.4308 (1.7849/0.7575) mem 16099MB [2025-01-18 05:35:39 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][150/312] eta 0:01:17 lr 0.001762 time 0.4507 (0.4770) model_time 0.4505 (0.4665) loss 3.8788 (3.1771) grad_norm 4.1735 (1.8610/0.8485) mem 16099MB [2025-01-18 05:35:44 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][160/312] eta 0:01:12 lr 0.001761 time 0.4698 (0.4766) model_time 0.4697 (0.4667) loss 2.7187 (3.1916) grad_norm 2.1004 (1.8737/0.8527) mem 16099MB [2025-01-18 05:35:49 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][170/312] eta 0:01:07 lr 0.001761 time 0.4583 (0.4759) model_time 0.4582 (0.4666) loss 3.5146 (3.1986) grad_norm 1.3684 (1.8557/0.8359) mem 16099MB [2025-01-18 05:35:53 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][180/312] eta 0:01:02 lr 0.001760 time 0.4462 (0.4748) model_time 0.4457 (0.4660) loss 3.6009 (3.2109) grad_norm 1.9895 (1.8376/0.8222) mem 16099MB [2025-01-18 05:35:58 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][190/312] eta 0:00:57 lr 0.001759 time 0.5451 (0.4746) model_time 0.5450 (0.4663) loss 3.5506 (3.2122) grad_norm 2.0793 (1.8509/0.8200) mem 16099MB [2025-01-18 05:36:03 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][200/312] eta 0:00:53 lr 0.001759 time 0.4520 (0.4750) model_time 0.4515 (0.4671) loss 3.8915 (3.2174) grad_norm 1.3885 (1.8454/0.8086) mem 16099MB [2025-01-18 05:36:07 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][210/312] eta 0:00:48 lr 0.001758 time 0.4492 (0.4741) model_time 0.4488 (0.4665) loss 3.4633 (3.2048) grad_norm 1.9946 (1.8329/0.7966) mem 16099MB [2025-01-18 05:36:12 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][220/312] eta 0:00:43 lr 0.001757 time 0.4524 (0.4736) model_time 0.4522 (0.4663) loss 2.9276 (3.1916) grad_norm 1.7838 (1.8536/0.7984) mem 16099MB [2025-01-18 05:36:17 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][230/312] eta 0:00:38 lr 0.001757 time 0.5350 (0.4732) model_time 0.5346 (0.4662) loss 2.8163 (3.1872) grad_norm 1.6661 (1.8421/0.7993) mem 16099MB [2025-01-18 05:36:21 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][240/312] eta 0:00:34 lr 0.001756 time 0.4489 (0.4725) model_time 0.4485 (0.4658) loss 2.8162 (3.1730) grad_norm 1.3487 (1.8706/0.8235) mem 16099MB [2025-01-18 05:36:26 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][250/312] eta 0:00:29 lr 0.001755 time 0.4432 (0.4724) model_time 0.4427 (0.4659) loss 3.0718 (3.1707) grad_norm 0.8887 (1.8755/0.8289) mem 16099MB [2025-01-18 05:36:31 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][260/312] eta 0:00:24 lr 0.001755 time 0.4527 (0.4719) model_time 0.4523 (0.4657) loss 3.5532 (3.1653) grad_norm 1.0588 (1.8667/0.8276) mem 16099MB [2025-01-18 05:36:35 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][270/312] eta 0:00:19 lr 0.001754 time 0.4482 (0.4723) model_time 0.4478 (0.4663) loss 3.4457 (3.1680) grad_norm 1.5982 (1.8473/0.8191) mem 16099MB [2025-01-18 05:36:40 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][280/312] eta 0:00:15 lr 0.001753 time 0.4429 (0.4720) model_time 0.4424 (0.4662) loss 3.8441 (3.1624) grad_norm 1.7921 (1.8704/0.8358) mem 16099MB [2025-01-18 05:36:45 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][290/312] eta 0:00:10 lr 0.001753 time 0.4479 (0.4723) model_time 0.4475 (0.4667) loss 3.0779 (3.1711) grad_norm 1.0733 (1.8591/0.8267) mem 16099MB [2025-01-18 05:36:50 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][300/312] eta 0:00:05 lr 0.001752 time 0.4397 (0.4721) model_time 0.4396 (0.4667) loss 3.3134 (3.1757) grad_norm 5.1759 (1.8659/0.8407) mem 16099MB [2025-01-18 05:36:54 internimage_t_1k_224] (main.py 510): INFO Train: [162/300][310/312] eta 0:00:00 lr 0.001751 time 0.4393 (0.4715) model_time 0.4392 (0.4662) loss 3.4918 (3.1842) grad_norm 2.3717 (1.8736/0.8518) mem 16099MB [2025-01-18 05:36:54 internimage_t_1k_224] (main.py 519): INFO EPOCH 162 training takes 0:02:27 [2025-01-18 05:36:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_162.pth saving...... [2025-01-18 05:36:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_162.pth saved !!! [2025-01-18 05:37:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.481 (7.481) Loss 0.8353 (0.8353) Acc@1 82.642 (82.642) Acc@5 96.606 (96.606) Mem 16099MB [2025-01-18 05:37:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.994) Loss 1.1110 (0.9587) Acc@1 74.902 (79.756) Acc@5 93.579 (95.086) Mem 16099MB [2025-01-18 05:37:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:162] * Acc@1 79.657 Acc@5 95.150 [2025-01-18 05:37:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.7% [2025-01-18 05:37:07 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.70% [2025-01-18 05:37:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.204 (8.204) Loss 0.8111 (0.8111) Acc@1 84.302 (84.302) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:37:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.111) Loss 1.1052 (0.9411) Acc@1 76.245 (81.203) Acc@5 94.141 (95.694) Mem 16099MB [2025-01-18 05:37:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:162] * Acc@1 81.076 Acc@5 95.717 [2025-01-18 05:37:19 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.1% [2025-01-18 05:37:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:37:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:37:20 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.08% [2025-01-18 05:37:22 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][0/312] eta 0:10:05 lr 0.001751 time 1.9407 (1.9407) model_time 0.4855 (0.4855) loss 2.9543 (2.9543) grad_norm 1.5214 (1.5214/0.0000) mem 16099MB [2025-01-18 05:37:27 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][10/312] eta 0:03:06 lr 0.001751 time 0.5480 (0.6173) model_time 0.5476 (0.4848) loss 3.3763 (3.5140) grad_norm 1.1540 (2.0016/0.9539) mem 16099MB [2025-01-18 05:37:32 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][20/312] eta 0:02:38 lr 0.001750 time 0.4492 (0.5443) model_time 0.4491 (0.4747) loss 3.9513 (3.4251) grad_norm 1.1633 (1.7822/0.8955) mem 16099MB [2025-01-18 05:37:36 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][30/312] eta 0:02:26 lr 0.001749 time 0.4534 (0.5182) model_time 0.4530 (0.4710) loss 3.4366 (3.3797) grad_norm 1.8325 (1.6510/0.7918) mem 16099MB [2025-01-18 05:37:41 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][40/312] eta 0:02:16 lr 0.001749 time 0.4470 (0.5026) model_time 0.4469 (0.4668) loss 3.3782 (3.3873) grad_norm 1.6552 (1.6577/0.7174) mem 16099MB [2025-01-18 05:37:45 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][50/312] eta 0:02:09 lr 0.001748 time 0.4404 (0.4936) model_time 0.4403 (0.4647) loss 3.3740 (3.3495) grad_norm 2.1045 (1.6354/0.6560) mem 16099MB [2025-01-18 05:37:50 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][60/312] eta 0:02:03 lr 0.001747 time 0.4400 (0.4883) model_time 0.4395 (0.4642) loss 3.5982 (3.3501) grad_norm 0.8181 (1.6331/0.6343) mem 16099MB [2025-01-18 05:37:55 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][70/312] eta 0:01:56 lr 0.001747 time 0.4481 (0.4834) model_time 0.4479 (0.4626) loss 2.9639 (3.3542) grad_norm 3.0966 (1.7085/0.6555) mem 16099MB [2025-01-18 05:37:59 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][80/312] eta 0:01:51 lr 0.001746 time 0.4503 (0.4798) model_time 0.4499 (0.4615) loss 2.7274 (3.3177) grad_norm 3.7708 (1.8439/0.9097) mem 16099MB [2025-01-18 05:38:04 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][90/312] eta 0:01:45 lr 0.001745 time 0.4530 (0.4774) model_time 0.4528 (0.4611) loss 2.5302 (3.3076) grad_norm 1.3852 (1.8219/0.8743) mem 16099MB [2025-01-18 05:38:08 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][100/312] eta 0:01:41 lr 0.001745 time 0.4493 (0.4766) model_time 0.4491 (0.4618) loss 3.0245 (3.3015) grad_norm 1.1155 (1.8118/0.8489) mem 16099MB [2025-01-18 05:38:13 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][110/312] eta 0:01:35 lr 0.001744 time 0.4618 (0.4745) model_time 0.4617 (0.4611) loss 2.1248 (3.2779) grad_norm 2.4134 (1.8448/0.8564) mem 16099MB [2025-01-18 05:38:18 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][120/312] eta 0:01:31 lr 0.001743 time 0.4458 (0.4756) model_time 0.4456 (0.4632) loss 3.5132 (3.2852) grad_norm 1.3728 (1.8085/0.8340) mem 16099MB [2025-01-18 05:38:23 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][130/312] eta 0:01:26 lr 0.001743 time 0.4559 (0.4753) model_time 0.4557 (0.4639) loss 2.6623 (3.2571) grad_norm 1.3333 (1.8158/0.8136) mem 16099MB [2025-01-18 05:38:27 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][140/312] eta 0:01:21 lr 0.001742 time 0.5249 (0.4763) model_time 0.5248 (0.4656) loss 4.0637 (3.2394) grad_norm 1.5937 (1.8363/0.8162) mem 16099MB [2025-01-18 05:38:32 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][150/312] eta 0:01:17 lr 0.001741 time 0.4497 (0.4766) model_time 0.4493 (0.4666) loss 2.4297 (3.2347) grad_norm 1.2785 (1.8408/0.8138) mem 16099MB [2025-01-18 05:38:37 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][160/312] eta 0:01:12 lr 0.001741 time 0.4531 (0.4763) model_time 0.4527 (0.4669) loss 3.4558 (3.2298) grad_norm 3.3656 (1.8613/0.8551) mem 16099MB [2025-01-18 05:38:42 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][170/312] eta 0:01:07 lr 0.001740 time 0.4535 (0.4757) model_time 0.4531 (0.4669) loss 3.2701 (3.2250) grad_norm 1.3126 (1.8379/0.8365) mem 16099MB [2025-01-18 05:38:46 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][180/312] eta 0:01:02 lr 0.001739 time 0.4518 (0.4759) model_time 0.4513 (0.4675) loss 3.4490 (3.2323) grad_norm 1.1071 (1.8244/0.8277) mem 16099MB [2025-01-18 05:38:51 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][190/312] eta 0:00:57 lr 0.001739 time 0.5469 (0.4752) model_time 0.5468 (0.4672) loss 3.5066 (3.2343) grad_norm 1.6727 (1.8171/0.8287) mem 16099MB [2025-01-18 05:38:56 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][200/312] eta 0:00:53 lr 0.001738 time 0.4568 (0.4746) model_time 0.4563 (0.4670) loss 3.2542 (3.2294) grad_norm 1.3965 (1.8005/0.8211) mem 16099MB [2025-01-18 05:39:00 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][210/312] eta 0:00:48 lr 0.001737 time 0.4502 (0.4741) model_time 0.4501 (0.4669) loss 3.3516 (3.2279) grad_norm 4.1730 (1.8204/0.8356) mem 16099MB [2025-01-18 05:39:05 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][220/312] eta 0:00:43 lr 0.001737 time 0.4534 (0.4735) model_time 0.4529 (0.4665) loss 2.0249 (3.2148) grad_norm 4.6112 (1.8390/0.8462) mem 16099MB [2025-01-18 05:39:10 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][230/312] eta 0:00:38 lr 0.001736 time 0.4580 (0.4732) model_time 0.4575 (0.4666) loss 2.5763 (3.2155) grad_norm 1.4841 (1.8597/0.8724) mem 16099MB [2025-01-18 05:39:14 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][240/312] eta 0:00:34 lr 0.001735 time 0.4450 (0.4723) model_time 0.4447 (0.4659) loss 3.5113 (3.2230) grad_norm 1.8551 (1.8812/0.8868) mem 16099MB [2025-01-18 05:39:19 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][250/312] eta 0:00:29 lr 0.001735 time 0.4536 (0.4719) model_time 0.4534 (0.4658) loss 3.2933 (3.2204) grad_norm 1.8737 (1.8650/0.8768) mem 16099MB [2025-01-18 05:39:23 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][260/312] eta 0:00:24 lr 0.001734 time 0.4526 (0.4718) model_time 0.4525 (0.4659) loss 4.2164 (3.2232) grad_norm 1.9615 (1.8745/0.8662) mem 16099MB [2025-01-18 05:39:28 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][270/312] eta 0:00:19 lr 0.001734 time 0.4583 (0.4711) model_time 0.4582 (0.4654) loss 3.3562 (3.2195) grad_norm 0.9045 (1.8677/0.8540) mem 16099MB [2025-01-18 05:39:32 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][280/312] eta 0:00:15 lr 0.001733 time 0.4409 (0.4705) model_time 0.4404 (0.4649) loss 2.4670 (3.2025) grad_norm 4.4386 (1.8795/0.8639) mem 16099MB [2025-01-18 05:39:37 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][290/312] eta 0:00:10 lr 0.001732 time 0.4518 (0.4707) model_time 0.4516 (0.4654) loss 2.5553 (3.2004) grad_norm 2.1740 (1.8888/0.8642) mem 16099MB [2025-01-18 05:39:42 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][300/312] eta 0:00:05 lr 0.001732 time 0.4381 (0.4707) model_time 0.4380 (0.4655) loss 3.3993 (3.2039) grad_norm 1.2133 (1.9117/0.8859) mem 16099MB [2025-01-18 05:39:47 internimage_t_1k_224] (main.py 510): INFO Train: [163/300][310/312] eta 0:00:00 lr 0.001731 time 0.4384 (0.4705) model_time 0.4383 (0.4654) loss 3.2414 (3.2099) grad_norm 0.8293 (1.8956/0.8782) mem 16099MB [2025-01-18 05:39:47 internimage_t_1k_224] (main.py 519): INFO EPOCH 163 training takes 0:02:26 [2025-01-18 05:39:47 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_163.pth saving...... [2025-01-18 05:39:48 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_163.pth saved !!! [2025-01-18 05:39:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.456 (7.456) Loss 0.8298 (0.8298) Acc@1 82.715 (82.715) Acc@5 96.558 (96.558) Mem 16099MB [2025-01-18 05:39:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.013) Loss 1.1274 (0.9595) Acc@1 74.707 (79.823) Acc@5 93.896 (95.173) Mem 16099MB [2025-01-18 05:39:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:163] * Acc@1 79.810 Acc@5 95.216 [2025-01-18 05:39:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.8% [2025-01-18 05:39:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:40:01 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:40:01 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.81% [2025-01-18 05:40:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.610 (7.610) Loss 0.8109 (0.8109) Acc@1 84.277 (84.277) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 05:40:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.006) Loss 1.1038 (0.9404) Acc@1 76.270 (81.228) Acc@5 94.238 (95.688) Mem 16099MB [2025-01-18 05:40:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:163] * Acc@1 81.106 Acc@5 95.711 [2025-01-18 05:40:12 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.1% [2025-01-18 05:40:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:40:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:40:13 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.11% [2025-01-18 05:40:15 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][0/312] eta 0:11:06 lr 0.001731 time 2.1353 (2.1353) model_time 0.4680 (0.4680) loss 3.5298 (3.5298) grad_norm 0.8358 (0.8358/0.0000) mem 16099MB [2025-01-18 05:40:20 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][10/312] eta 0:03:05 lr 0.001730 time 0.4436 (0.6135) model_time 0.4435 (0.4616) loss 2.6436 (3.0657) grad_norm 2.6612 (1.6348/0.6260) mem 16099MB [2025-01-18 05:40:24 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][20/312] eta 0:02:38 lr 0.001729 time 0.5502 (0.5423) model_time 0.5499 (0.4626) loss 2.1981 (3.1381) grad_norm 2.8142 (1.8506/0.7421) mem 16099MB [2025-01-18 05:40:29 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][30/312] eta 0:02:27 lr 0.001729 time 0.4534 (0.5225) model_time 0.4529 (0.4683) loss 3.5199 (3.1831) grad_norm 1.8968 (2.0655/0.9832) mem 16099MB [2025-01-18 05:40:34 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][40/312] eta 0:02:18 lr 0.001728 time 0.4475 (0.5087) model_time 0.4473 (0.4677) loss 3.4356 (3.1176) grad_norm 0.9808 (1.9895/0.9219) mem 16099MB [2025-01-18 05:40:38 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][50/312] eta 0:02:10 lr 0.001727 time 0.4556 (0.4979) model_time 0.4553 (0.4648) loss 3.6350 (3.0803) grad_norm 2.0969 (1.8854/0.8739) mem 16099MB [2025-01-18 05:40:43 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][60/312] eta 0:02:03 lr 0.001727 time 0.4561 (0.4907) model_time 0.4559 (0.4630) loss 3.4501 (3.0653) grad_norm 0.8597 (2.0145/1.0204) mem 16099MB [2025-01-18 05:40:48 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][70/312] eta 0:01:57 lr 0.001726 time 0.4453 (0.4855) model_time 0.4449 (0.4617) loss 3.8528 (3.0373) grad_norm 3.0772 (2.0672/1.0458) mem 16099MB [2025-01-18 05:40:52 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][80/312] eta 0:01:52 lr 0.001725 time 0.4401 (0.4836) model_time 0.4399 (0.4626) loss 2.6986 (3.0162) grad_norm 1.6868 (1.9848/1.0115) mem 16099MB [2025-01-18 05:40:57 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][90/312] eta 0:01:46 lr 0.001725 time 0.4521 (0.4801) model_time 0.4516 (0.4613) loss 3.4830 (3.0245) grad_norm 1.8932 (1.9107/0.9857) mem 16099MB [2025-01-18 05:41:01 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][100/312] eta 0:01:41 lr 0.001724 time 0.4580 (0.4792) model_time 0.4576 (0.4623) loss 3.7847 (3.0579) grad_norm 3.9350 (1.9360/0.9817) mem 16099MB [2025-01-18 05:41:06 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][110/312] eta 0:01:36 lr 0.001724 time 0.5363 (0.4774) model_time 0.5361 (0.4620) loss 3.2031 (3.0683) grad_norm 1.7744 (1.8876/0.9582) mem 16099MB [2025-01-18 05:41:11 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][120/312] eta 0:01:31 lr 0.001723 time 0.5393 (0.4786) model_time 0.5388 (0.4645) loss 3.8274 (3.0711) grad_norm 1.3429 (1.8731/0.9453) mem 16099MB [2025-01-18 05:41:16 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][130/312] eta 0:01:26 lr 0.001722 time 0.4780 (0.4779) model_time 0.4778 (0.4648) loss 2.9747 (3.1036) grad_norm 1.6090 (1.8857/0.9303) mem 16099MB [2025-01-18 05:41:20 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][140/312] eta 0:01:22 lr 0.001722 time 0.4582 (0.4771) model_time 0.4577 (0.4649) loss 3.3451 (3.0917) grad_norm 2.7996 (1.9063/0.9258) mem 16099MB [2025-01-18 05:41:25 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][150/312] eta 0:01:17 lr 0.001721 time 0.4456 (0.4769) model_time 0.4451 (0.4655) loss 2.1266 (3.0750) grad_norm 2.3335 (1.8972/0.9057) mem 16099MB [2025-01-18 05:41:30 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][160/312] eta 0:01:12 lr 0.001720 time 0.4839 (0.4757) model_time 0.4835 (0.4650) loss 2.5618 (3.0814) grad_norm 1.5717 (1.8875/0.8928) mem 16099MB [2025-01-18 05:41:34 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][170/312] eta 0:01:07 lr 0.001720 time 0.4479 (0.4745) model_time 0.4475 (0.4644) loss 3.3503 (3.0902) grad_norm 2.1344 (1.8866/0.8760) mem 16099MB [2025-01-18 05:41:39 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][180/312] eta 0:01:02 lr 0.001719 time 0.4632 (0.4739) model_time 0.4630 (0.4643) loss 3.6565 (3.1024) grad_norm 1.5744 (1.8965/0.8741) mem 16099MB [2025-01-18 05:41:43 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][190/312] eta 0:00:57 lr 0.001718 time 0.4588 (0.4733) model_time 0.4584 (0.4642) loss 3.8018 (3.1150) grad_norm 1.7509 (1.9231/0.8925) mem 16099MB [2025-01-18 05:41:48 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][200/312] eta 0:00:52 lr 0.001718 time 0.4802 (0.4726) model_time 0.4800 (0.4639) loss 3.8472 (3.1202) grad_norm 4.6444 (1.9539/0.9155) mem 16099MB [2025-01-18 05:41:53 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][210/312] eta 0:00:48 lr 0.001717 time 0.4717 (0.4721) model_time 0.4712 (0.4639) loss 3.2733 (3.1124) grad_norm 1.2767 (1.9416/0.9024) mem 16099MB [2025-01-18 05:41:57 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][220/312] eta 0:00:43 lr 0.001716 time 0.4519 (0.4717) model_time 0.4515 (0.4637) loss 3.5291 (3.1220) grad_norm 1.6813 (1.9552/0.8939) mem 16099MB [2025-01-18 05:42:02 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][230/312] eta 0:00:38 lr 0.001716 time 0.4447 (0.4714) model_time 0.4442 (0.4638) loss 3.1944 (3.1253) grad_norm 1.3030 (1.9411/0.8797) mem 16099MB [2025-01-18 05:42:06 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][240/312] eta 0:00:33 lr 0.001715 time 0.4580 (0.4707) model_time 0.4578 (0.4634) loss 3.2834 (3.1244) grad_norm 1.5122 (1.9249/0.8696) mem 16099MB [2025-01-18 05:42:11 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][250/312] eta 0:00:29 lr 0.001714 time 0.4719 (0.4708) model_time 0.4714 (0.4638) loss 3.4899 (3.1371) grad_norm 1.2337 (1.9331/0.8703) mem 16099MB [2025-01-18 05:42:16 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][260/312] eta 0:00:24 lr 0.001714 time 0.4551 (0.4711) model_time 0.4547 (0.4643) loss 2.5851 (3.1429) grad_norm 1.0559 (1.9086/0.8638) mem 16099MB [2025-01-18 05:42:21 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][270/312] eta 0:00:19 lr 0.001713 time 0.4469 (0.4708) model_time 0.4467 (0.4643) loss 3.6350 (3.1407) grad_norm 2.8172 (1.9164/0.8658) mem 16099MB [2025-01-18 05:42:25 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][280/312] eta 0:00:15 lr 0.001712 time 0.4462 (0.4702) model_time 0.4460 (0.4639) loss 3.2352 (3.1468) grad_norm 2.7085 (1.9306/0.8578) mem 16099MB [2025-01-18 05:42:30 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][290/312] eta 0:00:10 lr 0.001712 time 0.4435 (0.4711) model_time 0.4430 (0.4650) loss 2.8856 (3.1463) grad_norm 1.3719 (1.9324/0.8556) mem 16099MB [2025-01-18 05:42:35 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][300/312] eta 0:00:05 lr 0.001711 time 0.4411 (0.4709) model_time 0.4410 (0.4650) loss 3.0279 (3.1511) grad_norm 1.9248 (1.9403/0.8638) mem 16099MB [2025-01-18 05:42:39 internimage_t_1k_224] (main.py 510): INFO Train: [164/300][310/312] eta 0:00:00 lr 0.001710 time 0.4370 (0.4702) model_time 0.4369 (0.4645) loss 2.2170 (3.1443) grad_norm 1.0257 (1.9296/0.8648) mem 16099MB [2025-01-18 05:42:40 internimage_t_1k_224] (main.py 519): INFO EPOCH 164 training takes 0:02:26 [2025-01-18 05:42:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_164.pth saving...... [2025-01-18 05:42:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_164.pth saved !!! [2025-01-18 05:42:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.802 (7.802) Loss 0.7975 (0.7975) Acc@1 82.886 (82.886) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 05:42:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.041) Loss 1.1470 (0.9571) Acc@1 74.902 (79.512) Acc@5 93.164 (95.088) Mem 16099MB [2025-01-18 05:42:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:164] * Acc@1 79.455 Acc@5 95.106 [2025-01-18 05:42:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.5% [2025-01-18 05:42:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.81% [2025-01-18 05:43:01 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.412 (8.412) Loss 0.8108 (0.8108) Acc@1 84.302 (84.302) Acc@5 97.192 (97.192) Mem 16099MB [2025-01-18 05:43:05 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.128) Loss 1.1026 (0.9399) Acc@1 76.294 (81.286) Acc@5 94.214 (95.701) Mem 16099MB [2025-01-18 05:43:05 internimage_t_1k_224] (main.py 575): INFO [Epoch:164] * Acc@1 81.164 Acc@5 95.727 [2025-01-18 05:43:05 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.2% [2025-01-18 05:43:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:43:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:43:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.16% [2025-01-18 05:43:08 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][0/312] eta 0:09:56 lr 0.001710 time 1.9134 (1.9134) model_time 0.5192 (0.5192) loss 2.6114 (2.6114) grad_norm 1.7010 (1.7010/0.0000) mem 16099MB [2025-01-18 05:43:13 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][10/312] eta 0:03:09 lr 0.001710 time 0.4569 (0.6262) model_time 0.4565 (0.4991) loss 2.1517 (2.9044) grad_norm 1.3597 (1.8809/0.6783) mem 16099MB [2025-01-18 05:43:18 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][20/312] eta 0:02:39 lr 0.001709 time 0.4625 (0.5445) model_time 0.4623 (0.4778) loss 3.3178 (3.1120) grad_norm 1.3797 (1.7664/0.5808) mem 16099MB [2025-01-18 05:43:23 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][30/312] eta 0:02:30 lr 0.001708 time 0.5407 (0.5343) model_time 0.5405 (0.4890) loss 3.5385 (3.1302) grad_norm 1.0547 (1.8669/0.7598) mem 16099MB [2025-01-18 05:43:27 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][40/312] eta 0:02:20 lr 0.001708 time 0.4652 (0.5180) model_time 0.4648 (0.4836) loss 2.9429 (3.1492) grad_norm 1.6498 (1.8276/0.7220) mem 16099MB [2025-01-18 05:43:32 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][50/312] eta 0:02:13 lr 0.001707 time 0.4583 (0.5092) model_time 0.4578 (0.4815) loss 4.0884 (3.2190) grad_norm 2.9596 (1.7511/0.7256) mem 16099MB [2025-01-18 05:43:37 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][60/312] eta 0:02:06 lr 0.001706 time 0.4404 (0.5034) model_time 0.4400 (0.4801) loss 3.1151 (3.2333) grad_norm 1.3920 (1.7964/0.7035) mem 16099MB [2025-01-18 05:43:42 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][70/312] eta 0:02:00 lr 0.001706 time 0.5428 (0.4989) model_time 0.5426 (0.4789) loss 2.8132 (3.1879) grad_norm 2.7495 (1.9145/0.7825) mem 16099MB [2025-01-18 05:43:46 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][80/312] eta 0:01:54 lr 0.001705 time 0.4536 (0.4950) model_time 0.4531 (0.4774) loss 2.1813 (3.2155) grad_norm 2.1534 (1.9467/0.8044) mem 16099MB [2025-01-18 05:43:51 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][90/312] eta 0:01:48 lr 0.001704 time 0.4532 (0.4903) model_time 0.4531 (0.4746) loss 2.1243 (3.1861) grad_norm 1.4830 (1.9179/0.7859) mem 16099MB [2025-01-18 05:43:55 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][100/312] eta 0:01:43 lr 0.001704 time 0.4734 (0.4869) model_time 0.4732 (0.4727) loss 3.3362 (3.1945) grad_norm 0.9860 (1.9250/0.7881) mem 16099MB [2025-01-18 05:44:00 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][110/312] eta 0:01:37 lr 0.001703 time 0.4563 (0.4848) model_time 0.4562 (0.4718) loss 3.8518 (3.1937) grad_norm 1.7674 (1.9179/0.7794) mem 16099MB [2025-01-18 05:44:05 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][120/312] eta 0:01:32 lr 0.001702 time 0.5576 (0.4829) model_time 0.5575 (0.4710) loss 3.5979 (3.2034) grad_norm 1.7796 (1.9557/0.8234) mem 16099MB [2025-01-18 05:44:09 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][130/312] eta 0:01:27 lr 0.001702 time 0.4475 (0.4810) model_time 0.4472 (0.4700) loss 3.8432 (3.2262) grad_norm 2.5799 (2.0072/0.8780) mem 16099MB [2025-01-18 05:44:14 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][140/312] eta 0:01:22 lr 0.001701 time 0.4464 (0.4791) model_time 0.4460 (0.4689) loss 2.9812 (3.2329) grad_norm 1.4275 (1.9937/0.8700) mem 16099MB [2025-01-18 05:44:18 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][150/312] eta 0:01:17 lr 0.001700 time 0.4388 (0.4787) model_time 0.4386 (0.4691) loss 3.4427 (3.2116) grad_norm 1.7376 (1.9708/0.8530) mem 16099MB [2025-01-18 05:44:23 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][160/312] eta 0:01:12 lr 0.001700 time 0.4451 (0.4772) model_time 0.4447 (0.4682) loss 3.8050 (3.2311) grad_norm 1.4045 (2.0076/0.8833) mem 16099MB [2025-01-18 05:44:28 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][170/312] eta 0:01:07 lr 0.001699 time 0.4572 (0.4765) model_time 0.4569 (0.4680) loss 2.9769 (3.2249) grad_norm 0.9244 (1.9879/0.8760) mem 16099MB [2025-01-18 05:44:32 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][180/312] eta 0:01:02 lr 0.001698 time 0.4529 (0.4754) model_time 0.4528 (0.4673) loss 2.3727 (3.2104) grad_norm 1.8626 (1.9723/0.8768) mem 16099MB [2025-01-18 05:44:37 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][190/312] eta 0:00:57 lr 0.001698 time 0.5460 (0.4754) model_time 0.5456 (0.4677) loss 2.5990 (3.2149) grad_norm 1.8907 (1.9464/0.8730) mem 16099MB [2025-01-18 05:44:42 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][200/312] eta 0:00:53 lr 0.001697 time 0.4477 (0.4749) model_time 0.4474 (0.4676) loss 3.2027 (3.2149) grad_norm 3.1467 (1.9502/0.8668) mem 16099MB [2025-01-18 05:44:46 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][210/312] eta 0:00:48 lr 0.001696 time 0.4510 (0.4740) model_time 0.4505 (0.4670) loss 2.7356 (3.2038) grad_norm 1.9553 (1.9734/0.8590) mem 16099MB [2025-01-18 05:44:51 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][220/312] eta 0:00:43 lr 0.001696 time 0.4592 (0.4734) model_time 0.4590 (0.4667) loss 3.2667 (3.1924) grad_norm 2.6988 (1.9735/0.8467) mem 16099MB [2025-01-18 05:44:56 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][230/312] eta 0:00:38 lr 0.001695 time 0.4551 (0.4735) model_time 0.4550 (0.4671) loss 3.4190 (3.1961) grad_norm 0.9990 (1.9530/0.8372) mem 16099MB [2025-01-18 05:45:00 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][240/312] eta 0:00:34 lr 0.001695 time 0.4548 (0.4729) model_time 0.4543 (0.4667) loss 2.4723 (3.1926) grad_norm 2.4451 (1.9389/0.8308) mem 16099MB [2025-01-18 05:45:05 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][250/312] eta 0:00:29 lr 0.001694 time 0.4501 (0.4723) model_time 0.4497 (0.4664) loss 2.6937 (3.1798) grad_norm 2.0859 (1.9552/0.8333) mem 16099MB [2025-01-18 05:45:09 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][260/312] eta 0:00:24 lr 0.001693 time 0.4597 (0.4722) model_time 0.4595 (0.4665) loss 3.5327 (3.1870) grad_norm 1.6521 (1.9560/0.8255) mem 16099MB [2025-01-18 05:45:14 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][270/312] eta 0:00:19 lr 0.001693 time 0.4599 (0.4723) model_time 0.4594 (0.4668) loss 3.3706 (3.1877) grad_norm 2.8810 (1.9383/0.8216) mem 16099MB [2025-01-18 05:45:19 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][280/312] eta 0:00:15 lr 0.001692 time 0.4428 (0.4721) model_time 0.4426 (0.4668) loss 2.5325 (3.1848) grad_norm 1.4160 (1.9249/0.8123) mem 16099MB [2025-01-18 05:45:24 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][290/312] eta 0:00:10 lr 0.001691 time 0.4412 (0.4725) model_time 0.4411 (0.4673) loss 2.6530 (3.1720) grad_norm 1.9643 (1.9380/0.8361) mem 16099MB [2025-01-18 05:45:28 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][300/312] eta 0:00:05 lr 0.001691 time 0.4384 (0.4717) model_time 0.4383 (0.4667) loss 2.9610 (3.1738) grad_norm 1.2318 (1.9358/0.8329) mem 16099MB [2025-01-18 05:45:33 internimage_t_1k_224] (main.py 510): INFO Train: [165/300][310/312] eta 0:00:00 lr 0.001690 time 0.4374 (0.4710) model_time 0.4374 (0.4662) loss 3.6214 (3.1758) grad_norm 1.5259 (1.9382/0.8298) mem 16099MB [2025-01-18 05:45:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 165 training takes 0:02:26 [2025-01-18 05:45:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_165.pth saving...... [2025-01-18 05:45:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_165.pth saved !!! [2025-01-18 05:45:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.650 (7.650) Loss 0.8412 (0.8412) Acc@1 83.472 (83.472) Acc@5 96.533 (96.533) Mem 16099MB [2025-01-18 05:45:46 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.032) Loss 1.1240 (0.9599) Acc@1 75.024 (79.872) Acc@5 93.335 (95.128) Mem 16099MB [2025-01-18 05:45:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:165] * Acc@1 79.842 Acc@5 95.170 [2025-01-18 05:45:46 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.8% [2025-01-18 05:45:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:45:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:45:47 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.84% [2025-01-18 05:45:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.610 (7.610) Loss 0.8104 (0.8104) Acc@1 84.253 (84.253) Acc@5 97.192 (97.192) Mem 16099MB [2025-01-18 05:45:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.034) Loss 1.1016 (0.9393) Acc@1 76.392 (81.317) Acc@5 94.263 (95.716) Mem 16099MB [2025-01-18 05:45:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:165] * Acc@1 81.196 Acc@5 95.743 [2025-01-18 05:45:59 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.2% [2025-01-18 05:45:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:46:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:46:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.20% [2025-01-18 05:46:02 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][0/312] eta 0:11:01 lr 0.001690 time 2.1203 (2.1203) model_time 0.4760 (0.4760) loss 3.2011 (3.2011) grad_norm 1.3133 (1.3133/0.0000) mem 16099MB [2025-01-18 05:46:07 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][10/312] eta 0:03:10 lr 0.001689 time 0.4641 (0.6323) model_time 0.4639 (0.4825) loss 3.6681 (3.0807) grad_norm 1.5160 (1.7371/0.5294) mem 16099MB [2025-01-18 05:46:11 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][20/312] eta 0:02:40 lr 0.001688 time 0.4489 (0.5483) model_time 0.4484 (0.4697) loss 3.0036 (3.1413) grad_norm 3.5289 (1.8672/0.6274) mem 16099MB [2025-01-18 05:46:16 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][30/312] eta 0:02:27 lr 0.001688 time 0.4609 (0.5241) model_time 0.4605 (0.4707) loss 4.1708 (3.1634) grad_norm 1.7933 (1.8743/0.6532) mem 16099MB [2025-01-18 05:46:21 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][40/312] eta 0:02:19 lr 0.001687 time 0.4489 (0.5120) model_time 0.4486 (0.4715) loss 3.4628 (3.1457) grad_norm 1.3656 (1.8133/0.6517) mem 16099MB [2025-01-18 05:46:25 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][50/312] eta 0:02:11 lr 0.001687 time 0.4503 (0.5030) model_time 0.4499 (0.4704) loss 3.3640 (3.1391) grad_norm 1.2282 (1.7591/0.6409) mem 16099MB [2025-01-18 05:46:30 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][60/312] eta 0:02:05 lr 0.001686 time 0.5517 (0.4966) model_time 0.5513 (0.4692) loss 2.5990 (3.1165) grad_norm 1.2793 (1.7947/0.6865) mem 16099MB [2025-01-18 05:46:35 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][70/312] eta 0:01:58 lr 0.001685 time 0.4546 (0.4917) model_time 0.4545 (0.4682) loss 2.7958 (3.1093) grad_norm 1.8578 (1.7922/0.7052) mem 16099MB [2025-01-18 05:46:39 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][80/312] eta 0:01:53 lr 0.001685 time 0.4763 (0.4884) model_time 0.4762 (0.4677) loss 3.1680 (3.1116) grad_norm 2.6088 (1.8535/0.7266) mem 16099MB [2025-01-18 05:46:44 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][90/312] eta 0:01:47 lr 0.001684 time 0.4528 (0.4844) model_time 0.4524 (0.4660) loss 2.2591 (3.0939) grad_norm 1.3211 (1.8672/0.7166) mem 16099MB [2025-01-18 05:46:48 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][100/312] eta 0:01:42 lr 0.001683 time 0.4551 (0.4821) model_time 0.4549 (0.4654) loss 3.8823 (3.1429) grad_norm 1.5882 (1.8462/0.6890) mem 16099MB [2025-01-18 05:46:53 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][110/312] eta 0:01:36 lr 0.001683 time 0.4564 (0.4796) model_time 0.4563 (0.4644) loss 2.8305 (3.1432) grad_norm 1.0414 (1.8106/0.6759) mem 16099MB [2025-01-18 05:46:57 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][120/312] eta 0:01:31 lr 0.001682 time 0.4489 (0.4779) model_time 0.4487 (0.4639) loss 4.0080 (3.1619) grad_norm 1.6258 (1.7787/0.6620) mem 16099MB [2025-01-18 05:47:02 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][130/312] eta 0:01:26 lr 0.001681 time 0.4480 (0.4776) model_time 0.4477 (0.4646) loss 2.7735 (3.1577) grad_norm 1.2165 (1.7748/0.6603) mem 16099MB [2025-01-18 05:47:07 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][140/312] eta 0:01:21 lr 0.001681 time 0.4438 (0.4766) model_time 0.4434 (0.4645) loss 3.4104 (3.1764) grad_norm 2.3347 (1.7518/0.6536) mem 16099MB [2025-01-18 05:47:11 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][150/312] eta 0:01:17 lr 0.001680 time 0.4528 (0.4754) model_time 0.4527 (0.4641) loss 3.4867 (3.1807) grad_norm 1.5481 (1.8310/0.7974) mem 16099MB [2025-01-18 05:47:16 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][160/312] eta 0:01:12 lr 0.001679 time 0.4478 (0.4759) model_time 0.4473 (0.4653) loss 2.9510 (3.1754) grad_norm 2.1947 (1.8561/0.7928) mem 16099MB [2025-01-18 05:47:21 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][170/312] eta 0:01:07 lr 0.001679 time 0.4470 (0.4751) model_time 0.4469 (0.4651) loss 3.2921 (3.1844) grad_norm 2.5446 (1.9032/0.8220) mem 16099MB [2025-01-18 05:47:26 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][180/312] eta 0:01:02 lr 0.001678 time 0.4495 (0.4742) model_time 0.4491 (0.4648) loss 3.5299 (3.1829) grad_norm 1.1067 (1.9104/0.8177) mem 16099MB [2025-01-18 05:47:30 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][190/312] eta 0:00:57 lr 0.001677 time 0.4467 (0.4735) model_time 0.4463 (0.4645) loss 2.9307 (3.1819) grad_norm 1.0212 (1.9302/0.8436) mem 16099MB [2025-01-18 05:47:35 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][200/312] eta 0:00:53 lr 0.001677 time 0.4486 (0.4737) model_time 0.4482 (0.4652) loss 3.3429 (3.1812) grad_norm 1.5078 (1.9087/0.8338) mem 16099MB [2025-01-18 05:47:40 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][210/312] eta 0:00:48 lr 0.001676 time 0.4561 (0.4736) model_time 0.4559 (0.4655) loss 4.0029 (3.1833) grad_norm 2.2330 (1.9240/0.8625) mem 16099MB [2025-01-18 05:47:44 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][220/312] eta 0:00:43 lr 0.001675 time 0.4760 (0.4742) model_time 0.4758 (0.4664) loss 2.8081 (3.1815) grad_norm 2.0035 (1.9469/0.8629) mem 16099MB [2025-01-18 05:47:49 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][230/312] eta 0:00:38 lr 0.001675 time 0.4727 (0.4735) model_time 0.4723 (0.4660) loss 3.1105 (3.1794) grad_norm 1.7438 (1.9330/0.8539) mem 16099MB [2025-01-18 05:47:54 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][240/312] eta 0:00:34 lr 0.001674 time 0.5523 (0.4734) model_time 0.5519 (0.4662) loss 3.0225 (3.1731) grad_norm 2.2247 (1.9132/0.8478) mem 16099MB [2025-01-18 05:47:58 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][250/312] eta 0:00:29 lr 0.001673 time 0.4440 (0.4729) model_time 0.4439 (0.4660) loss 3.7083 (3.1829) grad_norm 1.8135 (1.9312/0.8673) mem 16099MB [2025-01-18 05:48:03 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][260/312] eta 0:00:24 lr 0.001673 time 0.4583 (0.4724) model_time 0.4578 (0.4658) loss 3.3624 (3.1688) grad_norm 2.2681 (1.9609/0.9142) mem 16099MB [2025-01-18 05:48:08 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][270/312] eta 0:00:19 lr 0.001672 time 0.4488 (0.4725) model_time 0.4487 (0.4661) loss 3.8655 (3.1706) grad_norm 1.1515 (1.9573/0.9084) mem 16099MB [2025-01-18 05:48:12 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][280/312] eta 0:00:15 lr 0.001671 time 0.4459 (0.4721) model_time 0.4455 (0.4659) loss 3.8549 (3.1645) grad_norm 1.2064 (1.9348/0.9031) mem 16099MB [2025-01-18 05:48:17 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][290/312] eta 0:00:10 lr 0.001671 time 0.4628 (0.4717) model_time 0.4626 (0.4657) loss 3.4635 (3.1695) grad_norm 1.9043 (1.9234/0.8917) mem 16099MB [2025-01-18 05:48:22 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][300/312] eta 0:00:05 lr 0.001670 time 0.4375 (0.4718) model_time 0.4374 (0.4660) loss 3.9532 (3.1684) grad_norm 2.5005 (1.9281/0.8973) mem 16099MB [2025-01-18 05:48:26 internimage_t_1k_224] (main.py 510): INFO Train: [166/300][310/312] eta 0:00:00 lr 0.001670 time 0.4382 (0.4709) model_time 0.4381 (0.4653) loss 3.2203 (3.1683) grad_norm 2.3334 (1.9413/0.9072) mem 16099MB [2025-01-18 05:48:27 internimage_t_1k_224] (main.py 519): INFO EPOCH 166 training takes 0:02:26 [2025-01-18 05:48:27 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_166.pth saving...... [2025-01-18 05:48:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_166.pth saved !!! [2025-01-18 05:48:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.452 (7.452) Loss 0.7717 (0.7717) Acc@1 82.715 (82.715) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 05:48:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.012) Loss 1.0953 (0.9140) Acc@1 75.024 (79.850) Acc@5 93.262 (95.219) Mem 16099MB [2025-01-18 05:48:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:166] * Acc@1 79.784 Acc@5 95.230 [2025-01-18 05:48:39 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.8% [2025-01-18 05:48:39 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.84% [2025-01-18 05:48:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.446 (8.446) Loss 0.8101 (0.8101) Acc@1 84.253 (84.253) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 05:48:51 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.119) Loss 1.1004 (0.9387) Acc@1 76.367 (81.319) Acc@5 94.214 (95.732) Mem 16099MB [2025-01-18 05:48:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:166] * Acc@1 81.200 Acc@5 95.763 [2025-01-18 05:48:52 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.2% [2025-01-18 05:48:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:48:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:48:53 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.20% [2025-01-18 05:48:55 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][0/312] eta 0:11:46 lr 0.001669 time 2.2649 (2.2649) model_time 0.4951 (0.4951) loss 3.1214 (3.1214) grad_norm 1.3369 (1.3369/0.0000) mem 16099MB [2025-01-18 05:49:00 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][10/312] eta 0:03:10 lr 0.001669 time 0.4721 (0.6297) model_time 0.4720 (0.4685) loss 2.6046 (3.2383) grad_norm 1.1048 (1.3973/0.4552) mem 16099MB [2025-01-18 05:49:04 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][20/312] eta 0:02:40 lr 0.001668 time 0.4501 (0.5492) model_time 0.4497 (0.4646) loss 4.0578 (3.3294) grad_norm 2.5389 (1.5835/0.5038) mem 16099MB [2025-01-18 05:49:09 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][30/312] eta 0:02:28 lr 0.001667 time 0.4395 (0.5254) model_time 0.4390 (0.4679) loss 3.2996 (3.3619) grad_norm 1.7490 (1.8528/0.8905) mem 16099MB [2025-01-18 05:49:14 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][40/312] eta 0:02:18 lr 0.001667 time 0.4673 (0.5086) model_time 0.4671 (0.4651) loss 2.5749 (3.3448) grad_norm 2.3631 (1.9584/0.8489) mem 16099MB [2025-01-18 05:49:18 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][50/312] eta 0:02:10 lr 0.001666 time 0.4486 (0.4993) model_time 0.4482 (0.4642) loss 3.4821 (3.3359) grad_norm 1.4073 (1.9581/0.8748) mem 16099MB [2025-01-18 05:49:23 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][60/312] eta 0:02:04 lr 0.001665 time 0.4474 (0.4933) model_time 0.4470 (0.4639) loss 3.3762 (3.3394) grad_norm 3.2605 (1.9821/0.8752) mem 16099MB [2025-01-18 05:49:28 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][70/312] eta 0:01:58 lr 0.001665 time 0.4720 (0.4888) model_time 0.4719 (0.4635) loss 4.0417 (3.3359) grad_norm 1.2394 (2.1598/1.1391) mem 16099MB [2025-01-18 05:49:32 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][80/312] eta 0:01:52 lr 0.001664 time 0.4511 (0.4849) model_time 0.4506 (0.4627) loss 2.2056 (3.2853) grad_norm 2.0142 (2.1864/1.1048) mem 16099MB [2025-01-18 05:49:37 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][90/312] eta 0:01:47 lr 0.001663 time 0.4563 (0.4827) model_time 0.4558 (0.4629) loss 2.2491 (3.2656) grad_norm 1.4051 (2.1028/1.0786) mem 16099MB [2025-01-18 05:49:41 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][100/312] eta 0:01:41 lr 0.001663 time 0.4397 (0.4806) model_time 0.4393 (0.4627) loss 3.5048 (3.2567) grad_norm 1.7913 (2.0323/1.0502) mem 16099MB [2025-01-18 05:49:46 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][110/312] eta 0:01:36 lr 0.001662 time 0.4545 (0.4797) model_time 0.4542 (0.4634) loss 3.4118 (3.2539) grad_norm 1.8338 (1.9751/1.0295) mem 16099MB [2025-01-18 05:49:51 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][120/312] eta 0:01:31 lr 0.001662 time 0.5345 (0.4791) model_time 0.5344 (0.4642) loss 3.0379 (3.2611) grad_norm 1.8210 (1.9222/1.0074) mem 16099MB [2025-01-18 05:49:55 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][130/312] eta 0:01:27 lr 0.001661 time 0.4535 (0.4784) model_time 0.4533 (0.4645) loss 3.1941 (3.2666) grad_norm 1.4154 (1.9253/0.9879) mem 16099MB [2025-01-18 05:50:00 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][140/312] eta 0:01:22 lr 0.001660 time 0.5425 (0.4797) model_time 0.5420 (0.4668) loss 3.6864 (3.2647) grad_norm 4.0947 (1.9434/0.9958) mem 16099MB [2025-01-18 05:50:05 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][150/312] eta 0:01:17 lr 0.001660 time 0.4419 (0.4786) model_time 0.4417 (0.4665) loss 2.3855 (3.2686) grad_norm 1.7924 (2.0013/1.0115) mem 16099MB [2025-01-18 05:50:10 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][160/312] eta 0:01:12 lr 0.001659 time 0.4615 (0.4780) model_time 0.4610 (0.4666) loss 2.9515 (3.2499) grad_norm 1.0915 (1.9866/0.9927) mem 16099MB [2025-01-18 05:50:14 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][170/312] eta 0:01:07 lr 0.001658 time 0.4449 (0.4766) model_time 0.4446 (0.4658) loss 2.8472 (3.2432) grad_norm 1.2273 (1.9593/0.9776) mem 16099MB [2025-01-18 05:50:19 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][180/312] eta 0:01:02 lr 0.001658 time 0.4507 (0.4752) model_time 0.4503 (0.4650) loss 3.3194 (3.2402) grad_norm 1.7256 (1.9635/0.9730) mem 16099MB [2025-01-18 05:50:23 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][190/312] eta 0:00:57 lr 0.001657 time 0.4619 (0.4742) model_time 0.4617 (0.4646) loss 3.1321 (3.2336) grad_norm 1.1328 (1.9425/0.9556) mem 16099MB [2025-01-18 05:50:28 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][200/312] eta 0:00:53 lr 0.001656 time 0.4496 (0.4749) model_time 0.4495 (0.4658) loss 3.2872 (3.2338) grad_norm 0.9360 (1.9235/0.9519) mem 16099MB [2025-01-18 05:50:33 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][210/312] eta 0:00:48 lr 0.001656 time 0.4489 (0.4741) model_time 0.4484 (0.4653) loss 2.4669 (3.2366) grad_norm 1.9020 (1.9180/0.9382) mem 16099MB [2025-01-18 05:50:38 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][220/312] eta 0:00:43 lr 0.001655 time 0.4562 (0.4743) model_time 0.4560 (0.4659) loss 3.0839 (3.2357) grad_norm 1.0855 (1.9043/0.9240) mem 16099MB [2025-01-18 05:50:42 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][230/312] eta 0:00:38 lr 0.001654 time 0.5457 (0.4743) model_time 0.5452 (0.4663) loss 3.3349 (3.2399) grad_norm 2.9840 (1.9171/0.9246) mem 16099MB [2025-01-18 05:50:47 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][240/312] eta 0:00:34 lr 0.001654 time 0.4484 (0.4734) model_time 0.4482 (0.4656) loss 3.8502 (3.2234) grad_norm 2.3822 (1.9631/0.9474) mem 16099MB [2025-01-18 05:50:51 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][250/312] eta 0:00:29 lr 0.001653 time 0.4638 (0.4726) model_time 0.4636 (0.4652) loss 3.3000 (3.2098) grad_norm 0.8915 (1.9582/0.9460) mem 16099MB [2025-01-18 05:50:56 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][260/312] eta 0:00:24 lr 0.001652 time 0.4520 (0.4729) model_time 0.4518 (0.4657) loss 3.4152 (3.2107) grad_norm 0.7178 (1.9281/0.9414) mem 16099MB [2025-01-18 05:51:01 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][270/312] eta 0:00:19 lr 0.001652 time 0.4523 (0.4722) model_time 0.4521 (0.4652) loss 2.8389 (3.2111) grad_norm 1.5522 (1.9097/0.9317) mem 16099MB [2025-01-18 05:51:05 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][280/312] eta 0:00:15 lr 0.001651 time 0.5701 (0.4720) model_time 0.5700 (0.4653) loss 3.3876 (3.2183) grad_norm 1.6937 (1.9139/0.9212) mem 16099MB [2025-01-18 05:51:10 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][290/312] eta 0:00:10 lr 0.001650 time 0.4509 (0.4718) model_time 0.4507 (0.4654) loss 3.4834 (3.2209) grad_norm 2.6760 (1.9126/0.9113) mem 16099MB [2025-01-18 05:51:15 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][300/312] eta 0:00:05 lr 0.001650 time 0.4382 (0.4712) model_time 0.4381 (0.4649) loss 3.3347 (3.2172) grad_norm 2.3575 (1.9168/0.9003) mem 16099MB [2025-01-18 05:51:19 internimage_t_1k_224] (main.py 510): INFO Train: [167/300][310/312] eta 0:00:00 lr 0.001649 time 0.4381 (0.4712) model_time 0.4380 (0.4651) loss 3.7307 (3.2220) grad_norm 2.6990 (1.9522/0.9080) mem 16099MB [2025-01-18 05:51:20 internimage_t_1k_224] (main.py 519): INFO EPOCH 167 training takes 0:02:26 [2025-01-18 05:51:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_167.pth saving...... [2025-01-18 05:51:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_167.pth saved !!! [2025-01-18 05:51:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.412 (7.412) Loss 0.8186 (0.8186) Acc@1 82.861 (82.861) Acc@5 96.753 (96.753) Mem 16099MB [2025-01-18 05:51:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.992) Loss 1.1151 (0.9444) Acc@1 74.780 (80.020) Acc@5 93.530 (95.293) Mem 16099MB [2025-01-18 05:51:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:167] * Acc@1 79.916 Acc@5 95.323 [2025-01-18 05:51:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.9% [2025-01-18 05:51:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:51:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:51:33 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.92% [2025-01-18 05:51:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.320 (7.320) Loss 0.8100 (0.8100) Acc@1 84.253 (84.253) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 05:51:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (0.991) Loss 1.0991 (0.9382) Acc@1 76.514 (81.359) Acc@5 94.263 (95.732) Mem 16099MB [2025-01-18 05:51:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:167] * Acc@1 81.242 Acc@5 95.769 [2025-01-18 05:51:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.2% [2025-01-18 05:51:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:51:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:51:46 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.24% [2025-01-18 05:51:48 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][0/312] eta 0:10:20 lr 0.001649 time 1.9901 (1.9901) model_time 0.5683 (0.5683) loss 3.2478 (3.2478) grad_norm 3.2354 (3.2354/0.0000) mem 16099MB [2025-01-18 05:51:52 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][10/312] eta 0:03:04 lr 0.001648 time 0.4566 (0.6101) model_time 0.4565 (0.4806) loss 2.9844 (3.1847) grad_norm 1.1262 (1.7912/0.5784) mem 16099MB [2025-01-18 05:51:57 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][20/312] eta 0:02:36 lr 0.001648 time 0.4396 (0.5372) model_time 0.4395 (0.4693) loss 3.0910 (3.1135) grad_norm 1.3989 (1.6401/0.5111) mem 16099MB [2025-01-18 05:52:01 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][30/312] eta 0:02:25 lr 0.001647 time 0.4625 (0.5143) model_time 0.4624 (0.4681) loss 3.3493 (3.1333) grad_norm 2.6129 (1.9465/0.9558) mem 16099MB [2025-01-18 05:52:06 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][40/312] eta 0:02:17 lr 0.001646 time 0.4547 (0.5045) model_time 0.4543 (0.4695) loss 3.6054 (3.1425) grad_norm 1.1351 (1.9811/0.9169) mem 16099MB [2025-01-18 05:52:11 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][50/312] eta 0:02:10 lr 0.001646 time 0.4475 (0.4964) model_time 0.4473 (0.4682) loss 3.4163 (3.1757) grad_norm 2.9277 (1.9972/0.8760) mem 16099MB [2025-01-18 05:52:15 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][60/312] eta 0:02:03 lr 0.001645 time 0.4635 (0.4910) model_time 0.4634 (0.4673) loss 3.8252 (3.1773) grad_norm 1.2062 (1.9934/0.9107) mem 16099MB [2025-01-18 05:52:20 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][70/312] eta 0:01:57 lr 0.001644 time 0.4570 (0.4860) model_time 0.4566 (0.4656) loss 2.8092 (3.1392) grad_norm 1.1619 (2.0093/0.9006) mem 16099MB [2025-01-18 05:52:25 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][80/312] eta 0:01:51 lr 0.001644 time 0.4549 (0.4826) model_time 0.4544 (0.4647) loss 3.7970 (3.1432) grad_norm 1.3921 (1.9810/0.8657) mem 16099MB [2025-01-18 05:52:29 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][90/312] eta 0:01:47 lr 0.001643 time 0.5564 (0.4829) model_time 0.5560 (0.4669) loss 2.5911 (3.1226) grad_norm 2.6504 (2.0077/0.8500) mem 16099MB [2025-01-18 05:52:34 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][100/312] eta 0:01:42 lr 0.001642 time 0.4447 (0.4823) model_time 0.4445 (0.4679) loss 2.2884 (3.1299) grad_norm 1.7087 (2.0591/0.8808) mem 16099MB [2025-01-18 05:52:39 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][110/312] eta 0:01:37 lr 0.001642 time 0.4430 (0.4812) model_time 0.4426 (0.4680) loss 3.2918 (3.1318) grad_norm 1.2591 (2.0558/0.8802) mem 16099MB [2025-01-18 05:52:44 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][120/312] eta 0:01:32 lr 0.001641 time 0.4600 (0.4806) model_time 0.4598 (0.4685) loss 2.7339 (3.1321) grad_norm 1.2663 (2.0640/0.8850) mem 16099MB [2025-01-18 05:52:48 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][130/312] eta 0:01:27 lr 0.001641 time 0.4468 (0.4803) model_time 0.4466 (0.4691) loss 3.3471 (3.1550) grad_norm 1.0444 (2.0792/0.8931) mem 16099MB [2025-01-18 05:52:53 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][140/312] eta 0:01:22 lr 0.001640 time 0.4468 (0.4800) model_time 0.4467 (0.4695) loss 3.4296 (3.1782) grad_norm 1.1954 (2.0610/0.8727) mem 16099MB [2025-01-18 05:52:58 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][150/312] eta 0:01:17 lr 0.001639 time 0.4509 (0.4801) model_time 0.4505 (0.4703) loss 3.3989 (3.1799) grad_norm 1.9223 (2.0308/0.8671) mem 16099MB [2025-01-18 05:53:03 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][160/312] eta 0:01:12 lr 0.001639 time 0.4564 (0.4793) model_time 0.4562 (0.4701) loss 3.3543 (3.1940) grad_norm 3.4844 (2.0552/0.8829) mem 16099MB [2025-01-18 05:53:07 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][170/312] eta 0:01:07 lr 0.001638 time 0.4849 (0.4785) model_time 0.4848 (0.4698) loss 2.9270 (3.2032) grad_norm 1.6332 (2.0560/0.8890) mem 16099MB [2025-01-18 05:53:12 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][180/312] eta 0:01:02 lr 0.001637 time 0.4398 (0.4771) model_time 0.4394 (0.4688) loss 2.4569 (3.1965) grad_norm 1.3313 (2.0343/0.8815) mem 16099MB [2025-01-18 05:53:16 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][190/312] eta 0:00:58 lr 0.001637 time 0.4508 (0.4759) model_time 0.4504 (0.4681) loss 3.5998 (3.1911) grad_norm 1.9225 (2.0165/0.8668) mem 16099MB [2025-01-18 05:53:21 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][200/312] eta 0:00:53 lr 0.001636 time 0.5183 (0.4775) model_time 0.5178 (0.4700) loss 3.3802 (3.1956) grad_norm 0.9848 (1.9963/0.8597) mem 16099MB [2025-01-18 05:53:26 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][210/312] eta 0:00:48 lr 0.001635 time 0.4434 (0.4772) model_time 0.4430 (0.4701) loss 2.6258 (3.1846) grad_norm 0.8993 (2.0434/0.9266) mem 16099MB [2025-01-18 05:53:31 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][220/312] eta 0:00:43 lr 0.001635 time 0.4596 (0.4763) model_time 0.4592 (0.4694) loss 2.9362 (3.1856) grad_norm 0.9559 (2.0484/0.9318) mem 16099MB [2025-01-18 05:53:35 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][230/312] eta 0:00:39 lr 0.001634 time 0.4864 (0.4758) model_time 0.4862 (0.4693) loss 2.8558 (3.1808) grad_norm 2.1815 (2.0169/0.9277) mem 16099MB [2025-01-18 05:53:40 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][240/312] eta 0:00:34 lr 0.001633 time 0.4659 (0.4752) model_time 0.4655 (0.4689) loss 2.7418 (3.1715) grad_norm 1.8427 (2.0124/0.9169) mem 16099MB [2025-01-18 05:53:45 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][250/312] eta 0:00:29 lr 0.001633 time 0.4522 (0.4743) model_time 0.4520 (0.4682) loss 1.9936 (3.1604) grad_norm 2.4876 (2.0183/0.9058) mem 16099MB [2025-01-18 05:53:49 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][260/312] eta 0:00:24 lr 0.001632 time 0.4512 (0.4741) model_time 0.4508 (0.4683) loss 2.7526 (3.1477) grad_norm 1.4274 (2.0235/0.8943) mem 16099MB [2025-01-18 05:53:54 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][270/312] eta 0:00:19 lr 0.001631 time 0.4596 (0.4734) model_time 0.4595 (0.4678) loss 2.6655 (3.1484) grad_norm 2.4277 (2.0225/0.8972) mem 16099MB [2025-01-18 05:53:58 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][280/312] eta 0:00:15 lr 0.001631 time 0.4468 (0.4731) model_time 0.4467 (0.4676) loss 3.6293 (3.1602) grad_norm 1.8819 (2.0135/0.8857) mem 16099MB [2025-01-18 05:54:03 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][290/312] eta 0:00:10 lr 0.001630 time 0.4552 (0.4731) model_time 0.4550 (0.4679) loss 2.9284 (3.1601) grad_norm 0.9677 (1.9960/0.8794) mem 16099MB [2025-01-18 05:54:08 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][300/312] eta 0:00:05 lr 0.001629 time 0.4389 (0.4727) model_time 0.4387 (0.4676) loss 3.8682 (3.1622) grad_norm 2.2640 (1.9849/0.8707) mem 16099MB [2025-01-18 05:54:12 internimage_t_1k_224] (main.py 510): INFO Train: [168/300][310/312] eta 0:00:00 lr 0.001629 time 0.4396 (0.4720) model_time 0.4395 (0.4671) loss 2.8044 (3.1640) grad_norm 0.8321 (2.0009/0.8986) mem 16099MB [2025-01-18 05:54:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 168 training takes 0:02:27 [2025-01-18 05:54:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_168.pth saving...... [2025-01-18 05:54:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_168.pth saved !!! [2025-01-18 05:54:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.233 (7.233) Loss 0.8226 (0.8226) Acc@1 82.788 (82.788) Acc@5 96.753 (96.753) Mem 16099MB [2025-01-18 05:54:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.973) Loss 1.1169 (0.9526) Acc@1 75.781 (79.969) Acc@5 93.335 (95.148) Mem 16099MB [2025-01-18 05:54:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:168] * Acc@1 79.932 Acc@5 95.164 [2025-01-18 05:54:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.9% [2025-01-18 05:54:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 05:54:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 05:54:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.93% [2025-01-18 05:54:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.344 (7.344) Loss 0.8095 (0.8095) Acc@1 84.302 (84.302) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 05:54:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (1.003) Loss 1.0976 (0.9374) Acc@1 76.514 (81.379) Acc@5 94.312 (95.728) Mem 16099MB [2025-01-18 05:54:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:168] * Acc@1 81.266 Acc@5 95.765 [2025-01-18 05:54:37 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.3% [2025-01-18 05:54:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:54:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:54:38 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.27% [2025-01-18 05:54:41 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][0/312] eta 0:11:08 lr 0.001629 time 2.1439 (2.1439) model_time 0.4816 (0.4816) loss 3.1449 (3.1449) grad_norm 2.5587 (2.5587/0.0000) mem 16099MB [2025-01-18 05:54:46 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][10/312] eta 0:03:13 lr 0.001628 time 0.4524 (0.6419) model_time 0.4523 (0.4904) loss 2.6883 (2.9317) grad_norm 1.7762 (2.2530/0.8995) mem 16099MB [2025-01-18 05:54:50 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][20/312] eta 0:02:46 lr 0.001627 time 0.5762 (0.5699) model_time 0.5757 (0.4904) loss 3.4185 (3.0207) grad_norm 1.6203 (2.0305/0.7663) mem 16099MB [2025-01-18 05:54:55 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][30/312] eta 0:02:30 lr 0.001627 time 0.4554 (0.5326) model_time 0.4552 (0.4787) loss 3.3902 (3.1348) grad_norm 0.9696 (1.7656/0.7593) mem 16099MB [2025-01-18 05:55:00 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][40/312] eta 0:02:22 lr 0.001626 time 0.4549 (0.5245) model_time 0.4544 (0.4832) loss 2.8532 (3.1280) grad_norm 1.2708 (1.7317/0.7019) mem 16099MB [2025-01-18 05:55:05 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][50/312] eta 0:02:14 lr 0.001625 time 0.4532 (0.5119) model_time 0.4528 (0.4786) loss 3.5759 (3.0744) grad_norm 2.7973 (1.8376/0.7989) mem 16099MB [2025-01-18 05:55:09 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][60/312] eta 0:02:06 lr 0.001625 time 0.4743 (0.5031) model_time 0.4738 (0.4751) loss 3.2447 (3.0701) grad_norm 2.3336 (1.8698/0.8121) mem 16099MB [2025-01-18 05:55:14 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][70/312] eta 0:02:00 lr 0.001624 time 0.4529 (0.4965) model_time 0.4527 (0.4724) loss 3.2307 (3.1090) grad_norm 1.3513 (1.8599/0.7906) mem 16099MB [2025-01-18 05:55:18 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][80/312] eta 0:01:54 lr 0.001623 time 0.4549 (0.4914) model_time 0.4547 (0.4703) loss 3.8020 (3.1050) grad_norm 1.4851 (1.8728/0.7728) mem 16099MB [2025-01-18 05:55:23 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][90/312] eta 0:01:49 lr 0.001623 time 0.4410 (0.4924) model_time 0.4406 (0.4735) loss 3.4797 (3.0950) grad_norm 1.2329 (1.8981/0.7850) mem 16099MB [2025-01-18 05:55:28 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][100/312] eta 0:01:44 lr 0.001622 time 0.4492 (0.4920) model_time 0.4488 (0.4750) loss 3.6295 (3.1071) grad_norm 2.0451 (1.9121/0.7562) mem 16099MB [2025-01-18 05:55:33 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][110/312] eta 0:01:38 lr 0.001621 time 0.4639 (0.4894) model_time 0.4635 (0.4739) loss 2.8670 (3.1057) grad_norm 2.6166 (1.9085/0.7490) mem 16099MB [2025-01-18 05:55:38 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][120/312] eta 0:01:33 lr 0.001621 time 0.4493 (0.4895) model_time 0.4488 (0.4752) loss 2.4932 (3.0904) grad_norm 1.6663 (1.8993/0.7512) mem 16099MB [2025-01-18 05:55:43 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][130/312] eta 0:01:28 lr 0.001620 time 0.4393 (0.4886) model_time 0.4392 (0.4754) loss 3.2329 (3.1042) grad_norm 1.6352 (1.8853/0.7451) mem 16099MB [2025-01-18 05:55:47 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][140/312] eta 0:01:23 lr 0.001620 time 0.4434 (0.4872) model_time 0.4430 (0.4749) loss 2.6387 (3.1089) grad_norm 1.6731 (1.8844/0.7426) mem 16099MB [2025-01-18 05:55:52 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][150/312] eta 0:01:18 lr 0.001619 time 0.4611 (0.4852) model_time 0.4607 (0.4737) loss 3.2676 (3.1099) grad_norm 2.0951 (1.8701/0.7292) mem 16099MB [2025-01-18 05:55:56 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][160/312] eta 0:01:13 lr 0.001618 time 0.4530 (0.4839) model_time 0.4526 (0.4731) loss 2.4053 (3.1169) grad_norm 1.0457 (1.8502/0.7134) mem 16099MB [2025-01-18 05:56:01 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][170/312] eta 0:01:08 lr 0.001618 time 0.4624 (0.4829) model_time 0.4623 (0.4727) loss 2.4973 (3.1033) grad_norm 1.4139 (1.8701/0.7484) mem 16099MB [2025-01-18 05:56:06 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][180/312] eta 0:01:03 lr 0.001617 time 0.4467 (0.4819) model_time 0.4463 (0.4722) loss 2.9611 (3.0831) grad_norm 1.3516 (1.8476/0.7377) mem 16099MB [2025-01-18 05:56:10 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][190/312] eta 0:00:58 lr 0.001616 time 0.4560 (0.4808) model_time 0.4555 (0.4716) loss 2.4677 (3.0846) grad_norm 1.8311 (1.8664/0.7429) mem 16099MB [2025-01-18 05:56:15 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][200/312] eta 0:00:53 lr 0.001616 time 0.4534 (0.4803) model_time 0.4532 (0.4716) loss 3.2940 (3.0901) grad_norm 2.2474 (1.8927/0.7429) mem 16099MB [2025-01-18 05:56:20 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][210/312] eta 0:00:49 lr 0.001615 time 0.4646 (0.4808) model_time 0.4641 (0.4724) loss 3.6214 (3.0980) grad_norm 2.3570 (1.9247/0.7807) mem 16099MB [2025-01-18 05:56:25 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][220/312] eta 0:00:44 lr 0.001614 time 0.4738 (0.4808) model_time 0.4733 (0.4728) loss 3.7265 (3.1084) grad_norm 2.9031 (1.9087/0.7740) mem 16099MB [2025-01-18 05:56:29 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][230/312] eta 0:00:39 lr 0.001614 time 0.4409 (0.4799) model_time 0.4404 (0.4722) loss 3.7067 (3.1004) grad_norm 2.5110 (1.9032/0.7693) mem 16099MB [2025-01-18 05:56:34 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][240/312] eta 0:00:34 lr 0.001613 time 0.4499 (0.4794) model_time 0.4498 (0.4720) loss 3.1346 (3.0988) grad_norm 1.2198 (1.9106/0.7657) mem 16099MB [2025-01-18 05:56:39 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][250/312] eta 0:00:29 lr 0.001612 time 0.4590 (0.4787) model_time 0.4588 (0.4716) loss 3.5650 (3.1002) grad_norm 1.6985 (1.8977/0.7567) mem 16099MB [2025-01-18 05:56:43 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][260/312] eta 0:00:24 lr 0.001612 time 0.4441 (0.4788) model_time 0.4436 (0.4719) loss 2.4507 (3.1064) grad_norm 1.7246 (1.9060/0.7534) mem 16099MB [2025-01-18 05:56:48 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][270/312] eta 0:00:20 lr 0.001611 time 0.4494 (0.4781) model_time 0.4490 (0.4715) loss 1.9929 (3.1084) grad_norm 3.6502 (1.9530/0.8039) mem 16099MB [2025-01-18 05:56:53 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][280/312] eta 0:00:15 lr 0.001610 time 0.4581 (0.4777) model_time 0.4577 (0.4714) loss 2.2487 (3.1121) grad_norm 1.2146 (1.9578/0.8122) mem 16099MB [2025-01-18 05:56:57 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][290/312] eta 0:00:10 lr 0.001610 time 0.4518 (0.4771) model_time 0.4517 (0.4709) loss 3.5146 (3.1158) grad_norm 1.1528 (1.9400/0.8077) mem 16099MB [2025-01-18 05:57:02 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][300/312] eta 0:00:05 lr 0.001609 time 0.4367 (0.4761) model_time 0.4366 (0.4701) loss 2.5962 (3.1203) grad_norm 1.9784 (1.9177/0.8047) mem 16099MB [2025-01-18 05:57:06 internimage_t_1k_224] (main.py 510): INFO Train: [169/300][310/312] eta 0:00:00 lr 0.001608 time 0.4381 (0.4752) model_time 0.4380 (0.4694) loss 2.9769 (3.1280) grad_norm 1.1925 (1.9032/0.7907) mem 16099MB [2025-01-18 05:57:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 169 training takes 0:02:28 [2025-01-18 05:57:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_169.pth saving...... [2025-01-18 05:57:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_169.pth saved !!! [2025-01-18 05:57:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.491 (7.491) Loss 0.8314 (0.8314) Acc@1 83.032 (83.032) Acc@5 96.631 (96.631) Mem 16099MB [2025-01-18 05:57:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.013) Loss 1.1389 (0.9581) Acc@1 75.317 (80.018) Acc@5 93.311 (95.199) Mem 16099MB [2025-01-18 05:57:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:169] * Acc@1 79.876 Acc@5 95.182 [2025-01-18 05:57:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 79.9% [2025-01-18 05:57:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 79.93% [2025-01-18 05:57:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.449 (8.449) Loss 0.8092 (0.8092) Acc@1 84.277 (84.277) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 05:57:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.123) Loss 1.0965 (0.9368) Acc@1 76.636 (81.439) Acc@5 94.385 (95.741) Mem 16099MB [2025-01-18 05:57:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:169] * Acc@1 81.324 Acc@5 95.777 [2025-01-18 05:57:32 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.3% [2025-01-18 05:57:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 05:57:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 05:57:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.32% [2025-01-18 05:57:36 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][0/312] eta 0:14:37 lr 0.001608 time 2.8127 (2.8127) model_time 0.4782 (0.4782) loss 2.1865 (2.1865) grad_norm 0.7798 (0.7798/0.0000) mem 16099MB [2025-01-18 05:57:41 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][10/312] eta 0:03:26 lr 0.001608 time 0.5431 (0.6847) model_time 0.5430 (0.4722) loss 3.0557 (3.0496) grad_norm 1.4907 (1.3249/0.4502) mem 16099MB [2025-01-18 05:57:45 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][20/312] eta 0:02:49 lr 0.001607 time 0.4563 (0.5808) model_time 0.4561 (0.4693) loss 3.2145 (3.1456) grad_norm 1.9306 (1.3364/0.4295) mem 16099MB [2025-01-18 05:57:50 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][30/312] eta 0:02:34 lr 0.001606 time 0.4477 (0.5464) model_time 0.4475 (0.4708) loss 2.3704 (3.0880) grad_norm 2.3619 (1.3988/0.4374) mem 16099MB [2025-01-18 05:57:55 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][40/312] eta 0:02:22 lr 0.001606 time 0.4827 (0.5255) model_time 0.4825 (0.4683) loss 3.6157 (3.1068) grad_norm 1.2182 (1.6354/0.7311) mem 16099MB [2025-01-18 05:57:59 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][50/312] eta 0:02:14 lr 0.001605 time 0.4590 (0.5123) model_time 0.4589 (0.4663) loss 1.9650 (3.0959) grad_norm 1.1054 (1.7163/0.7339) mem 16099MB [2025-01-18 05:58:04 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][60/312] eta 0:02:07 lr 0.001604 time 0.4729 (0.5046) model_time 0.4727 (0.4660) loss 3.1396 (3.1118) grad_norm 3.4724 (1.8058/0.8004) mem 16099MB [2025-01-18 05:58:09 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][70/312] eta 0:02:00 lr 0.001604 time 0.4451 (0.4992) model_time 0.4449 (0.4661) loss 2.8763 (3.1005) grad_norm 2.4375 (1.9940/1.0344) mem 16099MB [2025-01-18 05:58:13 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][80/312] eta 0:01:54 lr 0.001603 time 0.4542 (0.4944) model_time 0.4538 (0.4653) loss 3.1236 (3.1284) grad_norm 1.6264 (2.0478/1.0651) mem 16099MB [2025-01-18 05:58:18 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][90/312] eta 0:01:48 lr 0.001602 time 0.4562 (0.4908) model_time 0.4560 (0.4649) loss 3.3586 (3.1182) grad_norm 2.9228 (2.1701/1.0908) mem 16099MB [2025-01-18 05:58:23 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][100/312] eta 0:01:44 lr 0.001602 time 0.4840 (0.4916) model_time 0.4835 (0.4682) loss 3.9809 (3.1346) grad_norm 1.9076 (2.1409/1.0656) mem 16099MB [2025-01-18 05:58:28 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][110/312] eta 0:01:39 lr 0.001601 time 0.4520 (0.4916) model_time 0.4515 (0.4703) loss 3.0680 (3.1470) grad_norm 0.9945 (2.0711/1.0468) mem 16099MB [2025-01-18 05:58:33 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][120/312] eta 0:01:34 lr 0.001601 time 0.4594 (0.4911) model_time 0.4477 (0.4715) loss 4.0672 (3.1651) grad_norm 2.4299 (2.0169/1.0250) mem 16099MB [2025-01-18 05:58:38 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][130/312] eta 0:01:29 lr 0.001600 time 0.4622 (0.4924) model_time 0.4620 (0.4742) loss 3.5158 (3.1449) grad_norm 2.4680 (2.0009/1.0186) mem 16099MB [2025-01-18 05:58:42 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][140/312] eta 0:01:24 lr 0.001599 time 0.4432 (0.4906) model_time 0.4426 (0.4736) loss 3.3664 (3.1242) grad_norm 1.0236 (1.9818/1.0015) mem 16099MB [2025-01-18 05:58:47 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][150/312] eta 0:01:19 lr 0.001599 time 0.5224 (0.4896) model_time 0.5222 (0.4737) loss 3.2418 (3.1319) grad_norm 1.1387 (1.9861/1.0266) mem 16099MB [2025-01-18 05:58:52 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][160/312] eta 0:01:14 lr 0.001598 time 0.4484 (0.4872) model_time 0.4480 (0.4723) loss 3.0009 (3.1273) grad_norm 2.5580 (1.9904/1.0168) mem 16099MB [2025-01-18 05:58:56 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][170/312] eta 0:01:08 lr 0.001597 time 0.4502 (0.4859) model_time 0.4498 (0.4719) loss 2.0413 (3.1147) grad_norm 0.9260 (1.9870/1.0090) mem 16099MB [2025-01-18 05:59:01 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][180/312] eta 0:01:03 lr 0.001597 time 0.4461 (0.4845) model_time 0.4459 (0.4712) loss 3.5677 (3.1178) grad_norm 1.2733 (1.9915/1.0102) mem 16099MB [2025-01-18 05:59:06 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][190/312] eta 0:00:59 lr 0.001596 time 0.4552 (0.4843) model_time 0.4550 (0.4717) loss 2.8873 (3.1208) grad_norm 2.6951 (1.9794/0.9903) mem 16099MB [2025-01-18 05:59:10 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][200/312] eta 0:00:54 lr 0.001595 time 0.4519 (0.4829) model_time 0.4515 (0.4709) loss 2.3156 (3.1115) grad_norm 1.7982 (1.9736/0.9729) mem 16099MB [2025-01-18 05:59:15 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][210/312] eta 0:00:49 lr 0.001595 time 0.4706 (0.4816) model_time 0.4702 (0.4702) loss 2.0542 (3.1104) grad_norm 1.6098 (1.9513/0.9599) mem 16099MB [2025-01-18 05:59:19 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][220/312] eta 0:00:44 lr 0.001594 time 0.4544 (0.4809) model_time 0.4540 (0.4699) loss 3.3014 (3.1075) grad_norm 1.7880 (1.9380/0.9451) mem 16099MB [2025-01-18 05:59:24 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][230/312] eta 0:00:39 lr 0.001593 time 0.4538 (0.4808) model_time 0.4536 (0.4704) loss 3.7759 (3.0993) grad_norm 1.3793 (1.9296/0.9348) mem 16099MB [2025-01-18 05:59:29 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][240/312] eta 0:00:34 lr 0.001593 time 0.4618 (0.4797) model_time 0.4614 (0.4697) loss 3.7091 (3.1083) grad_norm 2.2310 (1.9401/0.9421) mem 16099MB [2025-01-18 05:59:33 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][250/312] eta 0:00:29 lr 0.001592 time 0.4479 (0.4788) model_time 0.4475 (0.4692) loss 2.3204 (3.1090) grad_norm 1.3756 (1.9424/0.9312) mem 16099MB [2025-01-18 05:59:38 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][260/312] eta 0:00:24 lr 0.001591 time 0.4498 (0.4782) model_time 0.4497 (0.4689) loss 2.8486 (3.1130) grad_norm 1.1595 (1.9465/0.9242) mem 16099MB [2025-01-18 05:59:43 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][270/312] eta 0:00:20 lr 0.001591 time 0.4468 (0.4792) model_time 0.4466 (0.4703) loss 3.1313 (3.1106) grad_norm 1.1864 (1.9344/0.9164) mem 16099MB [2025-01-18 05:59:48 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][280/312] eta 0:00:15 lr 0.001590 time 0.4415 (0.4785) model_time 0.4414 (0.4699) loss 2.3987 (3.1035) grad_norm 3.0608 (1.9798/0.9573) mem 16099MB [2025-01-18 05:59:52 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][290/312] eta 0:00:10 lr 0.001590 time 0.5508 (0.4783) model_time 0.5503 (0.4699) loss 3.3802 (3.1069) grad_norm 1.6982 (1.9771/0.9488) mem 16099MB [2025-01-18 05:59:57 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][300/312] eta 0:00:05 lr 0.001589 time 0.4376 (0.4782) model_time 0.4375 (0.4701) loss 3.4897 (3.1099) grad_norm 1.2850 (1.9623/0.9425) mem 16099MB [2025-01-18 06:00:02 internimage_t_1k_224] (main.py 510): INFO Train: [170/300][310/312] eta 0:00:00 lr 0.001588 time 0.4675 (0.4775) model_time 0.4674 (0.4697) loss 3.3230 (3.1090) grad_norm 0.9052 (1.9757/0.9399) mem 16099MB [2025-01-18 06:00:02 internimage_t_1k_224] (main.py 519): INFO EPOCH 170 training takes 0:02:28 [2025-01-18 06:00:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_170.pth saving...... [2025-01-18 06:00:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_170.pth saved !!! [2025-01-18 06:00:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.176 (7.176) Loss 0.8294 (0.8294) Acc@1 83.105 (83.105) Acc@5 96.704 (96.704) Mem 16099MB [2025-01-18 06:00:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.959) Loss 1.1246 (0.9551) Acc@1 75.220 (80.231) Acc@5 93.481 (95.275) Mem 16099MB [2025-01-18 06:00:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:170] * Acc@1 80.126 Acc@5 95.298 [2025-01-18 06:00:14 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.1% [2025-01-18 06:00:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:00:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:00:15 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.13% [2025-01-18 06:00:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.272 (7.272) Loss 0.8089 (0.8089) Acc@1 84.277 (84.277) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 06:00:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.988) Loss 1.0950 (0.9359) Acc@1 76.758 (81.441) Acc@5 94.385 (95.754) Mem 16099MB [2025-01-18 06:00:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:170] * Acc@1 81.326 Acc@5 95.793 [2025-01-18 06:00:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.3% [2025-01-18 06:00:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:00:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:00:28 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.33% [2025-01-18 06:00:30 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][0/312] eta 0:14:24 lr 0.001588 time 2.7719 (2.7719) model_time 0.4602 (0.4602) loss 3.1716 (3.1716) grad_norm 1.0949 (1.0949/0.0000) mem 16099MB [2025-01-18 06:00:35 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][10/312] eta 0:03:28 lr 0.001587 time 0.4514 (0.6888) model_time 0.4510 (0.4783) loss 3.3408 (3.3138) grad_norm 2.4341 (1.3684/0.3922) mem 16099MB [2025-01-18 06:00:40 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][20/312] eta 0:02:50 lr 0.001587 time 0.4516 (0.5830) model_time 0.4512 (0.4725) loss 3.5518 (3.2656) grad_norm 1.9736 (1.3335/0.3746) mem 16099MB [2025-01-18 06:00:45 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][30/312] eta 0:02:33 lr 0.001586 time 0.4548 (0.5443) model_time 0.4540 (0.4694) loss 2.4663 (3.1468) grad_norm 3.2801 (1.6124/0.6909) mem 16099MB [2025-01-18 06:00:49 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][40/312] eta 0:02:23 lr 0.001585 time 0.4402 (0.5271) model_time 0.4397 (0.4703) loss 3.0832 (3.1267) grad_norm 1.3935 (1.7705/0.7135) mem 16099MB [2025-01-18 06:00:54 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][50/312] eta 0:02:14 lr 0.001585 time 0.4537 (0.5134) model_time 0.4533 (0.4677) loss 2.5186 (3.1460) grad_norm 1.8698 (1.8404/0.7480) mem 16099MB [2025-01-18 06:00:58 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][60/312] eta 0:02:07 lr 0.001584 time 0.4491 (0.5049) model_time 0.4486 (0.4667) loss 3.1832 (3.1489) grad_norm 3.3140 (1.8612/0.7811) mem 16099MB [2025-01-18 06:01:03 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][70/312] eta 0:02:00 lr 0.001584 time 0.4447 (0.4992) model_time 0.4446 (0.4662) loss 3.1889 (3.1439) grad_norm 5.1248 (1.9647/0.9000) mem 16099MB [2025-01-18 06:01:08 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][80/312] eta 0:01:54 lr 0.001583 time 0.4401 (0.4951) model_time 0.4399 (0.4662) loss 3.2230 (3.1352) grad_norm 3.5693 (2.0102/0.8866) mem 16099MB [2025-01-18 06:01:13 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][90/312] eta 0:01:49 lr 0.001582 time 0.5328 (0.4932) model_time 0.5326 (0.4675) loss 3.7212 (3.1343) grad_norm 1.5489 (1.9648/0.8509) mem 16099MB [2025-01-18 06:01:17 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][100/312] eta 0:01:43 lr 0.001582 time 0.4485 (0.4900) model_time 0.4484 (0.4668) loss 3.5313 (3.1485) grad_norm 2.0876 (2.0013/0.8872) mem 16099MB [2025-01-18 06:01:22 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][110/312] eta 0:01:38 lr 0.001581 time 0.4552 (0.4877) model_time 0.4547 (0.4665) loss 3.8295 (3.1196) grad_norm 1.5938 (1.9965/0.8771) mem 16099MB [2025-01-18 06:01:27 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][120/312] eta 0:01:33 lr 0.001580 time 0.5805 (0.4875) model_time 0.5800 (0.4680) loss 2.7895 (3.1256) grad_norm 2.3207 (1.9746/0.8582) mem 16099MB [2025-01-18 06:01:31 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][130/312] eta 0:01:28 lr 0.001580 time 0.4473 (0.4869) model_time 0.4469 (0.4689) loss 2.8220 (3.1094) grad_norm 1.9746 (1.9818/0.8557) mem 16099MB [2025-01-18 06:01:36 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][140/312] eta 0:01:23 lr 0.001579 time 0.4672 (0.4850) model_time 0.4670 (0.4683) loss 3.8762 (3.1261) grad_norm 1.9806 (1.9734/0.8413) mem 16099MB [2025-01-18 06:01:41 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][150/312] eta 0:01:18 lr 0.001578 time 0.4445 (0.4843) model_time 0.4440 (0.4686) loss 3.2891 (3.1286) grad_norm 1.2846 (1.9396/0.8366) mem 16099MB [2025-01-18 06:01:46 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][160/312] eta 0:01:13 lr 0.001578 time 0.4478 (0.4839) model_time 0.4476 (0.4691) loss 3.2558 (3.1345) grad_norm 1.0441 (1.9005/0.8316) mem 16099MB [2025-01-18 06:01:50 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][170/312] eta 0:01:08 lr 0.001577 time 0.4430 (0.4828) model_time 0.4429 (0.4689) loss 3.5656 (3.1415) grad_norm 3.5748 (1.9301/0.8408) mem 16099MB [2025-01-18 06:01:55 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][180/312] eta 0:01:03 lr 0.001576 time 0.4522 (0.4820) model_time 0.4517 (0.4688) loss 3.5933 (3.1536) grad_norm 1.1579 (1.9268/0.8325) mem 16099MB [2025-01-18 06:02:00 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][190/312] eta 0:00:58 lr 0.001576 time 0.4812 (0.4808) model_time 0.4811 (0.4683) loss 2.3331 (3.1439) grad_norm 1.2557 (1.8880/0.8301) mem 16099MB [2025-01-18 06:02:04 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][200/312] eta 0:00:53 lr 0.001575 time 0.4537 (0.4803) model_time 0.4532 (0.4684) loss 3.7641 (3.1510) grad_norm 3.8634 (1.8976/0.8344) mem 16099MB [2025-01-18 06:02:09 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][210/312] eta 0:00:48 lr 0.001574 time 0.5861 (0.4800) model_time 0.5856 (0.4687) loss 3.3192 (3.1454) grad_norm 1.8787 (1.8967/0.8317) mem 16099MB [2025-01-18 06:02:14 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][220/312] eta 0:00:44 lr 0.001574 time 0.4711 (0.4788) model_time 0.4710 (0.4680) loss 2.8907 (3.1471) grad_norm 3.8567 (1.9371/0.8593) mem 16099MB [2025-01-18 06:02:18 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][230/312] eta 0:00:39 lr 0.001573 time 0.4705 (0.4781) model_time 0.4703 (0.4677) loss 2.5243 (3.1459) grad_norm 1.1416 (1.9464/0.8663) mem 16099MB [2025-01-18 06:02:23 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][240/312] eta 0:00:34 lr 0.001573 time 0.4420 (0.4781) model_time 0.4415 (0.4681) loss 3.2946 (3.1586) grad_norm 2.0964 (1.9308/0.8563) mem 16099MB [2025-01-18 06:02:28 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][250/312] eta 0:00:29 lr 0.001572 time 0.4407 (0.4775) model_time 0.4402 (0.4679) loss 3.7805 (3.1586) grad_norm 1.7813 (1.9149/0.8468) mem 16099MB [2025-01-18 06:02:32 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][260/312] eta 0:00:24 lr 0.001571 time 0.4642 (0.4768) model_time 0.4637 (0.4676) loss 2.9230 (3.1598) grad_norm 1.4775 (1.9097/0.8347) mem 16099MB [2025-01-18 06:02:37 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][270/312] eta 0:00:20 lr 0.001571 time 0.4533 (0.4769) model_time 0.4531 (0.4680) loss 3.4840 (3.1519) grad_norm 2.1042 (1.9244/0.8369) mem 16099MB [2025-01-18 06:02:41 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][280/312] eta 0:00:15 lr 0.001570 time 0.4459 (0.4760) model_time 0.4454 (0.4674) loss 3.1568 (3.1483) grad_norm 3.5334 (1.9479/0.8476) mem 16099MB [2025-01-18 06:02:46 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][290/312] eta 0:00:10 lr 0.001569 time 0.4428 (0.4759) model_time 0.4424 (0.4675) loss 3.2235 (3.1378) grad_norm 1.5211 (1.9663/0.8879) mem 16099MB [2025-01-18 06:02:51 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][300/312] eta 0:00:05 lr 0.001569 time 0.4391 (0.4750) model_time 0.4390 (0.4670) loss 3.2028 (3.1388) grad_norm 1.8580 (1.9724/0.8846) mem 16099MB [2025-01-18 06:02:55 internimage_t_1k_224] (main.py 510): INFO Train: [171/300][310/312] eta 0:00:00 lr 0.001568 time 0.4395 (0.4744) model_time 0.4394 (0.4666) loss 2.3494 (3.1283) grad_norm 1.2342 (1.9771/0.8808) mem 16099MB [2025-01-18 06:02:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 171 training takes 0:02:27 [2025-01-18 06:02:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_171.pth saving...... [2025-01-18 06:02:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_171.pth saved !!! [2025-01-18 06:03:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.621 (7.621) Loss 0.7988 (0.7988) Acc@1 83.545 (83.545) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 06:03:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.017) Loss 1.1021 (0.9365) Acc@1 74.976 (79.989) Acc@5 93.750 (95.255) Mem 16099MB [2025-01-18 06:03:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:171] * Acc@1 79.950 Acc@5 95.302 [2025-01-18 06:03:08 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.0% [2025-01-18 06:03:08 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.13% [2025-01-18 06:03:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.165 (8.165) Loss 0.8079 (0.8079) Acc@1 84.277 (84.277) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 06:03:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.093) Loss 1.0933 (0.9348) Acc@1 76.758 (81.452) Acc@5 94.385 (95.781) Mem 16099MB [2025-01-18 06:03:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:171] * Acc@1 81.332 Acc@5 95.813 [2025-01-18 06:03:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.3% [2025-01-18 06:03:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:03:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:03:22 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.33% [2025-01-18 06:03:24 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][0/312] eta 0:12:05 lr 0.001568 time 2.3256 (2.3256) model_time 0.4724 (0.4724) loss 3.5630 (3.5630) grad_norm 1.6593 (1.6593/0.0000) mem 16099MB [2025-01-18 06:03:29 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][10/312] eta 0:03:12 lr 0.001567 time 0.4485 (0.6375) model_time 0.4481 (0.4687) loss 3.3651 (3.0234) grad_norm 2.1402 (2.0534/0.7887) mem 16099MB [2025-01-18 06:03:34 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][20/312] eta 0:02:43 lr 0.001567 time 0.4735 (0.5609) model_time 0.4730 (0.4723) loss 3.4680 (3.0849) grad_norm 2.4475 (2.0979/0.8742) mem 16099MB [2025-01-18 06:03:38 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][30/312] eta 0:02:30 lr 0.001566 time 0.4416 (0.5326) model_time 0.4414 (0.4725) loss 2.4754 (3.0742) grad_norm 3.1433 (2.4379/1.2474) mem 16099MB [2025-01-18 06:03:43 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][40/312] eta 0:02:20 lr 0.001565 time 0.4801 (0.5158) model_time 0.4799 (0.4703) loss 3.6571 (3.1381) grad_norm 2.5161 (2.4171/1.2729) mem 16099MB [2025-01-18 06:03:48 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][50/312] eta 0:02:12 lr 0.001565 time 0.4707 (0.5070) model_time 0.4705 (0.4704) loss 2.8998 (3.1296) grad_norm 1.3926 (2.2498/1.2131) mem 16099MB [2025-01-18 06:03:52 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][60/312] eta 0:02:06 lr 0.001564 time 0.4755 (0.5013) model_time 0.4753 (0.4706) loss 3.3746 (3.1323) grad_norm 1.0567 (2.1081/1.1606) mem 16099MB [2025-01-18 06:03:57 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][70/312] eta 0:01:59 lr 0.001563 time 0.4542 (0.4954) model_time 0.4537 (0.4690) loss 2.8615 (3.1105) grad_norm 4.3896 (2.2072/1.2472) mem 16099MB [2025-01-18 06:04:02 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][80/312] eta 0:01:54 lr 0.001563 time 0.5690 (0.4937) model_time 0.5688 (0.4704) loss 2.7731 (3.1252) grad_norm 2.6052 (2.1858/1.1920) mem 16099MB [2025-01-18 06:04:07 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][90/312] eta 0:01:49 lr 0.001562 time 0.5461 (0.4933) model_time 0.5456 (0.4726) loss 3.6596 (3.1272) grad_norm 1.6748 (2.1365/1.1471) mem 16099MB [2025-01-18 06:04:11 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][100/312] eta 0:01:43 lr 0.001561 time 0.4517 (0.4898) model_time 0.4515 (0.4711) loss 1.9808 (3.1257) grad_norm 2.0346 (2.1026/1.1141) mem 16099MB [2025-01-18 06:04:16 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][110/312] eta 0:01:38 lr 0.001561 time 0.4566 (0.4872) model_time 0.4562 (0.4702) loss 2.8610 (3.1165) grad_norm 1.3895 (2.0445/1.1005) mem 16099MB [2025-01-18 06:04:20 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][120/312] eta 0:01:33 lr 0.001560 time 0.4544 (0.4845) model_time 0.4542 (0.4688) loss 3.1511 (3.1280) grad_norm 2.6093 (2.0723/1.0913) mem 16099MB [2025-01-18 06:04:25 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][130/312] eta 0:01:27 lr 0.001559 time 0.4587 (0.4832) model_time 0.4585 (0.4687) loss 3.1526 (3.1162) grad_norm 1.1605 (2.0551/1.0622) mem 16099MB [2025-01-18 06:04:30 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][140/312] eta 0:01:22 lr 0.001559 time 0.4490 (0.4817) model_time 0.4447 (0.4682) loss 4.0984 (3.1299) grad_norm 2.2660 (2.0400/1.0374) mem 16099MB [2025-01-18 06:04:34 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][150/312] eta 0:01:17 lr 0.001558 time 0.4422 (0.4810) model_time 0.4418 (0.4684) loss 3.7760 (3.1299) grad_norm 2.3279 (2.0455/1.0167) mem 16099MB [2025-01-18 06:04:39 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][160/312] eta 0:01:13 lr 0.001558 time 0.5088 (0.4803) model_time 0.5083 (0.4684) loss 2.1479 (3.1404) grad_norm 1.3936 (2.0296/0.9954) mem 16099MB [2025-01-18 06:04:44 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][170/312] eta 0:01:08 lr 0.001557 time 0.4488 (0.4791) model_time 0.4484 (0.4679) loss 3.0311 (3.1479) grad_norm 3.3149 (2.0641/1.0002) mem 16099MB [2025-01-18 06:04:48 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][180/312] eta 0:01:03 lr 0.001556 time 0.4471 (0.4787) model_time 0.4469 (0.4681) loss 3.8656 (3.1604) grad_norm 1.4486 (2.0373/0.9809) mem 16099MB [2025-01-18 06:04:53 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][190/312] eta 0:00:58 lr 0.001556 time 0.4578 (0.4779) model_time 0.4576 (0.4678) loss 3.8316 (3.1641) grad_norm 1.7965 (2.0255/0.9761) mem 16099MB [2025-01-18 06:04:58 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][200/312] eta 0:00:53 lr 0.001555 time 0.4613 (0.4771) model_time 0.4609 (0.4675) loss 2.8891 (3.1575) grad_norm 1.4271 (2.0068/0.9572) mem 16099MB [2025-01-18 06:05:02 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][210/312] eta 0:00:48 lr 0.001554 time 0.4582 (0.4761) model_time 0.4578 (0.4669) loss 3.6219 (3.1613) grad_norm 1.1127 (1.9732/0.9474) mem 16099MB [2025-01-18 06:05:07 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][220/312] eta 0:00:43 lr 0.001554 time 0.4527 (0.4751) model_time 0.4522 (0.4663) loss 2.9759 (3.1677) grad_norm 1.4712 (1.9678/0.9392) mem 16099MB [2025-01-18 06:05:11 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][230/312] eta 0:00:38 lr 0.001553 time 0.4846 (0.4744) model_time 0.4841 (0.4660) loss 3.3759 (3.1699) grad_norm 2.0686 (1.9639/0.9442) mem 16099MB [2025-01-18 06:05:16 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][240/312] eta 0:00:34 lr 0.001552 time 0.4539 (0.4735) model_time 0.4535 (0.4654) loss 3.2856 (3.1699) grad_norm 1.4687 (1.9481/0.9329) mem 16099MB [2025-01-18 06:05:21 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][250/312] eta 0:00:29 lr 0.001552 time 0.5395 (0.4751) model_time 0.5393 (0.4673) loss 2.1045 (3.1606) grad_norm 1.1133 (1.9401/0.9189) mem 16099MB [2025-01-18 06:05:26 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][260/312] eta 0:00:24 lr 0.001551 time 0.4522 (0.4752) model_time 0.4517 (0.4676) loss 3.4082 (3.1562) grad_norm 1.1646 (1.9166/0.9107) mem 16099MB [2025-01-18 06:05:31 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][270/312] eta 0:00:19 lr 0.001550 time 0.4430 (0.4754) model_time 0.4425 (0.4682) loss 3.5000 (3.1557) grad_norm 4.1434 (1.9297/0.9158) mem 16099MB [2025-01-18 06:05:35 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][280/312] eta 0:00:15 lr 0.001550 time 0.4541 (0.4752) model_time 0.4539 (0.4682) loss 2.7310 (3.1609) grad_norm 1.9378 (1.9320/0.9128) mem 16099MB [2025-01-18 06:05:40 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][290/312] eta 0:00:10 lr 0.001549 time 0.4451 (0.4750) model_time 0.4449 (0.4682) loss 2.9542 (3.1626) grad_norm 2.1138 (1.9547/0.9380) mem 16099MB [2025-01-18 06:05:45 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][300/312] eta 0:00:05 lr 0.001548 time 0.4386 (0.4743) model_time 0.4385 (0.4677) loss 3.7997 (3.1626) grad_norm 0.9950 (1.9563/0.9387) mem 16099MB [2025-01-18 06:05:49 internimage_t_1k_224] (main.py 510): INFO Train: [172/300][310/312] eta 0:00:00 lr 0.001548 time 0.4419 (0.4732) model_time 0.4418 (0.4669) loss 3.8980 (3.1576) grad_norm 1.5001 (1.9630/0.9801) mem 16099MB [2025-01-18 06:05:49 internimage_t_1k_224] (main.py 519): INFO EPOCH 172 training takes 0:02:27 [2025-01-18 06:05:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_172.pth saving...... [2025-01-18 06:05:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_172.pth saved !!! [2025-01-18 06:05:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.162 (7.162) Loss 0.8094 (0.8094) Acc@1 83.618 (83.618) Acc@5 96.777 (96.777) Mem 16099MB [2025-01-18 06:06:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.990) Loss 1.1525 (0.9480) Acc@1 75.000 (80.225) Acc@5 93.237 (95.270) Mem 16099MB [2025-01-18 06:06:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:172] * Acc@1 80.158 Acc@5 95.317 [2025-01-18 06:06:02 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.2% [2025-01-18 06:06:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:06:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:06:03 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.16% [2025-01-18 06:06:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.221 (7.221) Loss 0.8071 (0.8071) Acc@1 84.326 (84.326) Acc@5 97.266 (97.266) Mem 16099MB [2025-01-18 06:06:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.992) Loss 1.0918 (0.9338) Acc@1 76.782 (81.461) Acc@5 94.409 (95.807) Mem 16099MB [2025-01-18 06:06:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:172] * Acc@1 81.346 Acc@5 95.841 [2025-01-18 06:06:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.3% [2025-01-18 06:06:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:06:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:06:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.35% [2025-01-18 06:06:18 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][0/312] eta 0:13:56 lr 0.001548 time 2.6799 (2.6799) model_time 0.4683 (0.4683) loss 3.8141 (3.8141) grad_norm 1.2154 (1.2154/0.0000) mem 16099MB [2025-01-18 06:06:23 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][10/312] eta 0:03:18 lr 0.001547 time 0.4509 (0.6581) model_time 0.4508 (0.4568) loss 3.3549 (2.9920) grad_norm 1.4052 (1.9827/0.8139) mem 16099MB [2025-01-18 06:06:27 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][20/312] eta 0:02:45 lr 0.001546 time 0.4617 (0.5657) model_time 0.4612 (0.4601) loss 2.1176 (2.9815) grad_norm 1.2078 (1.8718/0.7470) mem 16099MB [2025-01-18 06:06:32 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][30/312] eta 0:02:31 lr 0.001546 time 0.4493 (0.5373) model_time 0.4492 (0.4657) loss 3.0456 (2.9680) grad_norm 1.1425 (1.8082/0.6704) mem 16099MB [2025-01-18 06:06:37 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][40/312] eta 0:02:21 lr 0.001545 time 0.4533 (0.5193) model_time 0.4529 (0.4650) loss 3.5721 (2.9899) grad_norm 1.8575 (1.7188/0.6372) mem 16099MB [2025-01-18 06:06:41 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][50/312] eta 0:02:13 lr 0.001544 time 0.4590 (0.5083) model_time 0.4589 (0.4646) loss 4.2630 (3.0423) grad_norm 1.3077 (1.6802/0.6135) mem 16099MB [2025-01-18 06:06:46 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][60/312] eta 0:02:06 lr 0.001544 time 0.4556 (0.5006) model_time 0.4554 (0.4641) loss 2.5080 (3.0864) grad_norm 3.4556 (1.8336/0.8075) mem 16099MB [2025-01-18 06:06:50 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][70/312] eta 0:01:59 lr 0.001543 time 0.4485 (0.4942) model_time 0.4484 (0.4628) loss 3.3790 (3.0695) grad_norm 2.8134 (2.0214/1.0707) mem 16099MB [2025-01-18 06:06:55 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][80/312] eta 0:01:53 lr 0.001543 time 0.4522 (0.4911) model_time 0.4516 (0.4635) loss 4.0712 (3.1004) grad_norm 2.0357 (2.0016/1.0203) mem 16099MB [2025-01-18 06:07:00 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][90/312] eta 0:01:48 lr 0.001542 time 0.4558 (0.4870) model_time 0.4554 (0.4623) loss 3.1390 (3.1218) grad_norm 1.6303 (1.9449/0.9804) mem 16099MB [2025-01-18 06:07:04 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][100/312] eta 0:01:42 lr 0.001541 time 0.4445 (0.4842) model_time 0.4444 (0.4619) loss 3.4414 (3.1249) grad_norm 1.1400 (1.9259/0.9469) mem 16099MB [2025-01-18 06:07:09 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][110/312] eta 0:01:37 lr 0.001541 time 0.4475 (0.4828) model_time 0.4470 (0.4626) loss 3.4403 (3.1386) grad_norm 2.9169 (1.9369/0.9347) mem 16099MB [2025-01-18 06:07:14 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][120/312] eta 0:01:32 lr 0.001540 time 0.4743 (0.4821) model_time 0.4739 (0.4635) loss 2.3744 (3.1319) grad_norm 1.4382 (1.9204/0.9052) mem 16099MB [2025-01-18 06:07:18 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][130/312] eta 0:01:27 lr 0.001539 time 0.6163 (0.4821) model_time 0.6161 (0.4649) loss 3.0210 (3.1100) grad_norm 1.3578 (2.0098/1.0320) mem 16099MB [2025-01-18 06:07:23 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][140/312] eta 0:01:22 lr 0.001539 time 0.5414 (0.4813) model_time 0.5413 (0.4652) loss 3.6714 (3.1264) grad_norm 1.6973 (1.9745/1.0077) mem 16099MB [2025-01-18 06:07:28 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][150/312] eta 0:01:17 lr 0.001538 time 0.4751 (0.4799) model_time 0.4749 (0.4649) loss 2.6318 (3.0990) grad_norm 3.1864 (2.0200/1.0416) mem 16099MB [2025-01-18 06:07:33 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][160/312] eta 0:01:12 lr 0.001537 time 0.4413 (0.4795) model_time 0.4411 (0.4654) loss 3.3087 (3.0917) grad_norm 1.0122 (2.0163/1.0255) mem 16099MB [2025-01-18 06:07:37 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][170/312] eta 0:01:07 lr 0.001537 time 0.4492 (0.4788) model_time 0.4490 (0.4655) loss 3.2057 (3.0876) grad_norm 1.0444 (1.9971/1.0048) mem 16099MB [2025-01-18 06:07:42 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][180/312] eta 0:01:03 lr 0.001536 time 0.4602 (0.4776) model_time 0.4597 (0.4650) loss 3.5385 (3.0925) grad_norm 1.5038 (1.9644/0.9885) mem 16099MB [2025-01-18 06:07:46 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][190/312] eta 0:00:58 lr 0.001535 time 0.4441 (0.4775) model_time 0.4437 (0.4655) loss 2.3127 (3.0825) grad_norm 2.8686 (2.0190/1.0499) mem 16099MB [2025-01-18 06:07:51 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][200/312] eta 0:00:53 lr 0.001535 time 0.4475 (0.4772) model_time 0.4472 (0.4658) loss 3.7162 (3.0919) grad_norm 1.9694 (2.0203/1.0341) mem 16099MB [2025-01-18 06:07:56 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][210/312] eta 0:00:48 lr 0.001534 time 0.4598 (0.4765) model_time 0.4593 (0.4656) loss 3.9490 (3.0958) grad_norm 1.9302 (2.0212/1.0157) mem 16099MB [2025-01-18 06:08:00 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][220/312] eta 0:00:43 lr 0.001534 time 0.4471 (0.4759) model_time 0.4469 (0.4655) loss 3.6783 (3.1001) grad_norm 1.3560 (2.0175/1.0048) mem 16099MB [2025-01-18 06:08:05 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][230/312] eta 0:00:39 lr 0.001533 time 0.4584 (0.4759) model_time 0.4580 (0.4659) loss 3.9148 (3.1073) grad_norm 1.7830 (2.0059/0.9911) mem 16099MB [2025-01-18 06:08:10 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][240/312] eta 0:00:34 lr 0.001532 time 0.4523 (0.4753) model_time 0.4519 (0.4657) loss 3.7540 (3.1068) grad_norm 1.4508 (2.0063/0.9873) mem 16099MB [2025-01-18 06:08:14 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][250/312] eta 0:00:29 lr 0.001532 time 0.4412 (0.4748) model_time 0.4408 (0.4656) loss 3.3166 (3.1083) grad_norm 1.2804 (1.9989/0.9940) mem 16099MB [2025-01-18 06:08:19 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][260/312] eta 0:00:24 lr 0.001531 time 0.4449 (0.4745) model_time 0.4447 (0.4657) loss 3.6813 (3.1145) grad_norm 5.0571 (2.0363/1.0237) mem 16099MB [2025-01-18 06:08:24 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][270/312] eta 0:00:19 lr 0.001530 time 0.4510 (0.4739) model_time 0.4506 (0.4654) loss 2.8657 (3.1156) grad_norm 2.0775 (2.0298/1.0125) mem 16099MB [2025-01-18 06:08:28 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][280/312] eta 0:00:15 lr 0.001530 time 0.4569 (0.4739) model_time 0.4567 (0.4657) loss 3.4860 (3.1204) grad_norm 1.5393 (2.0157/0.9997) mem 16099MB [2025-01-18 06:08:33 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][290/312] eta 0:00:10 lr 0.001529 time 0.4664 (0.4736) model_time 0.4660 (0.4656) loss 3.9357 (3.1311) grad_norm 1.9527 (2.0175/0.9908) mem 16099MB [2025-01-18 06:08:38 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][300/312] eta 0:00:05 lr 0.001528 time 0.5273 (0.4736) model_time 0.5272 (0.4659) loss 2.9187 (3.1308) grad_norm 2.1086 (2.0016/0.9836) mem 16099MB [2025-01-18 06:08:42 internimage_t_1k_224] (main.py 510): INFO Train: [173/300][310/312] eta 0:00:00 lr 0.001528 time 0.4392 (0.4730) model_time 0.4391 (0.4655) loss 2.2913 (3.1295) grad_norm 2.8258 (1.9904/0.9779) mem 16099MB [2025-01-18 06:08:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 173 training takes 0:02:27 [2025-01-18 06:08:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_173.pth saving...... [2025-01-18 06:08:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_173.pth saved !!! [2025-01-18 06:08:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.506 (7.506) Loss 0.7576 (0.7576) Acc@1 83.618 (83.618) Acc@5 96.777 (96.777) Mem 16099MB [2025-01-18 06:08:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.008) Loss 1.0687 (0.9006) Acc@1 74.976 (80.415) Acc@5 93.750 (95.372) Mem 16099MB [2025-01-18 06:08:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:173] * Acc@1 80.310 Acc@5 95.363 [2025-01-18 06:08:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.3% [2025-01-18 06:08:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:08:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:08:56 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.31% [2025-01-18 06:09:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.562 (7.562) Loss 0.8060 (0.8060) Acc@1 84.448 (84.448) Acc@5 97.314 (97.314) Mem 16099MB [2025-01-18 06:09:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.006) Loss 1.0902 (0.9327) Acc@1 76.758 (81.532) Acc@5 94.434 (95.821) Mem 16099MB [2025-01-18 06:09:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:173] * Acc@1 81.414 Acc@5 95.855 [2025-01-18 06:09:08 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.4% [2025-01-18 06:09:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:09:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:09:09 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.41% [2025-01-18 06:09:12 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][0/312] eta 0:13:26 lr 0.001528 time 2.5864 (2.5864) model_time 0.4684 (0.4684) loss 2.8864 (2.8864) grad_norm 1.0455 (1.0455/0.0000) mem 16099MB [2025-01-18 06:09:16 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][10/312] eta 0:03:21 lr 0.001527 time 0.4392 (0.6683) model_time 0.4391 (0.4753) loss 3.2845 (3.1779) grad_norm 1.9479 (2.1179/1.0384) mem 16099MB [2025-01-18 06:09:21 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][20/312] eta 0:02:46 lr 0.001526 time 0.4575 (0.5700) model_time 0.4573 (0.4688) loss 2.1053 (3.1432) grad_norm 0.9181 (1.9147/0.8733) mem 16099MB [2025-01-18 06:09:26 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][30/312] eta 0:02:30 lr 0.001526 time 0.4441 (0.5330) model_time 0.4437 (0.4643) loss 2.5061 (3.1295) grad_norm 1.7314 (1.9827/0.7731) mem 16099MB [2025-01-18 06:09:30 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][40/312] eta 0:02:20 lr 0.001525 time 0.4874 (0.5155) model_time 0.4872 (0.4634) loss 2.8245 (3.1361) grad_norm 1.0318 (1.9240/0.7970) mem 16099MB [2025-01-18 06:09:35 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][50/312] eta 0:02:12 lr 0.001524 time 0.4480 (0.5056) model_time 0.4478 (0.4637) loss 3.3728 (3.1183) grad_norm 1.8802 (1.9090/0.8049) mem 16099MB [2025-01-18 06:09:39 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][60/312] eta 0:02:05 lr 0.001524 time 0.4421 (0.4976) model_time 0.4420 (0.4625) loss 3.1027 (3.0745) grad_norm 2.7393 (1.9198/0.7730) mem 16099MB [2025-01-18 06:09:44 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][70/312] eta 0:01:59 lr 0.001523 time 0.5596 (0.4937) model_time 0.5591 (0.4635) loss 3.2164 (3.0275) grad_norm 1.5492 (1.9292/0.7409) mem 16099MB [2025-01-18 06:09:49 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][80/312] eta 0:01:53 lr 0.001522 time 0.4649 (0.4900) model_time 0.4648 (0.4635) loss 2.2134 (3.0131) grad_norm 2.5872 (2.0066/0.8111) mem 16099MB [2025-01-18 06:09:53 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][90/312] eta 0:01:48 lr 0.001522 time 0.4610 (0.4868) model_time 0.4606 (0.4631) loss 3.2922 (3.0304) grad_norm 2.3314 (2.1008/0.9479) mem 16099MB [2025-01-18 06:09:58 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][100/312] eta 0:01:42 lr 0.001521 time 0.4478 (0.4855) model_time 0.4476 (0.4642) loss 3.7058 (3.0744) grad_norm 1.4158 (2.0934/0.9705) mem 16099MB [2025-01-18 06:10:03 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][110/312] eta 0:01:37 lr 0.001521 time 0.4624 (0.4838) model_time 0.4620 (0.4643) loss 3.6369 (3.0889) grad_norm 1.0425 (2.0270/0.9594) mem 16099MB [2025-01-18 06:10:08 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][120/312] eta 0:01:32 lr 0.001520 time 0.5632 (0.4827) model_time 0.5628 (0.4649) loss 1.9676 (3.0514) grad_norm 1.3452 (1.9785/0.9384) mem 16099MB [2025-01-18 06:10:12 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][130/312] eta 0:01:27 lr 0.001519 time 0.5309 (0.4824) model_time 0.5307 (0.4658) loss 3.1336 (3.0521) grad_norm 2.2791 (1.9582/0.9145) mem 16099MB [2025-01-18 06:10:17 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][140/312] eta 0:01:22 lr 0.001519 time 0.4587 (0.4824) model_time 0.4585 (0.4670) loss 3.5077 (3.0545) grad_norm 1.1646 (1.9171/0.8985) mem 16099MB [2025-01-18 06:10:22 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][150/312] eta 0:01:17 lr 0.001518 time 0.4454 (0.4810) model_time 0.4449 (0.4666) loss 2.7019 (3.0680) grad_norm 1.8576 (1.8957/0.8750) mem 16099MB [2025-01-18 06:10:27 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][160/312] eta 0:01:13 lr 0.001517 time 0.4512 (0.4810) model_time 0.4508 (0.4675) loss 2.4473 (3.0497) grad_norm 1.8522 (1.9328/0.9016) mem 16099MB [2025-01-18 06:10:31 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][170/312] eta 0:01:08 lr 0.001517 time 0.5786 (0.4802) model_time 0.5782 (0.4674) loss 2.2623 (3.0509) grad_norm 1.7229 (1.9511/0.8921) mem 16099MB [2025-01-18 06:10:36 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][180/312] eta 0:01:03 lr 0.001516 time 0.4940 (0.4788) model_time 0.4935 (0.4667) loss 2.8512 (3.0533) grad_norm 2.3602 (1.9588/0.8712) mem 16099MB [2025-01-18 06:10:40 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][190/312] eta 0:00:58 lr 0.001515 time 0.4469 (0.4785) model_time 0.4464 (0.4670) loss 3.4436 (3.0732) grad_norm 2.9803 (1.9701/0.8623) mem 16099MB [2025-01-18 06:10:45 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][200/312] eta 0:00:53 lr 0.001515 time 0.5186 (0.4779) model_time 0.5182 (0.4669) loss 3.4306 (3.0702) grad_norm 2.0895 (1.9644/0.8506) mem 16099MB [2025-01-18 06:10:50 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][210/312] eta 0:00:48 lr 0.001514 time 0.4433 (0.4769) model_time 0.4432 (0.4665) loss 2.8454 (3.0770) grad_norm 3.6001 (1.9836/0.8496) mem 16099MB [2025-01-18 06:10:54 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][220/312] eta 0:00:43 lr 0.001513 time 0.4486 (0.4760) model_time 0.4482 (0.4660) loss 3.4942 (3.0863) grad_norm 1.2183 (1.9722/0.8377) mem 16099MB [2025-01-18 06:10:59 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][230/312] eta 0:00:38 lr 0.001513 time 0.5166 (0.4755) model_time 0.5161 (0.4659) loss 1.8974 (3.0896) grad_norm 1.2474 (1.9944/0.8598) mem 16099MB [2025-01-18 06:11:04 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][240/312] eta 0:00:34 lr 0.001512 time 0.4750 (0.4750) model_time 0.4746 (0.4658) loss 2.6374 (3.0907) grad_norm 1.8707 (1.9897/0.8621) mem 16099MB [2025-01-18 06:11:08 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][250/312] eta 0:00:29 lr 0.001512 time 0.4436 (0.4748) model_time 0.4431 (0.4659) loss 3.0160 (3.0852) grad_norm 1.1298 (1.9907/0.8655) mem 16099MB [2025-01-18 06:11:13 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][260/312] eta 0:00:24 lr 0.001511 time 0.4546 (0.4744) model_time 0.4541 (0.4658) loss 3.5612 (3.0863) grad_norm 3.0679 (2.0040/0.8786) mem 16099MB [2025-01-18 06:11:18 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][270/312] eta 0:00:19 lr 0.001510 time 0.4500 (0.4740) model_time 0.4496 (0.4657) loss 3.6263 (3.0921) grad_norm 1.6380 (2.0174/0.8852) mem 16099MB [2025-01-18 06:11:22 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][280/312] eta 0:00:15 lr 0.001510 time 0.4432 (0.4737) model_time 0.4428 (0.4658) loss 2.7313 (3.1002) grad_norm 1.7229 (2.0373/0.8919) mem 16099MB [2025-01-18 06:11:27 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][290/312] eta 0:00:10 lr 0.001509 time 0.4612 (0.4733) model_time 0.4607 (0.4656) loss 2.0761 (3.1047) grad_norm 0.9953 (2.0524/0.8926) mem 16099MB [2025-01-18 06:11:31 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][300/312] eta 0:00:05 lr 0.001508 time 0.4382 (0.4726) model_time 0.4381 (0.4651) loss 2.8025 (3.1076) grad_norm 1.3451 (2.0739/0.9375) mem 16099MB [2025-01-18 06:11:36 internimage_t_1k_224] (main.py 510): INFO Train: [174/300][310/312] eta 0:00:00 lr 0.001508 time 0.5411 (0.4720) model_time 0.5410 (0.4648) loss 3.1039 (3.1162) grad_norm 1.5850 (2.0737/0.9441) mem 16099MB [2025-01-18 06:11:36 internimage_t_1k_224] (main.py 519): INFO EPOCH 174 training takes 0:02:27 [2025-01-18 06:11:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_174.pth saving...... [2025-01-18 06:11:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_174.pth saved !!! [2025-01-18 06:11:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.342 (7.342) Loss 0.8090 (0.8090) Acc@1 83.838 (83.838) Acc@5 96.558 (96.558) Mem 16099MB [2025-01-18 06:11:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.998) Loss 1.1379 (0.9461) Acc@1 75.000 (80.231) Acc@5 93.628 (95.288) Mem 16099MB [2025-01-18 06:11:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:174] * Acc@1 80.138 Acc@5 95.317 [2025-01-18 06:11:49 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.1% [2025-01-18 06:11:49 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.31% [2025-01-18 06:11:57 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.247 (8.247) Loss 0.8050 (0.8050) Acc@1 84.375 (84.375) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 06:12:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.113) Loss 1.0883 (0.9314) Acc@1 76.758 (81.552) Acc@5 94.409 (95.825) Mem 16099MB [2025-01-18 06:12:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:174] * Acc@1 81.438 Acc@5 95.861 [2025-01-18 06:12:01 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.4% [2025-01-18 06:12:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:12:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:12:03 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.44% [2025-01-18 06:12:05 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][0/312] eta 0:13:44 lr 0.001508 time 2.6438 (2.6438) model_time 0.4616 (0.4616) loss 3.5988 (3.5988) grad_norm 2.2027 (2.2027/0.0000) mem 16099MB [2025-01-18 06:12:10 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][10/312] eta 0:03:19 lr 0.001507 time 0.4571 (0.6616) model_time 0.4569 (0.4629) loss 2.4638 (2.9266) grad_norm 1.6673 (2.0416/0.6003) mem 16099MB [2025-01-18 06:12:14 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][20/312] eta 0:02:45 lr 0.001506 time 0.4524 (0.5663) model_time 0.4522 (0.4621) loss 3.0720 (3.0700) grad_norm 1.5613 (1.8590/0.5243) mem 16099MB [2025-01-18 06:12:19 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][30/312] eta 0:02:30 lr 0.001506 time 0.4472 (0.5349) model_time 0.4469 (0.4643) loss 4.0028 (3.1692) grad_norm 1.5578 (1.6619/0.5387) mem 16099MB [2025-01-18 06:12:24 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][40/312] eta 0:02:22 lr 0.001505 time 0.4536 (0.5229) model_time 0.4534 (0.4694) loss 3.0741 (3.1488) grad_norm 1.3495 (1.6981/0.6183) mem 16099MB [2025-01-18 06:12:29 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][50/312] eta 0:02:16 lr 0.001504 time 0.4502 (0.5218) model_time 0.4500 (0.4787) loss 3.8394 (3.1105) grad_norm 2.3602 (1.7722/0.6424) mem 16099MB [2025-01-18 06:12:34 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][60/312] eta 0:02:08 lr 0.001504 time 0.4513 (0.5116) model_time 0.4508 (0.4756) loss 3.0106 (3.1083) grad_norm 3.1551 (1.8735/0.7738) mem 16099MB [2025-01-18 06:12:38 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][70/312] eta 0:02:01 lr 0.001503 time 0.4595 (0.5040) model_time 0.4591 (0.4729) loss 3.1638 (3.0901) grad_norm 1.4579 (1.9650/0.8909) mem 16099MB [2025-01-18 06:12:43 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][80/312] eta 0:01:56 lr 0.001502 time 0.4521 (0.5007) model_time 0.4519 (0.4735) loss 2.7690 (3.1199) grad_norm 1.0632 (1.8787/0.8686) mem 16099MB [2025-01-18 06:12:48 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][90/312] eta 0:01:50 lr 0.001502 time 0.4462 (0.4961) model_time 0.4458 (0.4718) loss 2.6868 (3.1159) grad_norm 2.0028 (1.9091/0.9121) mem 16099MB [2025-01-18 06:12:52 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][100/312] eta 0:01:44 lr 0.001501 time 0.4766 (0.4921) model_time 0.4764 (0.4701) loss 4.0007 (3.0889) grad_norm 1.3927 (1.9286/0.9220) mem 16099MB [2025-01-18 06:12:57 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][110/312] eta 0:01:39 lr 0.001500 time 0.5486 (0.4904) model_time 0.5482 (0.4704) loss 3.1427 (3.0641) grad_norm 1.1327 (1.9512/0.9553) mem 16099MB [2025-01-18 06:13:02 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][120/312] eta 0:01:33 lr 0.001500 time 0.5281 (0.4888) model_time 0.5277 (0.4704) loss 2.5313 (3.0679) grad_norm 1.1023 (1.9144/0.9293) mem 16099MB [2025-01-18 06:13:07 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][130/312] eta 0:01:28 lr 0.001499 time 0.4609 (0.4882) model_time 0.4603 (0.4712) loss 3.5526 (3.0569) grad_norm 2.6381 (1.9703/0.9937) mem 16099MB [2025-01-18 06:13:11 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][140/312] eta 0:01:23 lr 0.001499 time 0.4456 (0.4870) model_time 0.4452 (0.4712) loss 2.4230 (3.0490) grad_norm 3.0477 (1.9427/0.9829) mem 16099MB [2025-01-18 06:13:16 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][150/312] eta 0:01:18 lr 0.001498 time 0.4463 (0.4849) model_time 0.4461 (0.4701) loss 3.6379 (3.0528) grad_norm 4.4767 (1.9879/1.0170) mem 16099MB [2025-01-18 06:13:20 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][160/312] eta 0:01:13 lr 0.001497 time 0.4603 (0.4831) model_time 0.4599 (0.4692) loss 3.3564 (3.0532) grad_norm 1.9525 (1.9879/0.9994) mem 16099MB [2025-01-18 06:13:25 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][170/312] eta 0:01:08 lr 0.001497 time 0.4595 (0.4825) model_time 0.4593 (0.4693) loss 2.7891 (3.0420) grad_norm 1.0707 (1.9560/0.9807) mem 16099MB [2025-01-18 06:13:30 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][180/312] eta 0:01:03 lr 0.001496 time 0.4798 (0.4813) model_time 0.4797 (0.4688) loss 3.5837 (3.0529) grad_norm 1.8462 (1.9402/0.9615) mem 16099MB [2025-01-18 06:13:34 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][190/312] eta 0:00:58 lr 0.001495 time 0.4408 (0.4807) model_time 0.4404 (0.4689) loss 3.2575 (3.0569) grad_norm 2.2918 (1.9563/0.9575) mem 16099MB [2025-01-18 06:13:39 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][200/312] eta 0:00:53 lr 0.001495 time 0.4730 (0.4805) model_time 0.4728 (0.4692) loss 3.0142 (3.0602) grad_norm 2.5778 (1.9650/0.9394) mem 16099MB [2025-01-18 06:13:44 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][210/312] eta 0:00:48 lr 0.001494 time 0.4419 (0.4799) model_time 0.4417 (0.4692) loss 2.9787 (3.0601) grad_norm 2.8257 (1.9865/0.9484) mem 16099MB [2025-01-18 06:13:49 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][220/312] eta 0:00:44 lr 0.001493 time 0.4892 (0.4793) model_time 0.4890 (0.4690) loss 4.1241 (3.0637) grad_norm 1.1486 (1.9566/0.9382) mem 16099MB [2025-01-18 06:13:53 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][230/312] eta 0:00:39 lr 0.001493 time 0.4525 (0.4782) model_time 0.4521 (0.4684) loss 3.7418 (3.0686) grad_norm 2.0251 (1.9592/0.9295) mem 16099MB [2025-01-18 06:13:58 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][240/312] eta 0:00:34 lr 0.001492 time 0.4501 (0.4774) model_time 0.4497 (0.4680) loss 2.4305 (3.0610) grad_norm 2.5410 (1.9795/0.9312) mem 16099MB [2025-01-18 06:14:03 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][250/312] eta 0:00:29 lr 0.001492 time 0.4597 (0.4779) model_time 0.4595 (0.4689) loss 3.3457 (3.0765) grad_norm 1.3130 (1.9735/0.9225) mem 16099MB [2025-01-18 06:14:07 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][260/312] eta 0:00:24 lr 0.001491 time 0.4607 (0.4774) model_time 0.4605 (0.4687) loss 3.8040 (3.0690) grad_norm 1.2815 (1.9601/0.9167) mem 16099MB [2025-01-18 06:14:12 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][270/312] eta 0:00:20 lr 0.001490 time 0.4622 (0.4777) model_time 0.4620 (0.4693) loss 3.0668 (3.0777) grad_norm 1.3135 (1.9373/0.9083) mem 16099MB [2025-01-18 06:14:17 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][280/312] eta 0:00:15 lr 0.001490 time 0.4498 (0.4778) model_time 0.4494 (0.4696) loss 3.2984 (3.0866) grad_norm 1.1755 (1.9294/0.8980) mem 16099MB [2025-01-18 06:14:22 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][290/312] eta 0:00:10 lr 0.001489 time 0.4598 (0.4775) model_time 0.4594 (0.4696) loss 3.1221 (3.0854) grad_norm 3.2732 (1.9334/0.8909) mem 16099MB [2025-01-18 06:14:26 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][300/312] eta 0:00:05 lr 0.001488 time 0.4391 (0.4772) model_time 0.4390 (0.4696) loss 3.0532 (3.0980) grad_norm 1.3392 (1.9230/0.8865) mem 16099MB [2025-01-18 06:14:31 internimage_t_1k_224] (main.py 510): INFO Train: [175/300][310/312] eta 0:00:00 lr 0.001488 time 0.5202 (0.4764) model_time 0.5200 (0.4690) loss 2.6715 (3.0962) grad_norm 1.1550 (1.9087/0.8848) mem 16099MB [2025-01-18 06:14:31 internimage_t_1k_224] (main.py 519): INFO EPOCH 175 training takes 0:02:28 [2025-01-18 06:14:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_175.pth saving...... [2025-01-18 06:14:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_175.pth saved !!! [2025-01-18 06:14:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.408 (7.408) Loss 0.8067 (0.8067) Acc@1 83.325 (83.325) Acc@5 96.729 (96.729) Mem 16099MB [2025-01-18 06:14:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.002) Loss 1.0990 (0.9434) Acc@1 75.952 (80.289) Acc@5 93.994 (95.384) Mem 16099MB [2025-01-18 06:14:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:175] * Acc@1 80.240 Acc@5 95.423 [2025-01-18 06:14:43 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.2% [2025-01-18 06:14:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.31% [2025-01-18 06:14:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.158 (8.158) Loss 0.8044 (0.8044) Acc@1 84.497 (84.497) Acc@5 97.314 (97.314) Mem 16099MB [2025-01-18 06:14:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.094) Loss 1.0867 (0.9304) Acc@1 76.904 (81.601) Acc@5 94.434 (95.834) Mem 16099MB [2025-01-18 06:14:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:175] * Acc@1 81.478 Acc@5 95.871 [2025-01-18 06:14:56 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.5% [2025-01-18 06:14:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:14:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:14:57 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.48% [2025-01-18 06:15:00 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][0/312] eta 0:12:29 lr 0.001488 time 2.4013 (2.4013) model_time 0.4783 (0.4783) loss 3.4367 (3.4367) grad_norm 0.8023 (0.8023/0.0000) mem 16099MB [2025-01-18 06:15:04 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][10/312] eta 0:03:14 lr 0.001487 time 0.4568 (0.6447) model_time 0.4567 (0.4696) loss 3.9491 (3.0330) grad_norm 1.6396 (1.6860/0.5575) mem 16099MB [2025-01-18 06:15:09 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][20/312] eta 0:02:45 lr 0.001486 time 0.4490 (0.5659) model_time 0.4486 (0.4739) loss 3.3358 (3.0552) grad_norm 1.4219 (2.0601/0.8318) mem 16099MB [2025-01-18 06:15:14 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][30/312] eta 0:02:30 lr 0.001486 time 0.4794 (0.5331) model_time 0.4792 (0.4707) loss 2.9979 (3.1223) grad_norm 1.8441 (2.0165/0.8146) mem 16099MB [2025-01-18 06:15:18 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][40/312] eta 0:02:19 lr 0.001485 time 0.4578 (0.5143) model_time 0.4576 (0.4670) loss 3.3140 (3.0782) grad_norm 2.8857 (2.0607/0.8448) mem 16099MB [2025-01-18 06:15:23 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][50/312] eta 0:02:11 lr 0.001484 time 0.4727 (0.5033) model_time 0.4722 (0.4653) loss 3.4105 (3.0902) grad_norm 1.5374 (2.0562/0.8822) mem 16099MB [2025-01-18 06:15:28 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][60/312] eta 0:02:05 lr 0.001484 time 0.7425 (0.4997) model_time 0.7420 (0.4678) loss 3.4815 (3.0448) grad_norm 1.0733 (2.0081/0.8486) mem 16099MB [2025-01-18 06:15:32 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][70/312] eta 0:01:59 lr 0.001483 time 0.4568 (0.4946) model_time 0.4566 (0.4671) loss 3.4361 (3.0543) grad_norm 1.7103 (1.9422/0.8199) mem 16099MB [2025-01-18 06:15:37 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][80/312] eta 0:01:54 lr 0.001482 time 0.4521 (0.4929) model_time 0.4516 (0.4687) loss 2.8697 (3.0547) grad_norm 2.1868 (1.9351/0.7975) mem 16099MB [2025-01-18 06:15:42 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][90/312] eta 0:01:48 lr 0.001482 time 0.4540 (0.4888) model_time 0.4538 (0.4673) loss 3.3472 (3.0634) grad_norm 1.5749 (1.8867/0.7879) mem 16099MB [2025-01-18 06:15:46 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][100/312] eta 0:01:43 lr 0.001481 time 0.4677 (0.4867) model_time 0.4675 (0.4673) loss 2.3130 (3.0605) grad_norm 2.2308 (1.8843/0.7562) mem 16099MB [2025-01-18 06:15:51 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][110/312] eta 0:01:37 lr 0.001481 time 0.4466 (0.4841) model_time 0.4462 (0.4664) loss 3.5501 (3.0809) grad_norm 5.6707 (1.9385/0.9539) mem 16099MB [2025-01-18 06:15:55 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][120/312] eta 0:01:32 lr 0.001480 time 0.4534 (0.4815) model_time 0.4529 (0.4653) loss 4.0407 (3.0865) grad_norm 2.6381 (1.9502/0.9331) mem 16099MB [2025-01-18 06:16:00 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][130/312] eta 0:01:27 lr 0.001479 time 0.5673 (0.4814) model_time 0.5671 (0.4664) loss 3.1253 (3.0774) grad_norm 3.9033 (1.9955/0.9370) mem 16099MB [2025-01-18 06:16:05 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][140/312] eta 0:01:22 lr 0.001479 time 0.4594 (0.4807) model_time 0.4592 (0.4667) loss 3.5065 (3.0840) grad_norm 2.8783 (1.9972/0.9202) mem 16099MB [2025-01-18 06:16:10 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][150/312] eta 0:01:17 lr 0.001478 time 0.4618 (0.4798) model_time 0.4613 (0.4667) loss 2.8362 (3.0916) grad_norm 4.3043 (2.0284/0.9311) mem 16099MB [2025-01-18 06:16:15 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][160/312] eta 0:01:13 lr 0.001477 time 0.4480 (0.4806) model_time 0.4476 (0.4682) loss 3.2771 (3.1113) grad_norm 1.3312 (2.0315/0.9144) mem 16099MB [2025-01-18 06:16:19 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][170/312] eta 0:01:08 lr 0.001477 time 0.4470 (0.4803) model_time 0.4468 (0.4686) loss 3.0313 (3.1056) grad_norm 1.8695 (2.0152/0.8991) mem 16099MB [2025-01-18 06:16:24 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][180/312] eta 0:01:03 lr 0.001476 time 0.4421 (0.4796) model_time 0.4419 (0.4686) loss 2.9645 (3.1135) grad_norm 2.0720 (2.0271/0.8833) mem 16099MB [2025-01-18 06:16:29 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][190/312] eta 0:00:58 lr 0.001475 time 0.4502 (0.4791) model_time 0.4498 (0.4687) loss 4.0867 (3.1114) grad_norm 1.9906 (2.0275/0.8699) mem 16099MB [2025-01-18 06:16:33 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][200/312] eta 0:00:53 lr 0.001475 time 0.4429 (0.4782) model_time 0.4424 (0.4683) loss 2.9126 (3.1067) grad_norm 1.2778 (2.0205/0.8615) mem 16099MB [2025-01-18 06:16:38 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][210/312] eta 0:00:48 lr 0.001474 time 0.4687 (0.4776) model_time 0.4685 (0.4681) loss 2.8972 (3.1088) grad_norm 2.7540 (2.0355/0.8511) mem 16099MB [2025-01-18 06:16:43 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][220/312] eta 0:00:44 lr 0.001473 time 0.7098 (0.4787) model_time 0.7097 (0.4696) loss 2.7275 (3.1102) grad_norm 1.4033 (2.0359/0.8481) mem 16099MB [2025-01-18 06:16:48 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][230/312] eta 0:00:39 lr 0.001473 time 0.4499 (0.4784) model_time 0.4494 (0.4697) loss 2.6260 (3.1104) grad_norm 2.3479 (2.0247/0.8371) mem 16099MB [2025-01-18 06:16:52 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][240/312] eta 0:00:34 lr 0.001472 time 0.4581 (0.4774) model_time 0.4576 (0.4690) loss 2.7975 (3.1095) grad_norm 3.3730 (2.0423/0.8457) mem 16099MB [2025-01-18 06:16:57 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][250/312] eta 0:00:29 lr 0.001472 time 0.4447 (0.4768) model_time 0.4442 (0.4687) loss 2.3464 (3.1064) grad_norm 3.0894 (2.0678/0.8678) mem 16099MB [2025-01-18 06:17:02 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][260/312] eta 0:00:24 lr 0.001471 time 0.5472 (0.4765) model_time 0.5471 (0.4688) loss 3.4368 (3.1087) grad_norm 1.7817 (2.0746/0.8770) mem 16099MB [2025-01-18 06:17:06 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][270/312] eta 0:00:19 lr 0.001470 time 0.4588 (0.4756) model_time 0.4586 (0.4681) loss 3.2856 (3.1125) grad_norm 3.0941 (2.0739/0.8787) mem 16099MB [2025-01-18 06:17:11 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][280/312] eta 0:00:15 lr 0.001470 time 0.5037 (0.4750) model_time 0.5035 (0.4677) loss 2.2386 (3.1080) grad_norm 1.4228 (2.0964/0.9021) mem 16099MB [2025-01-18 06:17:15 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][290/312] eta 0:00:10 lr 0.001469 time 0.4475 (0.4746) model_time 0.4473 (0.4676) loss 3.6558 (3.1143) grad_norm 1.1156 (2.0842/0.8986) mem 16099MB [2025-01-18 06:17:20 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][300/312] eta 0:00:05 lr 0.001468 time 0.4382 (0.4741) model_time 0.4381 (0.4673) loss 2.7058 (3.1148) grad_norm 1.9874 (2.0771/0.8914) mem 16099MB [2025-01-18 06:17:24 internimage_t_1k_224] (main.py 510): INFO Train: [176/300][310/312] eta 0:00:00 lr 0.001468 time 0.4393 (0.4733) model_time 0.4391 (0.4667) loss 3.0932 (3.1198) grad_norm 1.5801 (2.0615/0.8973) mem 16099MB [2025-01-18 06:17:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 176 training takes 0:02:27 [2025-01-18 06:17:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_176.pth saving...... [2025-01-18 06:17:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_176.pth saved !!! [2025-01-18 06:17:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.482 (7.482) Loss 0.7377 (0.7377) Acc@1 83.862 (83.862) Acc@5 97.314 (97.314) Mem 16099MB [2025-01-18 06:17:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.006) Loss 1.0513 (0.8813) Acc@1 76.172 (80.558) Acc@5 93.799 (95.466) Mem 16099MB [2025-01-18 06:17:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:176] * Acc@1 80.380 Acc@5 95.459 [2025-01-18 06:17:37 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.4% [2025-01-18 06:17:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:17:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:17:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.38% [2025-01-18 06:17:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.288 (7.288) Loss 0.8034 (0.8034) Acc@1 84.521 (84.521) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 06:17:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.005) Loss 1.0850 (0.9293) Acc@1 77.100 (81.654) Acc@5 94.458 (95.847) Mem 16099MB [2025-01-18 06:17:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:176] * Acc@1 81.536 Acc@5 95.883 [2025-01-18 06:17:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.5% [2025-01-18 06:17:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:17:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:17:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.54% [2025-01-18 06:17:54 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][0/312] eta 0:12:51 lr 0.001468 time 2.4743 (2.4743) model_time 0.5239 (0.5239) loss 3.1894 (3.1894) grad_norm 3.1502 (3.1502/0.0000) mem 16099MB [2025-01-18 06:17:58 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][10/312] eta 0:03:14 lr 0.001467 time 0.4362 (0.6446) model_time 0.4361 (0.4670) loss 3.1650 (3.1436) grad_norm 1.4380 (2.3975/0.7737) mem 16099MB [2025-01-18 06:18:03 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][20/312] eta 0:02:43 lr 0.001466 time 0.4608 (0.5599) model_time 0.4606 (0.4668) loss 2.3123 (3.0438) grad_norm 1.4768 (1.9618/0.7892) mem 16099MB [2025-01-18 06:18:07 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][30/312] eta 0:02:28 lr 0.001466 time 0.4516 (0.5255) model_time 0.4514 (0.4623) loss 3.1189 (3.1308) grad_norm 1.4025 (1.8387/0.6871) mem 16099MB [2025-01-18 06:18:12 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][40/312] eta 0:02:18 lr 0.001465 time 0.4418 (0.5095) model_time 0.4413 (0.4616) loss 2.7627 (3.0611) grad_norm 1.5444 (1.8391/0.7327) mem 16099MB [2025-01-18 06:18:17 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][50/312] eta 0:02:10 lr 0.001464 time 0.4699 (0.4988) model_time 0.4695 (0.4602) loss 3.7390 (3.0730) grad_norm 3.3439 (1.9669/0.7996) mem 16099MB [2025-01-18 06:18:21 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][60/312] eta 0:02:04 lr 0.001464 time 0.4590 (0.4928) model_time 0.4586 (0.4605) loss 3.3109 (3.0693) grad_norm 2.4751 (2.0092/0.8665) mem 16099MB [2025-01-18 06:18:26 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][70/312] eta 0:01:58 lr 0.001463 time 0.4597 (0.4879) model_time 0.4596 (0.4601) loss 2.7320 (3.0685) grad_norm 1.0712 (1.9553/0.8395) mem 16099MB [2025-01-18 06:18:30 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][80/312] eta 0:01:52 lr 0.001462 time 0.4462 (0.4850) model_time 0.4458 (0.4606) loss 3.4519 (3.0803) grad_norm 2.2968 (1.9581/0.8268) mem 16099MB [2025-01-18 06:18:35 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][90/312] eta 0:01:46 lr 0.001462 time 0.4410 (0.4818) model_time 0.4408 (0.4601) loss 3.0671 (3.0805) grad_norm 3.6108 (1.9581/0.8145) mem 16099MB [2025-01-18 06:18:40 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][100/312] eta 0:01:42 lr 0.001461 time 0.4431 (0.4816) model_time 0.4426 (0.4620) loss 3.1348 (3.0712) grad_norm 4.7577 (1.9970/0.8563) mem 16099MB [2025-01-18 06:18:45 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][110/312] eta 0:01:38 lr 0.001461 time 0.4468 (0.4855) model_time 0.4466 (0.4676) loss 3.3118 (3.0902) grad_norm 1.2375 (2.0635/0.8976) mem 16099MB [2025-01-18 06:18:50 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][120/312] eta 0:01:32 lr 0.001460 time 0.4460 (0.4827) model_time 0.4459 (0.4662) loss 3.1843 (3.0982) grad_norm 1.6632 (2.0415/0.8736) mem 16099MB [2025-01-18 06:18:54 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][130/312] eta 0:01:27 lr 0.001459 time 0.4567 (0.4818) model_time 0.4565 (0.4666) loss 3.1794 (3.1017) grad_norm 2.5534 (2.0117/0.8594) mem 16099MB [2025-01-18 06:18:59 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][140/312] eta 0:01:23 lr 0.001459 time 0.4531 (0.4836) model_time 0.4527 (0.4695) loss 3.1107 (3.1094) grad_norm 4.1753 (2.0695/0.8758) mem 16099MB [2025-01-18 06:19:04 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][150/312] eta 0:01:18 lr 0.001458 time 0.4436 (0.4831) model_time 0.4435 (0.4698) loss 4.2240 (3.1309) grad_norm 1.3519 (2.0676/0.8716) mem 16099MB [2025-01-18 06:19:09 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][160/312] eta 0:01:13 lr 0.001457 time 0.4423 (0.4822) model_time 0.4419 (0.4697) loss 2.6221 (3.1166) grad_norm 1.4988 (2.0467/0.8561) mem 16099MB [2025-01-18 06:19:13 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][170/312] eta 0:01:08 lr 0.001457 time 0.4794 (0.4813) model_time 0.4790 (0.4695) loss 3.0900 (3.1187) grad_norm 1.0781 (2.0513/0.8425) mem 16099MB [2025-01-18 06:19:18 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][180/312] eta 0:01:03 lr 0.001456 time 0.4657 (0.4802) model_time 0.4653 (0.4691) loss 2.7474 (3.1069) grad_norm 0.9979 (2.0204/0.8362) mem 16099MB [2025-01-18 06:19:23 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][190/312] eta 0:00:58 lr 0.001455 time 0.4509 (0.4800) model_time 0.4508 (0.4694) loss 3.9128 (3.1191) grad_norm 1.5994 (2.0012/0.8237) mem 16099MB [2025-01-18 06:19:27 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][200/312] eta 0:00:53 lr 0.001455 time 0.4424 (0.4785) model_time 0.4422 (0.4685) loss 3.3253 (3.1274) grad_norm 1.4492 (2.0009/0.8269) mem 16099MB [2025-01-18 06:19:32 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][210/312] eta 0:00:48 lr 0.001454 time 0.4491 (0.4778) model_time 0.4486 (0.4682) loss 3.4985 (3.1223) grad_norm 2.0817 (2.0595/0.9099) mem 16099MB [2025-01-18 06:19:36 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][220/312] eta 0:00:43 lr 0.001454 time 0.4573 (0.4769) model_time 0.4571 (0.4677) loss 3.0595 (3.1221) grad_norm 4.2616 (2.0750/0.9135) mem 16099MB [2025-01-18 06:19:41 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][230/312] eta 0:00:39 lr 0.001453 time 0.4574 (0.4761) model_time 0.4573 (0.4673) loss 3.6846 (3.1196) grad_norm 3.2649 (2.0679/0.9194) mem 16099MB [2025-01-18 06:19:46 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][240/312] eta 0:00:34 lr 0.001452 time 0.4579 (0.4753) model_time 0.4577 (0.4669) loss 3.1860 (3.1142) grad_norm 2.0322 (2.0752/0.9052) mem 16099MB [2025-01-18 06:19:50 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][250/312] eta 0:00:29 lr 0.001452 time 0.4459 (0.4744) model_time 0.4457 (0.4663) loss 3.7047 (3.1190) grad_norm 3.3638 (2.0772/0.8983) mem 16099MB [2025-01-18 06:19:55 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][260/312] eta 0:00:24 lr 0.001451 time 0.4469 (0.4736) model_time 0.4467 (0.4658) loss 3.7247 (3.1257) grad_norm 1.1818 (2.0694/0.8889) mem 16099MB [2025-01-18 06:19:59 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][270/312] eta 0:00:19 lr 0.001450 time 0.4511 (0.4732) model_time 0.4509 (0.4656) loss 2.3093 (3.1269) grad_norm 1.5201 (2.0592/0.8817) mem 16099MB [2025-01-18 06:20:04 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][280/312] eta 0:00:15 lr 0.001450 time 0.4473 (0.4724) model_time 0.4468 (0.4651) loss 3.6612 (3.1184) grad_norm 1.3977 (2.0587/0.8841) mem 16099MB [2025-01-18 06:20:08 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][290/312] eta 0:00:10 lr 0.001449 time 0.5432 (0.4720) model_time 0.5427 (0.4650) loss 3.4641 (3.1238) grad_norm 1.4462 (2.0565/0.8769) mem 16099MB [2025-01-18 06:20:13 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][300/312] eta 0:00:05 lr 0.001448 time 0.4383 (0.4720) model_time 0.4382 (0.4651) loss 3.1304 (3.1302) grad_norm 2.0462 (2.0762/0.8852) mem 16099MB [2025-01-18 06:20:18 internimage_t_1k_224] (main.py 510): INFO Train: [177/300][310/312] eta 0:00:00 lr 0.001448 time 0.5496 (0.4714) model_time 0.5495 (0.4648) loss 2.4684 (3.1322) grad_norm 2.0706 (2.0869/0.8931) mem 16099MB [2025-01-18 06:20:18 internimage_t_1k_224] (main.py 519): INFO EPOCH 177 training takes 0:02:27 [2025-01-18 06:20:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_177.pth saving...... [2025-01-18 06:20:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_177.pth saved !!! [2025-01-18 06:20:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.521 (7.521) Loss 0.7981 (0.7981) Acc@1 83.032 (83.032) Acc@5 96.851 (96.851) Mem 16099MB [2025-01-18 06:20:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.002) Loss 1.0969 (0.9215) Acc@1 75.317 (80.320) Acc@5 93.506 (95.304) Mem 16099MB [2025-01-18 06:20:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:177] * Acc@1 80.238 Acc@5 95.317 [2025-01-18 06:20:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.2% [2025-01-18 06:20:31 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.38% [2025-01-18 06:20:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.199 (8.199) Loss 0.8026 (0.8026) Acc@1 84.595 (84.595) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 06:20:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.099) Loss 1.0833 (0.9283) Acc@1 77.075 (81.687) Acc@5 94.531 (95.874) Mem 16099MB [2025-01-18 06:20:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:177] * Acc@1 81.568 Acc@5 95.909 [2025-01-18 06:20:43 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.6% [2025-01-18 06:20:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:20:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:20:44 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.57% [2025-01-18 06:20:47 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][0/312] eta 0:14:45 lr 0.001448 time 2.8368 (2.8368) model_time 0.4730 (0.4730) loss 3.3105 (3.3105) grad_norm 1.1655 (1.1655/0.0000) mem 16099MB [2025-01-18 06:20:52 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][10/312] eta 0:03:31 lr 0.001447 time 0.4489 (0.6997) model_time 0.4484 (0.4845) loss 3.3148 (2.9272) grad_norm 1.4714 (2.0478/0.9218) mem 16099MB [2025-01-18 06:20:57 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][20/312] eta 0:02:51 lr 0.001446 time 0.4534 (0.5861) model_time 0.4533 (0.4733) loss 3.6522 (3.1058) grad_norm 1.9820 (1.7692/0.7998) mem 16099MB [2025-01-18 06:21:01 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][30/312] eta 0:02:36 lr 0.001446 time 0.4585 (0.5562) model_time 0.4584 (0.4796) loss 2.8107 (3.1657) grad_norm 3.2130 (1.9199/0.7984) mem 16099MB [2025-01-18 06:21:06 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][40/312] eta 0:02:25 lr 0.001445 time 0.4556 (0.5339) model_time 0.4552 (0.4759) loss 2.5256 (3.0839) grad_norm 1.5844 (1.9817/0.8177) mem 16099MB [2025-01-18 06:21:11 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][50/312] eta 0:02:17 lr 0.001445 time 0.5644 (0.5250) model_time 0.5642 (0.4783) loss 3.2952 (3.1281) grad_norm 1.9464 (2.0160/0.8865) mem 16099MB [2025-01-18 06:21:16 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][60/312] eta 0:02:09 lr 0.001444 time 0.4519 (0.5145) model_time 0.4517 (0.4754) loss 2.7750 (3.1197) grad_norm 1.5188 (2.0128/0.8811) mem 16099MB [2025-01-18 06:21:20 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][70/312] eta 0:02:03 lr 0.001443 time 0.4494 (0.5090) model_time 0.4492 (0.4754) loss 3.3039 (3.1440) grad_norm 2.3721 (2.0247/0.8601) mem 16099MB [2025-01-18 06:21:25 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][80/312] eta 0:01:56 lr 0.001443 time 0.4621 (0.5028) model_time 0.4616 (0.4732) loss 2.9285 (3.1387) grad_norm 2.0390 (2.0610/0.8369) mem 16099MB [2025-01-18 06:21:30 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][90/312] eta 0:01:50 lr 0.001442 time 0.4454 (0.4989) model_time 0.4449 (0.4726) loss 3.2685 (3.1533) grad_norm 2.2367 (2.0581/0.8286) mem 16099MB [2025-01-18 06:21:35 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][100/312] eta 0:01:45 lr 0.001441 time 0.4465 (0.4983) model_time 0.4463 (0.4745) loss 3.7777 (3.1554) grad_norm 2.3834 (2.0538/0.8265) mem 16099MB [2025-01-18 06:21:39 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][110/312] eta 0:01:39 lr 0.001441 time 0.4471 (0.4949) model_time 0.4467 (0.4733) loss 2.4111 (3.1342) grad_norm 1.9999 (2.0646/0.8510) mem 16099MB [2025-01-18 06:21:44 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][120/312] eta 0:01:35 lr 0.001440 time 0.7253 (0.4955) model_time 0.7249 (0.4756) loss 3.1096 (3.1107) grad_norm 2.0851 (2.0684/0.8418) mem 16099MB [2025-01-18 06:21:49 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][130/312] eta 0:01:29 lr 0.001439 time 0.4450 (0.4931) model_time 0.4445 (0.4747) loss 3.5549 (3.1152) grad_norm 4.2044 (2.0767/0.8666) mem 16099MB [2025-01-18 06:21:53 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][140/312] eta 0:01:24 lr 0.001439 time 0.4534 (0.4907) model_time 0.4532 (0.4736) loss 3.1949 (3.1057) grad_norm 2.5401 (2.0685/0.8467) mem 16099MB [2025-01-18 06:21:58 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][150/312] eta 0:01:19 lr 0.001438 time 0.7441 (0.4906) model_time 0.7439 (0.4746) loss 3.5941 (3.1011) grad_norm 1.4732 (2.0196/0.8430) mem 16099MB [2025-01-18 06:22:03 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][160/312] eta 0:01:14 lr 0.001438 time 0.4563 (0.4882) model_time 0.4558 (0.4731) loss 3.8385 (3.1188) grad_norm 1.9318 (1.9848/0.8344) mem 16099MB [2025-01-18 06:22:08 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][170/312] eta 0:01:09 lr 0.001437 time 0.4739 (0.4872) model_time 0.4735 (0.4729) loss 2.2225 (3.1176) grad_norm 1.9871 (2.0040/0.8521) mem 16099MB [2025-01-18 06:22:12 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][180/312] eta 0:01:04 lr 0.001436 time 0.4489 (0.4860) model_time 0.4485 (0.4725) loss 2.3881 (3.1076) grad_norm 2.5827 (2.0524/0.9116) mem 16099MB [2025-01-18 06:22:17 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][190/312] eta 0:00:59 lr 0.001436 time 0.4510 (0.4844) model_time 0.4508 (0.4716) loss 3.3732 (3.1085) grad_norm 2.1488 (2.0726/0.9247) mem 16099MB [2025-01-18 06:22:21 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][200/312] eta 0:00:54 lr 0.001435 time 0.4505 (0.4832) model_time 0.4500 (0.4710) loss 3.1274 (3.0979) grad_norm 5.3148 (2.1028/0.9663) mem 16099MB [2025-01-18 06:22:26 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][210/312] eta 0:00:49 lr 0.001434 time 0.4543 (0.4835) model_time 0.4541 (0.4719) loss 3.6938 (3.0979) grad_norm 2.3187 (2.1481/0.9994) mem 16099MB [2025-01-18 06:22:31 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][220/312] eta 0:00:44 lr 0.001434 time 0.4449 (0.4822) model_time 0.4445 (0.4711) loss 1.8463 (3.1009) grad_norm 1.2296 (2.1397/0.9847) mem 16099MB [2025-01-18 06:22:36 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][230/312] eta 0:00:39 lr 0.001433 time 0.4532 (0.4821) model_time 0.4528 (0.4715) loss 3.2450 (3.0979) grad_norm 1.3606 (2.1166/0.9835) mem 16099MB [2025-01-18 06:22:40 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][240/312] eta 0:00:34 lr 0.001432 time 0.4817 (0.4814) model_time 0.4813 (0.4712) loss 3.1921 (3.0962) grad_norm 1.6597 (2.0883/0.9752) mem 16099MB [2025-01-18 06:22:45 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][250/312] eta 0:00:29 lr 0.001432 time 0.4618 (0.4808) model_time 0.4616 (0.4709) loss 3.6359 (3.0928) grad_norm 1.7729 (2.0750/0.9647) mem 16099MB [2025-01-18 06:22:50 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][260/312] eta 0:00:24 lr 0.001431 time 0.4493 (0.4802) model_time 0.4488 (0.4707) loss 2.5642 (3.0888) grad_norm 0.8002 (2.0519/0.9563) mem 16099MB [2025-01-18 06:22:54 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][270/312] eta 0:00:20 lr 0.001431 time 0.4529 (0.4798) model_time 0.4527 (0.4707) loss 3.2277 (3.0960) grad_norm 1.9909 (2.0843/0.9802) mem 16099MB [2025-01-18 06:22:59 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][280/312] eta 0:00:15 lr 0.001430 time 0.4410 (0.4791) model_time 0.4408 (0.4703) loss 2.9641 (3.0954) grad_norm 1.2650 (2.1047/1.0073) mem 16099MB [2025-01-18 06:23:04 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][290/312] eta 0:00:10 lr 0.001429 time 0.4606 (0.4802) model_time 0.4602 (0.4716) loss 2.5927 (3.0836) grad_norm 1.1664 (2.0887/0.9983) mem 16099MB [2025-01-18 06:23:09 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][300/312] eta 0:00:05 lr 0.001429 time 0.4445 (0.4794) model_time 0.4444 (0.4711) loss 3.3437 (3.0840) grad_norm 1.3465 (2.0735/0.9893) mem 16099MB [2025-01-18 06:23:13 internimage_t_1k_224] (main.py 510): INFO Train: [178/300][310/312] eta 0:00:00 lr 0.001428 time 0.4397 (0.4784) model_time 0.4396 (0.4704) loss 1.8549 (3.0753) grad_norm 4.3964 (2.0782/0.9858) mem 16099MB [2025-01-18 06:23:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 178 training takes 0:02:29 [2025-01-18 06:23:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_178.pth saving...... [2025-01-18 06:23:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_178.pth saved !!! [2025-01-18 06:23:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.374 (7.374) Loss 0.7545 (0.7545) Acc@1 83.496 (83.496) Acc@5 96.924 (96.924) Mem 16099MB [2025-01-18 06:23:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.996) Loss 1.0569 (0.8903) Acc@1 76.294 (80.553) Acc@5 93.750 (95.497) Mem 16099MB [2025-01-18 06:23:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:178] * Acc@1 80.450 Acc@5 95.527 [2025-01-18 06:23:26 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.5% [2025-01-18 06:23:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:23:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:23:27 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.45% [2025-01-18 06:23:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.202 (7.202) Loss 0.8017 (0.8017) Acc@1 84.570 (84.570) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 06:23:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.985) Loss 1.0812 (0.9269) Acc@1 77.124 (81.747) Acc@5 94.507 (95.881) Mem 16099MB [2025-01-18 06:23:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:178] * Acc@1 81.620 Acc@5 95.915 [2025-01-18 06:23:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.6% [2025-01-18 06:23:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:23:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:23:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.62% [2025-01-18 06:23:42 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][0/312] eta 0:13:54 lr 0.001428 time 2.6734 (2.6734) model_time 0.4745 (0.4745) loss 3.1096 (3.1096) grad_norm 4.3727 (4.3727/0.0000) mem 16099MB [2025-01-18 06:23:46 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][10/312] eta 0:03:21 lr 0.001427 time 0.4583 (0.6669) model_time 0.4579 (0.4667) loss 3.3535 (3.1448) grad_norm 3.2631 (2.3701/1.1565) mem 16099MB [2025-01-18 06:23:51 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][20/312] eta 0:02:49 lr 0.001427 time 0.5030 (0.5816) model_time 0.5028 (0.4766) loss 3.4844 (3.2011) grad_norm 1.3236 (1.9542/1.0367) mem 16099MB [2025-01-18 06:23:56 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][30/312] eta 0:02:34 lr 0.001426 time 0.5560 (0.5489) model_time 0.5555 (0.4776) loss 3.4047 (3.1570) grad_norm 1.3789 (1.8103/0.8888) mem 16099MB [2025-01-18 06:24:01 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][40/312] eta 0:02:23 lr 0.001425 time 0.4429 (0.5290) model_time 0.4427 (0.4750) loss 3.1498 (3.1244) grad_norm 1.6344 (1.8396/0.8388) mem 16099MB [2025-01-18 06:24:05 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][50/312] eta 0:02:14 lr 0.001425 time 0.4686 (0.5149) model_time 0.4683 (0.4715) loss 3.6591 (3.1579) grad_norm 1.5478 (1.8518/0.8156) mem 16099MB [2025-01-18 06:24:10 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][60/312] eta 0:02:07 lr 0.001424 time 0.4672 (0.5069) model_time 0.4671 (0.4705) loss 3.3887 (3.0774) grad_norm 1.3312 (1.7995/0.7821) mem 16099MB [2025-01-18 06:24:15 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][70/312] eta 0:02:01 lr 0.001423 time 0.5531 (0.5004) model_time 0.5530 (0.4691) loss 3.1937 (3.1032) grad_norm 2.1658 (1.8353/0.7655) mem 16099MB [2025-01-18 06:24:19 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][80/312] eta 0:01:55 lr 0.001423 time 0.4509 (0.4960) model_time 0.4507 (0.4685) loss 3.6407 (3.1228) grad_norm 3.1558 (1.8522/0.7577) mem 16099MB [2025-01-18 06:24:24 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][90/312] eta 0:01:50 lr 0.001422 time 0.5397 (0.4975) model_time 0.5393 (0.4730) loss 3.5740 (3.1151) grad_norm 1.3848 (1.8382/0.7276) mem 16099MB [2025-01-18 06:24:29 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][100/312] eta 0:01:44 lr 0.001422 time 0.4620 (0.4944) model_time 0.4615 (0.4723) loss 2.5236 (3.1206) grad_norm 2.0188 (1.8840/0.7454) mem 16099MB [2025-01-18 06:24:34 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][110/312] eta 0:01:39 lr 0.001421 time 0.4515 (0.4916) model_time 0.4511 (0.4714) loss 2.4115 (3.1298) grad_norm 1.7232 (1.9107/0.7798) mem 16099MB [2025-01-18 06:24:38 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][120/312] eta 0:01:33 lr 0.001420 time 0.4585 (0.4890) model_time 0.4583 (0.4705) loss 2.8217 (3.1312) grad_norm 2.2062 (1.9317/0.7649) mem 16099MB [2025-01-18 06:24:43 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][130/312] eta 0:01:28 lr 0.001420 time 0.4576 (0.4870) model_time 0.4571 (0.4699) loss 3.1473 (3.1540) grad_norm 2.0096 (1.9702/0.8316) mem 16099MB [2025-01-18 06:24:48 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][140/312] eta 0:01:23 lr 0.001419 time 0.4519 (0.4862) model_time 0.4517 (0.4703) loss 2.5911 (3.1481) grad_norm 3.1632 (1.9559/0.8215) mem 16099MB [2025-01-18 06:24:52 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][150/312] eta 0:01:18 lr 0.001418 time 0.4549 (0.4847) model_time 0.4545 (0.4698) loss 2.7486 (3.1497) grad_norm 2.0618 (2.0024/0.8465) mem 16099MB [2025-01-18 06:24:57 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][160/312] eta 0:01:13 lr 0.001418 time 0.4497 (0.4836) model_time 0.4495 (0.4696) loss 3.2438 (3.1443) grad_norm 1.2918 (1.9820/0.8319) mem 16099MB [2025-01-18 06:25:02 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][170/312] eta 0:01:08 lr 0.001417 time 0.4504 (0.4821) model_time 0.4500 (0.4688) loss 3.4575 (3.1488) grad_norm 1.2318 (1.9565/0.8238) mem 16099MB [2025-01-18 06:25:06 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][180/312] eta 0:01:03 lr 0.001416 time 0.4443 (0.4811) model_time 0.4441 (0.4686) loss 2.8376 (3.1332) grad_norm 3.7384 (1.9725/0.8407) mem 16099MB [2025-01-18 06:25:11 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][190/312] eta 0:00:58 lr 0.001416 time 0.4582 (0.4806) model_time 0.4580 (0.4687) loss 2.2283 (3.1350) grad_norm 2.7868 (1.9725/0.8288) mem 16099MB [2025-01-18 06:25:16 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][200/312] eta 0:00:53 lr 0.001415 time 0.4439 (0.4798) model_time 0.4435 (0.4685) loss 2.2221 (3.1354) grad_norm 1.6269 (1.9943/0.8257) mem 16099MB [2025-01-18 06:25:20 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][210/312] eta 0:00:48 lr 0.001415 time 0.4466 (0.4788) model_time 0.4462 (0.4680) loss 3.8257 (3.1423) grad_norm 2.0075 (1.9926/0.8172) mem 16099MB [2025-01-18 06:25:25 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][220/312] eta 0:00:43 lr 0.001414 time 0.4587 (0.4776) model_time 0.4586 (0.4673) loss 2.2916 (3.1433) grad_norm 0.8151 (2.0007/0.8255) mem 16099MB [2025-01-18 06:25:29 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][230/312] eta 0:00:39 lr 0.001413 time 0.4445 (0.4770) model_time 0.4440 (0.4671) loss 3.0186 (3.1326) grad_norm 1.5893 (2.0089/0.8215) mem 16099MB [2025-01-18 06:25:34 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][240/312] eta 0:00:34 lr 0.001413 time 0.4528 (0.4761) model_time 0.4523 (0.4666) loss 3.1236 (3.1348) grad_norm 2.9942 (1.9958/0.8135) mem 16099MB [2025-01-18 06:25:39 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][250/312] eta 0:00:29 lr 0.001412 time 0.4667 (0.4761) model_time 0.4666 (0.4669) loss 3.1749 (3.1277) grad_norm 2.1341 (2.0297/0.8508) mem 16099MB [2025-01-18 06:25:43 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][260/312] eta 0:00:24 lr 0.001411 time 0.4407 (0.4759) model_time 0.4405 (0.4671) loss 3.2124 (3.1289) grad_norm 2.1353 (2.0278/0.8452) mem 16099MB [2025-01-18 06:25:48 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][270/312] eta 0:00:19 lr 0.001411 time 0.4504 (0.4758) model_time 0.4500 (0.4673) loss 2.2101 (3.1271) grad_norm 2.5423 (2.0462/0.8495) mem 16099MB [2025-01-18 06:25:53 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][280/312] eta 0:00:15 lr 0.001410 time 0.4543 (0.4750) model_time 0.4538 (0.4668) loss 3.2103 (3.1194) grad_norm 1.6759 (2.0340/0.8449) mem 16099MB [2025-01-18 06:25:57 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][290/312] eta 0:00:10 lr 0.001410 time 0.4508 (0.4745) model_time 0.4503 (0.4666) loss 3.0244 (3.1172) grad_norm 3.3616 (2.0316/0.8474) mem 16099MB [2025-01-18 06:26:02 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][300/312] eta 0:00:05 lr 0.001409 time 0.5180 (0.4740) model_time 0.5179 (0.4663) loss 3.3015 (3.1091) grad_norm 1.0480 (2.0267/0.8396) mem 16099MB [2025-01-18 06:26:06 internimage_t_1k_224] (main.py 510): INFO Train: [179/300][310/312] eta 0:00:00 lr 0.001408 time 0.4395 (0.4730) model_time 0.4394 (0.4655) loss 3.6364 (3.1063) grad_norm 0.9494 (2.0116/0.8288) mem 16099MB [2025-01-18 06:26:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 179 training takes 0:02:27 [2025-01-18 06:26:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_179.pth saving...... [2025-01-18 06:26:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_179.pth saved !!! [2025-01-18 06:26:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.494 (7.494) Loss 0.8057 (0.8057) Acc@1 83.569 (83.569) Acc@5 96.948 (96.948) Mem 16099MB [2025-01-18 06:26:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.023) Loss 1.0414 (0.9169) Acc@1 77.246 (80.575) Acc@5 94.189 (95.468) Mem 16099MB [2025-01-18 06:26:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:179] * Acc@1 80.502 Acc@5 95.491 [2025-01-18 06:26:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.5% [2025-01-18 06:26:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:26:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:26:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.50% [2025-01-18 06:26:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.627 (7.627) Loss 0.8008 (0.8008) Acc@1 84.619 (84.619) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 06:26:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.023) Loss 1.0794 (0.9256) Acc@1 77.148 (81.794) Acc@5 94.507 (95.885) Mem 16099MB [2025-01-18 06:26:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:179] * Acc@1 81.666 Acc@5 95.917 [2025-01-18 06:26:32 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.7% [2025-01-18 06:26:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:26:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:26:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.67% [2025-01-18 06:26:36 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][0/312] eta 0:15:48 lr 0.001408 time 3.0401 (3.0401) model_time 0.6343 (0.6343) loss 3.3722 (3.3722) grad_norm 3.1108 (3.1108/0.0000) mem 16099MB [2025-01-18 06:26:41 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][10/312] eta 0:03:30 lr 0.001408 time 0.4511 (0.6971) model_time 0.4507 (0.4781) loss 2.9780 (3.1555) grad_norm 8.0494 (3.4482/2.2392) mem 16099MB [2025-01-18 06:26:45 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][20/312] eta 0:02:50 lr 0.001407 time 0.4583 (0.5830) model_time 0.4578 (0.4681) loss 3.2715 (3.0888) grad_norm 1.4084 (2.8385/1.8712) mem 16099MB [2025-01-18 06:26:50 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][30/312] eta 0:02:34 lr 0.001406 time 0.4527 (0.5489) model_time 0.4526 (0.4709) loss 3.2483 (3.1965) grad_norm 1.4240 (2.3745/1.6931) mem 16099MB [2025-01-18 06:26:55 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][40/312] eta 0:02:23 lr 0.001406 time 0.4467 (0.5263) model_time 0.4462 (0.4672) loss 2.8925 (3.1445) grad_norm 1.7830 (2.0933/1.5590) mem 16099MB [2025-01-18 06:27:00 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][50/312] eta 0:02:15 lr 0.001405 time 0.4498 (0.5170) model_time 0.4494 (0.4695) loss 3.6503 (3.0861) grad_norm 2.6241 (2.0397/1.4413) mem 16099MB [2025-01-18 06:27:04 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][60/312] eta 0:02:07 lr 0.001404 time 0.4427 (0.5070) model_time 0.4426 (0.4672) loss 2.5217 (3.1105) grad_norm 1.7311 (2.0027/1.3406) mem 16099MB [2025-01-18 06:27:09 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][70/312] eta 0:02:01 lr 0.001404 time 0.4611 (0.5013) model_time 0.4609 (0.4670) loss 2.4810 (3.0758) grad_norm 1.5066 (1.9361/1.2585) mem 16099MB [2025-01-18 06:27:14 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][80/312] eta 0:01:55 lr 0.001403 time 0.5676 (0.4999) model_time 0.5674 (0.4698) loss 4.0048 (3.1205) grad_norm 1.8566 (1.8692/1.1952) mem 16099MB [2025-01-18 06:27:18 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][90/312] eta 0:01:50 lr 0.001402 time 0.5336 (0.4978) model_time 0.5331 (0.4710) loss 3.1846 (3.1470) grad_norm 1.4940 (1.8962/1.2196) mem 16099MB [2025-01-18 06:27:23 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][100/312] eta 0:01:44 lr 0.001402 time 0.4433 (0.4944) model_time 0.4428 (0.4702) loss 2.8326 (3.1182) grad_norm 3.5124 (1.8854/1.1892) mem 16099MB [2025-01-18 06:27:28 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][110/312] eta 0:01:39 lr 0.001401 time 0.4431 (0.4932) model_time 0.4427 (0.4711) loss 2.7413 (3.1210) grad_norm 1.9786 (1.9317/1.2006) mem 16099MB [2025-01-18 06:27:33 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][120/312] eta 0:01:34 lr 0.001401 time 0.4531 (0.4912) model_time 0.4529 (0.4710) loss 2.2803 (3.1253) grad_norm 1.3201 (1.9334/1.1702) mem 16099MB [2025-01-18 06:27:37 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][130/312] eta 0:01:29 lr 0.001400 time 0.5414 (0.4903) model_time 0.5409 (0.4716) loss 3.0749 (3.1167) grad_norm 1.3225 (1.9528/1.1643) mem 16099MB [2025-01-18 06:27:42 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][140/312] eta 0:01:23 lr 0.001399 time 0.4506 (0.4883) model_time 0.4502 (0.4709) loss 2.8206 (3.1232) grad_norm 1.4237 (1.9651/1.1469) mem 16099MB [2025-01-18 06:27:47 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][150/312] eta 0:01:18 lr 0.001399 time 0.4425 (0.4865) model_time 0.4421 (0.4702) loss 3.5113 (3.1255) grad_norm 3.1371 (1.9665/1.1263) mem 16099MB [2025-01-18 06:27:51 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][160/312] eta 0:01:13 lr 0.001398 time 0.4679 (0.4848) model_time 0.4674 (0.4695) loss 3.1575 (3.1559) grad_norm 1.9185 (1.9426/1.1032) mem 16099MB [2025-01-18 06:27:56 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][170/312] eta 0:01:08 lr 0.001397 time 0.4674 (0.4835) model_time 0.4672 (0.4691) loss 3.2848 (3.1599) grad_norm 1.8505 (1.9626/1.1017) mem 16099MB [2025-01-18 06:28:01 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][180/312] eta 0:01:03 lr 0.001397 time 0.4562 (0.4833) model_time 0.4561 (0.4696) loss 2.1846 (3.1579) grad_norm 1.1899 (2.0131/1.1546) mem 16099MB [2025-01-18 06:28:05 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][190/312] eta 0:00:58 lr 0.001396 time 0.4620 (0.4824) model_time 0.4616 (0.4694) loss 2.8597 (3.1460) grad_norm 1.4993 (2.0478/1.1764) mem 16099MB [2025-01-18 06:28:10 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][200/312] eta 0:00:53 lr 0.001396 time 0.4525 (0.4817) model_time 0.4523 (0.4693) loss 3.3876 (3.1537) grad_norm 1.5587 (2.0454/1.1654) mem 16099MB [2025-01-18 06:28:15 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][210/312] eta 0:00:49 lr 0.001395 time 0.4462 (0.4812) model_time 0.4457 (0.4694) loss 3.0528 (3.1545) grad_norm 1.7348 (2.0245/1.1473) mem 16099MB [2025-01-18 06:28:19 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][220/312] eta 0:00:44 lr 0.001394 time 0.4510 (0.4806) model_time 0.4506 (0.4694) loss 4.0051 (3.1675) grad_norm 2.2332 (2.0160/1.1263) mem 16099MB [2025-01-18 06:28:24 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][230/312] eta 0:00:39 lr 0.001394 time 0.4615 (0.4796) model_time 0.4613 (0.4688) loss 3.4753 (3.1702) grad_norm 1.6123 (2.0252/1.1083) mem 16099MB [2025-01-18 06:28:29 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][240/312] eta 0:00:34 lr 0.001393 time 0.4446 (0.4791) model_time 0.4445 (0.4688) loss 2.6439 (3.1722) grad_norm 1.8534 (2.0318/1.0922) mem 16099MB [2025-01-18 06:28:33 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][250/312] eta 0:00:29 lr 0.001392 time 0.4451 (0.4782) model_time 0.4446 (0.4683) loss 3.1063 (3.1710) grad_norm 0.9761 (2.0050/1.0823) mem 16099MB [2025-01-18 06:28:38 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][260/312] eta 0:00:24 lr 0.001392 time 0.4683 (0.4779) model_time 0.4678 (0.4683) loss 3.4149 (3.1732) grad_norm 2.9865 (2.0358/1.0932) mem 16099MB [2025-01-18 06:28:42 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][270/312] eta 0:00:20 lr 0.001391 time 0.4499 (0.4769) model_time 0.4495 (0.4676) loss 2.6529 (3.1664) grad_norm 1.7026 (2.0400/1.0844) mem 16099MB [2025-01-18 06:28:47 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][280/312] eta 0:00:15 lr 0.001390 time 0.5320 (0.4766) model_time 0.5315 (0.4676) loss 2.9196 (3.1611) grad_norm 2.1335 (2.0276/1.0746) mem 16099MB [2025-01-18 06:28:52 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][290/312] eta 0:00:10 lr 0.001390 time 0.4496 (0.4763) model_time 0.4494 (0.4677) loss 2.0140 (3.1624) grad_norm 1.2379 (2.0420/1.0757) mem 16099MB [2025-01-18 06:28:56 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][300/312] eta 0:00:05 lr 0.001389 time 0.4428 (0.4758) model_time 0.4427 (0.4674) loss 2.7648 (3.1542) grad_norm 1.8429 (2.0439/1.0664) mem 16099MB [2025-01-18 06:29:01 internimage_t_1k_224] (main.py 510): INFO Train: [180/300][310/312] eta 0:00:00 lr 0.001389 time 0.4383 (0.4747) model_time 0.4382 (0.4666) loss 2.8539 (3.1523) grad_norm 2.2059 (2.0042/0.9540) mem 16099MB [2025-01-18 06:29:01 internimage_t_1k_224] (main.py 519): INFO EPOCH 180 training takes 0:02:28 [2025-01-18 06:29:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_180.pth saving...... [2025-01-18 06:29:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_180.pth saved !!! [2025-01-18 06:29:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.506 (7.506) Loss 0.8017 (0.8017) Acc@1 83.472 (83.472) Acc@5 96.533 (96.533) Mem 16099MB [2025-01-18 06:29:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.999) Loss 1.1116 (0.9200) Acc@1 75.415 (80.560) Acc@5 93.555 (95.395) Mem 16099MB [2025-01-18 06:29:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:180] * Acc@1 80.484 Acc@5 95.417 [2025-01-18 06:29:14 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.5% [2025-01-18 06:29:14 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.50% [2025-01-18 06:29:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.173 (8.173) Loss 0.8002 (0.8002) Acc@1 84.668 (84.668) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 06:29:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.110) Loss 1.0774 (0.9244) Acc@1 77.173 (81.836) Acc@5 94.580 (95.898) Mem 16099MB [2025-01-18 06:29:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:180] * Acc@1 81.700 Acc@5 95.931 [2025-01-18 06:29:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.7% [2025-01-18 06:29:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:29:27 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:29:27 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.70% [2025-01-18 06:29:30 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][0/312] eta 0:14:16 lr 0.001388 time 2.7442 (2.7442) model_time 0.4730 (0.4730) loss 3.5282 (3.5282) grad_norm 2.3515 (2.3515/0.0000) mem 16099MB [2025-01-18 06:29:35 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][10/312] eta 0:03:23 lr 0.001388 time 0.4905 (0.6736) model_time 0.4901 (0.4667) loss 2.9530 (3.1282) grad_norm 1.0474 (1.8303/0.6384) mem 16099MB [2025-01-18 06:29:39 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][20/312] eta 0:02:47 lr 0.001387 time 0.4615 (0.5749) model_time 0.4614 (0.4663) loss 3.0862 (3.1658) grad_norm 1.3209 (1.6898/0.4959) mem 16099MB [2025-01-18 06:29:44 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][30/312] eta 0:02:33 lr 0.001387 time 0.4503 (0.5435) model_time 0.4502 (0.4699) loss 3.1631 (3.1387) grad_norm 1.2025 (1.5968/0.4575) mem 16099MB [2025-01-18 06:29:49 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][40/312] eta 0:02:22 lr 0.001386 time 0.4599 (0.5225) model_time 0.4594 (0.4668) loss 3.5465 (3.1550) grad_norm 0.8426 (1.7201/0.8086) mem 16099MB [2025-01-18 06:29:53 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][50/312] eta 0:02:13 lr 0.001385 time 0.4476 (0.5093) model_time 0.4472 (0.4644) loss 2.4790 (3.1418) grad_norm 1.7376 (1.8117/0.8180) mem 16099MB [2025-01-18 06:29:58 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][60/312] eta 0:02:06 lr 0.001385 time 0.4760 (0.5011) model_time 0.4758 (0.4636) loss 1.8294 (3.0987) grad_norm 2.0291 (1.7876/0.7787) mem 16099MB [2025-01-18 06:30:03 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][70/312] eta 0:01:59 lr 0.001384 time 0.4610 (0.4951) model_time 0.4605 (0.4628) loss 2.8235 (3.0949) grad_norm 1.3711 (1.7720/0.7824) mem 16099MB [2025-01-18 06:30:07 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][80/312] eta 0:01:54 lr 0.001383 time 0.4548 (0.4940) model_time 0.4543 (0.4656) loss 3.2823 (3.1121) grad_norm 1.5299 (1.8768/0.8594) mem 16099MB [2025-01-18 06:30:12 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][90/312] eta 0:01:49 lr 0.001383 time 0.4480 (0.4913) model_time 0.4478 (0.4659) loss 2.5232 (3.1104) grad_norm 2.6946 (1.9572/0.9534) mem 16099MB [2025-01-18 06:30:17 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][100/312] eta 0:01:43 lr 0.001382 time 0.4477 (0.4885) model_time 0.4472 (0.4656) loss 2.9060 (3.0801) grad_norm 1.5275 (2.0789/1.1217) mem 16099MB [2025-01-18 06:30:21 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][110/312] eta 0:01:38 lr 0.001382 time 0.4424 (0.4863) model_time 0.4422 (0.4655) loss 3.5263 (3.0798) grad_norm 1.9550 (2.0426/1.0920) mem 16099MB [2025-01-18 06:30:26 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][120/312] eta 0:01:33 lr 0.001381 time 0.4485 (0.4854) model_time 0.4481 (0.4663) loss 2.3268 (3.0784) grad_norm 2.0131 (2.0488/1.0996) mem 16099MB [2025-01-18 06:30:31 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][130/312] eta 0:01:28 lr 0.001380 time 0.4462 (0.4837) model_time 0.4460 (0.4660) loss 1.8512 (3.0846) grad_norm 3.2641 (2.0852/1.1013) mem 16099MB [2025-01-18 06:30:35 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][140/312] eta 0:01:22 lr 0.001380 time 0.4502 (0.4823) model_time 0.4500 (0.4658) loss 3.7221 (3.0862) grad_norm 2.3750 (2.0740/1.0769) mem 16099MB [2025-01-18 06:30:40 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][150/312] eta 0:01:17 lr 0.001379 time 0.4496 (0.4813) model_time 0.4491 (0.4659) loss 2.5923 (3.0954) grad_norm 3.0963 (2.0635/1.0510) mem 16099MB [2025-01-18 06:30:45 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][160/312] eta 0:01:13 lr 0.001378 time 0.4428 (0.4807) model_time 0.4426 (0.4662) loss 3.2377 (3.0904) grad_norm 2.2269 (2.0634/1.0237) mem 16099MB [2025-01-18 06:30:49 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][170/312] eta 0:01:08 lr 0.001378 time 0.4474 (0.4799) model_time 0.4470 (0.4663) loss 3.0012 (3.0867) grad_norm 1.7671 (2.0254/1.0103) mem 16099MB [2025-01-18 06:30:54 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][180/312] eta 0:01:03 lr 0.001377 time 0.4632 (0.4791) model_time 0.4628 (0.4662) loss 3.3441 (3.1010) grad_norm 3.4199 (2.0577/1.0366) mem 16099MB [2025-01-18 06:30:59 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][190/312] eta 0:00:58 lr 0.001377 time 0.4409 (0.4779) model_time 0.4405 (0.4656) loss 2.7578 (3.1007) grad_norm 2.2187 (2.0641/1.0176) mem 16099MB [2025-01-18 06:31:04 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][200/312] eta 0:00:53 lr 0.001376 time 0.5594 (0.4786) model_time 0.5593 (0.4669) loss 3.7538 (3.1024) grad_norm 1.4508 (2.0426/1.0066) mem 16099MB [2025-01-18 06:31:08 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][210/312] eta 0:00:48 lr 0.001375 time 0.4560 (0.4779) model_time 0.4555 (0.4668) loss 2.2704 (3.1157) grad_norm 1.3391 (2.0083/0.9978) mem 16099MB [2025-01-18 06:31:13 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][220/312] eta 0:00:43 lr 0.001375 time 0.4520 (0.4771) model_time 0.4519 (0.4664) loss 3.2543 (3.1156) grad_norm 2.1991 (1.9932/0.9818) mem 16099MB [2025-01-18 06:31:17 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][230/312] eta 0:00:39 lr 0.001374 time 0.4433 (0.4761) model_time 0.4431 (0.4658) loss 3.2216 (3.1139) grad_norm 2.1615 (2.0078/0.9798) mem 16099MB [2025-01-18 06:31:22 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][240/312] eta 0:00:34 lr 0.001373 time 0.4471 (0.4759) model_time 0.4467 (0.4661) loss 2.6037 (3.1117) grad_norm 3.5559 (2.0209/0.9771) mem 16099MB [2025-01-18 06:31:27 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][250/312] eta 0:00:29 lr 0.001373 time 0.4556 (0.4754) model_time 0.4554 (0.4659) loss 3.3039 (3.1122) grad_norm 1.3105 (1.9992/0.9680) mem 16099MB [2025-01-18 06:31:31 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][260/312] eta 0:00:24 lr 0.001372 time 0.4570 (0.4747) model_time 0.4568 (0.4656) loss 3.4532 (3.1129) grad_norm 2.1894 (1.9952/0.9531) mem 16099MB [2025-01-18 06:31:36 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][270/312] eta 0:00:19 lr 0.001371 time 0.4402 (0.4749) model_time 0.4401 (0.4661) loss 3.4053 (3.1094) grad_norm 1.5422 (2.0169/0.9570) mem 16099MB [2025-01-18 06:31:41 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][280/312] eta 0:00:15 lr 0.001371 time 0.4697 (0.4743) model_time 0.4694 (0.4658) loss 2.8330 (3.1064) grad_norm 1.2530 (2.0057/0.9442) mem 16099MB [2025-01-18 06:31:45 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][290/312] eta 0:00:10 lr 0.001370 time 0.4425 (0.4736) model_time 0.4420 (0.4654) loss 3.7959 (3.1000) grad_norm 0.8096 (1.9840/0.9378) mem 16099MB [2025-01-18 06:31:50 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][300/312] eta 0:00:05 lr 0.001370 time 0.4396 (0.4729) model_time 0.4395 (0.4650) loss 3.8792 (3.1043) grad_norm 1.9882 (1.9831/0.9387) mem 16099MB [2025-01-18 06:31:54 internimage_t_1k_224] (main.py 510): INFO Train: [181/300][310/312] eta 0:00:00 lr 0.001369 time 0.4385 (0.4719) model_time 0.4384 (0.4642) loss 3.3490 (3.1066) grad_norm 3.7131 (2.0161/0.9630) mem 16099MB [2025-01-18 06:31:55 internimage_t_1k_224] (main.py 519): INFO EPOCH 181 training takes 0:02:27 [2025-01-18 06:31:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_181.pth saving...... [2025-01-18 06:31:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_181.pth saved !!! [2025-01-18 06:32:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.285 (7.285) Loss 0.7970 (0.7970) Acc@1 83.228 (83.228) Acc@5 96.680 (96.680) Mem 16099MB [2025-01-18 06:32:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.996) Loss 1.0913 (0.9269) Acc@1 76.538 (80.475) Acc@5 93.774 (95.366) Mem 16099MB [2025-01-18 06:32:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:181] * Acc@1 80.386 Acc@5 95.393 [2025-01-18 06:32:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.4% [2025-01-18 06:32:07 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.50% [2025-01-18 06:32:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.205 (8.205) Loss 0.8000 (0.8000) Acc@1 84.668 (84.668) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 06:32:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.102) Loss 1.0757 (0.9235) Acc@1 77.148 (81.858) Acc@5 94.604 (95.921) Mem 16099MB [2025-01-18 06:32:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:181] * Acc@1 81.722 Acc@5 95.951 [2025-01-18 06:32:19 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.7% [2025-01-18 06:32:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:32:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:32:20 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.72% [2025-01-18 06:32:23 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][0/312] eta 0:13:13 lr 0.001369 time 2.5444 (2.5444) model_time 0.4794 (0.4794) loss 3.6717 (3.6717) grad_norm 1.5020 (1.5020/0.0000) mem 16099MB [2025-01-18 06:32:28 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][10/312] eta 0:03:19 lr 0.001368 time 0.4487 (0.6598) model_time 0.4486 (0.4718) loss 3.1375 (3.2595) grad_norm 1.0185 (2.1575/1.4858) mem 16099MB [2025-01-18 06:32:32 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][20/312] eta 0:02:46 lr 0.001368 time 0.5494 (0.5714) model_time 0.5493 (0.4728) loss 2.4250 (3.0791) grad_norm 0.9884 (1.8081/1.1570) mem 16099MB [2025-01-18 06:32:37 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][30/312] eta 0:02:32 lr 0.001367 time 0.4468 (0.5411) model_time 0.4463 (0.4741) loss 2.0372 (3.0401) grad_norm 3.3810 (1.9749/1.1477) mem 16099MB [2025-01-18 06:32:42 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][40/312] eta 0:02:21 lr 0.001366 time 0.4471 (0.5220) model_time 0.4470 (0.4713) loss 3.5982 (3.0999) grad_norm 1.4091 (1.9240/1.0631) mem 16099MB [2025-01-18 06:32:46 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][50/312] eta 0:02:13 lr 0.001366 time 0.4576 (0.5107) model_time 0.4572 (0.4699) loss 3.3751 (3.1222) grad_norm 2.0225 (1.8991/0.9812) mem 16099MB [2025-01-18 06:32:51 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][60/312] eta 0:02:07 lr 0.001365 time 0.4653 (0.5042) model_time 0.4651 (0.4699) loss 3.3997 (3.1634) grad_norm 3.2429 (1.8854/0.9816) mem 16099MB [2025-01-18 06:32:56 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][70/312] eta 0:02:01 lr 0.001364 time 0.5583 (0.5003) model_time 0.5582 (0.4709) loss 3.0781 (3.1529) grad_norm 1.3790 (1.9950/1.0415) mem 16099MB [2025-01-18 06:33:01 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][80/312] eta 0:01:55 lr 0.001364 time 0.4524 (0.4961) model_time 0.4520 (0.4703) loss 3.5094 (3.1536) grad_norm 1.3884 (2.1340/1.0901) mem 16099MB [2025-01-18 06:33:05 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][90/312] eta 0:01:49 lr 0.001363 time 0.4528 (0.4926) model_time 0.4523 (0.4696) loss 2.5707 (3.1199) grad_norm 1.7810 (2.0816/1.0475) mem 16099MB [2025-01-18 06:33:10 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][100/312] eta 0:01:44 lr 0.001363 time 0.4618 (0.4911) model_time 0.4617 (0.4703) loss 3.7243 (3.1243) grad_norm 2.0534 (2.0382/1.0148) mem 16099MB [2025-01-18 06:33:15 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][110/312] eta 0:01:38 lr 0.001362 time 0.4429 (0.4888) model_time 0.4427 (0.4698) loss 2.8676 (3.0978) grad_norm 2.3612 (2.0369/0.9875) mem 16099MB [2025-01-18 06:33:20 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][120/312] eta 0:01:33 lr 0.001361 time 0.5602 (0.4883) model_time 0.5598 (0.4708) loss 3.5879 (3.1203) grad_norm 1.1432 (2.0100/0.9584) mem 16099MB [2025-01-18 06:33:24 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][130/312] eta 0:01:28 lr 0.001361 time 0.4622 (0.4865) model_time 0.4620 (0.4704) loss 2.5563 (3.1160) grad_norm 3.1416 (2.0277/0.9765) mem 16099MB [2025-01-18 06:33:29 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][140/312] eta 0:01:23 lr 0.001360 time 0.4499 (0.4859) model_time 0.4498 (0.4709) loss 3.4288 (3.1143) grad_norm 4.4646 (2.1097/1.0514) mem 16099MB [2025-01-18 06:33:34 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][150/312] eta 0:01:18 lr 0.001359 time 0.4596 (0.4847) model_time 0.4591 (0.4707) loss 3.2641 (3.0974) grad_norm 3.9625 (2.1873/1.1488) mem 16099MB [2025-01-18 06:33:38 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][160/312] eta 0:01:13 lr 0.001359 time 0.4567 (0.4829) model_time 0.4565 (0.4696) loss 3.0299 (3.0951) grad_norm 1.6610 (2.1676/1.1244) mem 16099MB [2025-01-18 06:33:43 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][170/312] eta 0:01:08 lr 0.001358 time 0.5406 (0.4819) model_time 0.5400 (0.4694) loss 3.2079 (3.0838) grad_norm 2.2751 (2.1307/1.1064) mem 16099MB [2025-01-18 06:33:47 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][180/312] eta 0:01:03 lr 0.001358 time 0.4536 (0.4810) model_time 0.4531 (0.4692) loss 3.9359 (3.0858) grad_norm 1.4810 (2.1046/1.0914) mem 16099MB [2025-01-18 06:33:52 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][190/312] eta 0:00:58 lr 0.001357 time 0.4430 (0.4796) model_time 0.4425 (0.4684) loss 3.3741 (3.0845) grad_norm 1.0298 (2.0992/1.0748) mem 16099MB [2025-01-18 06:33:57 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][200/312] eta 0:00:53 lr 0.001356 time 0.4655 (0.4788) model_time 0.4651 (0.4681) loss 3.3190 (3.0944) grad_norm 1.5995 (2.1032/1.0685) mem 16099MB [2025-01-18 06:34:01 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][210/312] eta 0:00:48 lr 0.001356 time 0.4576 (0.4784) model_time 0.4572 (0.4682) loss 3.3098 (3.0932) grad_norm 0.7093 (2.0892/1.0539) mem 16099MB [2025-01-18 06:34:06 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][220/312] eta 0:00:43 lr 0.001355 time 0.4412 (0.4780) model_time 0.4407 (0.4683) loss 2.0905 (3.0842) grad_norm 1.8733 (2.0750/1.0359) mem 16099MB [2025-01-18 06:34:11 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][230/312] eta 0:00:39 lr 0.001354 time 0.4503 (0.4770) model_time 0.4501 (0.4677) loss 3.3095 (3.0924) grad_norm 2.1705 (2.0654/1.0201) mem 16099MB [2025-01-18 06:34:15 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][240/312] eta 0:00:34 lr 0.001354 time 0.4520 (0.4763) model_time 0.4518 (0.4674) loss 2.1111 (3.0807) grad_norm 1.3867 (2.0537/1.0044) mem 16099MB [2025-01-18 06:34:20 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][250/312] eta 0:00:29 lr 0.001353 time 0.5077 (0.4758) model_time 0.5075 (0.4672) loss 2.5624 (3.0747) grad_norm 1.4766 (2.0313/0.9925) mem 16099MB [2025-01-18 06:34:25 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][260/312] eta 0:00:24 lr 0.001353 time 0.4479 (0.4762) model_time 0.4474 (0.4679) loss 3.2580 (3.0713) grad_norm 2.2022 (2.0256/0.9766) mem 16099MB [2025-01-18 06:34:29 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][270/312] eta 0:00:19 lr 0.001352 time 0.4416 (0.4758) model_time 0.4411 (0.4678) loss 3.3554 (3.0820) grad_norm 1.2715 (2.0415/0.9861) mem 16099MB [2025-01-18 06:34:34 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][280/312] eta 0:00:15 lr 0.001351 time 0.4634 (0.4760) model_time 0.4630 (0.4682) loss 3.2360 (3.0917) grad_norm 2.2496 (2.0749/1.0073) mem 16099MB [2025-01-18 06:34:39 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][290/312] eta 0:00:10 lr 0.001351 time 0.4550 (0.4759) model_time 0.4546 (0.4684) loss 2.1310 (3.0852) grad_norm 1.7345 (2.0820/1.0050) mem 16099MB [2025-01-18 06:34:43 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][300/312] eta 0:00:05 lr 0.001350 time 0.4390 (0.4751) model_time 0.4389 (0.4678) loss 2.7209 (3.0831) grad_norm 2.1498 (2.0850/0.9922) mem 16099MB [2025-01-18 06:34:48 internimage_t_1k_224] (main.py 510): INFO Train: [182/300][310/312] eta 0:00:00 lr 0.001349 time 0.4396 (0.4748) model_time 0.4395 (0.4678) loss 3.3974 (3.0854) grad_norm 5.0366 (2.0888/0.9724) mem 16099MB [2025-01-18 06:34:49 internimage_t_1k_224] (main.py 519): INFO EPOCH 182 training takes 0:02:28 [2025-01-18 06:34:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_182.pth saving...... [2025-01-18 06:34:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_182.pth saved !!! [2025-01-18 06:34:57 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.251 (7.251) Loss 0.7970 (0.7970) Acc@1 83.057 (83.057) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 06:35:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.999) Loss 1.0624 (0.9260) Acc@1 76.294 (80.435) Acc@5 93.921 (95.388) Mem 16099MB [2025-01-18 06:35:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:182] * Acc@1 80.266 Acc@5 95.391 [2025-01-18 06:35:01 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.3% [2025-01-18 06:35:01 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.50% [2025-01-18 06:35:09 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.251 (8.251) Loss 0.7995 (0.7995) Acc@1 84.717 (84.717) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 06:35:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.111) Loss 1.0741 (0.9223) Acc@1 77.246 (81.903) Acc@5 94.629 (95.936) Mem 16099MB [2025-01-18 06:35:13 internimage_t_1k_224] (main.py 575): INFO [Epoch:182] * Acc@1 81.772 Acc@5 95.971 [2025-01-18 06:35:13 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.8% [2025-01-18 06:35:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:35:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:35:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.77% [2025-01-18 06:35:17 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][0/312] eta 0:13:08 lr 0.001349 time 2.5271 (2.5271) model_time 0.4613 (0.4613) loss 2.6998 (2.6998) grad_norm 3.7815 (3.7815/0.0000) mem 16099MB [2025-01-18 06:35:22 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][10/312] eta 0:03:15 lr 0.001349 time 0.4532 (0.6462) model_time 0.4531 (0.4582) loss 2.9927 (3.0866) grad_norm 1.0077 (1.8291/0.6866) mem 16099MB [2025-01-18 06:35:27 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][20/312] eta 0:02:44 lr 0.001348 time 0.4540 (0.5644) model_time 0.4536 (0.4657) loss 2.3852 (3.0071) grad_norm 1.8415 (1.9459/0.7454) mem 16099MB [2025-01-18 06:35:31 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][30/312] eta 0:02:29 lr 0.001347 time 0.4798 (0.5314) model_time 0.4796 (0.4644) loss 3.3784 (3.1579) grad_norm 1.2490 (1.8461/0.6456) mem 16099MB [2025-01-18 06:35:36 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][40/312] eta 0:02:20 lr 0.001347 time 0.4565 (0.5154) model_time 0.4550 (0.4646) loss 2.0224 (3.0475) grad_norm 0.9112 (1.8888/0.6333) mem 16099MB [2025-01-18 06:35:40 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][50/312] eta 0:02:12 lr 0.001346 time 0.4746 (0.5046) model_time 0.4741 (0.4637) loss 3.4708 (3.1029) grad_norm 1.5489 (1.8963/0.6719) mem 16099MB [2025-01-18 06:35:45 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][60/312] eta 0:02:05 lr 0.001346 time 0.4428 (0.4988) model_time 0.4426 (0.4646) loss 3.2325 (3.1148) grad_norm 3.1940 (1.9411/0.7554) mem 16099MB [2025-01-18 06:35:50 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][70/312] eta 0:01:59 lr 0.001345 time 0.4529 (0.4952) model_time 0.4527 (0.4657) loss 3.4316 (3.1135) grad_norm 5.1395 (2.0409/0.8540) mem 16099MB [2025-01-18 06:35:55 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][80/312] eta 0:01:54 lr 0.001344 time 0.4625 (0.4917) model_time 0.4623 (0.4659) loss 2.8150 (3.0900) grad_norm 2.3870 (2.0606/0.8443) mem 16099MB [2025-01-18 06:35:59 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][90/312] eta 0:01:48 lr 0.001344 time 0.4560 (0.4885) model_time 0.4558 (0.4655) loss 3.3845 (3.0631) grad_norm 1.7591 (2.0111/0.8153) mem 16099MB [2025-01-18 06:36:04 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][100/312] eta 0:01:42 lr 0.001343 time 0.4510 (0.4852) model_time 0.4509 (0.4644) loss 3.2178 (3.0552) grad_norm 1.7635 (2.0546/0.8755) mem 16099MB [2025-01-18 06:36:09 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][110/312] eta 0:01:38 lr 0.001342 time 0.5769 (0.4853) model_time 0.5765 (0.4663) loss 2.2908 (3.0723) grad_norm 1.0893 (2.1387/0.9901) mem 16099MB [2025-01-18 06:36:13 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][120/312] eta 0:01:32 lr 0.001342 time 0.4464 (0.4840) model_time 0.4462 (0.4666) loss 3.1192 (3.0649) grad_norm 1.8516 (2.1707/1.0026) mem 16099MB [2025-01-18 06:36:18 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][130/312] eta 0:01:27 lr 0.001341 time 0.4556 (0.4832) model_time 0.4551 (0.4671) loss 2.0692 (3.0489) grad_norm 1.4464 (2.1136/0.9859) mem 16099MB [2025-01-18 06:36:23 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][140/312] eta 0:01:22 lr 0.001341 time 0.4554 (0.4820) model_time 0.4549 (0.4670) loss 2.4614 (3.0390) grad_norm 1.3377 (2.0705/0.9728) mem 16099MB [2025-01-18 06:36:27 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][150/312] eta 0:01:17 lr 0.001340 time 0.4548 (0.4813) model_time 0.4543 (0.4672) loss 2.7797 (3.0234) grad_norm 1.2616 (2.0486/0.9518) mem 16099MB [2025-01-18 06:36:32 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][160/312] eta 0:01:12 lr 0.001339 time 0.4494 (0.4802) model_time 0.4490 (0.4670) loss 3.7961 (3.0332) grad_norm 2.5425 (2.0821/0.9440) mem 16099MB [2025-01-18 06:36:37 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][170/312] eta 0:01:08 lr 0.001339 time 0.4477 (0.4793) model_time 0.4475 (0.4669) loss 2.7168 (3.0387) grad_norm 1.1843 (2.0716/0.9402) mem 16099MB [2025-01-18 06:36:41 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][180/312] eta 0:01:03 lr 0.001338 time 0.5412 (0.4790) model_time 0.5410 (0.4672) loss 3.2117 (3.0445) grad_norm 3.2837 (2.0550/0.9267) mem 16099MB [2025-01-18 06:36:46 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][190/312] eta 0:00:58 lr 0.001337 time 0.4659 (0.4783) model_time 0.4658 (0.4671) loss 3.6892 (3.0501) grad_norm 1.6735 (2.0526/0.9232) mem 16099MB [2025-01-18 06:36:51 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][200/312] eta 0:00:53 lr 0.001337 time 0.4479 (0.4771) model_time 0.4474 (0.4664) loss 2.1134 (3.0365) grad_norm 2.1225 (2.0776/0.9431) mem 16099MB [2025-01-18 06:36:55 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][210/312] eta 0:00:48 lr 0.001336 time 0.5591 (0.4773) model_time 0.5590 (0.4671) loss 3.1342 (3.0471) grad_norm 1.4301 (2.0686/0.9443) mem 16099MB [2025-01-18 06:37:00 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][220/312] eta 0:00:43 lr 0.001336 time 0.4961 (0.4772) model_time 0.4960 (0.4674) loss 2.1522 (3.0549) grad_norm 2.0794 (2.0876/0.9494) mem 16099MB [2025-01-18 06:37:05 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][230/312] eta 0:00:39 lr 0.001335 time 0.4031 (0.4764) model_time 0.4030 (0.4670) loss 3.0403 (3.0728) grad_norm inf (2.0905/0.9390) mem 16099MB [2025-01-18 06:37:09 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][240/312] eta 0:00:34 lr 0.001334 time 0.5750 (0.4761) model_time 0.5748 (0.4671) loss 3.5812 (3.0681) grad_norm 2.6446 (2.1076/0.9441) mem 16099MB [2025-01-18 06:37:14 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][250/312] eta 0:00:29 lr 0.001334 time 0.4477 (0.4757) model_time 0.4476 (0.4671) loss 2.4231 (3.0665) grad_norm 1.4947 (2.1014/0.9415) mem 16099MB [2025-01-18 06:37:19 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][260/312] eta 0:00:24 lr 0.001333 time 0.4526 (0.4754) model_time 0.4522 (0.4671) loss 2.0904 (3.0614) grad_norm 2.4724 (2.0896/0.9279) mem 16099MB [2025-01-18 06:37:23 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][270/312] eta 0:00:19 lr 0.001332 time 0.4583 (0.4748) model_time 0.4581 (0.4668) loss 2.6838 (3.0589) grad_norm 1.2944 (2.0893/0.9338) mem 16099MB [2025-01-18 06:37:28 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][280/312] eta 0:00:15 lr 0.001332 time 0.4454 (0.4747) model_time 0.4450 (0.4670) loss 2.5257 (3.0556) grad_norm 2.2464 (2.0871/0.9262) mem 16099MB [2025-01-18 06:37:33 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][290/312] eta 0:00:10 lr 0.001331 time 0.4501 (0.4753) model_time 0.4499 (0.4679) loss 3.4459 (3.0656) grad_norm 1.9476 (2.0906/0.9212) mem 16099MB [2025-01-18 06:37:38 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][300/312] eta 0:00:05 lr 0.001331 time 0.4392 (0.4746) model_time 0.4391 (0.4673) loss 2.1348 (3.0568) grad_norm 0.7655 (2.0782/0.9158) mem 16099MB [2025-01-18 06:37:42 internimage_t_1k_224] (main.py 510): INFO Train: [183/300][310/312] eta 0:00:00 lr 0.001330 time 0.5225 (0.4743) model_time 0.5225 (0.4673) loss 3.2056 (3.0559) grad_norm 1.2974 (2.0780/0.9156) mem 16099MB [2025-01-18 06:37:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 183 training takes 0:02:27 [2025-01-18 06:37:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_183.pth saving...... [2025-01-18 06:37:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_183.pth saved !!! [2025-01-18 06:37:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.053 (7.053) Loss 0.7727 (0.7727) Acc@1 83.716 (83.716) Acc@5 96.973 (96.973) Mem 16099MB [2025-01-18 06:37:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.964) Loss 1.1001 (0.9178) Acc@1 75.146 (80.799) Acc@5 94.189 (95.641) Mem 16099MB [2025-01-18 06:37:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:183] * Acc@1 80.652 Acc@5 95.649 [2025-01-18 06:37:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.7% [2025-01-18 06:37:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:37:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:37:56 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.65% [2025-01-18 06:38:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.203 (7.203) Loss 0.7988 (0.7988) Acc@1 84.741 (84.741) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 06:38:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.957) Loss 1.0726 (0.9213) Acc@1 77.368 (81.967) Acc@5 94.629 (95.945) Mem 16099MB [2025-01-18 06:38:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:183] * Acc@1 81.824 Acc@5 95.979 [2025-01-18 06:38:06 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.8% [2025-01-18 06:38:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:38:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:38:08 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.82% [2025-01-18 06:38:11 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][0/312] eta 0:15:58 lr 0.001330 time 3.0732 (3.0732) model_time 0.4690 (0.4690) loss 3.3641 (3.3641) grad_norm 1.2208 (1.2208/0.0000) mem 16099MB [2025-01-18 06:38:16 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][10/312] eta 0:03:32 lr 0.001329 time 0.4458 (0.7049) model_time 0.4457 (0.4679) loss 3.0819 (3.2226) grad_norm 1.4245 (1.7021/0.4992) mem 16099MB [2025-01-18 06:38:20 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][20/312] eta 0:02:52 lr 0.001329 time 0.4461 (0.5914) model_time 0.4459 (0.4671) loss 3.2187 (3.0574) grad_norm 0.8284 (1.7074/0.4921) mem 16099MB [2025-01-18 06:38:25 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][30/312] eta 0:02:35 lr 0.001328 time 0.4517 (0.5511) model_time 0.4516 (0.4668) loss 2.7746 (3.0617) grad_norm 1.3231 (1.6724/0.4813) mem 16099MB [2025-01-18 06:38:30 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][40/312] eta 0:02:24 lr 0.001327 time 0.4425 (0.5327) model_time 0.4424 (0.4688) loss 3.6059 (3.0688) grad_norm 5.5441 (1.7780/0.7953) mem 16099MB [2025-01-18 06:38:34 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][50/312] eta 0:02:15 lr 0.001327 time 0.4584 (0.5170) model_time 0.4580 (0.4656) loss 2.8638 (3.0679) grad_norm 2.8449 (1.9996/1.2040) mem 16099MB [2025-01-18 06:38:39 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][60/312] eta 0:02:07 lr 0.001326 time 0.4495 (0.5075) model_time 0.4493 (0.4644) loss 2.3089 (3.0159) grad_norm 1.6181 (2.1074/1.1933) mem 16099MB [2025-01-18 06:38:44 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][70/312] eta 0:02:01 lr 0.001325 time 0.4482 (0.5021) model_time 0.4478 (0.4650) loss 3.7546 (3.0172) grad_norm 2.1747 (2.0514/1.1504) mem 16099MB [2025-01-18 06:38:48 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][80/312] eta 0:01:55 lr 0.001325 time 0.4596 (0.4989) model_time 0.4594 (0.4664) loss 2.1034 (3.0060) grad_norm 2.5749 (2.0378/1.1068) mem 16099MB [2025-01-18 06:38:53 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][90/312] eta 0:01:49 lr 0.001324 time 0.4423 (0.4953) model_time 0.4418 (0.4663) loss 2.8797 (3.0047) grad_norm 2.7807 (2.0210/1.0643) mem 16099MB [2025-01-18 06:38:58 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][100/312] eta 0:01:44 lr 0.001324 time 0.4418 (0.4922) model_time 0.4412 (0.4660) loss 3.3405 (3.0030) grad_norm 1.4781 (1.9978/1.0195) mem 16099MB [2025-01-18 06:39:02 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][110/312] eta 0:01:38 lr 0.001323 time 0.4541 (0.4892) model_time 0.4539 (0.4654) loss 2.7453 (3.0254) grad_norm 1.7270 (1.9706/0.9926) mem 16099MB [2025-01-18 06:39:07 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][120/312] eta 0:01:33 lr 0.001322 time 0.4371 (0.4872) model_time 0.4366 (0.4653) loss 3.2442 (3.0207) grad_norm 2.0861 (1.9726/0.9664) mem 16099MB [2025-01-18 06:39:12 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][130/312] eta 0:01:28 lr 0.001322 time 0.4552 (0.4877) model_time 0.4551 (0.4675) loss 3.3354 (3.0312) grad_norm 1.3142 (2.0120/0.9676) mem 16099MB [2025-01-18 06:39:16 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][140/312] eta 0:01:23 lr 0.001321 time 0.4586 (0.4854) model_time 0.4582 (0.4665) loss 1.9737 (3.0208) grad_norm 2.5365 (2.0198/0.9519) mem 16099MB [2025-01-18 06:39:21 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][150/312] eta 0:01:18 lr 0.001320 time 0.4647 (0.4859) model_time 0.4645 (0.4682) loss 2.2098 (3.0239) grad_norm 2.0901 (2.0091/0.9286) mem 16099MB [2025-01-18 06:39:26 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][160/312] eta 0:01:13 lr 0.001320 time 0.4884 (0.4840) model_time 0.4879 (0.4675) loss 3.2281 (3.0288) grad_norm 2.1754 (2.0086/0.9539) mem 16099MB [2025-01-18 06:39:30 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][170/312] eta 0:01:08 lr 0.001319 time 0.4538 (0.4830) model_time 0.4536 (0.4674) loss 3.3564 (3.0334) grad_norm 0.8223 (2.0127/0.9437) mem 16099MB [2025-01-18 06:39:35 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][180/312] eta 0:01:03 lr 0.001319 time 0.4581 (0.4827) model_time 0.4577 (0.4680) loss 3.2825 (3.0548) grad_norm 3.1577 (2.0150/0.9388) mem 16099MB [2025-01-18 06:39:40 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][190/312] eta 0:00:58 lr 0.001318 time 0.4659 (0.4821) model_time 0.4658 (0.4681) loss 3.7887 (3.0597) grad_norm 1.0639 (2.0268/0.9366) mem 16099MB [2025-01-18 06:39:45 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][200/312] eta 0:00:53 lr 0.001317 time 0.4546 (0.4811) model_time 0.4541 (0.4678) loss 2.9123 (3.0703) grad_norm 2.0881 (2.0450/0.9335) mem 16099MB [2025-01-18 06:39:49 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][210/312] eta 0:00:49 lr 0.001317 time 0.4413 (0.4806) model_time 0.4411 (0.4678) loss 3.6729 (3.0817) grad_norm 2.8265 (2.0531/0.9342) mem 16099MB [2025-01-18 06:39:54 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][220/312] eta 0:00:44 lr 0.001316 time 0.4688 (0.4794) model_time 0.4686 (0.4672) loss 3.3320 (3.0818) grad_norm 3.1505 (2.0639/0.9252) mem 16099MB [2025-01-18 06:39:58 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][230/312] eta 0:00:39 lr 0.001316 time 0.4424 (0.4785) model_time 0.4420 (0.4668) loss 2.5532 (3.0924) grad_norm 1.7677 (2.0755/0.9284) mem 16099MB [2025-01-18 06:40:03 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][240/312] eta 0:00:34 lr 0.001315 time 0.4430 (0.4782) model_time 0.4429 (0.4670) loss 2.3576 (3.0904) grad_norm 1.9700 (2.0634/0.9201) mem 16099MB [2025-01-18 06:40:08 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][250/312] eta 0:00:29 lr 0.001314 time 0.4536 (0.4778) model_time 0.4531 (0.4670) loss 3.3976 (3.0877) grad_norm 1.7102 (2.0604/0.9149) mem 16099MB [2025-01-18 06:40:13 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][260/312] eta 0:00:24 lr 0.001314 time 0.4473 (0.4780) model_time 0.4469 (0.4676) loss 3.4670 (3.0898) grad_norm 3.4175 (2.0708/0.9105) mem 16099MB [2025-01-18 06:40:17 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][270/312] eta 0:00:20 lr 0.001313 time 0.4764 (0.4779) model_time 0.4759 (0.4679) loss 3.6778 (3.0914) grad_norm 1.5674 (2.0650/0.9030) mem 16099MB [2025-01-18 06:40:22 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][280/312] eta 0:00:15 lr 0.001312 time 0.4556 (0.4773) model_time 0.4552 (0.4676) loss 3.3848 (3.0988) grad_norm 3.7514 (2.0704/0.9000) mem 16099MB [2025-01-18 06:40:27 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][290/312] eta 0:00:10 lr 0.001312 time 0.4420 (0.4770) model_time 0.4418 (0.4677) loss 3.5444 (3.1044) grad_norm 3.7278 (2.0974/0.9182) mem 16099MB [2025-01-18 06:40:31 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][300/312] eta 0:00:05 lr 0.001311 time 0.4383 (0.4768) model_time 0.4382 (0.4678) loss 2.9018 (3.0969) grad_norm 1.6367 (2.0858/0.9128) mem 16099MB [2025-01-18 06:40:36 internimage_t_1k_224] (main.py 510): INFO Train: [184/300][310/312] eta 0:00:00 lr 0.001311 time 0.4431 (0.4757) model_time 0.4430 (0.4669) loss 3.1943 (3.0900) grad_norm 1.9168 (2.0843/0.9194) mem 16099MB [2025-01-18 06:40:36 internimage_t_1k_224] (main.py 519): INFO EPOCH 184 training takes 0:02:28 [2025-01-18 06:40:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_184.pth saving...... [2025-01-18 06:40:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_184.pth saved !!! [2025-01-18 06:40:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.369 (7.369) Loss 0.7628 (0.7628) Acc@1 83.643 (83.643) Acc@5 96.924 (96.924) Mem 16099MB [2025-01-18 06:40:48 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.991) Loss 1.0731 (0.9008) Acc@1 76.221 (80.700) Acc@5 94.067 (95.492) Mem 16099MB [2025-01-18 06:40:48 internimage_t_1k_224] (main.py 575): INFO [Epoch:184] * Acc@1 80.578 Acc@5 95.513 [2025-01-18 06:40:48 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.6% [2025-01-18 06:40:48 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.65% [2025-01-18 06:40:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.012 (8.012) Loss 0.7982 (0.7982) Acc@1 84.766 (84.766) Acc@5 97.437 (97.437) Mem 16099MB [2025-01-18 06:41:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.086) Loss 1.0711 (0.9202) Acc@1 77.466 (82.000) Acc@5 94.629 (95.958) Mem 16099MB [2025-01-18 06:41:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:184] * Acc@1 81.862 Acc@5 95.993 [2025-01-18 06:41:01 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.9% [2025-01-18 06:41:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:41:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:41:02 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.86% [2025-01-18 06:41:05 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][0/312] eta 0:13:58 lr 0.001310 time 2.6891 (2.6891) model_time 0.4661 (0.4661) loss 2.4408 (2.4408) grad_norm 3.0880 (3.0880/0.0000) mem 16099MB [2025-01-18 06:41:10 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][10/312] eta 0:03:27 lr 0.001310 time 0.4494 (0.6859) model_time 0.4492 (0.4834) loss 3.0911 (3.1214) grad_norm 2.4691 (1.8022/0.5866) mem 16099MB [2025-01-18 06:41:14 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][20/312] eta 0:02:48 lr 0.001309 time 0.4620 (0.5764) model_time 0.4618 (0.4702) loss 3.3455 (3.0081) grad_norm 2.5763 (2.0175/0.7097) mem 16099MB [2025-01-18 06:41:19 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][30/312] eta 0:02:33 lr 0.001309 time 0.4481 (0.5440) model_time 0.4479 (0.4720) loss 3.4483 (3.0896) grad_norm 0.8610 (2.0207/0.8298) mem 16099MB [2025-01-18 06:41:23 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][40/312] eta 0:02:21 lr 0.001308 time 0.4525 (0.5217) model_time 0.4523 (0.4672) loss 3.0904 (3.0669) grad_norm 5.1295 (2.3517/1.2586) mem 16099MB [2025-01-18 06:41:28 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][50/312] eta 0:02:13 lr 0.001307 time 0.4514 (0.5101) model_time 0.4512 (0.4662) loss 2.6813 (3.0996) grad_norm 2.1929 (2.5072/1.2431) mem 16099MB [2025-01-18 06:41:33 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][60/312] eta 0:02:06 lr 0.001307 time 0.4750 (0.5019) model_time 0.4745 (0.4651) loss 2.0521 (3.0900) grad_norm 2.1832 (2.4263/1.1793) mem 16099MB [2025-01-18 06:41:37 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][70/312] eta 0:02:00 lr 0.001306 time 0.4733 (0.4975) model_time 0.4732 (0.4659) loss 3.3368 (3.1053) grad_norm 2.1384 (2.3812/1.1638) mem 16099MB [2025-01-18 06:41:42 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][80/312] eta 0:01:54 lr 0.001305 time 0.5446 (0.4935) model_time 0.5441 (0.4657) loss 3.3408 (3.1230) grad_norm 2.6598 (2.3155/1.1399) mem 16099MB [2025-01-18 06:41:47 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][90/312] eta 0:01:48 lr 0.001305 time 0.4521 (0.4898) model_time 0.4519 (0.4651) loss 3.0641 (3.0988) grad_norm 1.8338 (2.2863/1.1154) mem 16099MB [2025-01-18 06:41:51 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][100/312] eta 0:01:43 lr 0.001304 time 0.4516 (0.4899) model_time 0.4514 (0.4676) loss 3.5911 (3.0871) grad_norm 2.3554 (2.2880/1.1055) mem 16099MB [2025-01-18 06:41:56 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][110/312] eta 0:01:38 lr 0.001304 time 0.4811 (0.4873) model_time 0.4806 (0.4670) loss 3.3833 (3.0703) grad_norm 3.2397 (2.4546/1.3638) mem 16099MB [2025-01-18 06:42:01 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][120/312] eta 0:01:33 lr 0.001303 time 0.4503 (0.4885) model_time 0.4501 (0.4698) loss 3.4276 (3.0658) grad_norm 1.4808 (2.4070/1.3288) mem 16099MB [2025-01-18 06:42:06 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][130/312] eta 0:01:29 lr 0.001302 time 0.5564 (0.4900) model_time 0.5563 (0.4727) loss 3.3572 (3.0784) grad_norm 1.0682 (2.3857/1.3062) mem 16099MB [2025-01-18 06:42:11 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][140/312] eta 0:01:24 lr 0.001302 time 0.4497 (0.4886) model_time 0.4495 (0.4725) loss 3.1137 (3.0634) grad_norm 1.0147 (2.3324/1.2814) mem 16099MB [2025-01-18 06:42:15 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][150/312] eta 0:01:18 lr 0.001301 time 0.4452 (0.4867) model_time 0.4450 (0.4716) loss 3.4603 (3.0447) grad_norm 2.1374 (2.3212/1.2613) mem 16099MB [2025-01-18 06:42:20 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][160/312] eta 0:01:14 lr 0.001301 time 0.4547 (0.4869) model_time 0.4543 (0.4728) loss 3.0954 (3.0240) grad_norm 1.8552 (2.2823/1.2351) mem 16099MB [2025-01-18 06:42:25 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][170/312] eta 0:01:09 lr 0.001300 time 0.4579 (0.4861) model_time 0.4577 (0.4728) loss 2.6048 (3.0335) grad_norm 1.2204 (2.2410/1.2153) mem 16099MB [2025-01-18 06:42:30 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][180/312] eta 0:01:04 lr 0.001299 time 0.4610 (0.4859) model_time 0.4608 (0.4733) loss 1.9901 (3.0266) grad_norm 1.3549 (2.1972/1.1978) mem 16099MB [2025-01-18 06:42:34 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][190/312] eta 0:00:59 lr 0.001299 time 0.4453 (0.4843) model_time 0.4451 (0.4724) loss 3.3561 (3.0225) grad_norm 2.0267 (2.1914/1.1842) mem 16099MB [2025-01-18 06:42:39 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][200/312] eta 0:00:54 lr 0.001298 time 0.4462 (0.4832) model_time 0.4457 (0.4718) loss 3.1017 (3.0203) grad_norm 1.9626 (2.1987/1.1843) mem 16099MB [2025-01-18 06:42:44 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][210/312] eta 0:00:49 lr 0.001297 time 0.4571 (0.4820) model_time 0.4569 (0.4711) loss 1.8347 (3.0109) grad_norm 1.2946 (2.2420/1.2043) mem 16099MB [2025-01-18 06:42:48 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][220/312] eta 0:00:44 lr 0.001297 time 0.4509 (0.4814) model_time 0.4505 (0.4710) loss 2.0328 (3.0096) grad_norm 2.0547 (2.2586/1.2121) mem 16099MB [2025-01-18 06:42:53 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][230/312] eta 0:00:39 lr 0.001296 time 0.4683 (0.4806) model_time 0.4679 (0.4706) loss 2.5739 (3.0203) grad_norm 1.8357 (2.2323/1.1958) mem 16099MB [2025-01-18 06:42:58 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][240/312] eta 0:00:34 lr 0.001296 time 0.4727 (0.4805) model_time 0.4725 (0.4710) loss 3.5010 (3.0252) grad_norm 1.7809 (2.2222/1.1884) mem 16099MB [2025-01-18 06:43:02 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][250/312] eta 0:00:29 lr 0.001295 time 0.4422 (0.4796) model_time 0.4420 (0.4704) loss 2.0587 (3.0267) grad_norm 1.7868 (2.1957/1.1764) mem 16099MB [2025-01-18 06:43:07 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][260/312] eta 0:00:24 lr 0.001294 time 0.4494 (0.4787) model_time 0.4492 (0.4698) loss 3.3284 (3.0253) grad_norm 1.2050 (2.1694/1.1633) mem 16099MB [2025-01-18 06:43:12 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][270/312] eta 0:00:20 lr 0.001294 time 0.4598 (0.4782) model_time 0.4593 (0.4697) loss 3.4084 (3.0279) grad_norm 1.8308 (2.1843/1.1725) mem 16099MB [2025-01-18 06:43:16 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][280/312] eta 0:00:15 lr 0.001293 time 0.4723 (0.4777) model_time 0.4719 (0.4694) loss 3.4192 (3.0221) grad_norm 2.4177 (2.1717/1.1566) mem 16099MB [2025-01-18 06:43:21 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][290/312] eta 0:00:10 lr 0.001292 time 0.4433 (0.4774) model_time 0.4428 (0.4695) loss 2.7046 (3.0276) grad_norm 2.1917 (2.1904/1.1684) mem 16099MB [2025-01-18 06:43:26 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][300/312] eta 0:00:05 lr 0.001292 time 0.4402 (0.4774) model_time 0.4401 (0.4696) loss 2.9819 (3.0275) grad_norm 2.5293 (2.1994/1.1738) mem 16099MB [2025-01-18 06:43:30 internimage_t_1k_224] (main.py 510): INFO Train: [185/300][310/312] eta 0:00:00 lr 0.001291 time 0.4410 (0.4766) model_time 0.4409 (0.4691) loss 3.5142 (3.0307) grad_norm 1.2952 (2.1976/1.1738) mem 16099MB [2025-01-18 06:43:31 internimage_t_1k_224] (main.py 519): INFO EPOCH 185 training takes 0:02:28 [2025-01-18 06:43:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_185.pth saving...... [2025-01-18 06:43:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_185.pth saved !!! [2025-01-18 06:43:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.461 (7.461) Loss 0.7428 (0.7428) Acc@1 83.740 (83.740) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 06:43:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.005) Loss 1.0945 (0.8988) Acc@1 75.366 (80.635) Acc@5 93.457 (95.432) Mem 16099MB [2025-01-18 06:43:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:185] * Acc@1 80.588 Acc@5 95.479 [2025-01-18 06:43:43 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.6% [2025-01-18 06:43:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.65% [2025-01-18 06:43:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.232 (8.232) Loss 0.7973 (0.7973) Acc@1 84.814 (84.814) Acc@5 97.437 (97.437) Mem 16099MB [2025-01-18 06:43:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.108) Loss 1.0692 (0.9188) Acc@1 77.563 (82.042) Acc@5 94.531 (95.958) Mem 16099MB [2025-01-18 06:43:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:185] * Acc@1 81.902 Acc@5 95.995 [2025-01-18 06:43:55 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.9% [2025-01-18 06:43:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:43:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:43:57 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.90% [2025-01-18 06:43:59 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][0/312] eta 0:13:37 lr 0.001291 time 2.6186 (2.6186) model_time 0.5092 (0.5092) loss 3.5746 (3.5746) grad_norm 1.0262 (1.0262/0.0000) mem 16099MB [2025-01-18 06:44:04 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][10/312] eta 0:03:21 lr 0.001290 time 0.4539 (0.6658) model_time 0.4535 (0.4736) loss 3.2038 (3.2674) grad_norm 2.8216 (1.7598/0.5424) mem 16099MB [2025-01-18 06:44:09 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][20/312] eta 0:02:48 lr 0.001290 time 0.4510 (0.5767) model_time 0.4509 (0.4759) loss 2.9642 (3.3081) grad_norm 2.4152 (1.6460/0.5073) mem 16099MB [2025-01-18 06:44:14 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][30/312] eta 0:02:33 lr 0.001289 time 0.5412 (0.5454) model_time 0.5408 (0.4770) loss 3.3303 (3.3025) grad_norm 0.9660 (1.6711/0.6322) mem 16099MB [2025-01-18 06:44:18 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][40/312] eta 0:02:23 lr 0.001289 time 0.4591 (0.5282) model_time 0.4589 (0.4763) loss 3.4431 (3.2968) grad_norm 1.5794 (2.0185/1.3233) mem 16099MB [2025-01-18 06:44:23 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][50/312] eta 0:02:15 lr 0.001288 time 0.4465 (0.5172) model_time 0.4460 (0.4754) loss 3.2877 (3.2322) grad_norm 1.3536 (2.0402/1.2285) mem 16099MB [2025-01-18 06:44:28 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][60/312] eta 0:02:08 lr 0.001287 time 0.4548 (0.5098) model_time 0.4547 (0.4748) loss 3.6556 (3.1750) grad_norm 1.3702 (2.1449/1.2211) mem 16099MB [2025-01-18 06:44:32 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][70/312] eta 0:02:01 lr 0.001287 time 0.4536 (0.5033) model_time 0.4531 (0.4732) loss 3.2381 (3.2018) grad_norm 2.2218 (2.1338/1.1515) mem 16099MB [2025-01-18 06:44:37 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][80/312] eta 0:01:56 lr 0.001286 time 0.4733 (0.5006) model_time 0.4731 (0.4742) loss 3.8201 (3.2151) grad_norm 3.0605 (2.1040/1.1045) mem 16099MB [2025-01-18 06:44:42 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][90/312] eta 0:01:50 lr 0.001286 time 0.4802 (0.4975) model_time 0.4800 (0.4740) loss 2.0594 (3.1859) grad_norm 1.7674 (2.0857/1.0884) mem 16099MB [2025-01-18 06:44:47 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][100/312] eta 0:01:44 lr 0.001285 time 0.4528 (0.4952) model_time 0.4524 (0.4739) loss 3.3767 (3.1949) grad_norm 2.1415 (2.0925/1.0612) mem 16099MB [2025-01-18 06:44:51 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][110/312] eta 0:01:39 lr 0.001284 time 0.4506 (0.4918) model_time 0.4502 (0.4724) loss 3.5043 (3.1755) grad_norm 1.8872 (2.0818/1.0396) mem 16099MB [2025-01-18 06:44:56 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][120/312] eta 0:01:34 lr 0.001284 time 0.4534 (0.4901) model_time 0.4533 (0.4723) loss 2.8950 (3.1218) grad_norm 1.5688 (2.0488/1.0074) mem 16099MB [2025-01-18 06:45:01 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][130/312] eta 0:01:28 lr 0.001283 time 0.4646 (0.4876) model_time 0.4645 (0.4711) loss 2.4000 (3.1166) grad_norm 1.6384 (2.0388/0.9819) mem 16099MB [2025-01-18 06:45:05 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][140/312] eta 0:01:23 lr 0.001282 time 0.4549 (0.4861) model_time 0.4545 (0.4707) loss 2.9933 (3.1055) grad_norm 1.9818 (2.0341/0.9761) mem 16099MB [2025-01-18 06:45:10 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][150/312] eta 0:01:18 lr 0.001282 time 0.4455 (0.4843) model_time 0.4453 (0.4700) loss 3.6851 (3.1017) grad_norm 2.1885 (2.0417/0.9538) mem 16099MB [2025-01-18 06:45:15 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][160/312] eta 0:01:13 lr 0.001281 time 0.4416 (0.4831) model_time 0.4412 (0.4696) loss 3.2256 (3.1034) grad_norm 1.5478 (2.0667/0.9703) mem 16099MB [2025-01-18 06:45:19 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][170/312] eta 0:01:08 lr 0.001281 time 0.4496 (0.4814) model_time 0.4494 (0.4687) loss 3.8517 (3.1115) grad_norm 2.2282 (2.0898/0.9701) mem 16099MB [2025-01-18 06:45:24 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][180/312] eta 0:01:03 lr 0.001280 time 0.5428 (0.4809) model_time 0.5423 (0.4689) loss 3.0054 (3.1041) grad_norm 4.0161 (2.1178/1.0101) mem 16099MB [2025-01-18 06:45:29 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][190/312] eta 0:00:58 lr 0.001279 time 0.4477 (0.4805) model_time 0.4472 (0.4690) loss 3.0219 (3.1017) grad_norm 1.5821 (2.1207/0.9984) mem 16099MB [2025-01-18 06:45:33 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][200/312] eta 0:00:53 lr 0.001279 time 0.4524 (0.4798) model_time 0.4519 (0.4689) loss 3.2097 (3.1020) grad_norm 1.3590 (2.1035/0.9838) mem 16099MB [2025-01-18 06:45:38 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][210/312] eta 0:00:48 lr 0.001278 time 0.4715 (0.4796) model_time 0.4713 (0.4692) loss 2.7145 (3.1020) grad_norm 1.6193 (2.0960/0.9727) mem 16099MB [2025-01-18 06:45:42 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][220/312] eta 0:00:44 lr 0.001278 time 0.4543 (0.4785) model_time 0.4541 (0.4686) loss 3.1381 (3.0963) grad_norm 2.1307 (2.1055/0.9703) mem 16099MB [2025-01-18 06:45:47 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][230/312] eta 0:00:39 lr 0.001277 time 0.4500 (0.4779) model_time 0.4495 (0.4684) loss 2.8720 (3.0973) grad_norm 2.4433 (2.1326/1.0074) mem 16099MB [2025-01-18 06:45:52 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][240/312] eta 0:00:34 lr 0.001276 time 0.4494 (0.4782) model_time 0.4492 (0.4691) loss 3.3230 (3.0987) grad_norm 3.0468 (2.1932/1.0750) mem 16099MB [2025-01-18 06:45:57 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][250/312] eta 0:00:29 lr 0.001276 time 0.4538 (0.4772) model_time 0.4536 (0.4684) loss 3.1607 (3.1027) grad_norm 1.3338 (2.2031/1.0704) mem 16099MB [2025-01-18 06:46:01 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][260/312] eta 0:00:24 lr 0.001275 time 0.4496 (0.4766) model_time 0.4495 (0.4681) loss 3.7863 (3.0859) grad_norm 1.1856 (2.1953/1.0627) mem 16099MB [2025-01-18 06:46:06 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][270/312] eta 0:00:19 lr 0.001274 time 0.4419 (0.4760) model_time 0.4415 (0.4678) loss 3.2692 (3.0919) grad_norm 1.2876 (2.1599/1.0596) mem 16099MB [2025-01-18 06:46:11 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][280/312] eta 0:00:15 lr 0.001274 time 0.4556 (0.4761) model_time 0.4555 (0.4682) loss 3.7988 (3.0911) grad_norm 1.7075 (2.1526/1.0522) mem 16099MB [2025-01-18 06:46:15 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][290/312] eta 0:00:10 lr 0.001273 time 0.4501 (0.4757) model_time 0.4500 (0.4680) loss 3.0495 (3.0975) grad_norm 1.2371 (2.1340/1.0452) mem 16099MB [2025-01-18 06:46:20 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][300/312] eta 0:00:05 lr 0.001273 time 0.4380 (0.4751) model_time 0.4379 (0.4677) loss 2.8834 (3.0941) grad_norm 3.1523 (2.1266/1.0339) mem 16099MB [2025-01-18 06:46:24 internimage_t_1k_224] (main.py 510): INFO Train: [186/300][310/312] eta 0:00:00 lr 0.001272 time 0.4380 (0.4746) model_time 0.4379 (0.4674) loss 2.9460 (3.0953) grad_norm 2.3384 (2.1527/1.0567) mem 16099MB [2025-01-18 06:46:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 186 training takes 0:02:28 [2025-01-18 06:46:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_186.pth saving...... [2025-01-18 06:46:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_186.pth saved !!! [2025-01-18 06:46:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.383 (7.383) Loss 0.7730 (0.7730) Acc@1 83.203 (83.203) Acc@5 96.924 (96.924) Mem 16099MB [2025-01-18 06:46:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.988) Loss 1.0899 (0.8967) Acc@1 76.440 (80.902) Acc@5 93.555 (95.497) Mem 16099MB [2025-01-18 06:46:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:186] * Acc@1 80.800 Acc@5 95.555 [2025-01-18 06:46:37 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.8% [2025-01-18 06:46:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:46:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:46:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.80% [2025-01-18 06:46:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.524 (7.524) Loss 0.7967 (0.7967) Acc@1 84.766 (84.766) Acc@5 97.437 (97.437) Mem 16099MB [2025-01-18 06:46:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.015) Loss 1.0680 (0.9178) Acc@1 77.539 (82.060) Acc@5 94.580 (95.965) Mem 16099MB [2025-01-18 06:46:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:186] * Acc@1 81.930 Acc@5 96.007 [2025-01-18 06:46:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.9% [2025-01-18 06:46:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:46:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:46:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.93% [2025-01-18 06:46:53 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][0/312] eta 0:12:45 lr 0.001272 time 2.4535 (2.4535) model_time 0.5207 (0.5207) loss 2.7387 (2.7387) grad_norm 1.7672 (1.7672/0.0000) mem 16099MB [2025-01-18 06:46:58 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][10/312] eta 0:03:13 lr 0.001271 time 0.4436 (0.6414) model_time 0.4435 (0.4654) loss 2.1683 (2.8622) grad_norm 3.0822 (2.4266/0.8626) mem 16099MB [2025-01-18 06:47:03 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][20/312] eta 0:02:43 lr 0.001271 time 0.5359 (0.5592) model_time 0.5358 (0.4669) loss 3.2555 (2.9138) grad_norm 3.3377 (2.2411/0.8493) mem 16099MB [2025-01-18 06:47:08 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][30/312] eta 0:02:30 lr 0.001270 time 0.4456 (0.5332) model_time 0.4451 (0.4706) loss 2.8604 (2.9189) grad_norm 1.3197 (2.2175/0.7776) mem 16099MB [2025-01-18 06:47:12 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][40/312] eta 0:02:20 lr 0.001269 time 0.4651 (0.5151) model_time 0.4646 (0.4676) loss 3.1464 (2.9473) grad_norm 2.0675 (2.0292/0.7701) mem 16099MB [2025-01-18 06:47:17 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][50/312] eta 0:02:12 lr 0.001269 time 0.4548 (0.5074) model_time 0.4546 (0.4692) loss 2.3411 (2.9246) grad_norm 1.9474 (1.9311/0.7335) mem 16099MB [2025-01-18 06:47:22 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][60/312] eta 0:02:06 lr 0.001268 time 0.5218 (0.5032) model_time 0.5216 (0.4712) loss 2.1310 (2.9242) grad_norm 0.8995 (1.8517/0.7299) mem 16099MB [2025-01-18 06:47:26 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][70/312] eta 0:02:00 lr 0.001268 time 0.4412 (0.4966) model_time 0.4408 (0.4690) loss 1.9512 (2.9375) grad_norm 1.8552 (1.8979/0.7244) mem 16099MB [2025-01-18 06:47:31 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][80/312] eta 0:01:54 lr 0.001267 time 0.5618 (0.4957) model_time 0.5613 (0.4714) loss 2.8026 (2.9340) grad_norm 2.7101 (1.9552/0.7741) mem 16099MB [2025-01-18 06:47:36 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][90/312] eta 0:01:49 lr 0.001266 time 0.4540 (0.4920) model_time 0.4536 (0.4704) loss 3.2624 (2.9879) grad_norm 1.2269 (1.9229/0.7656) mem 16099MB [2025-01-18 06:47:41 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][100/312] eta 0:01:44 lr 0.001266 time 0.4537 (0.4906) model_time 0.4536 (0.4711) loss 3.4264 (3.0095) grad_norm 1.9592 (1.9488/0.7526) mem 16099MB [2025-01-18 06:47:45 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][110/312] eta 0:01:38 lr 0.001265 time 0.4702 (0.4887) model_time 0.4698 (0.4710) loss 2.6408 (2.9946) grad_norm 3.6553 (1.9931/0.7840) mem 16099MB [2025-01-18 06:47:50 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][120/312] eta 0:01:33 lr 0.001264 time 0.4561 (0.4866) model_time 0.4560 (0.4703) loss 2.6272 (3.0205) grad_norm 2.5452 (1.9976/0.7949) mem 16099MB [2025-01-18 06:47:54 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][130/312] eta 0:01:28 lr 0.001264 time 0.4489 (0.4843) model_time 0.4485 (0.4692) loss 2.9518 (3.0439) grad_norm 2.5464 (2.0828/0.8696) mem 16099MB [2025-01-18 06:47:59 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][140/312] eta 0:01:23 lr 0.001263 time 0.4606 (0.4830) model_time 0.4605 (0.4689) loss 2.9830 (3.0375) grad_norm 2.3332 (2.1040/0.8931) mem 16099MB [2025-01-18 06:48:04 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][150/312] eta 0:01:18 lr 0.001263 time 0.4481 (0.4825) model_time 0.4477 (0.4694) loss 3.6554 (3.0513) grad_norm 1.0890 (2.0906/0.8814) mem 16099MB [2025-01-18 06:48:09 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][160/312] eta 0:01:13 lr 0.001262 time 0.4790 (0.4820) model_time 0.4788 (0.4697) loss 3.5899 (3.0559) grad_norm 1.7001 (2.0773/0.8672) mem 16099MB [2025-01-18 06:48:13 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][170/312] eta 0:01:08 lr 0.001261 time 0.4477 (0.4808) model_time 0.4473 (0.4691) loss 2.4242 (3.0602) grad_norm 2.7790 (2.0615/0.8555) mem 16099MB [2025-01-18 06:48:18 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][180/312] eta 0:01:03 lr 0.001261 time 0.4563 (0.4794) model_time 0.4558 (0.4684) loss 3.3490 (3.0506) grad_norm 1.9184 (2.0519/0.8398) mem 16099MB [2025-01-18 06:48:23 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][190/312] eta 0:00:58 lr 0.001260 time 0.4605 (0.4792) model_time 0.4603 (0.4687) loss 2.8639 (3.0478) grad_norm 4.9932 (2.0659/0.8771) mem 16099MB [2025-01-18 06:48:27 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][200/312] eta 0:00:53 lr 0.001260 time 0.4661 (0.4793) model_time 0.4660 (0.4693) loss 3.0431 (3.0489) grad_norm 2.6905 (2.0960/0.8793) mem 16099MB [2025-01-18 06:48:32 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][210/312] eta 0:00:48 lr 0.001259 time 0.4403 (0.4782) model_time 0.4399 (0.4687) loss 3.1272 (3.0327) grad_norm 2.4639 (2.0865/0.8742) mem 16099MB [2025-01-18 06:48:36 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][220/312] eta 0:00:43 lr 0.001258 time 0.4436 (0.4771) model_time 0.4434 (0.4680) loss 2.6061 (3.0279) grad_norm 2.0102 (2.0634/0.8683) mem 16099MB [2025-01-18 06:48:41 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][230/312] eta 0:00:39 lr 0.001258 time 0.4626 (0.4775) model_time 0.4625 (0.4687) loss 3.4428 (3.0297) grad_norm 0.9921 (2.0434/0.8612) mem 16099MB [2025-01-18 06:48:46 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][240/312] eta 0:00:34 lr 0.001257 time 0.4431 (0.4775) model_time 0.4429 (0.4690) loss 3.1851 (3.0282) grad_norm 2.6933 (2.0492/0.8714) mem 16099MB [2025-01-18 06:48:51 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][250/312] eta 0:00:29 lr 0.001257 time 0.4623 (0.4769) model_time 0.4618 (0.4688) loss 3.2677 (3.0265) grad_norm 1.5339 (2.0754/0.8993) mem 16099MB [2025-01-18 06:48:55 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][260/312] eta 0:00:24 lr 0.001256 time 0.4494 (0.4764) model_time 0.4492 (0.4686) loss 3.7049 (3.0225) grad_norm 2.6945 (2.0825/0.9017) mem 16099MB [2025-01-18 06:49:00 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][270/312] eta 0:00:19 lr 0.001255 time 0.4397 (0.4759) model_time 0.4393 (0.4684) loss 2.2272 (3.0277) grad_norm 1.2251 (2.0678/0.8930) mem 16099MB [2025-01-18 06:49:05 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][280/312] eta 0:00:15 lr 0.001255 time 0.4381 (0.4759) model_time 0.4379 (0.4686) loss 2.5114 (3.0146) grad_norm 2.0381 (2.0742/0.8964) mem 16099MB [2025-01-18 06:49:10 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][290/312] eta 0:00:10 lr 0.001254 time 0.4533 (0.4760) model_time 0.4529 (0.4689) loss 3.7132 (3.0141) grad_norm 2.6844 (2.0733/0.8912) mem 16099MB [2025-01-18 06:49:14 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][300/312] eta 0:00:05 lr 0.001253 time 0.4372 (0.4751) model_time 0.4371 (0.4683) loss 2.9300 (3.0144) grad_norm 4.0485 (2.0795/0.8957) mem 16099MB [2025-01-18 06:49:19 internimage_t_1k_224] (main.py 510): INFO Train: [187/300][310/312] eta 0:00:00 lr 0.001253 time 0.4389 (0.4745) model_time 0.4388 (0.4679) loss 3.3109 (3.0111) grad_norm 1.1763 (2.0673/0.8954) mem 16099MB [2025-01-18 06:49:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 187 training takes 0:02:28 [2025-01-18 06:49:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_187.pth saving...... [2025-01-18 06:49:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_187.pth saved !!! [2025-01-18 06:49:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.513 (7.513) Loss 0.7488 (0.7488) Acc@1 84.375 (84.375) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 06:49:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.018) Loss 1.0621 (0.8845) Acc@1 76.489 (81.072) Acc@5 93.774 (95.523) Mem 16099MB [2025-01-18 06:49:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:187] * Acc@1 80.978 Acc@5 95.567 [2025-01-18 06:49:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.0% [2025-01-18 06:49:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 06:49:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 06:49:33 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.98% [2025-01-18 06:49:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.588 (7.588) Loss 0.7962 (0.7962) Acc@1 84.766 (84.766) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 06:49:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.024) Loss 1.0668 (0.9169) Acc@1 77.563 (82.069) Acc@5 94.629 (95.974) Mem 16099MB [2025-01-18 06:49:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:187] * Acc@1 81.948 Acc@5 96.019 [2025-01-18 06:49:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 81.9% [2025-01-18 06:49:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:49:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:49:46 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 81.95% [2025-01-18 06:49:48 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][0/312] eta 0:14:33 lr 0.001253 time 2.7994 (2.7994) model_time 0.4637 (0.4637) loss 2.9183 (2.9183) grad_norm 5.2601 (5.2601/0.0000) mem 16099MB [2025-01-18 06:49:53 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][10/312] eta 0:03:28 lr 0.001252 time 0.5355 (0.6896) model_time 0.5353 (0.4770) loss 3.1902 (3.1048) grad_norm 2.2603 (2.7476/1.1280) mem 16099MB [2025-01-18 06:49:58 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][20/312] eta 0:02:50 lr 0.001251 time 0.4463 (0.5830) model_time 0.4462 (0.4714) loss 3.1502 (3.2238) grad_norm 1.2602 (2.2595/1.0429) mem 16099MB [2025-01-18 06:50:02 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][30/312] eta 0:02:32 lr 0.001251 time 0.4575 (0.5423) model_time 0.4571 (0.4666) loss 3.3840 (3.1804) grad_norm 1.1866 (2.1094/0.9726) mem 16099MB [2025-01-18 06:50:07 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][40/312] eta 0:02:21 lr 0.001250 time 0.4446 (0.5220) model_time 0.4442 (0.4646) loss 3.4157 (3.1600) grad_norm 2.7569 (2.1427/0.9921) mem 16099MB [2025-01-18 06:50:12 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][50/312] eta 0:02:13 lr 0.001250 time 0.4701 (0.5098) model_time 0.4696 (0.4637) loss 3.3773 (3.1504) grad_norm 4.0574 (2.2348/0.9815) mem 16099MB [2025-01-18 06:50:16 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][60/312] eta 0:02:07 lr 0.001249 time 0.4487 (0.5045) model_time 0.4485 (0.4659) loss 3.3963 (3.1518) grad_norm 2.4719 (2.2956/0.9934) mem 16099MB [2025-01-18 06:50:21 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][70/312] eta 0:02:00 lr 0.001248 time 0.4496 (0.4986) model_time 0.4495 (0.4654) loss 3.3471 (3.1215) grad_norm 2.5427 (2.3884/0.9945) mem 16099MB [2025-01-18 06:50:26 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][80/312] eta 0:01:55 lr 0.001248 time 0.4671 (0.4973) model_time 0.4670 (0.4681) loss 2.3735 (3.0826) grad_norm 1.6560 (2.3686/1.0057) mem 16099MB [2025-01-18 06:50:30 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][90/312] eta 0:01:49 lr 0.001247 time 0.4684 (0.4928) model_time 0.4683 (0.4668) loss 3.3695 (3.0862) grad_norm 1.4684 (2.3555/0.9792) mem 16099MB [2025-01-18 06:50:35 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][100/312] eta 0:01:43 lr 0.001247 time 0.4664 (0.4893) model_time 0.4660 (0.4658) loss 3.8471 (3.0974) grad_norm 1.1403 (2.3208/0.9578) mem 16099MB [2025-01-18 06:50:40 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][110/312] eta 0:01:38 lr 0.001246 time 0.4422 (0.4872) model_time 0.4420 (0.4658) loss 2.8692 (3.0943) grad_norm 2.3971 (2.3185/0.9596) mem 16099MB [2025-01-18 06:50:45 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][120/312] eta 0:01:33 lr 0.001245 time 0.5568 (0.4870) model_time 0.5564 (0.4674) loss 3.5101 (3.0936) grad_norm 1.7537 (2.2909/0.9553) mem 16099MB [2025-01-18 06:50:50 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][130/312] eta 0:01:28 lr 0.001245 time 0.7585 (0.4883) model_time 0.7580 (0.4702) loss 2.5488 (3.0944) grad_norm 3.1831 (2.2603/0.9390) mem 16099MB [2025-01-18 06:50:55 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][140/312] eta 0:01:24 lr 0.001244 time 0.4480 (0.4898) model_time 0.4478 (0.4729) loss 3.2035 (3.1041) grad_norm 1.0460 (2.2323/0.9186) mem 16099MB [2025-01-18 06:50:59 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][150/312] eta 0:01:19 lr 0.001244 time 0.4575 (0.4883) model_time 0.4570 (0.4725) loss 3.4374 (3.1088) grad_norm 1.4517 (2.2096/0.9148) mem 16099MB [2025-01-18 06:51:04 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][160/312] eta 0:01:13 lr 0.001243 time 0.4570 (0.4867) model_time 0.4566 (0.4718) loss 3.1835 (3.0907) grad_norm 2.0592 (2.2024/0.9187) mem 16099MB [2025-01-18 06:51:09 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][170/312] eta 0:01:08 lr 0.001242 time 0.4422 (0.4856) model_time 0.4420 (0.4716) loss 3.3602 (3.0858) grad_norm 1.2203 (2.2137/0.9213) mem 16099MB [2025-01-18 06:51:13 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][180/312] eta 0:01:04 lr 0.001242 time 0.4496 (0.4850) model_time 0.4492 (0.4717) loss 2.2054 (3.0734) grad_norm 1.4329 (2.1794/0.9143) mem 16099MB [2025-01-18 06:51:18 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][190/312] eta 0:00:58 lr 0.001241 time 0.4580 (0.4834) model_time 0.4578 (0.4708) loss 2.8676 (3.0714) grad_norm 1.3097 (2.1750/0.8970) mem 16099MB [2025-01-18 06:51:23 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][200/312] eta 0:00:54 lr 0.001240 time 0.5479 (0.4825) model_time 0.5474 (0.4705) loss 2.7968 (3.0673) grad_norm 4.0991 (2.1864/0.8940) mem 16099MB [2025-01-18 06:51:27 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][210/312] eta 0:00:49 lr 0.001240 time 0.4815 (0.4817) model_time 0.4810 (0.4703) loss 3.7059 (3.0745) grad_norm 2.3339 (2.1961/0.9276) mem 16099MB [2025-01-18 06:51:32 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][220/312] eta 0:00:44 lr 0.001239 time 0.4621 (0.4806) model_time 0.4616 (0.4696) loss 2.8814 (3.0776) grad_norm 2.8668 (2.2006/0.9157) mem 16099MB [2025-01-18 06:51:36 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][230/312] eta 0:00:39 lr 0.001239 time 0.4604 (0.4796) model_time 0.4602 (0.4691) loss 3.0606 (3.0831) grad_norm 1.6130 (2.1949/0.9021) mem 16099MB [2025-01-18 06:51:41 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][240/312] eta 0:00:34 lr 0.001238 time 0.4435 (0.4785) model_time 0.4430 (0.4684) loss 2.9147 (3.0753) grad_norm 1.3030 (2.1728/0.9001) mem 16099MB [2025-01-18 06:51:46 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][250/312] eta 0:00:29 lr 0.001237 time 0.4444 (0.4778) model_time 0.4443 (0.4681) loss 2.3667 (3.0696) grad_norm 1.0504 (2.1522/0.8936) mem 16099MB [2025-01-18 06:51:50 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][260/312] eta 0:00:24 lr 0.001237 time 0.4583 (0.4770) model_time 0.4581 (0.4677) loss 2.9227 (3.0615) grad_norm 1.1236 (2.1282/0.8894) mem 16099MB [2025-01-18 06:51:55 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][270/312] eta 0:00:20 lr 0.001236 time 0.4486 (0.4768) model_time 0.4485 (0.4679) loss 3.1403 (3.0665) grad_norm 1.3030 (2.1281/0.9012) mem 16099MB [2025-01-18 06:51:59 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][280/312] eta 0:00:15 lr 0.001236 time 0.4502 (0.4761) model_time 0.4497 (0.4675) loss 2.9672 (3.0657) grad_norm 1.5221 (2.1382/0.9125) mem 16099MB [2025-01-18 06:52:04 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][290/312] eta 0:00:10 lr 0.001235 time 0.4539 (0.4760) model_time 0.4537 (0.4676) loss 2.8483 (3.0600) grad_norm 0.9999 (2.1260/0.9069) mem 16099MB [2025-01-18 06:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][300/312] eta 0:00:05 lr 0.001234 time 0.4394 (0.4755) model_time 0.4393 (0.4674) loss 3.2920 (3.0696) grad_norm 2.1531 (2.1107/0.8796) mem 16099MB [2025-01-18 06:52:13 internimage_t_1k_224] (main.py 510): INFO Train: [188/300][310/312] eta 0:00:00 lr 0.001234 time 0.4379 (0.4753) model_time 0.4378 (0.4674) loss 3.4228 (3.0755) grad_norm 3.9679 (2.1058/0.8919) mem 16099MB [2025-01-18 06:52:14 internimage_t_1k_224] (main.py 519): INFO EPOCH 188 training takes 0:02:28 [2025-01-18 06:52:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_188.pth saving...... [2025-01-18 06:52:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_188.pth saved !!! [2025-01-18 06:52:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.572 (7.572) Loss 0.7953 (0.7953) Acc@1 84.009 (84.009) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 06:52:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.008) Loss 1.0959 (0.9267) Acc@1 75.293 (80.649) Acc@5 93.579 (95.472) Mem 16099MB [2025-01-18 06:52:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:188] * Acc@1 80.606 Acc@5 95.517 [2025-01-18 06:52:26 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.6% [2025-01-18 06:52:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.98% [2025-01-18 06:52:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.048 (8.048) Loss 0.7955 (0.7955) Acc@1 84.912 (84.912) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 06:52:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.094) Loss 1.0654 (0.9157) Acc@1 77.661 (82.118) Acc@5 94.678 (95.989) Mem 16099MB [2025-01-18 06:52:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:188] * Acc@1 82.002 Acc@5 96.033 [2025-01-18 06:52:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.0% [2025-01-18 06:52:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:52:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:52:40 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.00% [2025-01-18 06:52:42 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][0/312] eta 0:11:50 lr 0.001234 time 2.2773 (2.2773) model_time 0.5038 (0.5038) loss 2.7917 (2.7917) grad_norm 2.0836 (2.0836/0.0000) mem 16099MB [2025-01-18 06:52:47 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][10/312] eta 0:03:12 lr 0.001233 time 0.5709 (0.6389) model_time 0.5707 (0.4773) loss 3.0291 (2.9039) grad_norm 2.7417 (2.0714/0.5662) mem 16099MB [2025-01-18 06:52:52 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][20/312] eta 0:02:43 lr 0.001232 time 0.5839 (0.5604) model_time 0.5837 (0.4756) loss 3.1973 (3.0476) grad_norm 1.1266 (2.2007/0.9701) mem 16099MB [2025-01-18 06:52:56 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][30/312] eta 0:02:28 lr 0.001232 time 0.4662 (0.5271) model_time 0.4658 (0.4695) loss 2.3676 (2.9848) grad_norm 4.0473 (2.1267/0.9393) mem 16099MB [2025-01-18 06:53:01 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][40/312] eta 0:02:19 lr 0.001231 time 0.4607 (0.5135) model_time 0.4605 (0.4699) loss 3.5797 (2.9835) grad_norm 2.6030 (2.1375/0.8999) mem 16099MB [2025-01-18 06:53:06 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][50/312] eta 0:02:12 lr 0.001231 time 0.4543 (0.5060) model_time 0.4542 (0.4708) loss 2.5241 (2.9955) grad_norm 3.4781 (2.1211/0.8859) mem 16099MB [2025-01-18 06:53:10 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][60/312] eta 0:02:05 lr 0.001230 time 0.4461 (0.4981) model_time 0.4460 (0.4687) loss 3.6281 (2.9861) grad_norm 2.8105 (2.1552/0.8926) mem 16099MB [2025-01-18 06:53:15 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][70/312] eta 0:01:59 lr 0.001229 time 0.4486 (0.4956) model_time 0.4482 (0.4703) loss 3.3466 (2.9934) grad_norm 3.3163 (2.1745/0.9058) mem 16099MB [2025-01-18 06:53:20 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][80/312] eta 0:01:54 lr 0.001229 time 0.4550 (0.4944) model_time 0.4548 (0.4722) loss 2.4134 (3.0194) grad_norm 2.1297 (2.1734/0.8881) mem 16099MB [2025-01-18 06:53:24 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][90/312] eta 0:01:48 lr 0.001228 time 0.4881 (0.4902) model_time 0.4879 (0.4704) loss 2.1427 (2.9956) grad_norm 2.1780 (2.2266/0.9248) mem 16099MB [2025-01-18 06:53:29 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][100/312] eta 0:01:43 lr 0.001228 time 0.4490 (0.4881) model_time 0.4489 (0.4702) loss 3.5866 (3.0032) grad_norm 1.0790 (2.1904/0.9085) mem 16099MB [2025-01-18 06:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][110/312] eta 0:01:38 lr 0.001227 time 0.4892 (0.4875) model_time 0.4887 (0.4711) loss 3.1785 (3.0323) grad_norm 4.0116 (2.1893/0.9224) mem 16099MB [2025-01-18 06:53:38 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][120/312] eta 0:01:33 lr 0.001226 time 0.4399 (0.4849) model_time 0.4395 (0.4699) loss 3.2130 (3.0221) grad_norm 1.4470 (2.1969/0.9352) mem 16099MB [2025-01-18 06:53:43 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][130/312] eta 0:01:27 lr 0.001226 time 0.4395 (0.4834) model_time 0.4393 (0.4696) loss 2.2103 (3.0087) grad_norm 1.4649 (2.2134/0.9568) mem 16099MB [2025-01-18 06:53:48 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][140/312] eta 0:01:22 lr 0.001225 time 0.4754 (0.4821) model_time 0.4753 (0.4692) loss 3.6874 (3.0121) grad_norm 1.4718 (2.2331/0.9745) mem 16099MB [2025-01-18 06:53:52 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][150/312] eta 0:01:17 lr 0.001225 time 0.4562 (0.4807) model_time 0.4558 (0.4686) loss 3.4713 (3.0276) grad_norm 0.9746 (2.2428/0.9790) mem 16099MB [2025-01-18 06:53:57 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][160/312] eta 0:01:12 lr 0.001224 time 0.4435 (0.4793) model_time 0.4431 (0.4679) loss 3.4822 (3.0370) grad_norm 1.3256 (2.2520/0.9856) mem 16099MB [2025-01-18 06:54:02 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][170/312] eta 0:01:07 lr 0.001223 time 0.4853 (0.4784) model_time 0.4849 (0.4677) loss 2.4731 (3.0282) grad_norm 1.3607 (2.2709/0.9888) mem 16099MB [2025-01-18 06:54:06 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][180/312] eta 0:01:03 lr 0.001223 time 0.4508 (0.4787) model_time 0.4504 (0.4685) loss 2.3203 (3.0192) grad_norm 1.3934 (2.2712/0.9779) mem 16099MB [2025-01-18 06:54:11 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][190/312] eta 0:00:58 lr 0.001222 time 0.4459 (0.4774) model_time 0.4455 (0.4678) loss 3.1502 (3.0313) grad_norm 0.9188 (2.2946/0.9910) mem 16099MB [2025-01-18 06:54:16 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][200/312] eta 0:00:53 lr 0.001221 time 0.4519 (0.4762) model_time 0.4515 (0.4671) loss 3.2043 (3.0341) grad_norm 1.0673 (2.2924/1.0021) mem 16099MB [2025-01-18 06:54:20 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][210/312] eta 0:00:48 lr 0.001221 time 0.5314 (0.4762) model_time 0.5312 (0.4675) loss 3.0819 (3.0378) grad_norm 1.0935 (2.2859/0.9927) mem 16099MB [2025-01-18 06:54:25 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][220/312] eta 0:00:43 lr 0.001220 time 0.4472 (0.4753) model_time 0.4467 (0.4669) loss 3.2582 (3.0262) grad_norm 2.3208 (2.2508/0.9865) mem 16099MB [2025-01-18 06:54:29 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][230/312] eta 0:00:38 lr 0.001220 time 0.4576 (0.4748) model_time 0.4571 (0.4667) loss 3.1262 (3.0314) grad_norm 1.9309 (2.2555/0.9956) mem 16099MB [2025-01-18 06:54:34 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][240/312] eta 0:00:34 lr 0.001219 time 0.4480 (0.4742) model_time 0.4476 (0.4665) loss 3.5264 (3.0422) grad_norm 1.5553 (2.2640/1.0044) mem 16099MB [2025-01-18 06:54:39 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][250/312] eta 0:00:29 lr 0.001218 time 0.4523 (0.4747) model_time 0.4516 (0.4672) loss 3.1955 (3.0504) grad_norm 1.3644 (2.2479/0.9959) mem 16099MB [2025-01-18 06:54:44 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][260/312] eta 0:00:24 lr 0.001218 time 0.4615 (0.4741) model_time 0.4613 (0.4670) loss 2.0453 (3.0515) grad_norm 1.6695 (2.2366/1.0001) mem 16099MB [2025-01-18 06:54:48 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][270/312] eta 0:00:19 lr 0.001217 time 0.4499 (0.4737) model_time 0.4496 (0.4668) loss 2.9445 (3.0565) grad_norm 1.6588 (2.2446/1.0002) mem 16099MB [2025-01-18 06:54:53 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][280/312] eta 0:00:15 lr 0.001217 time 0.4655 (0.4730) model_time 0.4654 (0.4664) loss 2.9639 (3.0518) grad_norm 3.4405 (2.2524/0.9951) mem 16099MB [2025-01-18 06:54:57 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][290/312] eta 0:00:10 lr 0.001216 time 0.4485 (0.4731) model_time 0.4484 (0.4666) loss 2.7072 (3.0435) grad_norm 1.9471 (2.2365/0.9864) mem 16099MB [2025-01-18 06:55:02 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][300/312] eta 0:00:05 lr 0.001215 time 0.4394 (0.4731) model_time 0.4393 (0.4669) loss 2.1723 (3.0456) grad_norm 1.2567 (2.2164/0.9817) mem 16099MB [2025-01-18 06:55:07 internimage_t_1k_224] (main.py 510): INFO Train: [189/300][310/312] eta 0:00:00 lr 0.001215 time 0.4436 (0.4726) model_time 0.4435 (0.4665) loss 3.3006 (3.0386) grad_norm 1.6817 (2.2120/0.9805) mem 16099MB [2025-01-18 06:55:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 189 training takes 0:02:27 [2025-01-18 06:55:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_189.pth saving...... [2025-01-18 06:55:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_189.pth saved !!! [2025-01-18 06:55:16 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.453 (7.453) Loss 0.7705 (0.7705) Acc@1 83.325 (83.325) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 06:55:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.021) Loss 1.0917 (0.9086) Acc@1 75.903 (80.631) Acc@5 93.433 (95.508) Mem 16099MB [2025-01-18 06:55:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:189] * Acc@1 80.556 Acc@5 95.555 [2025-01-18 06:55:20 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.6% [2025-01-18 06:55:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.98% [2025-01-18 06:55:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.104 (8.104) Loss 0.7946 (0.7946) Acc@1 84.912 (84.912) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 06:55:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.103) Loss 1.0637 (0.9143) Acc@1 77.661 (82.122) Acc@5 94.678 (96.014) Mem 16099MB [2025-01-18 06:55:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:189] * Acc@1 82.002 Acc@5 96.055 [2025-01-18 06:55:32 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.0% [2025-01-18 06:55:32 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.00% [2025-01-18 06:55:35 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][0/312] eta 0:15:29 lr 0.001215 time 2.9794 (2.9794) model_time 1.0482 (1.0482) loss 3.6522 (3.6522) grad_norm 2.4936 (2.4936/0.0000) mem 16099MB [2025-01-18 06:55:40 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][10/312] eta 0:03:33 lr 0.001214 time 0.4523 (0.7060) model_time 0.4519 (0.5300) loss 3.5390 (2.9571) grad_norm 3.6661 (2.0020/0.6670) mem 16099MB [2025-01-18 06:55:44 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][20/312] eta 0:02:53 lr 0.001213 time 0.4607 (0.5937) model_time 0.4603 (0.5013) loss 3.3617 (2.9154) grad_norm 1.7212 (2.0295/0.7500) mem 16099MB [2025-01-18 06:55:49 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][30/312] eta 0:02:37 lr 0.001213 time 0.4633 (0.5577) model_time 0.4631 (0.4950) loss 2.9317 (3.0135) grad_norm 1.1969 (1.8629/0.6988) mem 16099MB [2025-01-18 06:55:54 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][40/312] eta 0:02:26 lr 0.001212 time 0.4602 (0.5370) model_time 0.4598 (0.4894) loss 3.5728 (3.0483) grad_norm 2.3342 (1.8684/0.6884) mem 16099MB [2025-01-18 06:55:59 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][50/312] eta 0:02:18 lr 0.001212 time 0.4612 (0.5282) model_time 0.4607 (0.4900) loss 3.5092 (3.0567) grad_norm 2.2788 (1.8490/0.6558) mem 16099MB [2025-01-18 06:56:04 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][60/312] eta 0:02:10 lr 0.001211 time 0.4652 (0.5165) model_time 0.4648 (0.4844) loss 3.3097 (3.0503) grad_norm 2.2828 (1.9107/0.6923) mem 16099MB [2025-01-18 06:56:08 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][70/312] eta 0:02:03 lr 0.001210 time 0.4708 (0.5086) model_time 0.4706 (0.4810) loss 3.2371 (3.0799) grad_norm 2.2117 (1.8948/0.6797) mem 16099MB [2025-01-18 06:56:13 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][80/312] eta 0:01:57 lr 0.001210 time 0.4555 (0.5054) model_time 0.4551 (0.4811) loss 2.0323 (3.0832) grad_norm 1.2919 (1.9261/0.6890) mem 16099MB [2025-01-18 06:56:18 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][90/312] eta 0:01:51 lr 0.001209 time 0.4483 (0.5020) model_time 0.4478 (0.4804) loss 2.8295 (3.0912) grad_norm 2.2790 (1.9041/0.6648) mem 16099MB [2025-01-18 06:56:22 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][100/312] eta 0:01:45 lr 0.001209 time 0.4536 (0.4973) model_time 0.4532 (0.4778) loss 3.5033 (3.1020) grad_norm 2.0012 (1.9139/0.6634) mem 16099MB [2025-01-18 06:56:27 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][110/312] eta 0:01:39 lr 0.001208 time 0.4531 (0.4934) model_time 0.4527 (0.4756) loss 3.0000 (3.1076) grad_norm 1.4348 (1.9159/0.6858) mem 16099MB [2025-01-18 06:56:32 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][120/312] eta 0:01:34 lr 0.001207 time 0.4583 (0.4917) model_time 0.4579 (0.4753) loss 2.4657 (3.1014) grad_norm 1.2314 (1.8974/0.6722) mem 16099MB [2025-01-18 06:56:36 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][130/312] eta 0:01:29 lr 0.001207 time 0.4553 (0.4894) model_time 0.4551 (0.4742) loss 2.7729 (3.0923) grad_norm 3.4416 (1.8942/0.6698) mem 16099MB [2025-01-18 06:56:41 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][140/312] eta 0:01:24 lr 0.001206 time 0.5407 (0.4886) model_time 0.5403 (0.4745) loss 3.5593 (3.1010) grad_norm 6.0312 (1.9267/0.7599) mem 16099MB [2025-01-18 06:56:46 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][150/312] eta 0:01:18 lr 0.001206 time 0.4474 (0.4868) model_time 0.4470 (0.4736) loss 3.0587 (3.0973) grad_norm 2.3194 (1.9379/0.7625) mem 16099MB [2025-01-18 06:56:50 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][160/312] eta 0:01:13 lr 0.001205 time 0.5415 (0.4860) model_time 0.5414 (0.4735) loss 2.9436 (3.0928) grad_norm 1.5713 (1.9420/0.7591) mem 16099MB [2025-01-18 06:56:55 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][170/312] eta 0:01:08 lr 0.001204 time 0.4522 (0.4845) model_time 0.4520 (0.4729) loss 2.9358 (3.0950) grad_norm 1.9443 (1.9837/0.7846) mem 16099MB [2025-01-18 06:57:00 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][180/312] eta 0:01:03 lr 0.001204 time 0.4577 (0.4838) model_time 0.4572 (0.4727) loss 3.2828 (3.0739) grad_norm 5.5323 (2.1018/1.0930) mem 16099MB [2025-01-18 06:57:04 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][190/312] eta 0:00:58 lr 0.001203 time 0.4664 (0.4823) model_time 0.4659 (0.4718) loss 2.8184 (3.0660) grad_norm 2.1719 (2.1563/1.1288) mem 16099MB [2025-01-18 06:57:09 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][200/312] eta 0:00:53 lr 0.001203 time 0.4503 (0.4809) model_time 0.4501 (0.4709) loss 3.8706 (3.0634) grad_norm 1.5764 (2.1381/1.1080) mem 16099MB [2025-01-18 06:57:13 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][210/312] eta 0:00:48 lr 0.001202 time 0.4780 (0.4799) model_time 0.4778 (0.4703) loss 3.3982 (3.0668) grad_norm 1.4871 (2.1402/1.0941) mem 16099MB [2025-01-18 06:57:18 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][220/312] eta 0:00:44 lr 0.001201 time 0.4530 (0.4797) model_time 0.4528 (0.4705) loss 3.4437 (3.0751) grad_norm 1.3740 (2.1229/1.0841) mem 16099MB [2025-01-18 06:57:23 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][230/312] eta 0:00:39 lr 0.001201 time 0.5313 (0.4792) model_time 0.5311 (0.4705) loss 3.0432 (3.0726) grad_norm 3.6139 (2.1001/1.0769) mem 16099MB [2025-01-18 06:57:27 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][240/312] eta 0:00:34 lr 0.001200 time 0.4490 (0.4784) model_time 0.4488 (0.4699) loss 2.3868 (3.0864) grad_norm 2.6357 (2.1089/1.0641) mem 16099MB [2025-01-18 06:57:32 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][250/312] eta 0:00:29 lr 0.001200 time 0.5361 (0.4783) model_time 0.5357 (0.4702) loss 3.5057 (3.0955) grad_norm 1.4922 (2.0995/1.0505) mem 16099MB [2025-01-18 06:57:37 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][260/312] eta 0:00:24 lr 0.001199 time 0.4519 (0.4785) model_time 0.4514 (0.4707) loss 2.0812 (3.0889) grad_norm 3.2396 (2.1045/1.0437) mem 16099MB [2025-01-18 06:57:42 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][270/312] eta 0:00:20 lr 0.001198 time 0.4816 (0.4780) model_time 0.4812 (0.4704) loss 3.2566 (3.0858) grad_norm 2.5242 (2.1127/1.0378) mem 16099MB [2025-01-18 06:57:46 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][280/312] eta 0:00:15 lr 0.001198 time 0.4577 (0.4777) model_time 0.4575 (0.4705) loss 2.5806 (3.0936) grad_norm 4.2786 (2.1407/1.0566) mem 16099MB [2025-01-18 06:57:51 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][290/312] eta 0:00:10 lr 0.001197 time 0.4462 (0.4777) model_time 0.4457 (0.4706) loss 3.2757 (3.0907) grad_norm 1.3982 (2.1484/1.0715) mem 16099MB [2025-01-18 06:57:56 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][300/312] eta 0:00:05 lr 0.001196 time 0.4372 (0.4771) model_time 0.4370 (0.4703) loss 3.2264 (3.0902) grad_norm 0.7343 (2.1202/1.0663) mem 16099MB [2025-01-18 06:58:00 internimage_t_1k_224] (main.py 510): INFO Train: [190/300][310/312] eta 0:00:00 lr 0.001196 time 0.4383 (0.4760) model_time 0.4382 (0.4694) loss 3.4414 (3.0906) grad_norm 1.1855 (2.1092/1.0703) mem 16099MB [2025-01-18 06:58:00 internimage_t_1k_224] (main.py 519): INFO EPOCH 190 training takes 0:02:28 [2025-01-18 06:58:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_190.pth saving...... [2025-01-18 06:58:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_190.pth saved !!! [2025-01-18 06:58:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.914 (7.914) Loss 0.7764 (0.7764) Acc@1 83.374 (83.374) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 06:58:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.068) Loss 1.0530 (0.8913) Acc@1 75.562 (80.677) Acc@5 93.896 (95.459) Mem 16099MB [2025-01-18 06:58:13 internimage_t_1k_224] (main.py 575): INFO [Epoch:190] * Acc@1 80.624 Acc@5 95.477 [2025-01-18 06:58:13 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.6% [2025-01-18 06:58:13 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.98% [2025-01-18 06:58:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.524 (8.524) Loss 0.7937 (0.7937) Acc@1 84.937 (84.937) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 06:58:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.138) Loss 1.0618 (0.9131) Acc@1 77.710 (82.138) Acc@5 94.702 (96.023) Mem 16099MB [2025-01-18 06:58:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:190] * Acc@1 82.020 Acc@5 96.063 [2025-01-18 06:58:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.0% [2025-01-18 06:58:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 06:58:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 06:58:28 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.02% [2025-01-18 06:58:30 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][0/312] eta 0:13:58 lr 0.001196 time 2.6889 (2.6889) model_time 0.4802 (0.4802) loss 2.9754 (2.9754) grad_norm 1.1000 (1.1000/0.0000) mem 16099MB [2025-01-18 06:58:35 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][10/312] eta 0:03:26 lr 0.001195 time 0.4473 (0.6826) model_time 0.4471 (0.4815) loss 3.3865 (3.1442) grad_norm 1.3807 (2.0942/0.9331) mem 16099MB [2025-01-18 06:58:40 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][20/312] eta 0:02:47 lr 0.001195 time 0.4468 (0.5753) model_time 0.4466 (0.4698) loss 3.1992 (2.9735) grad_norm 1.1855 (2.1051/0.9203) mem 16099MB [2025-01-18 06:58:45 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][30/312] eta 0:02:34 lr 0.001194 time 0.4826 (0.5464) model_time 0.4824 (0.4749) loss 3.7720 (3.0668) grad_norm 4.6635 (2.3180/1.0967) mem 16099MB [2025-01-18 06:58:49 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][40/312] eta 0:02:22 lr 0.001193 time 0.4670 (0.5250) model_time 0.4668 (0.4708) loss 3.9041 (3.1364) grad_norm 3.1717 (2.5510/1.2710) mem 16099MB [2025-01-18 06:58:54 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][50/312] eta 0:02:14 lr 0.001193 time 0.5283 (0.5149) model_time 0.5270 (0.4712) loss 3.3008 (3.0659) grad_norm 1.0500 (2.5072/1.2196) mem 16099MB [2025-01-18 06:58:59 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][60/312] eta 0:02:08 lr 0.001192 time 0.5340 (0.5101) model_time 0.5338 (0.4735) loss 2.9553 (3.0412) grad_norm 0.9244 (2.4000/1.1686) mem 16099MB [2025-01-18 06:59:03 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][70/312] eta 0:02:01 lr 0.001192 time 0.4387 (0.5021) model_time 0.4385 (0.4706) loss 3.1910 (3.0072) grad_norm 5.3807 (2.3968/1.2160) mem 16099MB [2025-01-18 06:59:08 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][80/312] eta 0:01:55 lr 0.001191 time 0.5712 (0.4976) model_time 0.5710 (0.4699) loss 3.6236 (3.0229) grad_norm 5.2826 (2.3844/1.2233) mem 16099MB [2025-01-18 06:59:13 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][90/312] eta 0:01:49 lr 0.001190 time 0.4654 (0.4951) model_time 0.4652 (0.4704) loss 3.6196 (3.0196) grad_norm 2.0926 (2.4257/1.2065) mem 16099MB [2025-01-18 06:59:17 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][100/312] eta 0:01:44 lr 0.001190 time 0.4461 (0.4907) model_time 0.4459 (0.4685) loss 2.9420 (2.9804) grad_norm 1.2527 (2.3944/1.1722) mem 16099MB [2025-01-18 06:59:22 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][110/312] eta 0:01:38 lr 0.001189 time 0.4596 (0.4898) model_time 0.4594 (0.4696) loss 3.2367 (2.9763) grad_norm 1.6510 (2.3037/1.1630) mem 16099MB [2025-01-18 06:59:27 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][120/312] eta 0:01:33 lr 0.001189 time 0.4576 (0.4869) model_time 0.4575 (0.4683) loss 2.8673 (2.9788) grad_norm 1.7546 (2.2848/1.1303) mem 16099MB [2025-01-18 06:59:31 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][130/312] eta 0:01:28 lr 0.001188 time 0.4517 (0.4852) model_time 0.4515 (0.4680) loss 2.2945 (2.9882) grad_norm 0.9412 (2.2798/1.1041) mem 16099MB [2025-01-18 06:59:36 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][140/312] eta 0:01:23 lr 0.001187 time 0.4521 (0.4837) model_time 0.4519 (0.4677) loss 2.7790 (2.9785) grad_norm 0.7596 (2.2197/1.0993) mem 16099MB [2025-01-18 06:59:41 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][150/312] eta 0:01:18 lr 0.001187 time 0.5558 (0.4840) model_time 0.5554 (0.4690) loss 3.8524 (2.9861) grad_norm 1.8136 (2.1928/1.0750) mem 16099MB [2025-01-18 06:59:45 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][160/312] eta 0:01:13 lr 0.001186 time 0.4388 (0.4820) model_time 0.4387 (0.4680) loss 3.0557 (2.9972) grad_norm 1.1984 (2.1924/1.1133) mem 16099MB [2025-01-18 06:59:50 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][170/312] eta 0:01:08 lr 0.001186 time 0.4509 (0.4805) model_time 0.4507 (0.4672) loss 2.1567 (2.9920) grad_norm 1.7702 (2.1569/1.0939) mem 16099MB [2025-01-18 06:59:55 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][180/312] eta 0:01:03 lr 0.001185 time 0.7494 (0.4819) model_time 0.7493 (0.4692) loss 2.5664 (2.9901) grad_norm 1.6323 (2.1405/1.0781) mem 16099MB [2025-01-18 07:00:00 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][190/312] eta 0:00:58 lr 0.001184 time 0.4539 (0.4811) model_time 0.4536 (0.4691) loss 3.0844 (2.9887) grad_norm 1.6034 (2.1481/1.0712) mem 16099MB [2025-01-18 07:00:04 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][200/312] eta 0:00:53 lr 0.001184 time 0.4442 (0.4816) model_time 0.4441 (0.4702) loss 2.9348 (2.9840) grad_norm 2.5325 (2.1445/1.0514) mem 16099MB [2025-01-18 07:00:09 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][210/312] eta 0:00:49 lr 0.001183 time 0.5484 (0.4814) model_time 0.5482 (0.4705) loss 3.2508 (2.9936) grad_norm 2.1570 (2.1419/1.0350) mem 16099MB [2025-01-18 07:00:14 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][220/312] eta 0:00:44 lr 0.001182 time 0.4847 (0.4803) model_time 0.4845 (0.4699) loss 2.0801 (3.0072) grad_norm 2.7493 (2.1247/1.0278) mem 16099MB [2025-01-18 07:00:18 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][230/312] eta 0:00:39 lr 0.001182 time 0.4708 (0.4797) model_time 0.4706 (0.4697) loss 3.0896 (3.0095) grad_norm 3.7937 (2.1395/1.0267) mem 16099MB [2025-01-18 07:00:23 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][240/312] eta 0:00:34 lr 0.001181 time 0.4536 (0.4786) model_time 0.4534 (0.4690) loss 1.8722 (3.0108) grad_norm 1.2075 (2.1437/1.0257) mem 16099MB [2025-01-18 07:00:28 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][250/312] eta 0:00:29 lr 0.001181 time 0.4579 (0.4784) model_time 0.4577 (0.4691) loss 2.9980 (3.0140) grad_norm 1.3627 (2.1576/1.0233) mem 16099MB [2025-01-18 07:00:32 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][260/312] eta 0:00:24 lr 0.001180 time 0.4480 (0.4780) model_time 0.4478 (0.4690) loss 1.8472 (3.0048) grad_norm 2.0013 (2.1469/1.0081) mem 16099MB [2025-01-18 07:00:37 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][270/312] eta 0:00:20 lr 0.001179 time 0.4436 (0.4781) model_time 0.4434 (0.4695) loss 2.0506 (3.0132) grad_norm 1.7678 (2.1459/1.0046) mem 16099MB [2025-01-18 07:00:42 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][280/312] eta 0:00:15 lr 0.001179 time 0.4626 (0.4773) model_time 0.4624 (0.4689) loss 3.1869 (3.0200) grad_norm 5.5287 (2.1808/1.0600) mem 16099MB [2025-01-18 07:00:47 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][290/312] eta 0:00:10 lr 0.001178 time 0.4328 (0.4775) model_time 0.4326 (0.4695) loss 2.7063 (3.0173) grad_norm 2.7326 (2.1918/1.0485) mem 16099MB [2025-01-18 07:00:51 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][300/312] eta 0:00:05 lr 0.001178 time 0.4355 (0.4771) model_time 0.4353 (0.4693) loss 3.5119 (3.0179) grad_norm 1.0461 (2.1861/1.0374) mem 16099MB [2025-01-18 07:00:56 internimage_t_1k_224] (main.py 510): INFO Train: [191/300][310/312] eta 0:00:00 lr 0.001177 time 0.4407 (0.4761) model_time 0.4406 (0.4685) loss 3.9391 (3.0233) grad_norm 2.2290 (2.1755/1.0304) mem 16099MB [2025-01-18 07:00:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 191 training takes 0:02:28 [2025-01-18 07:00:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_191.pth saving...... [2025-01-18 07:00:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_191.pth saved !!! [2025-01-18 07:01:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.603 (7.603) Loss 0.7712 (0.7712) Acc@1 83.667 (83.667) Acc@5 97.119 (97.119) Mem 16099MB [2025-01-18 07:01:09 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.029) Loss 1.0571 (0.9044) Acc@1 76.685 (80.759) Acc@5 93.872 (95.534) Mem 16099MB [2025-01-18 07:01:09 internimage_t_1k_224] (main.py 575): INFO [Epoch:191] * Acc@1 80.646 Acc@5 95.549 [2025-01-18 07:01:09 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.6% [2025-01-18 07:01:09 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 80.98% [2025-01-18 07:01:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.555 (8.555) Loss 0.7932 (0.7932) Acc@1 85.059 (85.059) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 07:01:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.140) Loss 1.0600 (0.9120) Acc@1 77.856 (82.158) Acc@5 94.678 (96.025) Mem 16099MB [2025-01-18 07:01:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:191] * Acc@1 82.042 Acc@5 96.061 [2025-01-18 07:01:21 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.0% [2025-01-18 07:01:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:01:23 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:01:23 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.04% [2025-01-18 07:01:25 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][0/312] eta 0:11:14 lr 0.001177 time 2.1607 (2.1607) model_time 0.5856 (0.5856) loss 2.0591 (2.0591) grad_norm 1.6999 (1.6999/0.0000) mem 16099MB [2025-01-18 07:01:30 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][10/312] eta 0:03:08 lr 0.001176 time 0.4528 (0.6251) model_time 0.4526 (0.4817) loss 3.4362 (2.7253) grad_norm 1.3141 (2.0218/0.7145) mem 16099MB [2025-01-18 07:01:34 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][20/312] eta 0:02:40 lr 0.001176 time 0.4429 (0.5492) model_time 0.4427 (0.4739) loss 2.3121 (2.8514) grad_norm 1.1515 (1.8581/0.6856) mem 16099MB [2025-01-18 07:01:39 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][30/312] eta 0:02:26 lr 0.001175 time 0.4514 (0.5205) model_time 0.4512 (0.4694) loss 2.0633 (2.8622) grad_norm 1.2751 (2.0481/0.9850) mem 16099MB [2025-01-18 07:01:43 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][40/312] eta 0:02:17 lr 0.001175 time 0.5394 (0.5065) model_time 0.5389 (0.4677) loss 3.0360 (2.9561) grad_norm 1.6451 (1.9389/0.9272) mem 16099MB [2025-01-18 07:01:48 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][50/312] eta 0:02:10 lr 0.001174 time 0.4536 (0.4983) model_time 0.4534 (0.4671) loss 3.1201 (2.9591) grad_norm 3.1285 (2.0992/1.0573) mem 16099MB [2025-01-18 07:01:53 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][60/312] eta 0:02:04 lr 0.001173 time 0.4575 (0.4928) model_time 0.4570 (0.4666) loss 3.6121 (2.9893) grad_norm 1.1584 (2.1471/1.0706) mem 16099MB [2025-01-18 07:01:57 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][70/312] eta 0:01:57 lr 0.001173 time 0.4594 (0.4875) model_time 0.4592 (0.4649) loss 3.0337 (3.0286) grad_norm 1.8972 (2.1064/1.0293) mem 16099MB [2025-01-18 07:02:02 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][80/312] eta 0:01:52 lr 0.001172 time 0.4555 (0.4846) model_time 0.4553 (0.4648) loss 3.2149 (3.0143) grad_norm 1.3438 (2.0700/1.0188) mem 16099MB [2025-01-18 07:02:07 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][90/312] eta 0:01:46 lr 0.001172 time 0.4514 (0.4818) model_time 0.4512 (0.4642) loss 3.7188 (3.0401) grad_norm 1.7489 (2.0467/0.9856) mem 16099MB [2025-01-18 07:02:11 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][100/312] eta 0:01:41 lr 0.001171 time 0.4447 (0.4799) model_time 0.4442 (0.4640) loss 1.9555 (3.0505) grad_norm 1.9330 (2.0466/0.9517) mem 16099MB [2025-01-18 07:02:16 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][110/312] eta 0:01:36 lr 0.001170 time 0.4573 (0.4791) model_time 0.4571 (0.4645) loss 3.4057 (3.0471) grad_norm 3.4091 (2.0727/0.9750) mem 16099MB [2025-01-18 07:02:21 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][120/312] eta 0:01:31 lr 0.001170 time 0.4473 (0.4791) model_time 0.4471 (0.4657) loss 3.0163 (3.0399) grad_norm 1.4997 (2.1042/0.9798) mem 16099MB [2025-01-18 07:02:26 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][130/312] eta 0:01:27 lr 0.001169 time 0.5351 (0.4799) model_time 0.5349 (0.4676) loss 3.4116 (3.0451) grad_norm 1.8135 (2.1445/0.9809) mem 16099MB [2025-01-18 07:02:30 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][140/312] eta 0:01:22 lr 0.001169 time 0.4576 (0.4794) model_time 0.4572 (0.4679) loss 3.0369 (3.0508) grad_norm 0.9990 (2.1440/0.9581) mem 16099MB [2025-01-18 07:02:35 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][150/312] eta 0:01:17 lr 0.001168 time 0.4483 (0.4784) model_time 0.4481 (0.4676) loss 3.5260 (3.0736) grad_norm 2.4563 (2.1742/0.9546) mem 16099MB [2025-01-18 07:02:40 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][160/312] eta 0:01:12 lr 0.001167 time 0.5483 (0.4781) model_time 0.5482 (0.4680) loss 2.7797 (3.0808) grad_norm 1.8941 (2.1632/0.9375) mem 16099MB [2025-01-18 07:02:44 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][170/312] eta 0:01:07 lr 0.001167 time 0.4576 (0.4778) model_time 0.4571 (0.4682) loss 3.7316 (3.0700) grad_norm 1.1934 (2.1330/0.9265) mem 16099MB [2025-01-18 07:02:49 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][180/312] eta 0:01:02 lr 0.001166 time 0.4475 (0.4765) model_time 0.4473 (0.4674) loss 3.0557 (3.0792) grad_norm 2.8650 (2.1139/0.9161) mem 16099MB [2025-01-18 07:02:53 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][190/312] eta 0:00:57 lr 0.001166 time 0.4593 (0.4754) model_time 0.4591 (0.4668) loss 3.4503 (3.0836) grad_norm 2.9840 (2.1359/0.9213) mem 16099MB [2025-01-18 07:02:58 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][200/312] eta 0:00:53 lr 0.001165 time 0.4687 (0.4746) model_time 0.4685 (0.4664) loss 3.2589 (3.0780) grad_norm 0.9895 (2.1326/0.9147) mem 16099MB [2025-01-18 07:03:03 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][210/312] eta 0:00:48 lr 0.001164 time 0.5453 (0.4745) model_time 0.5446 (0.4667) loss 1.9772 (3.0820) grad_norm 1.5398 (2.1300/0.9025) mem 16099MB [2025-01-18 07:03:07 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][220/312] eta 0:00:43 lr 0.001164 time 0.4517 (0.4735) model_time 0.4515 (0.4661) loss 3.6559 (3.0851) grad_norm 1.4088 (2.1225/0.8885) mem 16099MB [2025-01-18 07:03:12 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][230/312] eta 0:00:38 lr 0.001163 time 0.5395 (0.4742) model_time 0.5391 (0.4670) loss 3.0812 (3.0840) grad_norm 2.1207 (2.1190/0.8758) mem 16099MB [2025-01-18 07:03:17 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][240/312] eta 0:00:34 lr 0.001163 time 0.4515 (0.4734) model_time 0.4510 (0.4665) loss 3.2857 (3.0845) grad_norm 3.4555 (2.1372/0.8832) mem 16099MB [2025-01-18 07:03:21 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][250/312] eta 0:00:29 lr 0.001162 time 0.4409 (0.4725) model_time 0.4407 (0.4659) loss 3.8747 (3.0873) grad_norm 1.6300 (2.1339/0.8827) mem 16099MB [2025-01-18 07:03:26 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][260/312] eta 0:00:24 lr 0.001161 time 0.4638 (0.4723) model_time 0.4636 (0.4659) loss 3.1594 (3.0826) grad_norm 1.9541 (2.1126/0.8747) mem 16099MB [2025-01-18 07:03:31 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][270/312] eta 0:00:19 lr 0.001161 time 0.5007 (0.4720) model_time 0.5004 (0.4658) loss 3.3587 (3.0781) grad_norm 1.2361 (2.1025/0.8705) mem 16099MB [2025-01-18 07:03:35 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][280/312] eta 0:00:15 lr 0.001160 time 0.4501 (0.4720) model_time 0.4499 (0.4661) loss 3.1844 (3.0759) grad_norm 4.2234 (2.1096/0.8748) mem 16099MB [2025-01-18 07:03:40 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][290/312] eta 0:00:10 lr 0.001160 time 0.4344 (0.4720) model_time 0.4342 (0.4662) loss 2.3372 (3.0714) grad_norm 1.4252 (2.1264/0.8791) mem 16099MB [2025-01-18 07:03:45 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][300/312] eta 0:00:05 lr 0.001159 time 0.4378 (0.4721) model_time 0.4377 (0.4665) loss 3.2079 (3.0715) grad_norm 1.7575 (2.1139/0.8732) mem 16099MB [2025-01-18 07:03:49 internimage_t_1k_224] (main.py 510): INFO Train: [192/300][310/312] eta 0:00:00 lr 0.001158 time 0.4380 (0.4712) model_time 0.4377 (0.4657) loss 3.3619 (3.0799) grad_norm 1.9684 (2.1262/0.8925) mem 16099MB [2025-01-18 07:03:50 internimage_t_1k_224] (main.py 519): INFO EPOCH 192 training takes 0:02:26 [2025-01-18 07:03:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_192.pth saving...... [2025-01-18 07:03:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_192.pth saved !!! [2025-01-18 07:03:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.662 (7.662) Loss 0.7862 (0.7862) Acc@1 83.496 (83.496) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 07:04:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.020) Loss 1.0439 (0.8914) Acc@1 76.831 (81.168) Acc@5 94.385 (95.696) Mem 16099MB [2025-01-18 07:04:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:192] * Acc@1 81.030 Acc@5 95.717 [2025-01-18 07:04:02 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.0% [2025-01-18 07:04:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 07:04:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 07:04:03 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.03% [2025-01-18 07:04:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.707 (7.707) Loss 0.7926 (0.7926) Acc@1 84.985 (84.985) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 07:04:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.052) Loss 1.0583 (0.9110) Acc@1 77.979 (82.189) Acc@5 94.727 (96.045) Mem 16099MB [2025-01-18 07:04:15 internimage_t_1k_224] (main.py 575): INFO [Epoch:192] * Acc@1 82.072 Acc@5 96.079 [2025-01-18 07:04:15 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.1% [2025-01-18 07:04:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:04:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:04:16 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.07% [2025-01-18 07:04:18 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][0/312] eta 0:09:58 lr 0.001158 time 1.9168 (1.9168) model_time 0.4880 (0.4880) loss 2.4957 (2.4957) grad_norm 2.7597 (2.7597/0.0000) mem 16099MB [2025-01-18 07:04:23 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][10/312] eta 0:03:03 lr 0.001158 time 0.4488 (0.6080) model_time 0.4487 (0.4778) loss 2.4347 (2.8650) grad_norm 3.1404 (2.7284/1.1131) mem 16099MB [2025-01-18 07:04:28 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][20/312] eta 0:02:39 lr 0.001157 time 0.5374 (0.5466) model_time 0.5372 (0.4782) loss 2.5672 (3.0100) grad_norm 1.1379 (2.5280/1.0502) mem 16099MB [2025-01-18 07:04:32 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][30/312] eta 0:02:26 lr 0.001156 time 0.4550 (0.5211) model_time 0.4548 (0.4746) loss 3.3894 (3.0098) grad_norm 4.5345 (2.6720/1.1775) mem 16099MB [2025-01-18 07:04:37 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][40/312] eta 0:02:18 lr 0.001156 time 0.4457 (0.5075) model_time 0.4454 (0.4723) loss 2.4926 (3.0203) grad_norm 1.8013 (2.8058/1.2925) mem 16099MB [2025-01-18 07:04:42 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][50/312] eta 0:02:11 lr 0.001155 time 0.4400 (0.5007) model_time 0.4397 (0.4723) loss 3.7283 (3.0292) grad_norm 2.0588 (2.6127/1.2517) mem 16099MB [2025-01-18 07:04:46 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][60/312] eta 0:02:04 lr 0.001155 time 0.4447 (0.4937) model_time 0.4445 (0.4699) loss 2.5123 (3.0105) grad_norm 1.4263 (2.4649/1.2096) mem 16099MB [2025-01-18 07:04:51 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][70/312] eta 0:01:58 lr 0.001154 time 0.4456 (0.4893) model_time 0.4454 (0.4688) loss 3.0251 (2.9905) grad_norm 1.7554 (2.4300/1.1647) mem 16099MB [2025-01-18 07:04:56 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][80/312] eta 0:01:52 lr 0.001153 time 0.4530 (0.4864) model_time 0.4528 (0.4684) loss 3.2426 (3.0278) grad_norm 0.9807 (2.3750/1.1299) mem 16099MB [2025-01-18 07:05:00 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][90/312] eta 0:01:47 lr 0.001153 time 0.4507 (0.4852) model_time 0.4505 (0.4692) loss 3.4109 (3.0307) grad_norm 1.9666 (2.3122/1.1001) mem 16099MB [2025-01-18 07:05:05 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][100/312] eta 0:01:42 lr 0.001152 time 0.4554 (0.4837) model_time 0.4547 (0.4692) loss 3.1860 (3.0292) grad_norm 2.4920 (2.2430/1.0764) mem 16099MB [2025-01-18 07:05:10 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][110/312] eta 0:01:37 lr 0.001152 time 0.4490 (0.4826) model_time 0.4488 (0.4694) loss 3.2266 (3.0092) grad_norm 1.1476 (2.2135/1.0560) mem 16099MB [2025-01-18 07:05:15 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][120/312] eta 0:01:32 lr 0.001151 time 0.4520 (0.4810) model_time 0.4518 (0.4688) loss 2.3794 (3.0024) grad_norm 1.0363 (2.1531/1.0437) mem 16099MB [2025-01-18 07:05:19 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][130/312] eta 0:01:27 lr 0.001150 time 0.4536 (0.4799) model_time 0.4534 (0.4687) loss 3.8438 (3.0135) grad_norm 1.0396 (2.1505/1.0252) mem 16099MB [2025-01-18 07:05:24 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][140/312] eta 0:01:22 lr 0.001150 time 0.4563 (0.4800) model_time 0.4561 (0.4695) loss 3.2158 (3.0221) grad_norm 1.4996 (2.1429/0.9999) mem 16099MB [2025-01-18 07:05:29 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][150/312] eta 0:01:17 lr 0.001149 time 0.4513 (0.4796) model_time 0.4511 (0.4697) loss 3.2317 (3.0281) grad_norm 3.0255 (2.1803/1.0278) mem 16099MB [2025-01-18 07:05:33 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][160/312] eta 0:01:12 lr 0.001149 time 0.4636 (0.4788) model_time 0.4634 (0.4696) loss 3.4267 (3.0150) grad_norm 2.3369 (2.2131/1.0466) mem 16099MB [2025-01-18 07:05:38 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][170/312] eta 0:01:07 lr 0.001148 time 0.4623 (0.4780) model_time 0.4622 (0.4693) loss 3.4578 (3.0205) grad_norm 5.6817 (2.2185/1.0707) mem 16099MB [2025-01-18 07:05:43 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][180/312] eta 0:01:02 lr 0.001147 time 0.4565 (0.4772) model_time 0.4563 (0.4689) loss 2.5373 (3.0198) grad_norm 1.3782 (2.2187/1.0576) mem 16099MB [2025-01-18 07:05:47 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][190/312] eta 0:00:58 lr 0.001147 time 0.4678 (0.4762) model_time 0.4675 (0.4684) loss 3.4352 (3.0240) grad_norm 2.2694 (2.2174/1.0466) mem 16099MB [2025-01-18 07:05:52 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][200/312] eta 0:00:53 lr 0.001146 time 0.4478 (0.4761) model_time 0.4474 (0.4686) loss 3.1392 (3.0126) grad_norm 1.4387 (2.1963/1.0292) mem 16099MB [2025-01-18 07:05:57 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][210/312] eta 0:00:48 lr 0.001146 time 0.4557 (0.4752) model_time 0.4553 (0.4681) loss 2.6217 (3.0114) grad_norm 1.1756 (2.1826/1.0269) mem 16099MB [2025-01-18 07:06:01 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][220/312] eta 0:00:43 lr 0.001145 time 0.4489 (0.4747) model_time 0.4488 (0.4679) loss 2.2121 (3.0286) grad_norm 4.7261 (2.1912/1.0296) mem 16099MB [2025-01-18 07:06:06 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][230/312] eta 0:00:38 lr 0.001145 time 0.4442 (0.4741) model_time 0.4440 (0.4675) loss 3.4103 (3.0279) grad_norm 1.9375 (2.1884/1.0288) mem 16099MB [2025-01-18 07:06:10 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][240/312] eta 0:00:34 lr 0.001144 time 0.4494 (0.4737) model_time 0.4492 (0.4674) loss 2.1823 (3.0253) grad_norm 2.1229 (2.1828/1.0154) mem 16099MB [2025-01-18 07:06:15 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][250/312] eta 0:00:29 lr 0.001143 time 0.4363 (0.4735) model_time 0.4358 (0.4674) loss 3.0710 (3.0266) grad_norm 1.6647 (2.1607/1.0036) mem 16099MB [2025-01-18 07:06:20 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][260/312] eta 0:00:24 lr 0.001143 time 0.4441 (0.4738) model_time 0.4438 (0.4680) loss 2.9951 (3.0231) grad_norm 2.9887 (2.1944/1.0518) mem 16099MB [2025-01-18 07:06:25 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][270/312] eta 0:00:19 lr 0.001142 time 0.4491 (0.4736) model_time 0.4486 (0.4680) loss 2.0524 (3.0219) grad_norm 1.8497 (2.1958/1.0478) mem 16099MB [2025-01-18 07:06:29 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][280/312] eta 0:00:15 lr 0.001142 time 0.4530 (0.4736) model_time 0.4526 (0.4681) loss 3.7483 (3.0191) grad_norm 2.4520 (2.2115/1.0478) mem 16099MB [2025-01-18 07:06:34 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][290/312] eta 0:00:10 lr 0.001141 time 0.4562 (0.4732) model_time 0.4560 (0.4679) loss 2.4730 (3.0139) grad_norm 1.7609 (2.2173/1.0339) mem 16099MB [2025-01-18 07:06:39 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][300/312] eta 0:00:05 lr 0.001140 time 0.4382 (0.4727) model_time 0.4381 (0.4676) loss 2.8587 (3.0268) grad_norm 2.3258 (2.2179/1.0246) mem 16099MB [2025-01-18 07:06:43 internimage_t_1k_224] (main.py 510): INFO Train: [193/300][310/312] eta 0:00:00 lr 0.001140 time 0.4517 (0.4721) model_time 0.4516 (0.4671) loss 3.3917 (3.0261) grad_norm 3.8621 (2.2147/1.0159) mem 16099MB [2025-01-18 07:06:44 internimage_t_1k_224] (main.py 519): INFO EPOCH 193 training takes 0:02:27 [2025-01-18 07:06:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_193.pth saving...... [2025-01-18 07:06:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_193.pth saved !!! [2025-01-18 07:06:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.389 (7.389) Loss 0.7842 (0.7842) Acc@1 83.740 (83.740) Acc@5 96.875 (96.875) Mem 16099MB [2025-01-18 07:06:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.995) Loss 1.0653 (0.9024) Acc@1 76.196 (80.877) Acc@5 93.994 (95.561) Mem 16099MB [2025-01-18 07:06:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:193] * Acc@1 80.782 Acc@5 95.601 [2025-01-18 07:06:56 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.8% [2025-01-18 07:06:56 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.03% [2025-01-18 07:07:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.217 (8.217) Loss 0.7918 (0.7918) Acc@1 85.010 (85.010) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 07:07:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.125) Loss 1.0565 (0.9098) Acc@1 77.881 (82.189) Acc@5 94.727 (96.056) Mem 16099MB [2025-01-18 07:07:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:193] * Acc@1 82.076 Acc@5 96.089 [2025-01-18 07:07:08 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.1% [2025-01-18 07:07:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:07:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:07:10 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.08% [2025-01-18 07:07:12 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][0/312] eta 0:11:17 lr 0.001140 time 2.1727 (2.1727) model_time 0.4660 (0.4660) loss 3.5279 (3.5279) grad_norm 1.2482 (1.2482/0.0000) mem 16099MB [2025-01-18 07:07:17 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][10/312] eta 0:03:11 lr 0.001139 time 0.4546 (0.6335) model_time 0.4545 (0.4780) loss 3.1983 (3.2086) grad_norm 1.2241 (1.8538/0.7384) mem 16099MB [2025-01-18 07:07:21 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][20/312] eta 0:02:42 lr 0.001138 time 0.4533 (0.5578) model_time 0.4531 (0.4762) loss 3.2484 (3.2708) grad_norm 2.5494 (1.7839/0.6741) mem 16099MB [2025-01-18 07:07:26 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][30/312] eta 0:02:31 lr 0.001138 time 0.4538 (0.5377) model_time 0.4534 (0.4823) loss 3.3931 (3.2000) grad_norm 1.5718 (1.6967/0.6104) mem 16099MB [2025-01-18 07:07:31 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][40/312] eta 0:02:21 lr 0.001137 time 0.5392 (0.5213) model_time 0.5388 (0.4793) loss 1.9235 (3.1007) grad_norm 1.3400 (1.6963/0.6226) mem 16099MB [2025-01-18 07:07:36 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][50/312] eta 0:02:13 lr 0.001137 time 0.4571 (0.5099) model_time 0.4566 (0.4761) loss 3.3959 (3.0674) grad_norm 1.5497 (1.8587/0.7792) mem 16099MB [2025-01-18 07:07:41 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][60/312] eta 0:02:07 lr 0.001136 time 0.4548 (0.5051) model_time 0.4547 (0.4767) loss 3.3389 (3.1266) grad_norm 3.0217 (1.8838/0.7524) mem 16099MB [2025-01-18 07:07:45 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][70/312] eta 0:02:00 lr 0.001135 time 0.4534 (0.4984) model_time 0.4533 (0.4740) loss 2.0972 (3.1135) grad_norm 1.5378 (1.9132/0.7906) mem 16099MB [2025-01-18 07:07:50 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][80/312] eta 0:01:54 lr 0.001135 time 0.4519 (0.4928) model_time 0.4515 (0.4714) loss 3.3932 (3.0969) grad_norm 1.0918 (1.8937/0.7601) mem 16099MB [2025-01-18 07:07:54 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][90/312] eta 0:01:48 lr 0.001134 time 0.4755 (0.4899) model_time 0.4753 (0.4707) loss 3.7545 (3.1084) grad_norm 2.6930 (1.9768/0.8420) mem 16099MB [2025-01-18 07:07:59 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][100/312] eta 0:01:43 lr 0.001134 time 0.4552 (0.4873) model_time 0.4550 (0.4701) loss 2.4225 (3.0864) grad_norm 1.0198 (1.9489/0.8282) mem 16099MB [2025-01-18 07:08:04 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][110/312] eta 0:01:37 lr 0.001133 time 0.4499 (0.4849) model_time 0.4497 (0.4691) loss 2.5862 (3.0913) grad_norm 2.2649 (1.9591/0.8544) mem 16099MB [2025-01-18 07:08:08 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][120/312] eta 0:01:32 lr 0.001132 time 0.4455 (0.4839) model_time 0.4451 (0.4694) loss 3.4222 (3.0988) grad_norm 2.1251 (1.9911/0.8737) mem 16099MB [2025-01-18 07:08:13 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][130/312] eta 0:01:27 lr 0.001132 time 0.4401 (0.4821) model_time 0.4398 (0.4686) loss 3.1595 (3.0985) grad_norm 3.7143 (2.0338/0.9029) mem 16099MB [2025-01-18 07:08:18 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][140/312] eta 0:01:22 lr 0.001131 time 0.4525 (0.4819) model_time 0.4522 (0.4694) loss 3.3491 (3.0980) grad_norm 3.8128 (2.0754/0.9547) mem 16099MB [2025-01-18 07:08:22 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][150/312] eta 0:01:17 lr 0.001131 time 0.4832 (0.4802) model_time 0.4828 (0.4685) loss 3.0582 (3.0995) grad_norm 2.3887 (2.0743/0.9429) mem 16099MB [2025-01-18 07:08:27 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][160/312] eta 0:01:12 lr 0.001130 time 0.5634 (0.4795) model_time 0.5629 (0.4685) loss 3.7841 (3.1052) grad_norm 2.0123 (2.0591/0.9250) mem 16099MB [2025-01-18 07:08:32 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][170/312] eta 0:01:07 lr 0.001130 time 0.4540 (0.4785) model_time 0.4534 (0.4681) loss 2.6137 (3.1053) grad_norm 1.9431 (2.0320/0.9096) mem 16099MB [2025-01-18 07:08:36 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][180/312] eta 0:01:02 lr 0.001129 time 0.4557 (0.4770) model_time 0.4555 (0.4672) loss 3.8210 (3.0916) grad_norm 1.7843 (2.0292/0.9179) mem 16099MB [2025-01-18 07:08:41 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][190/312] eta 0:00:58 lr 0.001128 time 0.4523 (0.4765) model_time 0.4521 (0.4672) loss 2.7740 (3.0900) grad_norm 1.6767 (2.0537/0.9265) mem 16099MB [2025-01-18 07:08:45 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][200/312] eta 0:00:53 lr 0.001128 time 0.4517 (0.4755) model_time 0.4511 (0.4666) loss 3.2006 (3.0882) grad_norm 1.9035 (2.0601/0.9196) mem 16099MB [2025-01-18 07:08:50 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][210/312] eta 0:00:48 lr 0.001127 time 0.4622 (0.4757) model_time 0.4620 (0.4672) loss 3.6297 (3.0938) grad_norm 1.3775 (2.0561/0.9116) mem 16099MB [2025-01-18 07:08:55 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][220/312] eta 0:00:43 lr 0.001127 time 0.4508 (0.4749) model_time 0.4504 (0.4668) loss 3.1048 (3.0958) grad_norm 1.9946 (2.0511/0.8970) mem 16099MB [2025-01-18 07:08:59 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][230/312] eta 0:00:38 lr 0.001126 time 0.4495 (0.4746) model_time 0.4493 (0.4668) loss 3.2591 (3.1042) grad_norm 3.7050 (2.0623/0.8976) mem 16099MB [2025-01-18 07:09:04 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][240/312] eta 0:00:34 lr 0.001125 time 0.4392 (0.4739) model_time 0.4388 (0.4665) loss 2.3723 (3.0911) grad_norm 1.3722 (2.0521/0.8898) mem 16099MB [2025-01-18 07:09:09 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][250/312] eta 0:00:29 lr 0.001125 time 0.5638 (0.4739) model_time 0.5636 (0.4667) loss 3.6320 (3.0886) grad_norm 1.5571 (2.0254/0.8846) mem 16099MB [2025-01-18 07:09:13 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][260/312] eta 0:00:24 lr 0.001124 time 0.4540 (0.4735) model_time 0.4534 (0.4666) loss 3.2561 (3.0860) grad_norm 1.2368 (2.0221/0.8934) mem 16099MB [2025-01-18 07:09:18 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][270/312] eta 0:00:19 lr 0.001124 time 0.4647 (0.4742) model_time 0.4643 (0.4675) loss 3.5979 (3.0876) grad_norm 1.3047 (2.0237/0.8898) mem 16099MB [2025-01-18 07:09:23 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][280/312] eta 0:00:15 lr 0.001123 time 0.5078 (0.4744) model_time 0.5076 (0.4680) loss 3.0809 (3.0894) grad_norm 4.6645 (2.0341/0.8890) mem 16099MB [2025-01-18 07:09:28 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][290/312] eta 0:00:10 lr 0.001122 time 0.4449 (0.4744) model_time 0.4447 (0.4682) loss 2.7394 (3.0883) grad_norm 1.1690 (2.0451/0.9111) mem 16099MB [2025-01-18 07:09:32 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][300/312] eta 0:00:05 lr 0.001122 time 0.5446 (0.4740) model_time 0.5445 (0.4680) loss 3.6130 (3.0898) grad_norm 1.0804 (2.0628/0.9230) mem 16099MB [2025-01-18 07:09:37 internimage_t_1k_224] (main.py 510): INFO Train: [194/300][310/312] eta 0:00:00 lr 0.001121 time 0.4381 (0.4732) model_time 0.4380 (0.4673) loss 3.4615 (3.0991) grad_norm 4.5267 (2.1020/0.9495) mem 16099MB [2025-01-18 07:09:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 194 training takes 0:02:27 [2025-01-18 07:09:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_194.pth saving...... [2025-01-18 07:09:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_194.pth saved !!! [2025-01-18 07:09:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.430 (7.430) Loss 0.7838 (0.7838) Acc@1 84.009 (84.009) Acc@5 97.021 (97.021) Mem 16099MB [2025-01-18 07:09:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.990) Loss 1.0616 (0.9058) Acc@1 76.709 (81.070) Acc@5 93.848 (95.568) Mem 16099MB [2025-01-18 07:09:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:194] * Acc@1 80.976 Acc@5 95.587 [2025-01-18 07:09:50 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.0% [2025-01-18 07:09:50 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.03% [2025-01-18 07:09:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.610 (8.610) Loss 0.7914 (0.7914) Acc@1 85.059 (85.059) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 07:10:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.136) Loss 1.0551 (0.9089) Acc@1 77.930 (82.229) Acc@5 94.751 (96.069) Mem 16099MB [2025-01-18 07:10:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:194] * Acc@1 82.110 Acc@5 96.101 [2025-01-18 07:10:03 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.1% [2025-01-18 07:10:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:10:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:10:04 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.11% [2025-01-18 07:10:06 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][0/312] eta 0:12:55 lr 0.001121 time 2.4845 (2.4845) model_time 0.4792 (0.4792) loss 2.2003 (2.2003) grad_norm 1.4698 (1.4698/0.0000) mem 16099MB [2025-01-18 07:10:11 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][10/312] eta 0:03:17 lr 0.001121 time 0.5554 (0.6528) model_time 0.5552 (0.4702) loss 2.0485 (3.0216) grad_norm 1.5489 (1.6188/0.4924) mem 16099MB [2025-01-18 07:10:16 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][20/312] eta 0:02:43 lr 0.001120 time 0.4481 (0.5610) model_time 0.4476 (0.4652) loss 2.8783 (2.9045) grad_norm 2.6770 (1.9541/0.9389) mem 16099MB [2025-01-18 07:10:20 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][30/312] eta 0:02:29 lr 0.001119 time 0.4592 (0.5315) model_time 0.4588 (0.4665) loss 3.2379 (2.9318) grad_norm 1.8352 (2.0322/0.8595) mem 16099MB [2025-01-18 07:10:25 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][40/312] eta 0:02:20 lr 0.001119 time 0.4441 (0.5163) model_time 0.4437 (0.4670) loss 3.1688 (2.9313) grad_norm 3.2282 (2.1769/0.9715) mem 16099MB [2025-01-18 07:10:30 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][50/312] eta 0:02:12 lr 0.001118 time 0.4555 (0.5061) model_time 0.4553 (0.4665) loss 3.2868 (2.9506) grad_norm 2.7452 (2.3209/1.0709) mem 16099MB [2025-01-18 07:10:34 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][60/312] eta 0:02:05 lr 0.001118 time 0.4439 (0.4979) model_time 0.4437 (0.4647) loss 3.1156 (2.9485) grad_norm 1.3742 (2.2932/1.0118) mem 16099MB [2025-01-18 07:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][70/312] eta 0:01:59 lr 0.001117 time 0.4534 (0.4924) model_time 0.4532 (0.4638) loss 3.5495 (2.9656) grad_norm 1.6914 (2.2595/0.9640) mem 16099MB [2025-01-18 07:10:43 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][80/312] eta 0:01:53 lr 0.001116 time 0.4649 (0.4880) model_time 0.4647 (0.4629) loss 2.8879 (2.9711) grad_norm 1.3731 (2.2476/0.9368) mem 16099MB [2025-01-18 07:10:48 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][90/312] eta 0:01:47 lr 0.001116 time 0.4567 (0.4857) model_time 0.4565 (0.4633) loss 3.0650 (2.9957) grad_norm 4.8414 (2.2887/0.9544) mem 16099MB [2025-01-18 07:10:53 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][100/312] eta 0:01:42 lr 0.001115 time 0.4634 (0.4834) model_time 0.4632 (0.4632) loss 2.6774 (2.9688) grad_norm 2.5733 (2.3396/0.9342) mem 16099MB [2025-01-18 07:10:57 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][110/312] eta 0:01:37 lr 0.001115 time 0.4445 (0.4822) model_time 0.4443 (0.4638) loss 3.3023 (2.9831) grad_norm 1.8807 (2.3093/0.9183) mem 16099MB [2025-01-18 07:11:02 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][120/312] eta 0:01:32 lr 0.001114 time 0.4558 (0.4810) model_time 0.4553 (0.4640) loss 2.1772 (2.9849) grad_norm 2.0087 (2.2872/0.8924) mem 16099MB [2025-01-18 07:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][130/312] eta 0:01:27 lr 0.001113 time 0.4326 (0.4809) model_time 0.4323 (0.4652) loss 2.7582 (2.9895) grad_norm 1.4475 (2.2512/0.8798) mem 16099MB [2025-01-18 07:11:11 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][140/312] eta 0:01:22 lr 0.001113 time 0.4480 (0.4795) model_time 0.4475 (0.4649) loss 2.7159 (3.0039) grad_norm 2.8204 (2.2314/0.8726) mem 16099MB [2025-01-18 07:11:16 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][150/312] eta 0:01:17 lr 0.001112 time 0.4502 (0.4797) model_time 0.4500 (0.4661) loss 3.2436 (3.0125) grad_norm 2.4748 (2.2798/0.9208) mem 16099MB [2025-01-18 07:11:21 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][160/312] eta 0:01:12 lr 0.001112 time 0.4495 (0.4789) model_time 0.4493 (0.4661) loss 2.3999 (3.0083) grad_norm 2.1601 (2.2828/0.9019) mem 16099MB [2025-01-18 07:11:26 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][170/312] eta 0:01:07 lr 0.001111 time 0.4671 (0.4787) model_time 0.4669 (0.4666) loss 2.5017 (3.0012) grad_norm 4.6523 (2.2850/0.9049) mem 16099MB [2025-01-18 07:11:30 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][180/312] eta 0:01:03 lr 0.001110 time 0.4443 (0.4788) model_time 0.4441 (0.4673) loss 2.9944 (3.0031) grad_norm 2.4963 (2.2960/0.9150) mem 16099MB [2025-01-18 07:11:35 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][190/312] eta 0:00:58 lr 0.001110 time 0.5303 (0.4788) model_time 0.5301 (0.4680) loss 2.7040 (3.0037) grad_norm 0.7190 (2.2700/0.9151) mem 16099MB [2025-01-18 07:11:40 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][200/312] eta 0:00:53 lr 0.001109 time 0.4832 (0.4783) model_time 0.4830 (0.4680) loss 3.3419 (3.0243) grad_norm 2.3149 (2.2756/0.9098) mem 16099MB [2025-01-18 07:11:45 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][210/312] eta 0:00:48 lr 0.001109 time 0.4713 (0.4776) model_time 0.4711 (0.4677) loss 3.3516 (3.0149) grad_norm 1.8296 (2.3143/0.9713) mem 16099MB [2025-01-18 07:11:49 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][220/312] eta 0:00:43 lr 0.001108 time 0.4439 (0.4767) model_time 0.4436 (0.4672) loss 3.6280 (3.0216) grad_norm 1.9312 (2.2931/0.9605) mem 16099MB [2025-01-18 07:11:54 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][230/312] eta 0:00:39 lr 0.001108 time 0.4524 (0.4767) model_time 0.4522 (0.4677) loss 1.9653 (3.0153) grad_norm 2.4495 (2.2793/0.9499) mem 16099MB [2025-01-18 07:11:59 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][240/312] eta 0:00:34 lr 0.001107 time 0.4563 (0.4763) model_time 0.4561 (0.4676) loss 3.8073 (3.0136) grad_norm 2.1422 (2.2694/0.9480) mem 16099MB [2025-01-18 07:12:03 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][250/312] eta 0:00:29 lr 0.001106 time 0.4523 (0.4756) model_time 0.4521 (0.4673) loss 2.3226 (3.0100) grad_norm 3.3706 (2.2718/0.9570) mem 16099MB [2025-01-18 07:12:08 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][260/312] eta 0:00:24 lr 0.001106 time 0.4609 (0.4755) model_time 0.4607 (0.4674) loss 2.6440 (3.0094) grad_norm 1.0657 (2.2473/0.9493) mem 16099MB [2025-01-18 07:12:13 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][270/312] eta 0:00:19 lr 0.001105 time 0.4524 (0.4751) model_time 0.4522 (0.4673) loss 2.2192 (3.0098) grad_norm 1.7169 (2.2331/0.9470) mem 16099MB [2025-01-18 07:12:17 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][280/312] eta 0:00:15 lr 0.001105 time 0.4695 (0.4751) model_time 0.4693 (0.4676) loss 2.9929 (3.0202) grad_norm 1.2736 (2.2277/0.9405) mem 16099MB [2025-01-18 07:12:22 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][290/312] eta 0:00:10 lr 0.001104 time 0.4519 (0.4748) model_time 0.4517 (0.4676) loss 3.8149 (3.0191) grad_norm 2.6932 (2.2354/0.9362) mem 16099MB [2025-01-18 07:12:26 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][300/312] eta 0:00:05 lr 0.001103 time 0.4367 (0.4740) model_time 0.4366 (0.4670) loss 3.4942 (3.0156) grad_norm 3.5018 (2.2523/0.9385) mem 16099MB [2025-01-18 07:12:31 internimage_t_1k_224] (main.py 510): INFO Train: [195/300][310/312] eta 0:00:00 lr 0.001103 time 0.4392 (0.4731) model_time 0.4391 (0.4663) loss 3.2164 (3.0139) grad_norm 2.0063 (2.2674/0.9408) mem 16099MB [2025-01-18 07:12:31 internimage_t_1k_224] (main.py 519): INFO EPOCH 195 training takes 0:02:27 [2025-01-18 07:12:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_195.pth saving...... [2025-01-18 07:12:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_195.pth saved !!! [2025-01-18 07:12:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.486 (7.486) Loss 0.7808 (0.7808) Acc@1 84.570 (84.570) Acc@5 96.899 (96.899) Mem 16099MB [2025-01-18 07:12:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.990) Loss 1.0613 (0.9028) Acc@1 76.880 (81.254) Acc@5 94.336 (95.630) Mem 16099MB [2025-01-18 07:12:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:195] * Acc@1 81.114 Acc@5 95.637 [2025-01-18 07:12:44 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.1% [2025-01-18 07:12:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 07:12:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 07:12:45 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.11% [2025-01-18 07:12:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.512 (7.512) Loss 0.7904 (0.7904) Acc@1 85.132 (85.132) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 07:12:56 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.999) Loss 1.0535 (0.9075) Acc@1 77.979 (82.267) Acc@5 94.727 (96.069) Mem 16099MB [2025-01-18 07:12:56 internimage_t_1k_224] (main.py 575): INFO [Epoch:195] * Acc@1 82.152 Acc@5 96.101 [2025-01-18 07:12:56 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.2% [2025-01-18 07:12:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:12:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:12:57 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.15% [2025-01-18 07:13:00 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][0/312] eta 0:12:33 lr 0.001103 time 2.4140 (2.4140) model_time 0.4616 (0.4616) loss 2.4642 (2.4642) grad_norm 2.8137 (2.8137/0.0000) mem 16099MB [2025-01-18 07:13:05 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][10/312] eta 0:03:21 lr 0.001102 time 0.5453 (0.6663) model_time 0.5451 (0.4885) loss 3.3432 (3.0352) grad_norm 2.5172 (2.6554/1.2389) mem 16099MB [2025-01-18 07:13:09 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][20/312] eta 0:02:49 lr 0.001101 time 0.5755 (0.5817) model_time 0.5752 (0.4884) loss 2.3703 (2.8428) grad_norm 1.0675 (2.9609/1.3622) mem 16099MB [2025-01-18 07:13:14 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][30/312] eta 0:02:33 lr 0.001101 time 0.4472 (0.5433) model_time 0.4470 (0.4799) loss 3.2338 (2.9430) grad_norm 3.2573 (2.8346/1.1861) mem 16099MB [2025-01-18 07:13:19 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][40/312] eta 0:02:22 lr 0.001100 time 0.4605 (0.5223) model_time 0.4603 (0.4743) loss 2.4760 (2.8908) grad_norm 2.0692 (2.7251/1.1675) mem 16099MB [2025-01-18 07:13:23 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][50/312] eta 0:02:13 lr 0.001100 time 0.4510 (0.5099) model_time 0.4505 (0.4712) loss 2.7196 (2.8972) grad_norm 1.9650 (2.5505/1.1672) mem 16099MB [2025-01-18 07:13:28 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][60/312] eta 0:02:06 lr 0.001099 time 0.4364 (0.5036) model_time 0.4361 (0.4712) loss 2.0766 (2.9306) grad_norm 1.1622 (2.3915/1.1495) mem 16099MB [2025-01-18 07:13:33 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][70/312] eta 0:02:00 lr 0.001099 time 0.4489 (0.4968) model_time 0.4487 (0.4689) loss 3.1413 (2.9631) grad_norm 2.3879 (2.3677/1.0860) mem 16099MB [2025-01-18 07:13:37 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][80/312] eta 0:01:54 lr 0.001098 time 0.4607 (0.4935) model_time 0.4606 (0.4690) loss 3.2257 (2.9954) grad_norm 3.9683 (2.3790/1.0906) mem 16099MB [2025-01-18 07:13:42 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][90/312] eta 0:01:48 lr 0.001097 time 0.4422 (0.4898) model_time 0.4419 (0.4680) loss 3.2178 (3.0086) grad_norm 2.3351 (2.3945/1.0815) mem 16099MB [2025-01-18 07:13:47 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][100/312] eta 0:01:43 lr 0.001097 time 0.4527 (0.4883) model_time 0.4525 (0.4686) loss 2.7587 (3.0198) grad_norm 2.0298 (2.3857/1.0391) mem 16099MB [2025-01-18 07:13:51 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][110/312] eta 0:01:38 lr 0.001096 time 0.4477 (0.4855) model_time 0.4475 (0.4675) loss 3.0890 (3.0387) grad_norm 1.0831 (2.3124/1.0314) mem 16099MB [2025-01-18 07:13:56 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][120/312] eta 0:01:33 lr 0.001096 time 0.5385 (0.4877) model_time 0.5381 (0.4712) loss 3.5860 (3.0450) grad_norm 1.7287 (2.2886/1.0066) mem 16099MB [2025-01-18 07:14:01 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][130/312] eta 0:01:28 lr 0.001095 time 0.4564 (0.4858) model_time 0.4562 (0.4706) loss 3.0422 (3.0331) grad_norm 2.3859 (2.2561/0.9848) mem 16099MB [2025-01-18 07:14:06 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][140/312] eta 0:01:23 lr 0.001094 time 0.4546 (0.4857) model_time 0.4541 (0.4715) loss 3.7128 (3.0223) grad_norm 1.6446 (2.2535/1.0072) mem 16099MB [2025-01-18 07:14:10 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][150/312] eta 0:01:18 lr 0.001094 time 0.4506 (0.4847) model_time 0.4504 (0.4714) loss 3.2314 (3.0242) grad_norm 1.9657 (2.2780/1.0244) mem 16099MB [2025-01-18 07:14:15 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][160/312] eta 0:01:13 lr 0.001093 time 0.4478 (0.4840) model_time 0.4473 (0.4715) loss 3.4752 (3.0356) grad_norm 1.6067 (2.2761/1.0094) mem 16099MB [2025-01-18 07:14:20 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][170/312] eta 0:01:08 lr 0.001093 time 0.4605 (0.4824) model_time 0.4603 (0.4706) loss 2.8330 (3.0358) grad_norm 2.3619 (2.2380/0.9951) mem 16099MB [2025-01-18 07:14:24 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][180/312] eta 0:01:03 lr 0.001092 time 0.4554 (0.4817) model_time 0.4552 (0.4706) loss 2.5239 (3.0327) grad_norm 4.2644 (2.2579/0.9967) mem 16099MB [2025-01-18 07:14:29 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][190/312] eta 0:00:58 lr 0.001092 time 0.4730 (0.4804) model_time 0.4728 (0.4698) loss 3.2701 (3.0334) grad_norm 1.2581 (2.2622/0.9913) mem 16099MB [2025-01-18 07:14:34 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][200/312] eta 0:00:53 lr 0.001091 time 0.4571 (0.4791) model_time 0.4569 (0.4690) loss 2.4415 (3.0313) grad_norm 1.2795 (2.2392/0.9790) mem 16099MB [2025-01-18 07:14:38 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][210/312] eta 0:00:48 lr 0.001090 time 0.4622 (0.4782) model_time 0.4620 (0.4686) loss 2.8854 (3.0268) grad_norm 1.5346 (2.2264/0.9623) mem 16099MB [2025-01-18 07:14:43 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][220/312] eta 0:00:43 lr 0.001090 time 0.4617 (0.4777) model_time 0.4615 (0.4685) loss 3.1463 (3.0256) grad_norm 1.6862 (2.2586/1.0035) mem 16099MB [2025-01-18 07:14:47 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][230/312] eta 0:00:39 lr 0.001089 time 0.4676 (0.4768) model_time 0.4674 (0.4680) loss 3.2502 (3.0305) grad_norm 1.1577 (2.2380/0.9932) mem 16099MB [2025-01-18 07:14:52 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][240/312] eta 0:00:34 lr 0.001089 time 0.4483 (0.4763) model_time 0.4479 (0.4678) loss 3.3158 (3.0216) grad_norm 1.6861 (2.2127/0.9845) mem 16099MB [2025-01-18 07:14:57 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][250/312] eta 0:00:29 lr 0.001088 time 0.4649 (0.4767) model_time 0.4647 (0.4686) loss 3.2810 (3.0126) grad_norm 2.0163 (2.2242/0.9920) mem 16099MB [2025-01-18 07:15:02 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][260/312] eta 0:00:24 lr 0.001087 time 0.4686 (0.4767) model_time 0.4684 (0.4689) loss 2.7381 (3.0119) grad_norm 2.6485 (2.2549/1.0138) mem 16099MB [2025-01-18 07:15:06 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][270/312] eta 0:00:19 lr 0.001087 time 0.4567 (0.4761) model_time 0.4565 (0.4685) loss 3.1175 (3.0093) grad_norm 1.9526 (2.2657/1.0126) mem 16099MB [2025-01-18 07:15:11 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][280/312] eta 0:00:15 lr 0.001086 time 0.4487 (0.4754) model_time 0.4483 (0.4680) loss 2.7076 (3.0114) grad_norm 2.2566 (2.2644/0.9985) mem 16099MB [2025-01-18 07:15:16 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][290/312] eta 0:00:10 lr 0.001086 time 0.4539 (0.4752) model_time 0.4537 (0.4681) loss 2.8011 (3.0126) grad_norm 1.4307 (2.2554/0.9875) mem 16099MB [2025-01-18 07:15:20 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][300/312] eta 0:00:05 lr 0.001085 time 0.4387 (0.4754) model_time 0.4387 (0.4685) loss 3.5266 (3.0110) grad_norm 1.9754 (2.2428/0.9801) mem 16099MB [2025-01-18 07:15:25 internimage_t_1k_224] (main.py 510): INFO Train: [196/300][310/312] eta 0:00:00 lr 0.001084 time 0.5449 (0.4747) model_time 0.5448 (0.4680) loss 2.0805 (3.0084) grad_norm 2.4665 (2.2255/0.9649) mem 16099MB [2025-01-18 07:15:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 196 training takes 0:02:28 [2025-01-18 07:15:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_196.pth saving...... [2025-01-18 07:15:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_196.pth saved !!! [2025-01-18 07:15:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.628 (7.628) Loss 0.7466 (0.7466) Acc@1 83.960 (83.960) Acc@5 96.924 (96.924) Mem 16099MB [2025-01-18 07:15:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.011) Loss 1.0274 (0.8735) Acc@1 77.271 (81.143) Acc@5 93.970 (95.625) Mem 16099MB [2025-01-18 07:15:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:196] * Acc@1 81.066 Acc@5 95.659 [2025-01-18 07:15:38 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.1% [2025-01-18 07:15:38 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.11% [2025-01-18 07:15:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.374 (8.374) Loss 0.7897 (0.7897) Acc@1 85.181 (85.181) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 07:15:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.122) Loss 1.0523 (0.9064) Acc@1 78.003 (82.278) Acc@5 94.727 (96.087) Mem 16099MB [2025-01-18 07:15:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:196] * Acc@1 82.164 Acc@5 96.117 [2025-01-18 07:15:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.2% [2025-01-18 07:15:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:15:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:15:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.16% [2025-01-18 07:15:54 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][0/312] eta 0:11:42 lr 0.001084 time 2.2507 (2.2507) model_time 0.4878 (0.4878) loss 3.1994 (3.1994) grad_norm 1.2323 (1.2323/0.0000) mem 16099MB [2025-01-18 07:15:58 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][10/312] eta 0:03:10 lr 0.001084 time 0.4574 (0.6292) model_time 0.4573 (0.4687) loss 3.4088 (2.8597) grad_norm 1.3117 (1.7351/0.5866) mem 16099MB [2025-01-18 07:16:03 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][20/312] eta 0:02:42 lr 0.001083 time 0.4585 (0.5552) model_time 0.4584 (0.4709) loss 2.3578 (2.9628) grad_norm 1.8133 (1.8247/0.5956) mem 16099MB [2025-01-18 07:16:08 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][30/312] eta 0:02:28 lr 0.001083 time 0.4514 (0.5267) model_time 0.4512 (0.4696) loss 2.1213 (2.8986) grad_norm 1.3601 (1.7102/0.5572) mem 16099MB [2025-01-18 07:16:12 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][40/312] eta 0:02:18 lr 0.001082 time 0.4529 (0.5094) model_time 0.4527 (0.4661) loss 1.8628 (2.8642) grad_norm 2.5765 (1.8534/0.6124) mem 16099MB [2025-01-18 07:16:17 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][50/312] eta 0:02:11 lr 0.001081 time 0.4410 (0.5023) model_time 0.4405 (0.4674) loss 2.7588 (2.8788) grad_norm 2.3550 (1.7481/0.6133) mem 16099MB [2025-01-18 07:16:22 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][60/312] eta 0:02:05 lr 0.001081 time 0.4566 (0.4964) model_time 0.4564 (0.4672) loss 3.0997 (2.8950) grad_norm 2.2738 (1.8276/0.8474) mem 16099MB [2025-01-18 07:16:26 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][70/312] eta 0:01:59 lr 0.001080 time 0.4459 (0.4921) model_time 0.4458 (0.4669) loss 3.0427 (2.9214) grad_norm 2.3307 (1.8873/0.8318) mem 16099MB [2025-01-18 07:16:31 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][80/312] eta 0:01:54 lr 0.001080 time 0.7402 (0.4923) model_time 0.7397 (0.4701) loss 2.2772 (2.9470) grad_norm 1.8346 (1.8715/0.8081) mem 16099MB [2025-01-18 07:16:36 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][90/312] eta 0:01:48 lr 0.001079 time 0.4476 (0.4898) model_time 0.4474 (0.4701) loss 3.5135 (2.9372) grad_norm 5.3798 (1.9629/0.9233) mem 16099MB [2025-01-18 07:16:41 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][100/312] eta 0:01:43 lr 0.001078 time 0.4440 (0.4865) model_time 0.4435 (0.4687) loss 3.1380 (2.9424) grad_norm 2.7730 (2.0856/1.0510) mem 16099MB [2025-01-18 07:16:45 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][110/312] eta 0:01:38 lr 0.001078 time 0.5462 (0.4861) model_time 0.5461 (0.4698) loss 3.2200 (2.9386) grad_norm 2.0862 (2.1341/1.0435) mem 16099MB [2025-01-18 07:16:50 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][120/312] eta 0:01:33 lr 0.001077 time 0.4586 (0.4846) model_time 0.4581 (0.4696) loss 2.0527 (2.9395) grad_norm 1.2967 (2.0864/1.0189) mem 16099MB [2025-01-18 07:16:55 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][130/312] eta 0:01:27 lr 0.001077 time 0.4464 (0.4831) model_time 0.4463 (0.4692) loss 2.1973 (2.9383) grad_norm 2.1478 (2.0636/1.0075) mem 16099MB [2025-01-18 07:16:59 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][140/312] eta 0:01:22 lr 0.001076 time 0.4584 (0.4819) model_time 0.4582 (0.4690) loss 3.2241 (2.9335) grad_norm 1.5039 (2.0353/0.9905) mem 16099MB [2025-01-18 07:17:04 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][150/312] eta 0:01:17 lr 0.001076 time 0.4437 (0.4813) model_time 0.4435 (0.4691) loss 3.7856 (2.9435) grad_norm 2.1271 (2.0738/1.0274) mem 16099MB [2025-01-18 07:17:09 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][160/312] eta 0:01:12 lr 0.001075 time 0.4506 (0.4800) model_time 0.4502 (0.4686) loss 2.8147 (2.9458) grad_norm 2.2211 (2.1205/1.0535) mem 16099MB [2025-01-18 07:17:13 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][170/312] eta 0:01:07 lr 0.001074 time 0.4512 (0.4788) model_time 0.4507 (0.4680) loss 3.3377 (2.9468) grad_norm 2.4202 (2.1667/1.0771) mem 16099MB [2025-01-18 07:17:18 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][180/312] eta 0:01:03 lr 0.001074 time 0.4601 (0.4774) model_time 0.4600 (0.4672) loss 1.9192 (2.9455) grad_norm 2.0443 (2.1790/1.0667) mem 16099MB [2025-01-18 07:17:23 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][190/312] eta 0:00:58 lr 0.001073 time 0.4391 (0.4768) model_time 0.4390 (0.4672) loss 3.4462 (2.9538) grad_norm 3.5646 (2.1999/1.0695) mem 16099MB [2025-01-18 07:17:27 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][200/312] eta 0:00:53 lr 0.001073 time 0.4442 (0.4759) model_time 0.4440 (0.4667) loss 3.4172 (2.9685) grad_norm 1.0599 (2.1895/1.0534) mem 16099MB [2025-01-18 07:17:32 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][210/312] eta 0:00:48 lr 0.001072 time 0.4538 (0.4756) model_time 0.4536 (0.4668) loss 3.5559 (2.9643) grad_norm 1.2871 (2.1728/1.0400) mem 16099MB [2025-01-18 07:17:36 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][220/312] eta 0:00:43 lr 0.001071 time 0.4496 (0.4752) model_time 0.4494 (0.4668) loss 3.3154 (2.9734) grad_norm 3.3614 (2.1844/1.0544) mem 16099MB [2025-01-18 07:17:41 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][230/312] eta 0:00:38 lr 0.001071 time 0.4468 (0.4745) model_time 0.4463 (0.4665) loss 3.3436 (2.9783) grad_norm 2.8922 (2.1784/1.0386) mem 16099MB [2025-01-18 07:17:46 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][240/312] eta 0:00:34 lr 0.001070 time 0.4524 (0.4740) model_time 0.4522 (0.4662) loss 1.8887 (2.9798) grad_norm 1.5022 (2.1659/1.0244) mem 16099MB [2025-01-18 07:17:50 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][250/312] eta 0:00:29 lr 0.001070 time 0.4484 (0.4738) model_time 0.4479 (0.4663) loss 2.5605 (2.9830) grad_norm 1.5649 (2.1727/1.0228) mem 16099MB [2025-01-18 07:17:55 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][260/312] eta 0:00:24 lr 0.001069 time 0.4520 (0.4740) model_time 0.4518 (0.4668) loss 3.2921 (2.9819) grad_norm 1.7635 (2.1866/1.0199) mem 16099MB [2025-01-18 07:18:00 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][270/312] eta 0:00:19 lr 0.001069 time 0.4521 (0.4735) model_time 0.4519 (0.4666) loss 3.2262 (2.9901) grad_norm 1.6123 (2.1701/1.0108) mem 16099MB [2025-01-18 07:18:04 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][280/312] eta 0:00:15 lr 0.001068 time 0.4554 (0.4735) model_time 0.4553 (0.4668) loss 3.1797 (2.9966) grad_norm 1.3705 (2.1460/1.0114) mem 16099MB [2025-01-18 07:18:09 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][290/312] eta 0:00:10 lr 0.001067 time 0.4490 (0.4737) model_time 0.4486 (0.4672) loss 1.8613 (2.9986) grad_norm 2.7543 (2.1316/1.0043) mem 16099MB [2025-01-18 07:18:14 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][300/312] eta 0:00:05 lr 0.001067 time 0.4433 (0.4733) model_time 0.4432 (0.4670) loss 2.0901 (2.9974) grad_norm 1.3676 (2.1385/0.9972) mem 16099MB [2025-01-18 07:18:18 internimage_t_1k_224] (main.py 510): INFO Train: [197/300][310/312] eta 0:00:00 lr 0.001066 time 0.4400 (0.4724) model_time 0.4399 (0.4663) loss 2.2156 (2.9856) grad_norm 2.2945 (2.1746/1.0274) mem 16099MB [2025-01-18 07:18:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 197 training takes 0:02:27 [2025-01-18 07:18:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_197.pth saving...... [2025-01-18 07:18:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_197.pth saved !!! [2025-01-18 07:18:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.282 (7.282) Loss 0.7396 (0.7396) Acc@1 83.960 (83.960) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 07:18:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.021) Loss 1.0286 (0.8759) Acc@1 77.051 (81.206) Acc@5 94.434 (95.668) Mem 16099MB [2025-01-18 07:18:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:197] * Acc@1 81.124 Acc@5 95.717 [2025-01-18 07:18:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.1% [2025-01-18 07:18:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 07:18:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 07:18:32 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.12% [2025-01-18 07:18:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.536 (7.536) Loss 0.7888 (0.7888) Acc@1 85.156 (85.156) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 07:18:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.022) Loss 1.0511 (0.9055) Acc@1 78.101 (82.278) Acc@5 94.800 (96.094) Mem 16099MB [2025-01-18 07:18:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:197] * Acc@1 82.166 Acc@5 96.123 [2025-01-18 07:18:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.2% [2025-01-18 07:18:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:18:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:18:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.17% [2025-01-18 07:18:48 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][0/312] eta 0:12:33 lr 0.001066 time 2.4138 (2.4138) model_time 0.6102 (0.6102) loss 3.7420 (3.7420) grad_norm 7.9406 (7.9406/0.0000) mem 16099MB [2025-01-18 07:18:52 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][10/312] eta 0:03:15 lr 0.001066 time 0.4632 (0.6479) model_time 0.4631 (0.4837) loss 3.4626 (3.2598) grad_norm 3.4238 (3.2726/1.6413) mem 16099MB [2025-01-18 07:18:57 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][20/312] eta 0:02:44 lr 0.001065 time 0.5561 (0.5628) model_time 0.5559 (0.4766) loss 3.1455 (3.0183) grad_norm 1.5295 (2.5319/1.4781) mem 16099MB [2025-01-18 07:19:02 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][30/312] eta 0:02:30 lr 0.001064 time 0.5326 (0.5344) model_time 0.5324 (0.4759) loss 2.5872 (3.0763) grad_norm 2.6784 (2.2866/1.2955) mem 16099MB [2025-01-18 07:19:06 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][40/312] eta 0:02:20 lr 0.001064 time 0.4475 (0.5183) model_time 0.4473 (0.4739) loss 2.6231 (3.0479) grad_norm 2.5179 (2.2175/1.1655) mem 16099MB [2025-01-18 07:19:11 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][50/312] eta 0:02:13 lr 0.001063 time 0.4778 (0.5084) model_time 0.4776 (0.4727) loss 1.9228 (3.0467) grad_norm 5.0071 (2.3867/1.2756) mem 16099MB [2025-01-18 07:19:16 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][60/312] eta 0:02:06 lr 0.001063 time 0.5472 (0.5018) model_time 0.5467 (0.4718) loss 3.3484 (2.9989) grad_norm 0.9886 (2.3091/1.2157) mem 16099MB [2025-01-18 07:19:20 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][70/312] eta 0:01:59 lr 0.001062 time 0.4446 (0.4950) model_time 0.4441 (0.4692) loss 2.2953 (2.9712) grad_norm 1.8722 (2.2393/1.1789) mem 16099MB [2025-01-18 07:19:25 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][80/312] eta 0:01:54 lr 0.001061 time 0.5003 (0.4917) model_time 0.4999 (0.4690) loss 2.2946 (2.9704) grad_norm 1.6667 (2.1811/1.1399) mem 16099MB [2025-01-18 07:19:30 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][90/312] eta 0:01:48 lr 0.001061 time 0.4599 (0.4889) model_time 0.4594 (0.4686) loss 3.4282 (2.9866) grad_norm 1.2563 (2.1738/1.0957) mem 16099MB [2025-01-18 07:19:34 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][100/312] eta 0:01:43 lr 0.001060 time 0.4651 (0.4868) model_time 0.4647 (0.4685) loss 2.6032 (2.9832) grad_norm 1.3342 (2.1242/1.0558) mem 16099MB [2025-01-18 07:19:39 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][110/312] eta 0:01:38 lr 0.001060 time 0.5352 (0.4853) model_time 0.5347 (0.4686) loss 3.6013 (2.9936) grad_norm 3.0811 (2.1279/1.0803) mem 16099MB [2025-01-18 07:19:44 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][120/312] eta 0:01:33 lr 0.001059 time 0.5372 (0.4855) model_time 0.5370 (0.4702) loss 3.1185 (3.0099) grad_norm 3.0718 (2.1767/1.0892) mem 16099MB [2025-01-18 07:19:48 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][130/312] eta 0:01:28 lr 0.001059 time 0.4533 (0.4840) model_time 0.4531 (0.4698) loss 3.4653 (3.0054) grad_norm 1.2501 (2.1553/1.0735) mem 16099MB [2025-01-18 07:19:53 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][140/312] eta 0:01:22 lr 0.001058 time 0.4681 (0.4821) model_time 0.4679 (0.4689) loss 3.4304 (3.0236) grad_norm 2.2431 (2.1615/1.0505) mem 16099MB [2025-01-18 07:19:58 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][150/312] eta 0:01:18 lr 0.001057 time 0.4827 (0.4816) model_time 0.4823 (0.4692) loss 2.8356 (3.0353) grad_norm 1.4848 (2.1304/1.0361) mem 16099MB [2025-01-18 07:20:02 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][160/312] eta 0:01:13 lr 0.001057 time 0.4590 (0.4805) model_time 0.4586 (0.4689) loss 3.5023 (3.0449) grad_norm 3.9165 (2.1781/1.0367) mem 16099MB [2025-01-18 07:20:07 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][170/312] eta 0:01:08 lr 0.001056 time 0.4533 (0.4792) model_time 0.4528 (0.4682) loss 2.0438 (3.0522) grad_norm 1.2412 (2.1706/1.0233) mem 16099MB [2025-01-18 07:20:12 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][180/312] eta 0:01:03 lr 0.001056 time 0.4461 (0.4780) model_time 0.4457 (0.4677) loss 3.6447 (3.0570) grad_norm 4.1243 (2.1992/1.0583) mem 16099MB [2025-01-18 07:20:16 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][190/312] eta 0:00:58 lr 0.001055 time 0.4617 (0.4774) model_time 0.4612 (0.4675) loss 3.0859 (3.0523) grad_norm 2.6515 (2.2646/1.1230) mem 16099MB [2025-01-18 07:20:21 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][200/312] eta 0:00:53 lr 0.001055 time 0.4547 (0.4771) model_time 0.4542 (0.4677) loss 2.0411 (3.0424) grad_norm 3.4420 (2.2846/1.1249) mem 16099MB [2025-01-18 07:20:26 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][210/312] eta 0:00:48 lr 0.001054 time 0.5013 (0.4775) model_time 0.5009 (0.4685) loss 3.2463 (3.0291) grad_norm 1.1335 (2.2595/1.1133) mem 16099MB [2025-01-18 07:20:30 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][220/312] eta 0:00:43 lr 0.001053 time 0.4591 (0.4768) model_time 0.4589 (0.4682) loss 2.9316 (3.0304) grad_norm 1.3896 (2.2945/1.1390) mem 16099MB [2025-01-18 07:20:35 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][230/312] eta 0:00:39 lr 0.001053 time 0.4578 (0.4763) model_time 0.4576 (0.4681) loss 2.0371 (3.0380) grad_norm 1.4766 (2.2906/1.1280) mem 16099MB [2025-01-18 07:20:40 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][240/312] eta 0:00:34 lr 0.001052 time 0.4327 (0.4758) model_time 0.4322 (0.4679) loss 3.1622 (3.0394) grad_norm 3.2096 (2.2941/1.1192) mem 16099MB [2025-01-18 07:20:44 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][250/312] eta 0:00:29 lr 0.001052 time 0.4476 (0.4753) model_time 0.4474 (0.4676) loss 3.6156 (3.0382) grad_norm 1.3223 (2.2595/1.1129) mem 16099MB [2025-01-18 07:20:49 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][260/312] eta 0:00:24 lr 0.001051 time 0.4513 (0.4753) model_time 0.4511 (0.4680) loss 2.5843 (3.0428) grad_norm 2.2343 (2.2404/1.1053) mem 16099MB [2025-01-18 07:20:54 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][270/312] eta 0:00:19 lr 0.001050 time 0.4451 (0.4752) model_time 0.4447 (0.4681) loss 3.4101 (3.0378) grad_norm 1.6678 (2.2259/1.0919) mem 16099MB [2025-01-18 07:20:59 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][280/312] eta 0:00:15 lr 0.001050 time 0.4515 (0.4749) model_time 0.4511 (0.4680) loss 2.9386 (3.0402) grad_norm 2.4042 (2.2341/1.1027) mem 16099MB [2025-01-18 07:21:03 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][290/312] eta 0:00:10 lr 0.001049 time 0.4429 (0.4749) model_time 0.4424 (0.4683) loss 3.0983 (3.0354) grad_norm 1.1284 (2.2175/1.0913) mem 16099MB [2025-01-18 07:21:08 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][300/312] eta 0:00:05 lr 0.001049 time 0.4411 (0.4743) model_time 0.4410 (0.4679) loss 1.9222 (3.0355) grad_norm 3.6588 (2.2098/1.0440) mem 16099MB [2025-01-18 07:21:12 internimage_t_1k_224] (main.py 510): INFO Train: [198/300][310/312] eta 0:00:00 lr 0.001048 time 0.4400 (0.4736) model_time 0.4398 (0.4674) loss 3.3751 (3.0342) grad_norm 3.7856 (2.2036/1.0409) mem 16099MB [2025-01-18 07:21:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 198 training takes 0:02:27 [2025-01-18 07:21:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_198.pth saving...... [2025-01-18 07:21:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_198.pth saved !!! [2025-01-18 07:21:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.716 (7.716) Loss 0.7763 (0.7763) Acc@1 83.716 (83.716) Acc@5 97.192 (97.192) Mem 16099MB [2025-01-18 07:21:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.033) Loss 1.0705 (0.8949) Acc@1 76.440 (81.161) Acc@5 94.336 (95.701) Mem 16099MB [2025-01-18 07:21:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:198] * Acc@1 81.098 Acc@5 95.709 [2025-01-18 07:21:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.1% [2025-01-18 07:21:25 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.12% [2025-01-18 07:21:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.213 (8.213) Loss 0.7880 (0.7880) Acc@1 85.156 (85.156) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 07:21:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.107) Loss 1.0499 (0.9044) Acc@1 78.174 (82.300) Acc@5 94.775 (96.098) Mem 16099MB [2025-01-18 07:21:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:198] * Acc@1 82.184 Acc@5 96.129 [2025-01-18 07:21:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.2% [2025-01-18 07:21:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:21:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:21:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.18% [2025-01-18 07:21:41 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][0/312] eta 0:12:27 lr 0.001048 time 2.3947 (2.3947) model_time 0.4697 (0.4697) loss 3.2472 (3.2472) grad_norm 4.7120 (4.7120/0.0000) mem 16099MB [2025-01-18 07:21:46 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][10/312] eta 0:03:19 lr 0.001047 time 0.4504 (0.6593) model_time 0.4499 (0.4839) loss 1.8904 (2.8000) grad_norm 2.2399 (2.4268/0.9071) mem 16099MB [2025-01-18 07:21:51 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][20/312] eta 0:02:47 lr 0.001047 time 0.4558 (0.5727) model_time 0.4554 (0.4807) loss 3.2592 (2.7779) grad_norm 1.3394 (2.2089/0.8153) mem 16099MB [2025-01-18 07:21:56 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][30/312] eta 0:02:31 lr 0.001046 time 0.4674 (0.5359) model_time 0.4670 (0.4735) loss 3.0492 (2.8475) grad_norm 2.0267 (2.2789/0.8377) mem 16099MB [2025-01-18 07:22:00 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][40/312] eta 0:02:21 lr 0.001046 time 0.4650 (0.5192) model_time 0.4648 (0.4719) loss 2.3389 (2.8702) grad_norm 1.3693 (2.1310/0.8468) mem 16099MB [2025-01-18 07:22:05 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][50/312] eta 0:02:12 lr 0.001045 time 0.4572 (0.5076) model_time 0.4570 (0.4695) loss 2.4241 (2.8873) grad_norm 2.2473 (2.1259/0.8041) mem 16099MB [2025-01-18 07:22:09 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][60/312] eta 0:02:05 lr 0.001045 time 0.4513 (0.4986) model_time 0.4508 (0.4666) loss 4.0210 (2.9214) grad_norm 1.9473 (2.1605/0.8484) mem 16099MB [2025-01-18 07:22:14 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][70/312] eta 0:01:59 lr 0.001044 time 0.4618 (0.4929) model_time 0.4616 (0.4654) loss 3.6752 (2.9271) grad_norm 2.2817 (2.1095/0.8437) mem 16099MB [2025-01-18 07:22:19 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][80/312] eta 0:01:54 lr 0.001043 time 0.4513 (0.4918) model_time 0.4511 (0.4676) loss 3.0534 (2.9415) grad_norm 1.7368 (2.0833/0.8311) mem 16099MB [2025-01-18 07:22:24 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][90/312] eta 0:01:48 lr 0.001043 time 0.4629 (0.4897) model_time 0.4624 (0.4681) loss 3.3031 (2.9735) grad_norm 2.1831 (2.0626/0.8060) mem 16099MB [2025-01-18 07:22:28 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][100/312] eta 0:01:43 lr 0.001042 time 0.4631 (0.4860) model_time 0.4629 (0.4665) loss 3.3129 (2.9826) grad_norm 1.5908 (2.0866/0.8238) mem 16099MB [2025-01-18 07:22:33 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][110/312] eta 0:01:37 lr 0.001042 time 0.5656 (0.4844) model_time 0.5652 (0.4666) loss 2.7146 (2.9851) grad_norm 1.4900 (2.1022/0.8284) mem 16099MB [2025-01-18 07:22:37 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][120/312] eta 0:01:32 lr 0.001041 time 0.5404 (0.4834) model_time 0.5402 (0.4670) loss 3.0977 (2.9710) grad_norm 4.5744 (2.1587/0.8835) mem 16099MB [2025-01-18 07:22:42 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][130/312] eta 0:01:27 lr 0.001040 time 0.4558 (0.4824) model_time 0.4553 (0.4673) loss 2.8688 (2.9625) grad_norm 1.3927 (2.2291/0.9922) mem 16099MB [2025-01-18 07:22:47 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][140/312] eta 0:01:22 lr 0.001040 time 0.4433 (0.4821) model_time 0.4428 (0.4680) loss 2.8850 (2.9616) grad_norm 3.1019 (2.2398/0.9879) mem 16099MB [2025-01-18 07:22:52 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][150/312] eta 0:01:17 lr 0.001039 time 0.4444 (0.4815) model_time 0.4443 (0.4683) loss 1.9599 (2.9581) grad_norm 2.9991 (2.2201/0.9781) mem 16099MB [2025-01-18 07:22:56 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][160/312] eta 0:01:13 lr 0.001039 time 0.4528 (0.4807) model_time 0.4523 (0.4683) loss 3.4727 (2.9686) grad_norm 2.6079 (2.1790/0.9684) mem 16099MB [2025-01-18 07:23:01 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][170/312] eta 0:01:08 lr 0.001038 time 0.4543 (0.4792) model_time 0.4538 (0.4675) loss 3.0094 (2.9598) grad_norm 1.3755 (2.1855/0.9676) mem 16099MB [2025-01-18 07:23:06 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][180/312] eta 0:01:03 lr 0.001038 time 0.4939 (0.4789) model_time 0.4934 (0.4679) loss 2.8378 (2.9616) grad_norm 2.1021 (2.1770/0.9609) mem 16099MB [2025-01-18 07:23:10 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][190/312] eta 0:00:58 lr 0.001037 time 0.4526 (0.4786) model_time 0.4524 (0.4681) loss 2.8531 (2.9501) grad_norm 6.1204 (2.2310/1.0323) mem 16099MB [2025-01-18 07:23:15 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][200/312] eta 0:00:53 lr 0.001036 time 0.4833 (0.4780) model_time 0.4831 (0.4679) loss 2.9268 (2.9562) grad_norm 2.3741 (2.2676/1.0789) mem 16099MB [2025-01-18 07:23:20 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][210/312] eta 0:00:48 lr 0.001036 time 0.4567 (0.4768) model_time 0.4565 (0.4673) loss 2.2861 (2.9605) grad_norm 2.5094 (2.3156/1.1121) mem 16099MB [2025-01-18 07:23:24 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][220/312] eta 0:00:43 lr 0.001035 time 0.4434 (0.4767) model_time 0.4429 (0.4676) loss 3.6293 (2.9614) grad_norm 1.0774 (2.3356/1.1211) mem 16099MB [2025-01-18 07:23:29 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][230/312] eta 0:00:39 lr 0.001035 time 0.4398 (0.4764) model_time 0.4396 (0.4676) loss 3.2534 (2.9657) grad_norm 2.7638 (2.3251/1.1034) mem 16099MB [2025-01-18 07:23:34 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][240/312] eta 0:00:34 lr 0.001034 time 0.4546 (0.4760) model_time 0.4544 (0.4676) loss 3.5616 (2.9669) grad_norm 3.0872 (2.3269/1.0887) mem 16099MB [2025-01-18 07:23:38 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][250/312] eta 0:00:29 lr 0.001034 time 0.4535 (0.4762) model_time 0.4533 (0.4681) loss 3.3493 (2.9734) grad_norm 1.4815 (2.3026/1.0788) mem 16099MB [2025-01-18 07:23:43 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][260/312] eta 0:00:24 lr 0.001033 time 0.4555 (0.4757) model_time 0.4553 (0.4679) loss 3.3545 (2.9728) grad_norm 1.2980 (2.2924/1.0670) mem 16099MB [2025-01-18 07:23:48 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][270/312] eta 0:00:19 lr 0.001032 time 0.4621 (0.4754) model_time 0.4619 (0.4678) loss 3.8136 (2.9751) grad_norm 2.4129 (2.2802/1.0569) mem 16099MB [2025-01-18 07:23:52 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][280/312] eta 0:00:15 lr 0.001032 time 0.4365 (0.4746) model_time 0.4360 (0.4673) loss 3.5220 (2.9846) grad_norm 1.2887 (2.2614/1.0474) mem 16099MB [2025-01-18 07:23:57 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][290/312] eta 0:00:10 lr 0.001031 time 0.4553 (0.4742) model_time 0.4548 (0.4672) loss 2.9647 (2.9728) grad_norm 1.0430 (2.2357/1.0415) mem 16099MB [2025-01-18 07:24:02 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][300/312] eta 0:00:05 lr 0.001031 time 0.4412 (0.4745) model_time 0.4412 (0.4676) loss 2.9272 (2.9754) grad_norm 2.3884 (2.2011/1.0284) mem 16099MB [2025-01-18 07:24:06 internimage_t_1k_224] (main.py 510): INFO Train: [199/300][310/312] eta 0:00:00 lr 0.001030 time 0.5429 (0.4737) model_time 0.5428 (0.4671) loss 3.0533 (2.9776) grad_norm 1.0126 (2.1751/1.0341) mem 16099MB [2025-01-18 07:24:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 199 training takes 0:02:27 [2025-01-18 07:24:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_199.pth saving...... [2025-01-18 07:24:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_199.pth saved !!! [2025-01-18 07:24:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.301 (7.301) Loss 0.7815 (0.7815) Acc@1 84.009 (84.009) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 07:24:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.984) Loss 1.0527 (0.8996) Acc@1 76.538 (81.024) Acc@5 94.507 (95.566) Mem 16099MB [2025-01-18 07:24:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:199] * Acc@1 80.860 Acc@5 95.583 [2025-01-18 07:24:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 80.9% [2025-01-18 07:24:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.12% [2025-01-18 07:24:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.259 (8.259) Loss 0.7870 (0.7870) Acc@1 85.083 (85.083) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 07:24:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.110) Loss 1.0483 (0.9031) Acc@1 78.174 (82.300) Acc@5 94.824 (96.138) Mem 16099MB [2025-01-18 07:24:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:199] * Acc@1 82.186 Acc@5 96.165 [2025-01-18 07:24:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.2% [2025-01-18 07:24:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:24:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:24:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.19% [2025-01-18 07:24:35 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][0/312] eta 0:12:15 lr 0.001030 time 2.3589 (2.3589) model_time 0.5022 (0.5022) loss 3.7096 (3.7096) grad_norm 1.0442 (1.0442/0.0000) mem 16099MB [2025-01-18 07:24:40 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][10/312] eta 0:03:13 lr 0.001029 time 0.4439 (0.6401) model_time 0.4438 (0.4709) loss 1.8091 (2.8536) grad_norm 2.1008 (1.9135/0.8738) mem 16099MB [2025-01-18 07:24:44 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][20/312] eta 0:02:44 lr 0.001029 time 0.6010 (0.5650) model_time 0.6008 (0.4763) loss 3.1077 (2.8826) grad_norm 1.2721 (1.9184/1.0303) mem 16099MB [2025-01-18 07:24:49 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][30/312] eta 0:02:31 lr 0.001028 time 0.4632 (0.5360) model_time 0.4631 (0.4758) loss 3.4974 (2.8718) grad_norm 3.8949 (1.8914/0.9768) mem 16099MB [2025-01-18 07:24:54 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][40/312] eta 0:02:21 lr 0.001028 time 0.4662 (0.5185) model_time 0.4660 (0.4728) loss 3.3203 (2.9139) grad_norm 2.6277 (1.9609/0.9074) mem 16099MB [2025-01-18 07:24:59 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][50/312] eta 0:02:13 lr 0.001027 time 0.4559 (0.5102) model_time 0.4555 (0.4734) loss 3.4926 (2.9687) grad_norm 2.6352 (1.9778/0.8601) mem 16099MB [2025-01-18 07:25:03 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][60/312] eta 0:02:06 lr 0.001027 time 0.4608 (0.5022) model_time 0.4606 (0.4714) loss 2.1976 (2.9842) grad_norm 2.6482 (1.9730/0.8638) mem 16099MB [2025-01-18 07:25:08 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][70/312] eta 0:01:59 lr 0.001026 time 0.4499 (0.4957) model_time 0.4497 (0.4692) loss 2.8699 (2.9884) grad_norm 1.2921 (1.9989/0.9111) mem 16099MB [2025-01-18 07:25:13 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][80/312] eta 0:01:54 lr 0.001025 time 0.4597 (0.4941) model_time 0.4596 (0.4708) loss 3.3881 (2.9755) grad_norm 1.6563 (2.0031/0.8911) mem 16099MB [2025-01-18 07:25:17 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][90/312] eta 0:01:48 lr 0.001025 time 0.4596 (0.4899) model_time 0.4591 (0.4691) loss 2.0809 (2.9614) grad_norm 3.0190 (2.0471/0.8885) mem 16099MB [2025-01-18 07:25:22 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][100/312] eta 0:01:43 lr 0.001024 time 0.4508 (0.4868) model_time 0.4503 (0.4680) loss 3.1650 (2.9711) grad_norm 3.7327 (2.1483/0.9340) mem 16099MB [2025-01-18 07:25:26 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][110/312] eta 0:01:38 lr 0.001024 time 0.4452 (0.4852) model_time 0.4447 (0.4680) loss 2.7660 (2.9850) grad_norm 1.7514 (2.1195/0.9130) mem 16099MB [2025-01-18 07:25:31 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][120/312] eta 0:01:32 lr 0.001023 time 0.4763 (0.4834) model_time 0.4758 (0.4677) loss 2.9727 (2.9489) grad_norm 1.3932 (2.1280/0.9020) mem 16099MB [2025-01-18 07:25:36 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][130/312] eta 0:01:27 lr 0.001023 time 0.4516 (0.4825) model_time 0.4512 (0.4679) loss 3.0811 (2.9595) grad_norm 2.4597 (2.1126/0.8856) mem 16099MB [2025-01-18 07:25:41 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][140/312] eta 0:01:23 lr 0.001022 time 0.4570 (0.4826) model_time 0.4565 (0.4690) loss 3.2583 (2.9784) grad_norm 2.2924 (2.0884/0.8705) mem 16099MB [2025-01-18 07:25:45 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][150/312] eta 0:01:18 lr 0.001021 time 0.4571 (0.4821) model_time 0.4566 (0.4693) loss 2.4513 (2.9825) grad_norm 1.7608 (2.0828/0.8719) mem 16099MB [2025-01-18 07:25:50 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][160/312] eta 0:01:13 lr 0.001021 time 0.4591 (0.4809) model_time 0.4586 (0.4690) loss 3.0717 (2.9715) grad_norm 1.8270 (2.0887/0.8772) mem 16099MB [2025-01-18 07:25:55 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][170/312] eta 0:01:08 lr 0.001020 time 0.4659 (0.4796) model_time 0.4658 (0.4683) loss 2.2168 (2.9703) grad_norm 1.4861 (2.0819/0.8622) mem 16099MB [2025-01-18 07:25:59 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][180/312] eta 0:01:03 lr 0.001020 time 0.4367 (0.4786) model_time 0.4363 (0.4679) loss 2.0156 (2.9748) grad_norm 1.6968 (2.0789/0.8590) mem 16099MB [2025-01-18 07:26:04 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][190/312] eta 0:00:58 lr 0.001019 time 0.4501 (0.4779) model_time 0.4499 (0.4677) loss 2.6107 (2.9673) grad_norm 3.6348 (2.1194/0.8826) mem 16099MB [2025-01-18 07:26:08 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][200/312] eta 0:00:53 lr 0.001019 time 0.4543 (0.4771) model_time 0.4538 (0.4675) loss 3.6983 (2.9646) grad_norm 3.7796 (2.1547/0.9027) mem 16099MB [2025-01-18 07:26:13 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][210/312] eta 0:00:48 lr 0.001018 time 0.4491 (0.4764) model_time 0.4489 (0.4672) loss 2.9997 (2.9765) grad_norm 3.7344 (2.1859/0.9105) mem 16099MB [2025-01-18 07:26:18 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][220/312] eta 0:00:43 lr 0.001017 time 0.4594 (0.4754) model_time 0.4592 (0.4666) loss 1.9017 (2.9725) grad_norm 1.0044 (2.1700/0.9059) mem 16099MB [2025-01-18 07:26:22 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][230/312] eta 0:00:38 lr 0.001017 time 0.4464 (0.4745) model_time 0.4459 (0.4660) loss 3.3370 (2.9676) grad_norm 2.9620 (2.1664/0.8955) mem 16099MB [2025-01-18 07:26:27 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][240/312] eta 0:00:34 lr 0.001016 time 0.4495 (0.4737) model_time 0.4493 (0.4656) loss 3.3454 (2.9730) grad_norm 1.4366 (2.1718/0.8945) mem 16099MB [2025-01-18 07:26:32 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][250/312] eta 0:00:29 lr 0.001016 time 0.4745 (0.4745) model_time 0.4740 (0.4667) loss 3.1038 (2.9642) grad_norm 2.2028 (2.1711/0.8933) mem 16099MB [2025-01-18 07:26:37 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][260/312] eta 0:00:24 lr 0.001015 time 0.4520 (0.4752) model_time 0.4518 (0.4677) loss 3.6045 (2.9716) grad_norm 4.7504 (2.2300/0.9582) mem 16099MB [2025-01-18 07:26:41 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][270/312] eta 0:00:19 lr 0.001015 time 0.4657 (0.4751) model_time 0.4652 (0.4678) loss 3.3284 (2.9812) grad_norm 0.9177 (2.2293/0.9624) mem 16099MB [2025-01-18 07:26:46 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][280/312] eta 0:00:15 lr 0.001014 time 0.4490 (0.4746) model_time 0.4488 (0.4676) loss 3.3900 (2.9782) grad_norm 3.4032 (2.2664/1.0120) mem 16099MB [2025-01-18 07:26:51 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][290/312] eta 0:00:10 lr 0.001013 time 0.4590 (0.4754) model_time 0.4588 (0.4686) loss 3.4764 (2.9860) grad_norm 1.4364 (2.2607/1.0083) mem 16099MB [2025-01-18 07:26:56 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][300/312] eta 0:00:05 lr 0.001013 time 0.5520 (0.4762) model_time 0.5519 (0.4697) loss 3.1645 (2.9887) grad_norm 3.0652 (2.2600/1.0027) mem 16099MB [2025-01-18 07:27:00 internimage_t_1k_224] (main.py 510): INFO Train: [200/300][310/312] eta 0:00:00 lr 0.001012 time 0.4440 (0.4755) model_time 0.4439 (0.4691) loss 3.7680 (2.9897) grad_norm 1.0346 (2.2499/0.9990) mem 16099MB [2025-01-18 07:27:01 internimage_t_1k_224] (main.py 519): INFO EPOCH 200 training takes 0:02:28 [2025-01-18 07:27:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_200.pth saving...... [2025-01-18 07:27:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_200.pth saved !!! [2025-01-18 07:27:09 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.044 (7.044) Loss 0.7554 (0.7554) Acc@1 84.033 (84.033) Acc@5 97.314 (97.314) Mem 16099MB [2025-01-18 07:27:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.994) Loss 1.0601 (0.8817) Acc@1 76.221 (81.470) Acc@5 94.336 (95.694) Mem 16099MB [2025-01-18 07:27:13 internimage_t_1k_224] (main.py 575): INFO [Epoch:200] * Acc@1 81.352 Acc@5 95.727 [2025-01-18 07:27:13 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.4% [2025-01-18 07:27:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 07:27:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 07:27:14 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.35% [2025-01-18 07:27:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.182 (7.182) Loss 0.7858 (0.7858) Acc@1 85.107 (85.107) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 07:27:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.967) Loss 1.0470 (0.9017) Acc@1 78.174 (82.331) Acc@5 94.775 (96.149) Mem 16099MB [2025-01-18 07:27:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:200] * Acc@1 82.216 Acc@5 96.175 [2025-01-18 07:27:25 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.2% [2025-01-18 07:27:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:27:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:27:26 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.22% [2025-01-18 07:27:29 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][0/312] eta 0:14:29 lr 0.001012 time 2.7881 (2.7881) model_time 1.0740 (1.0740) loss 2.8431 (2.8431) grad_norm 1.5312 (1.5312/0.0000) mem 16099MB [2025-01-18 07:27:34 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][10/312] eta 0:03:20 lr 0.001012 time 0.4535 (0.6647) model_time 0.4532 (0.5087) loss 2.9439 (2.9574) grad_norm 2.4290 (1.7812/0.6038) mem 16099MB [2025-01-18 07:27:38 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][20/312] eta 0:02:44 lr 0.001011 time 0.4518 (0.5643) model_time 0.4516 (0.4824) loss 3.5889 (3.0192) grad_norm 2.4978 (2.0557/0.7210) mem 16099MB [2025-01-18 07:27:43 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][30/312] eta 0:02:29 lr 0.001010 time 0.4510 (0.5316) model_time 0.4508 (0.4759) loss 2.6345 (2.9900) grad_norm 2.3099 (2.3252/1.1696) mem 16099MB [2025-01-18 07:27:47 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][40/312] eta 0:02:19 lr 0.001010 time 0.4673 (0.5128) model_time 0.4668 (0.4707) loss 2.8272 (2.9557) grad_norm 1.1927 (2.2283/1.1212) mem 16099MB [2025-01-18 07:27:52 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][50/312] eta 0:02:12 lr 0.001009 time 0.5420 (0.5050) model_time 0.5418 (0.4710) loss 2.6848 (2.9300) grad_norm 4.0286 (2.3422/1.1332) mem 16099MB [2025-01-18 07:27:57 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][60/312] eta 0:02:05 lr 0.001009 time 0.4486 (0.4974) model_time 0.4485 (0.4689) loss 3.1773 (2.9488) grad_norm 1.7061 (2.2608/1.0814) mem 16099MB [2025-01-18 07:28:01 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][70/312] eta 0:01:58 lr 0.001008 time 0.4404 (0.4914) model_time 0.4402 (0.4669) loss 3.1622 (2.9827) grad_norm 2.5970 (2.2690/1.0395) mem 16099MB [2025-01-18 07:28:06 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][80/312] eta 0:01:54 lr 0.001008 time 0.4564 (0.4923) model_time 0.4563 (0.4708) loss 1.9973 (2.9861) grad_norm 1.5345 (2.3337/1.0323) mem 16099MB [2025-01-18 07:28:11 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][90/312] eta 0:01:48 lr 0.001007 time 0.5623 (0.4901) model_time 0.5622 (0.4709) loss 1.8710 (2.9787) grad_norm 1.0725 (2.4263/1.1194) mem 16099MB [2025-01-18 07:28:16 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][100/312] eta 0:01:43 lr 0.001006 time 0.4519 (0.4877) model_time 0.4514 (0.4704) loss 3.3673 (2.9949) grad_norm 2.9946 (2.4831/1.2167) mem 16099MB [2025-01-18 07:28:20 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][110/312] eta 0:01:38 lr 0.001006 time 0.4417 (0.4873) model_time 0.4415 (0.4715) loss 3.6778 (3.0160) grad_norm 3.1597 (2.4543/1.1834) mem 16099MB [2025-01-18 07:28:25 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][120/312] eta 0:01:33 lr 0.001005 time 0.4500 (0.4887) model_time 0.4498 (0.4742) loss 2.8266 (3.0030) grad_norm 2.4339 (2.4368/1.1569) mem 16099MB [2025-01-18 07:28:30 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][130/312] eta 0:01:28 lr 0.001005 time 0.4405 (0.4866) model_time 0.4404 (0.4732) loss 2.5420 (2.9930) grad_norm 1.1077 (2.3939/1.1323) mem 16099MB [2025-01-18 07:28:35 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][140/312] eta 0:01:23 lr 0.001004 time 0.4527 (0.4844) model_time 0.4523 (0.4719) loss 3.5110 (2.9804) grad_norm 3.3149 (2.3677/1.1058) mem 16099MB [2025-01-18 07:28:39 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][150/312] eta 0:01:18 lr 0.001004 time 0.4709 (0.4841) model_time 0.4708 (0.4724) loss 4.0294 (3.0072) grad_norm 1.6903 (2.3485/1.0996) mem 16099MB [2025-01-18 07:28:44 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][160/312] eta 0:01:13 lr 0.001003 time 0.4505 (0.4848) model_time 0.4503 (0.4738) loss 3.5615 (3.0160) grad_norm 1.7998 (2.3140/1.0879) mem 16099MB [2025-01-18 07:28:49 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][170/312] eta 0:01:08 lr 0.001002 time 0.4628 (0.4833) model_time 0.4626 (0.4730) loss 3.0037 (3.0152) grad_norm 1.0517 (2.2819/1.0782) mem 16099MB [2025-01-18 07:28:54 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][180/312] eta 0:01:03 lr 0.001002 time 0.4556 (0.4820) model_time 0.4551 (0.4722) loss 4.0077 (3.0219) grad_norm 4.7112 (2.3003/1.1122) mem 16099MB [2025-01-18 07:28:58 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][190/312] eta 0:00:58 lr 0.001001 time 0.4711 (0.4810) model_time 0.4709 (0.4717) loss 3.0628 (3.0342) grad_norm 3.5910 (2.3090/1.1017) mem 16099MB [2025-01-18 07:29:03 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][200/312] eta 0:00:53 lr 0.001001 time 0.5332 (0.4800) model_time 0.5327 (0.4711) loss 2.6406 (3.0365) grad_norm 4.1165 (2.3265/1.1001) mem 16099MB [2025-01-18 07:29:08 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][210/312] eta 0:00:48 lr 0.001000 time 0.4547 (0.4804) model_time 0.4541 (0.4719) loss 3.1314 (3.0295) grad_norm 1.8983 (2.2952/1.0861) mem 16099MB [2025-01-18 07:29:12 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][220/312] eta 0:00:44 lr 0.001000 time 0.4407 (0.4800) model_time 0.4402 (0.4719) loss 2.6702 (3.0303) grad_norm 2.9394 (2.2907/1.0668) mem 16099MB [2025-01-18 07:29:17 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][230/312] eta 0:00:39 lr 0.000999 time 0.4549 (0.4789) model_time 0.4548 (0.4711) loss 3.1442 (3.0307) grad_norm 4.1347 (2.3021/1.0580) mem 16099MB [2025-01-18 07:29:22 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][240/312] eta 0:00:34 lr 0.000998 time 0.4540 (0.4782) model_time 0.4538 (0.4708) loss 3.0343 (3.0318) grad_norm 1.9453 (2.3098/1.0554) mem 16099MB [2025-01-18 07:29:26 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][250/312] eta 0:00:29 lr 0.000998 time 0.4543 (0.4777) model_time 0.4539 (0.4705) loss 3.8194 (3.0315) grad_norm 1.0140 (2.2844/1.0473) mem 16099MB [2025-01-18 07:29:31 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][260/312] eta 0:00:24 lr 0.000997 time 0.5358 (0.4771) model_time 0.5352 (0.4702) loss 2.4585 (3.0360) grad_norm 2.1771 (2.2685/1.0373) mem 16099MB [2025-01-18 07:29:35 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][270/312] eta 0:00:20 lr 0.000997 time 0.4440 (0.4766) model_time 0.4438 (0.4700) loss 3.4977 (3.0431) grad_norm 2.5596 (2.2605/1.0234) mem 16099MB [2025-01-18 07:29:40 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][280/312] eta 0:00:15 lr 0.000996 time 0.4464 (0.4762) model_time 0.4462 (0.4698) loss 3.2746 (3.0431) grad_norm 3.8507 (2.2548/1.0177) mem 16099MB [2025-01-18 07:29:45 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][290/312] eta 0:00:10 lr 0.000996 time 0.4484 (0.4760) model_time 0.4482 (0.4698) loss 3.1750 (3.0395) grad_norm 1.3353 (2.2348/1.0077) mem 16099MB [2025-01-18 07:29:49 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][300/312] eta 0:00:05 lr 0.000995 time 0.4435 (0.4754) model_time 0.4434 (0.4693) loss 3.0046 (3.0457) grad_norm 1.2272 (2.2475/1.0156) mem 16099MB [2025-01-18 07:29:54 internimage_t_1k_224] (main.py 510): INFO Train: [201/300][310/312] eta 0:00:00 lr 0.000994 time 0.4402 (0.4744) model_time 0.4401 (0.4686) loss 2.9169 (3.0383) grad_norm 2.0895 (2.2834/1.0307) mem 16099MB [2025-01-18 07:29:54 internimage_t_1k_224] (main.py 519): INFO EPOCH 201 training takes 0:02:27 [2025-01-18 07:29:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_201.pth saving...... [2025-01-18 07:29:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_201.pth saved !!! [2025-01-18 07:30:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.190 (7.190) Loss 0.7533 (0.7533) Acc@1 83.643 (83.643) Acc@5 96.973 (96.973) Mem 16099MB [2025-01-18 07:30:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.991) Loss 1.0260 (0.8674) Acc@1 77.002 (81.319) Acc@5 94.214 (95.710) Mem 16099MB [2025-01-18 07:30:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:201] * Acc@1 81.206 Acc@5 95.723 [2025-01-18 07:30:06 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.2% [2025-01-18 07:30:06 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.35% [2025-01-18 07:30:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.158 (8.158) Loss 0.7848 (0.7848) Acc@1 85.156 (85.156) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 07:30:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.098) Loss 1.0459 (0.9007) Acc@1 78.174 (82.355) Acc@5 94.849 (96.163) Mem 16099MB [2025-01-18 07:30:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:201] * Acc@1 82.240 Acc@5 96.185 [2025-01-18 07:30:19 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.2% [2025-01-18 07:30:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:30:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:30:20 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.24% [2025-01-18 07:30:22 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][0/312] eta 0:11:23 lr 0.000994 time 2.1903 (2.1903) model_time 0.4666 (0.4666) loss 3.7624 (3.7624) grad_norm 4.8233 (4.8233/0.0000) mem 16099MB [2025-01-18 07:30:27 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][10/312] eta 0:03:16 lr 0.000994 time 0.6729 (0.6492) model_time 0.6726 (0.4922) loss 3.2522 (3.0144) grad_norm 1.2832 (2.1044/1.6097) mem 16099MB [2025-01-18 07:30:32 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][20/312] eta 0:02:46 lr 0.000993 time 0.4424 (0.5719) model_time 0.4420 (0.4895) loss 3.0472 (3.0086) grad_norm 1.6767 (2.2236/1.3781) mem 16099MB [2025-01-18 07:30:37 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][30/312] eta 0:02:33 lr 0.000993 time 0.4430 (0.5459) model_time 0.4425 (0.4899) loss 2.8809 (2.9919) grad_norm 1.3849 (2.2052/1.2017) mem 16099MB [2025-01-18 07:30:41 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][40/312] eta 0:02:22 lr 0.000992 time 0.4625 (0.5244) model_time 0.4623 (0.4821) loss 1.9473 (2.9596) grad_norm 1.1926 (2.0955/1.1186) mem 16099MB [2025-01-18 07:30:46 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][50/312] eta 0:02:13 lr 0.000991 time 0.4531 (0.5112) model_time 0.4526 (0.4771) loss 3.1190 (2.9770) grad_norm 3.2530 (2.2197/1.0892) mem 16099MB [2025-01-18 07:30:51 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][60/312] eta 0:02:06 lr 0.000991 time 0.4506 (0.5021) model_time 0.4502 (0.4735) loss 3.2438 (2.9887) grad_norm 1.2668 (2.2364/1.0330) mem 16099MB [2025-01-18 07:30:55 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][70/312] eta 0:02:00 lr 0.000990 time 0.5299 (0.4964) model_time 0.5295 (0.4718) loss 3.0078 (3.0310) grad_norm 1.8835 (2.2895/1.0769) mem 16099MB [2025-01-18 07:31:00 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][80/312] eta 0:01:55 lr 0.000990 time 0.4424 (0.4962) model_time 0.4423 (0.4746) loss 3.3595 (3.0358) grad_norm 1.7484 (2.3147/1.0964) mem 16099MB [2025-01-18 07:31:05 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][90/312] eta 0:01:49 lr 0.000989 time 0.4436 (0.4919) model_time 0.4431 (0.4726) loss 2.7218 (3.0237) grad_norm 1.1141 (2.2371/1.0675) mem 16099MB [2025-01-18 07:31:10 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][100/312] eta 0:01:44 lr 0.000989 time 0.5322 (0.4918) model_time 0.5321 (0.4744) loss 3.2976 (3.0421) grad_norm 2.5649 (2.1776/1.0354) mem 16099MB [2025-01-18 07:31:14 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][110/312] eta 0:01:38 lr 0.000988 time 0.4505 (0.4892) model_time 0.4504 (0.4733) loss 3.5990 (3.0312) grad_norm 0.9947 (2.1337/1.0106) mem 16099MB [2025-01-18 07:31:19 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][120/312] eta 0:01:33 lr 0.000987 time 0.5150 (0.4872) model_time 0.5149 (0.4726) loss 2.7611 (3.0127) grad_norm 2.2055 (2.1022/0.9944) mem 16099MB [2025-01-18 07:31:24 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][130/312] eta 0:01:28 lr 0.000987 time 0.4577 (0.4868) model_time 0.4576 (0.4733) loss 3.3699 (2.9983) grad_norm 3.3242 (2.1452/0.9966) mem 16099MB [2025-01-18 07:31:29 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][140/312] eta 0:01:24 lr 0.000986 time 0.4606 (0.4884) model_time 0.4604 (0.4759) loss 2.9441 (2.9772) grad_norm 4.3716 (2.1792/0.9951) mem 16099MB [2025-01-18 07:31:34 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][150/312] eta 0:01:19 lr 0.000986 time 0.4466 (0.4885) model_time 0.4462 (0.4767) loss 2.8036 (2.9821) grad_norm 1.5688 (2.1865/0.9819) mem 16099MB [2025-01-18 07:31:38 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][160/312] eta 0:01:13 lr 0.000985 time 0.4516 (0.4865) model_time 0.4514 (0.4755) loss 3.1492 (2.9847) grad_norm 1.2690 (2.1435/0.9675) mem 16099MB [2025-01-18 07:31:43 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][170/312] eta 0:01:08 lr 0.000985 time 0.4548 (0.4851) model_time 0.4547 (0.4746) loss 3.4846 (2.9791) grad_norm 2.8759 (2.1415/0.9590) mem 16099MB [2025-01-18 07:31:48 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][180/312] eta 0:01:03 lr 0.000984 time 0.4499 (0.4841) model_time 0.4498 (0.4742) loss 3.2151 (2.9800) grad_norm 2.5127 (2.1525/0.9555) mem 16099MB [2025-01-18 07:31:53 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][190/312] eta 0:00:59 lr 0.000984 time 0.4425 (0.4848) model_time 0.4424 (0.4754) loss 3.1535 (2.9824) grad_norm 2.9122 (2.1445/0.9502) mem 16099MB [2025-01-18 07:31:57 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][200/312] eta 0:00:54 lr 0.000983 time 0.4415 (0.4834) model_time 0.4414 (0.4744) loss 3.5002 (2.9883) grad_norm 1.5287 (2.1263/0.9378) mem 16099MB [2025-01-18 07:32:02 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][210/312] eta 0:00:49 lr 0.000982 time 0.4564 (0.4821) model_time 0.4560 (0.4736) loss 3.4565 (2.9846) grad_norm 2.4161 (2.1338/0.9315) mem 16099MB [2025-01-18 07:32:06 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][220/312] eta 0:00:44 lr 0.000982 time 0.4511 (0.4808) model_time 0.4507 (0.4727) loss 3.0714 (2.9855) grad_norm 1.7565 (2.1665/0.9513) mem 16099MB [2025-01-18 07:32:11 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][230/312] eta 0:00:39 lr 0.000981 time 0.4424 (0.4801) model_time 0.4422 (0.4723) loss 3.5874 (2.9863) grad_norm 1.8331 (2.1410/0.9438) mem 16099MB [2025-01-18 07:32:16 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][240/312] eta 0:00:34 lr 0.000981 time 0.4626 (0.4805) model_time 0.4624 (0.4730) loss 2.8739 (2.9910) grad_norm 1.8289 (2.1381/0.9299) mem 16099MB [2025-01-18 07:32:21 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][250/312] eta 0:00:29 lr 0.000980 time 0.4458 (0.4801) model_time 0.4454 (0.4729) loss 3.4609 (2.9928) grad_norm 1.4183 (2.1730/0.9634) mem 16099MB [2025-01-18 07:32:25 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][260/312] eta 0:00:24 lr 0.000980 time 0.4517 (0.4797) model_time 0.4515 (0.4728) loss 2.7671 (2.9940) grad_norm 1.7959 (2.1620/0.9527) mem 16099MB [2025-01-18 07:32:30 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][270/312] eta 0:00:20 lr 0.000979 time 0.4422 (0.4794) model_time 0.4420 (0.4727) loss 3.1830 (2.9887) grad_norm 1.7178 (2.1789/0.9459) mem 16099MB [2025-01-18 07:32:34 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][280/312] eta 0:00:15 lr 0.000978 time 0.4696 (0.4786) model_time 0.4694 (0.4722) loss 3.4334 (2.9913) grad_norm 1.1981 (2.1668/0.9374) mem 16099MB [2025-01-18 07:32:39 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][290/312] eta 0:00:10 lr 0.000978 time 0.4537 (0.4782) model_time 0.4532 (0.4720) loss 3.4143 (2.9916) grad_norm 2.6746 (2.1796/0.9326) mem 16099MB [2025-01-18 07:32:44 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][300/312] eta 0:00:05 lr 0.000977 time 0.4394 (0.4782) model_time 0.4393 (0.4721) loss 3.4338 (2.9977) grad_norm 1.6028 (2.2023/0.9574) mem 16099MB [2025-01-18 07:32:48 internimage_t_1k_224] (main.py 510): INFO Train: [202/300][310/312] eta 0:00:00 lr 0.000977 time 0.4403 (0.4771) model_time 0.4402 (0.4712) loss 2.9765 (3.0056) grad_norm 3.2045 (2.2263/0.9303) mem 16099MB [2025-01-18 07:32:49 internimage_t_1k_224] (main.py 519): INFO EPOCH 202 training takes 0:02:28 [2025-01-18 07:32:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_202.pth saving...... [2025-01-18 07:32:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_202.pth saved !!! [2025-01-18 07:32:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.542 (7.542) Loss 0.7785 (0.7785) Acc@1 83.643 (83.643) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 07:33:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.017) Loss 1.0599 (0.8779) Acc@1 76.343 (81.459) Acc@5 93.896 (95.648) Mem 16099MB [2025-01-18 07:33:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:202] * Acc@1 81.298 Acc@5 95.633 [2025-01-18 07:33:01 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.3% [2025-01-18 07:33:01 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.35% [2025-01-18 07:33:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.369 (8.369) Loss 0.7836 (0.7836) Acc@1 85.132 (85.132) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 07:33:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.113) Loss 1.0446 (0.8994) Acc@1 78.271 (82.389) Acc@5 94.849 (96.185) Mem 16099MB [2025-01-18 07:33:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:202] * Acc@1 82.262 Acc@5 96.203 [2025-01-18 07:33:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.3% [2025-01-18 07:33:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:33:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:33:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.26% [2025-01-18 07:33:17 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][0/312] eta 0:10:56 lr 0.000977 time 2.1028 (2.1028) model_time 0.4763 (0.4763) loss 3.5303 (3.5303) grad_norm 2.3191 (2.3191/0.0000) mem 16099MB [2025-01-18 07:33:22 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][10/312] eta 0:03:12 lr 0.000976 time 0.4644 (0.6388) model_time 0.4640 (0.4907) loss 2.3627 (3.1300) grad_norm 5.4899 (2.7101/1.2467) mem 16099MB [2025-01-18 07:33:27 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][20/312] eta 0:02:44 lr 0.000975 time 0.6663 (0.5648) model_time 0.6662 (0.4870) loss 2.0213 (2.9834) grad_norm 1.0617 (2.7203/1.0786) mem 16099MB [2025-01-18 07:33:32 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][30/312] eta 0:02:31 lr 0.000975 time 0.4511 (0.5358) model_time 0.4507 (0.4830) loss 2.3018 (3.0003) grad_norm 3.9818 (2.7579/1.1675) mem 16099MB [2025-01-18 07:33:36 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][40/312] eta 0:02:21 lr 0.000974 time 0.4455 (0.5191) model_time 0.4450 (0.4792) loss 3.0656 (3.0561) grad_norm 2.1658 (2.6290/1.0905) mem 16099MB [2025-01-18 07:33:41 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][50/312] eta 0:02:14 lr 0.000974 time 0.4573 (0.5125) model_time 0.4568 (0.4803) loss 2.8692 (3.0490) grad_norm 1.4203 (2.6688/1.0948) mem 16099MB [2025-01-18 07:33:46 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][60/312] eta 0:02:07 lr 0.000973 time 0.5414 (0.5070) model_time 0.5412 (0.4800) loss 1.9013 (3.0610) grad_norm 1.2845 (2.7312/1.1759) mem 16099MB [2025-01-18 07:33:51 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][70/312] eta 0:02:01 lr 0.000973 time 0.4642 (0.5008) model_time 0.4640 (0.4775) loss 2.7374 (3.0337) grad_norm 1.4952 (2.6224/1.1497) mem 16099MB [2025-01-18 07:33:55 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][80/312] eta 0:01:55 lr 0.000972 time 0.4538 (0.4958) model_time 0.4533 (0.4754) loss 3.0935 (3.0313) grad_norm 3.5946 (2.5627/1.1180) mem 16099MB [2025-01-18 07:34:00 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][90/312] eta 0:01:49 lr 0.000972 time 0.5353 (0.4924) model_time 0.5349 (0.4742) loss 2.0061 (3.0377) grad_norm 2.0084 (2.4718/1.1020) mem 16099MB [2025-01-18 07:34:04 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][100/312] eta 0:01:43 lr 0.000971 time 0.4640 (0.4896) model_time 0.4636 (0.4732) loss 2.0681 (3.0245) grad_norm 1.8816 (2.4537/1.0775) mem 16099MB [2025-01-18 07:34:09 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][110/312] eta 0:01:38 lr 0.000970 time 0.4603 (0.4871) model_time 0.4601 (0.4721) loss 3.6526 (3.0300) grad_norm 2.8837 (2.4253/1.0571) mem 16099MB [2025-01-18 07:34:14 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][120/312] eta 0:01:33 lr 0.000970 time 0.5431 (0.4856) model_time 0.5429 (0.4718) loss 3.0775 (3.0352) grad_norm 1.4219 (2.4159/1.0367) mem 16099MB [2025-01-18 07:34:18 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][130/312] eta 0:01:28 lr 0.000969 time 0.4634 (0.4840) model_time 0.4629 (0.4713) loss 3.1652 (3.0247) grad_norm 1.9365 (2.4383/1.0704) mem 16099MB [2025-01-18 07:34:23 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][140/312] eta 0:01:23 lr 0.000969 time 0.4482 (0.4847) model_time 0.4478 (0.4728) loss 3.6245 (3.0298) grad_norm 3.2924 (2.4227/1.0563) mem 16099MB [2025-01-18 07:34:28 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][150/312] eta 0:01:18 lr 0.000968 time 0.4424 (0.4842) model_time 0.4423 (0.4730) loss 3.4384 (3.0159) grad_norm 1.0627 (2.4071/1.0417) mem 16099MB [2025-01-18 07:34:33 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][160/312] eta 0:01:13 lr 0.000968 time 0.4578 (0.4823) model_time 0.4573 (0.4719) loss 3.7675 (3.0129) grad_norm 1.9668 (2.3925/1.0346) mem 16099MB [2025-01-18 07:34:37 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][170/312] eta 0:01:08 lr 0.000967 time 0.4844 (0.4808) model_time 0.4840 (0.4710) loss 3.4476 (3.0240) grad_norm 1.1954 (2.3857/1.0312) mem 16099MB [2025-01-18 07:34:42 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][180/312] eta 0:01:03 lr 0.000966 time 0.4444 (0.4800) model_time 0.4439 (0.4707) loss 2.1078 (3.0147) grad_norm 0.9751 (2.3739/1.0253) mem 16099MB [2025-01-18 07:34:46 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][190/312] eta 0:00:58 lr 0.000966 time 0.4500 (0.4786) model_time 0.4498 (0.4697) loss 2.7907 (3.0152) grad_norm 3.3472 (2.3803/1.0347) mem 16099MB [2025-01-18 07:34:51 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][200/312] eta 0:00:53 lr 0.000965 time 0.4734 (0.4780) model_time 0.4733 (0.4695) loss 3.1905 (3.0140) grad_norm 2.2107 (2.3732/1.0390) mem 16099MB [2025-01-18 07:34:56 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][210/312] eta 0:00:48 lr 0.000965 time 0.4709 (0.4773) model_time 0.4705 (0.4693) loss 2.9565 (3.0224) grad_norm 1.8597 (2.3563/1.0276) mem 16099MB [2025-01-18 07:35:00 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][220/312] eta 0:00:43 lr 0.000964 time 0.4438 (0.4770) model_time 0.4436 (0.4693) loss 3.0563 (3.0149) grad_norm 1.7824 (2.3297/1.0203) mem 16099MB [2025-01-18 07:35:05 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][230/312] eta 0:00:39 lr 0.000964 time 0.4598 (0.4766) model_time 0.4596 (0.4692) loss 3.2966 (3.0074) grad_norm 1.6391 (2.3078/1.0097) mem 16099MB [2025-01-18 07:35:10 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][240/312] eta 0:00:34 lr 0.000963 time 0.4410 (0.4759) model_time 0.4406 (0.4688) loss 2.4091 (3.0086) grad_norm 1.3728 (2.3065/1.0086) mem 16099MB [2025-01-18 07:35:14 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][250/312] eta 0:00:29 lr 0.000963 time 0.4606 (0.4754) model_time 0.4605 (0.4685) loss 3.0226 (3.0094) grad_norm 1.2094 (2.3219/1.0058) mem 16099MB [2025-01-18 07:35:19 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][260/312] eta 0:00:24 lr 0.000962 time 0.4447 (0.4749) model_time 0.4443 (0.4683) loss 2.1142 (3.0004) grad_norm 1.3825 (2.3074/0.9970) mem 16099MB [2025-01-18 07:35:23 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][270/312] eta 0:00:19 lr 0.000961 time 0.4604 (0.4744) model_time 0.4599 (0.4680) loss 2.5725 (2.9960) grad_norm 1.9268 (2.3110/0.9877) mem 16099MB [2025-01-18 07:35:28 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][280/312] eta 0:00:15 lr 0.000961 time 0.4523 (0.4738) model_time 0.4518 (0.4676) loss 3.0237 (2.9962) grad_norm 3.8745 (2.3291/0.9841) mem 16099MB [2025-01-18 07:35:33 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][290/312] eta 0:00:10 lr 0.000960 time 0.4598 (0.4739) model_time 0.4594 (0.4679) loss 2.9033 (2.9896) grad_norm 1.6437 (2.3153/0.9832) mem 16099MB [2025-01-18 07:35:38 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][300/312] eta 0:00:05 lr 0.000960 time 0.6167 (0.4741) model_time 0.6166 (0.4684) loss 3.0249 (2.9928) grad_norm 1.0456 (2.3104/0.9820) mem 16099MB [2025-01-18 07:35:42 internimage_t_1k_224] (main.py 510): INFO Train: [203/300][310/312] eta 0:00:00 lr 0.000959 time 0.4433 (0.4730) model_time 0.4431 (0.4674) loss 3.1566 (2.9910) grad_norm 1.8089 (2.2753/0.9587) mem 16099MB [2025-01-18 07:35:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 203 training takes 0:02:27 [2025-01-18 07:35:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_203.pth saving...... [2025-01-18 07:35:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_203.pth saved !!! [2025-01-18 07:35:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.482 (7.482) Loss 0.7492 (0.7492) Acc@1 83.936 (83.936) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 07:35:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.008) Loss 1.0474 (0.8750) Acc@1 77.368 (81.374) Acc@5 94.482 (95.610) Mem 16099MB [2025-01-18 07:35:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:203] * Acc@1 81.296 Acc@5 95.633 [2025-01-18 07:35:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.3% [2025-01-18 07:35:55 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.35% [2025-01-18 07:36:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.551 (8.551) Loss 0.7827 (0.7827) Acc@1 85.059 (85.059) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 07:36:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.135) Loss 1.0430 (0.8983) Acc@1 78.271 (82.426) Acc@5 94.873 (96.196) Mem 16099MB [2025-01-18 07:36:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:203] * Acc@1 82.298 Acc@5 96.213 [2025-01-18 07:36:08 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.3% [2025-01-18 07:36:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:36:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:36:09 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.30% [2025-01-18 07:36:11 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][0/312] eta 0:11:47 lr 0.000959 time 2.2663 (2.2663) model_time 0.4984 (0.4984) loss 2.7093 (2.7093) grad_norm 2.5100 (2.5100/0.0000) mem 16099MB [2025-01-18 07:36:16 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][10/312] eta 0:03:10 lr 0.000959 time 0.4612 (0.6302) model_time 0.4608 (0.4692) loss 3.3401 (2.9715) grad_norm 5.7954 (2.5889/1.3513) mem 16099MB [2025-01-18 07:36:21 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][20/312] eta 0:02:41 lr 0.000958 time 0.4497 (0.5531) model_time 0.4493 (0.4686) loss 3.6050 (3.1672) grad_norm 1.6297 (2.3559/1.0768) mem 16099MB [2025-01-18 07:36:25 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][30/312] eta 0:02:28 lr 0.000957 time 0.5440 (0.5279) model_time 0.5435 (0.4705) loss 2.8587 (3.1410) grad_norm 2.1992 (2.3058/0.9618) mem 16099MB [2025-01-18 07:36:30 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][40/312] eta 0:02:19 lr 0.000957 time 0.4408 (0.5124) model_time 0.4403 (0.4689) loss 3.4568 (3.0955) grad_norm 6.3317 (2.5631/1.1750) mem 16099MB [2025-01-18 07:36:35 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][50/312] eta 0:02:12 lr 0.000956 time 0.4515 (0.5068) model_time 0.4510 (0.4718) loss 2.0020 (3.0610) grad_norm 1.3185 (2.6538/1.2055) mem 16099MB [2025-01-18 07:36:40 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][60/312] eta 0:02:06 lr 0.000956 time 0.4577 (0.5023) model_time 0.4572 (0.4730) loss 2.1078 (3.0431) grad_norm 1.8972 (2.5517/1.1461) mem 16099MB [2025-01-18 07:36:44 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][70/312] eta 0:02:00 lr 0.000955 time 0.4545 (0.4971) model_time 0.4541 (0.4718) loss 3.3207 (3.0536) grad_norm 3.1053 (2.6166/1.2316) mem 16099MB [2025-01-18 07:36:49 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][80/312] eta 0:01:54 lr 0.000955 time 0.4659 (0.4939) model_time 0.4658 (0.4717) loss 3.8578 (3.0428) grad_norm 2.3817 (2.5800/1.1887) mem 16099MB [2025-01-18 07:36:54 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][90/312] eta 0:01:49 lr 0.000954 time 0.5716 (0.4935) model_time 0.5715 (0.4737) loss 3.1549 (3.0493) grad_norm 1.4932 (2.4931/1.1661) mem 16099MB [2025-01-18 07:36:59 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][100/312] eta 0:01:44 lr 0.000953 time 0.4668 (0.4907) model_time 0.4667 (0.4728) loss 3.2027 (3.0261) grad_norm 3.5175 (2.4486/1.1651) mem 16099MB [2025-01-18 07:37:03 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][110/312] eta 0:01:38 lr 0.000953 time 0.4497 (0.4876) model_time 0.4493 (0.4713) loss 3.0996 (3.0325) grad_norm 2.9613 (2.5278/1.1986) mem 16099MB [2025-01-18 07:37:08 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][120/312] eta 0:01:33 lr 0.000952 time 0.4397 (0.4851) model_time 0.4393 (0.4701) loss 2.6233 (3.0255) grad_norm 3.1636 (2.5917/1.2134) mem 16099MB [2025-01-18 07:37:12 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][130/312] eta 0:01:28 lr 0.000952 time 0.4483 (0.4843) model_time 0.4482 (0.4704) loss 2.0315 (3.0132) grad_norm 2.4622 (2.5949/1.1979) mem 16099MB [2025-01-18 07:37:17 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][140/312] eta 0:01:22 lr 0.000951 time 0.4476 (0.4821) model_time 0.4474 (0.4691) loss 3.2311 (3.0251) grad_norm 2.2074 (2.5968/1.1801) mem 16099MB [2025-01-18 07:37:22 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][150/312] eta 0:01:18 lr 0.000951 time 0.4950 (0.4824) model_time 0.4946 (0.4703) loss 1.9928 (3.0243) grad_norm 1.1985 (2.5681/1.1612) mem 16099MB [2025-01-18 07:37:26 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][160/312] eta 0:01:13 lr 0.000950 time 0.4426 (0.4812) model_time 0.4424 (0.4698) loss 2.6539 (3.0155) grad_norm 2.2773 (2.5435/1.1324) mem 16099MB [2025-01-18 07:37:31 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][170/312] eta 0:01:08 lr 0.000950 time 0.4471 (0.4795) model_time 0.4470 (0.4688) loss 2.0761 (3.0196) grad_norm 2.3946 (2.5442/1.1054) mem 16099MB [2025-01-18 07:37:36 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][180/312] eta 0:01:03 lr 0.000949 time 0.4538 (0.4785) model_time 0.4537 (0.4684) loss 3.1181 (3.0132) grad_norm 1.1891 (2.5298/1.1033) mem 16099MB [2025-01-18 07:37:40 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][190/312] eta 0:00:58 lr 0.000948 time 0.4510 (0.4772) model_time 0.4508 (0.4676) loss 2.7944 (3.0071) grad_norm 2.8808 (2.5110/1.1003) mem 16099MB [2025-01-18 07:37:45 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][200/312] eta 0:00:53 lr 0.000948 time 0.4446 (0.4763) model_time 0.4442 (0.4671) loss 3.4537 (3.0184) grad_norm 2.2082 (2.4756/1.0929) mem 16099MB [2025-01-18 07:37:49 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][210/312] eta 0:00:48 lr 0.000947 time 0.4450 (0.4759) model_time 0.4446 (0.4671) loss 2.1767 (3.0071) grad_norm 4.8818 (2.4603/1.1002) mem 16099MB [2025-01-18 07:37:54 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][220/312] eta 0:00:43 lr 0.000947 time 0.4549 (0.4754) model_time 0.4547 (0.4670) loss 2.4484 (3.0158) grad_norm 3.4454 (2.4815/1.0971) mem 16099MB [2025-01-18 07:37:59 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][230/312] eta 0:00:38 lr 0.000946 time 0.4410 (0.4749) model_time 0.4406 (0.4669) loss 3.3905 (3.0227) grad_norm 2.1258 (2.4742/1.0805) mem 16099MB [2025-01-18 07:38:03 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][240/312] eta 0:00:34 lr 0.000946 time 0.4438 (0.4750) model_time 0.4436 (0.4672) loss 3.0455 (3.0210) grad_norm 1.7874 (2.4511/1.0712) mem 16099MB [2025-01-18 07:38:08 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][250/312] eta 0:00:29 lr 0.000945 time 0.5318 (0.4748) model_time 0.5316 (0.4674) loss 2.8235 (3.0278) grad_norm 3.4618 (2.4504/1.0641) mem 16099MB [2025-01-18 07:38:13 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][260/312] eta 0:00:24 lr 0.000945 time 0.4756 (0.4748) model_time 0.4751 (0.4676) loss 3.0106 (3.0286) grad_norm 1.8788 (2.4246/1.0590) mem 16099MB [2025-01-18 07:38:18 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][270/312] eta 0:00:19 lr 0.000944 time 0.4487 (0.4745) model_time 0.4483 (0.4676) loss 3.5707 (3.0268) grad_norm 1.6779 (2.3894/1.0570) mem 16099MB [2025-01-18 07:38:22 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][280/312] eta 0:00:15 lr 0.000943 time 0.4572 (0.4744) model_time 0.4567 (0.4677) loss 3.0478 (3.0256) grad_norm 2.4751 (2.4037/1.0607) mem 16099MB [2025-01-18 07:38:27 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][290/312] eta 0:00:10 lr 0.000943 time 0.4458 (0.4741) model_time 0.4453 (0.4676) loss 2.7000 (3.0215) grad_norm 2.4167 (2.3869/1.0511) mem 16099MB [2025-01-18 07:38:32 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][300/312] eta 0:00:05 lr 0.000942 time 0.4368 (0.4738) model_time 0.4367 (0.4675) loss 2.5122 (3.0165) grad_norm 1.3029 (2.3720/1.0458) mem 16099MB [2025-01-18 07:38:36 internimage_t_1k_224] (main.py 510): INFO Train: [204/300][310/312] eta 0:00:00 lr 0.000942 time 0.4398 (0.4732) model_time 0.4396 (0.4671) loss 3.8008 (3.0194) grad_norm 1.4968 (2.3441/1.0248) mem 16099MB [2025-01-18 07:38:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 204 training takes 0:02:27 [2025-01-18 07:38:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_204.pth saving...... [2025-01-18 07:38:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_204.pth saved !!! [2025-01-18 07:38:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.329 (7.329) Loss 0.7778 (0.7778) Acc@1 83.911 (83.911) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 07:38:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.998) Loss 1.0654 (0.8882) Acc@1 76.343 (81.392) Acc@5 94.214 (95.681) Mem 16099MB [2025-01-18 07:38:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:204] * Acc@1 81.284 Acc@5 95.711 [2025-01-18 07:38:49 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.3% [2025-01-18 07:38:49 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.35% [2025-01-18 07:38:57 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.193 (8.193) Loss 0.7819 (0.7819) Acc@1 84.985 (84.985) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 07:39:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.113) Loss 1.0413 (0.8971) Acc@1 78.296 (82.429) Acc@5 94.873 (96.185) Mem 16099MB [2025-01-18 07:39:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:204] * Acc@1 82.302 Acc@5 96.207 [2025-01-18 07:39:01 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.3% [2025-01-18 07:39:01 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:39:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:39:03 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.30% [2025-01-18 07:39:06 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][0/312] eta 0:13:33 lr 0.000942 time 2.6075 (2.6075) model_time 0.4687 (0.4687) loss 3.2035 (3.2035) grad_norm 1.0833 (1.0833/0.0000) mem 16099MB [2025-01-18 07:39:10 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][10/312] eta 0:03:18 lr 0.000941 time 0.4525 (0.6558) model_time 0.4521 (0.4611) loss 2.1758 (2.8836) grad_norm 4.4473 (1.9976/0.9378) mem 16099MB [2025-01-18 07:39:15 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][20/312] eta 0:02:45 lr 0.000941 time 0.4583 (0.5662) model_time 0.4582 (0.4641) loss 3.0693 (2.9132) grad_norm 2.1134 (2.2151/1.0397) mem 16099MB [2025-01-18 07:39:19 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][30/312] eta 0:02:29 lr 0.000940 time 0.4578 (0.5316) model_time 0.4577 (0.4623) loss 3.0037 (2.9525) grad_norm 3.9212 (2.1958/0.9877) mem 16099MB [2025-01-18 07:39:24 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][40/312] eta 0:02:19 lr 0.000939 time 0.4752 (0.5138) model_time 0.4751 (0.4614) loss 2.3093 (2.9463) grad_norm 1.7155 (2.2578/0.9125) mem 16099MB [2025-01-18 07:39:29 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][50/312] eta 0:02:12 lr 0.000939 time 0.4739 (0.5046) model_time 0.4734 (0.4623) loss 2.0424 (2.9884) grad_norm 1.2179 (2.1558/0.8829) mem 16099MB [2025-01-18 07:39:33 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][60/312] eta 0:02:05 lr 0.000938 time 0.5382 (0.4992) model_time 0.5378 (0.4638) loss 2.7698 (2.9997) grad_norm 1.7426 (2.1294/0.8466) mem 16099MB [2025-01-18 07:39:38 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][70/312] eta 0:01:59 lr 0.000938 time 0.4463 (0.4929) model_time 0.4461 (0.4624) loss 3.0182 (2.9866) grad_norm 1.2923 (2.0601/0.8173) mem 16099MB [2025-01-18 07:39:42 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][80/312] eta 0:01:53 lr 0.000937 time 0.4434 (0.4880) model_time 0.4430 (0.4612) loss 3.6380 (2.9545) grad_norm 1.1980 (2.0944/0.8090) mem 16099MB [2025-01-18 07:39:47 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][90/312] eta 0:01:47 lr 0.000937 time 0.4625 (0.4849) model_time 0.4623 (0.4611) loss 2.6275 (2.9638) grad_norm 3.4500 (2.2150/0.9632) mem 16099MB [2025-01-18 07:39:52 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][100/312] eta 0:01:42 lr 0.000936 time 0.4513 (0.4849) model_time 0.4509 (0.4634) loss 2.8427 (2.9639) grad_norm 3.4854 (2.2193/0.9540) mem 16099MB [2025-01-18 07:39:57 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][110/312] eta 0:01:37 lr 0.000935 time 0.5268 (0.4833) model_time 0.5267 (0.4637) loss 3.0748 (2.9681) grad_norm 3.2196 (2.2252/0.9375) mem 16099MB [2025-01-18 07:40:01 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][120/312] eta 0:01:32 lr 0.000935 time 0.5662 (0.4824) model_time 0.5657 (0.4644) loss 2.5976 (2.9671) grad_norm 1.9928 (2.2290/0.9315) mem 16099MB [2025-01-18 07:40:06 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][130/312] eta 0:01:27 lr 0.000934 time 0.4439 (0.4814) model_time 0.4435 (0.4647) loss 3.1428 (2.9722) grad_norm 1.9024 (2.2359/0.9177) mem 16099MB [2025-01-18 07:40:11 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][140/312] eta 0:01:22 lr 0.000934 time 0.4451 (0.4799) model_time 0.4446 (0.4644) loss 3.4451 (2.9748) grad_norm 2.9004 (2.2203/0.9037) mem 16099MB [2025-01-18 07:40:15 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][150/312] eta 0:01:17 lr 0.000933 time 0.4517 (0.4787) model_time 0.4515 (0.4642) loss 2.0727 (2.9712) grad_norm 2.5134 (2.2350/0.9061) mem 16099MB [2025-01-18 07:40:20 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][160/312] eta 0:01:12 lr 0.000933 time 0.4591 (0.4779) model_time 0.4589 (0.4643) loss 2.6847 (2.9503) grad_norm 2.4108 (2.2753/0.9138) mem 16099MB [2025-01-18 07:40:25 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][170/312] eta 0:01:07 lr 0.000932 time 0.4632 (0.4780) model_time 0.4631 (0.4651) loss 3.2076 (2.9464) grad_norm 2.1891 (2.3259/0.9608) mem 16099MB [2025-01-18 07:40:29 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][180/312] eta 0:01:03 lr 0.000932 time 0.4699 (0.4784) model_time 0.4695 (0.4662) loss 2.7455 (2.9428) grad_norm 2.4976 (2.3458/0.9584) mem 16099MB [2025-01-18 07:40:34 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][190/312] eta 0:00:58 lr 0.000931 time 0.4492 (0.4784) model_time 0.4490 (0.4668) loss 3.2359 (2.9505) grad_norm 1.1749 (2.3466/0.9685) mem 16099MB [2025-01-18 07:40:39 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][200/312] eta 0:00:53 lr 0.000930 time 0.4583 (0.4778) model_time 0.4582 (0.4668) loss 2.8946 (2.9404) grad_norm 2.8797 (2.3554/0.9627) mem 16099MB [2025-01-18 07:40:44 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][210/312] eta 0:00:48 lr 0.000930 time 0.4514 (0.4773) model_time 0.4512 (0.4668) loss 3.7136 (2.9410) grad_norm 5.5119 (2.3978/1.0050) mem 16099MB [2025-01-18 07:40:48 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][220/312] eta 0:00:43 lr 0.000929 time 0.4708 (0.4767) model_time 0.4706 (0.4666) loss 3.5728 (2.9545) grad_norm 3.5969 (2.4264/1.0303) mem 16099MB [2025-01-18 07:40:53 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][230/312] eta 0:00:39 lr 0.000929 time 0.4522 (0.4766) model_time 0.4520 (0.4669) loss 2.4383 (2.9501) grad_norm 3.0653 (2.4108/1.0198) mem 16099MB [2025-01-18 07:40:58 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][240/312] eta 0:00:34 lr 0.000928 time 0.4509 (0.4758) model_time 0.4505 (0.4665) loss 2.1300 (2.9498) grad_norm 1.6721 (2.3900/1.0057) mem 16099MB [2025-01-18 07:41:02 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][250/312] eta 0:00:29 lr 0.000928 time 0.4564 (0.4748) model_time 0.4562 (0.4659) loss 2.3573 (2.9499) grad_norm 2.4201 (2.3662/0.9985) mem 16099MB [2025-01-18 07:41:07 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][260/312] eta 0:00:24 lr 0.000927 time 0.4412 (0.4745) model_time 0.4407 (0.4659) loss 2.6802 (2.9519) grad_norm 1.5924 (2.3449/0.9884) mem 16099MB [2025-01-18 07:41:11 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][270/312] eta 0:00:19 lr 0.000927 time 0.4642 (0.4743) model_time 0.4637 (0.4660) loss 3.2647 (2.9550) grad_norm 1.4830 (2.3329/0.9820) mem 16099MB [2025-01-18 07:41:16 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][280/312] eta 0:00:15 lr 0.000926 time 0.4571 (0.4742) model_time 0.4569 (0.4662) loss 2.9122 (2.9538) grad_norm 4.1506 (2.3942/1.1218) mem 16099MB [2025-01-18 07:41:21 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][290/312] eta 0:00:10 lr 0.000926 time 0.4442 (0.4739) model_time 0.4437 (0.4662) loss 3.2809 (2.9574) grad_norm 0.9510 (2.4080/1.1273) mem 16099MB [2025-01-18 07:41:26 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][300/312] eta 0:00:05 lr 0.000925 time 0.4385 (0.4738) model_time 0.4384 (0.4663) loss 3.3533 (2.9569) grad_norm 2.2777 (2.3910/1.1188) mem 16099MB [2025-01-18 07:41:30 internimage_t_1k_224] (main.py 510): INFO Train: [205/300][310/312] eta 0:00:00 lr 0.000924 time 0.4389 (0.4732) model_time 0.4387 (0.4660) loss 3.3600 (2.9507) grad_norm 1.1097 (2.3658/1.1218) mem 16099MB [2025-01-18 07:41:31 internimage_t_1k_224] (main.py 519): INFO EPOCH 205 training takes 0:02:27 [2025-01-18 07:41:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_205.pth saving...... [2025-01-18 07:41:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_205.pth saved !!! [2025-01-18 07:41:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.184 (7.184) Loss 0.7625 (0.7625) Acc@1 83.936 (83.936) Acc@5 96.997 (96.997) Mem 16099MB [2025-01-18 07:41:42 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.980) Loss 1.0363 (0.8697) Acc@1 76.489 (81.627) Acc@5 94.312 (95.816) Mem 16099MB [2025-01-18 07:41:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:205] * Acc@1 81.442 Acc@5 95.843 [2025-01-18 07:41:43 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.4% [2025-01-18 07:41:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 07:41:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 07:41:44 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.44% [2025-01-18 07:41:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.186 (7.186) Loss 0.7810 (0.7810) Acc@1 84.985 (84.985) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 07:41:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.114 (0.980) Loss 1.0399 (0.8958) Acc@1 78.198 (82.460) Acc@5 94.873 (96.200) Mem 16099MB [2025-01-18 07:41:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:205] * Acc@1 82.338 Acc@5 96.229 [2025-01-18 07:41:55 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.3% [2025-01-18 07:41:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:41:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:41:56 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.34% [2025-01-18 07:41:58 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][0/312] eta 0:10:37 lr 0.000924 time 2.0445 (2.0445) model_time 0.5046 (0.5046) loss 2.8239 (2.8239) grad_norm 1.3418 (1.3418/0.0000) mem 16099MB [2025-01-18 07:42:03 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][10/312] eta 0:03:13 lr 0.000924 time 0.4442 (0.6417) model_time 0.4441 (0.4620) loss 2.2817 (2.8402) grad_norm 1.4858 (1.5864/0.3698) mem 16099MB [2025-01-18 07:42:08 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][20/312] eta 0:02:41 lr 0.000923 time 0.4529 (0.5524) model_time 0.4528 (0.4581) loss 3.0876 (2.9570) grad_norm 2.4832 (1.6738/0.4055) mem 16099MB [2025-01-18 07:42:13 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][30/312] eta 0:02:27 lr 0.000923 time 0.4534 (0.5242) model_time 0.4532 (0.4602) loss 2.5473 (3.0157) grad_norm 4.8571 (1.9525/0.8094) mem 16099MB [2025-01-18 07:42:17 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][40/312] eta 0:02:19 lr 0.000922 time 0.5752 (0.5137) model_time 0.5750 (0.4653) loss 3.5368 (3.0218) grad_norm 3.0920 (2.0797/1.0272) mem 16099MB [2025-01-18 07:42:22 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][50/312] eta 0:02:11 lr 0.000922 time 0.4603 (0.5037) model_time 0.4598 (0.4647) loss 2.5275 (2.9779) grad_norm 1.6232 (2.3089/1.2527) mem 16099MB [2025-01-18 07:42:27 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][60/312] eta 0:02:05 lr 0.000921 time 0.4434 (0.4983) model_time 0.4430 (0.4656) loss 3.3278 (2.9917) grad_norm 4.0464 (2.3110/1.1811) mem 16099MB [2025-01-18 07:42:31 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][70/312] eta 0:01:59 lr 0.000920 time 0.4584 (0.4923) model_time 0.4583 (0.4642) loss 2.7047 (2.9836) grad_norm 3.5707 (2.3557/1.2362) mem 16099MB [2025-01-18 07:42:36 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][80/312] eta 0:01:53 lr 0.000920 time 0.4511 (0.4891) model_time 0.4509 (0.4644) loss 2.6704 (2.9717) grad_norm 2.8203 (2.4168/1.2748) mem 16099MB [2025-01-18 07:42:41 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][90/312] eta 0:01:47 lr 0.000919 time 0.4509 (0.4861) model_time 0.4505 (0.4640) loss 2.2272 (2.9583) grad_norm 1.6438 (2.4326/1.2686) mem 16099MB [2025-01-18 07:42:45 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][100/312] eta 0:01:42 lr 0.000919 time 0.4544 (0.4830) model_time 0.4542 (0.4631) loss 3.0709 (2.9662) grad_norm 1.5561 (2.3882/1.2296) mem 16099MB [2025-01-18 07:42:50 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][110/312] eta 0:01:37 lr 0.000918 time 0.5362 (0.4827) model_time 0.5359 (0.4646) loss 3.8887 (2.9722) grad_norm 2.6965 (2.3536/1.2045) mem 16099MB [2025-01-18 07:42:55 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][120/312] eta 0:01:32 lr 0.000918 time 0.4415 (0.4821) model_time 0.4414 (0.4655) loss 2.7324 (2.9602) grad_norm 4.4092 (2.4011/1.2240) mem 16099MB [2025-01-18 07:43:00 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][130/312] eta 0:01:27 lr 0.000917 time 0.4730 (0.4830) model_time 0.4725 (0.4676) loss 3.4028 (2.9587) grad_norm 6.4106 (2.4508/1.3060) mem 16099MB [2025-01-18 07:43:05 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][140/312] eta 0:01:23 lr 0.000917 time 0.4427 (0.4853) model_time 0.4423 (0.4709) loss 3.2285 (2.9695) grad_norm 2.1981 (2.4474/1.3069) mem 16099MB [2025-01-18 07:43:09 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][150/312] eta 0:01:18 lr 0.000916 time 0.4554 (0.4835) model_time 0.4550 (0.4701) loss 3.2473 (2.9794) grad_norm 1.7630 (2.4184/1.2718) mem 16099MB [2025-01-18 07:43:14 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][160/312] eta 0:01:13 lr 0.000915 time 0.4763 (0.4848) model_time 0.4758 (0.4721) loss 3.4625 (2.9638) grad_norm 1.4134 (2.4308/1.2443) mem 16099MB [2025-01-18 07:43:19 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][170/312] eta 0:01:08 lr 0.000915 time 0.4584 (0.4835) model_time 0.4582 (0.4716) loss 3.1297 (2.9600) grad_norm 4.5669 (2.4410/1.2564) mem 16099MB [2025-01-18 07:43:24 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][180/312] eta 0:01:03 lr 0.000914 time 0.4401 (0.4818) model_time 0.4399 (0.4705) loss 3.1848 (2.9686) grad_norm 3.3045 (2.4303/1.2374) mem 16099MB [2025-01-18 07:43:28 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][190/312] eta 0:00:58 lr 0.000914 time 0.4753 (0.4809) model_time 0.4748 (0.4702) loss 2.7472 (2.9686) grad_norm 1.5488 (2.4230/1.2270) mem 16099MB [2025-01-18 07:43:33 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][200/312] eta 0:00:53 lr 0.000913 time 0.4439 (0.4801) model_time 0.4435 (0.4698) loss 3.0111 (2.9781) grad_norm 1.1274 (2.3865/1.2154) mem 16099MB [2025-01-18 07:43:37 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][210/312] eta 0:00:48 lr 0.000913 time 0.4398 (0.4791) model_time 0.4396 (0.4693) loss 3.1903 (2.9801) grad_norm 1.2940 (2.3589/1.1997) mem 16099MB [2025-01-18 07:43:42 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][220/312] eta 0:00:44 lr 0.000912 time 0.4669 (0.4794) model_time 0.4664 (0.4700) loss 3.1335 (2.9810) grad_norm 1.3745 (2.3564/1.1850) mem 16099MB [2025-01-18 07:43:47 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][230/312] eta 0:00:39 lr 0.000912 time 0.7229 (0.4799) model_time 0.7227 (0.4710) loss 3.1181 (2.9793) grad_norm 6.2879 (2.4311/1.2620) mem 16099MB [2025-01-18 07:43:52 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][240/312] eta 0:00:34 lr 0.000911 time 0.4544 (0.4795) model_time 0.4542 (0.4709) loss 2.4636 (2.9708) grad_norm 2.9981 (2.4657/1.2908) mem 16099MB [2025-01-18 07:43:56 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][250/312] eta 0:00:29 lr 0.000910 time 0.5017 (0.4786) model_time 0.5015 (0.4704) loss 3.0616 (2.9735) grad_norm 1.8996 (2.4543/1.2784) mem 16099MB [2025-01-18 07:44:01 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][260/312] eta 0:00:24 lr 0.000910 time 0.4750 (0.4777) model_time 0.4745 (0.4698) loss 1.9289 (2.9598) grad_norm 3.4853 (2.4629/1.2716) mem 16099MB [2025-01-18 07:44:06 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][270/312] eta 0:00:20 lr 0.000909 time 0.4506 (0.4772) model_time 0.4501 (0.4696) loss 3.2770 (2.9621) grad_norm 1.2859 (2.4394/1.2569) mem 16099MB [2025-01-18 07:44:10 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][280/312] eta 0:00:15 lr 0.000909 time 0.4581 (0.4771) model_time 0.4579 (0.4697) loss 2.9398 (2.9594) grad_norm 2.0539 (2.4157/1.2413) mem 16099MB [2025-01-18 07:44:15 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][290/312] eta 0:00:10 lr 0.000908 time 0.7526 (0.4776) model_time 0.7524 (0.4704) loss 3.2561 (2.9599) grad_norm 2.9775 (2.4332/1.2287) mem 16099MB [2025-01-18 07:44:20 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][300/312] eta 0:00:05 lr 0.000908 time 0.4391 (0.4767) model_time 0.4390 (0.4697) loss 3.6039 (2.9575) grad_norm 2.0070 (2.4209/1.2238) mem 16099MB [2025-01-18 07:44:25 internimage_t_1k_224] (main.py 510): INFO Train: [206/300][310/312] eta 0:00:00 lr 0.000907 time 0.4840 (0.4765) model_time 0.4839 (0.4697) loss 2.7333 (2.9656) grad_norm 1.1405 (2.4129/1.2307) mem 16099MB [2025-01-18 07:44:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 206 training takes 0:02:28 [2025-01-18 07:44:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_206.pth saving...... [2025-01-18 07:44:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_206.pth saved !!! [2025-01-18 07:44:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.358 (7.358) Loss 0.7952 (0.7952) Acc@1 83.862 (83.862) Acc@5 96.851 (96.851) Mem 16099MB [2025-01-18 07:44:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.011) Loss 1.0530 (0.8999) Acc@1 76.733 (81.523) Acc@5 94.531 (95.690) Mem 16099MB [2025-01-18 07:44:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:206] * Acc@1 81.344 Acc@5 95.741 [2025-01-18 07:44:37 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.3% [2025-01-18 07:44:37 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.44% [2025-01-18 07:44:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.362 (8.362) Loss 0.7799 (0.7799) Acc@1 85.010 (85.010) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 07:44:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.131) Loss 1.0380 (0.8944) Acc@1 78.247 (82.473) Acc@5 94.922 (96.216) Mem 16099MB [2025-01-18 07:44:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:206] * Acc@1 82.360 Acc@5 96.237 [2025-01-18 07:44:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.4% [2025-01-18 07:44:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:44:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:44:52 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.36% [2025-01-18 07:44:55 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][0/312] eta 0:15:40 lr 0.000907 time 3.0149 (3.0149) model_time 0.4799 (0.4799) loss 2.6456 (2.6456) grad_norm 1.0590 (1.0590/0.0000) mem 16099MB [2025-01-18 07:44:59 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][10/312] eta 0:03:30 lr 0.000907 time 0.5257 (0.6955) model_time 0.5255 (0.4639) loss 3.0644 (2.7956) grad_norm 1.8006 (1.7105/0.4470) mem 16099MB [2025-01-18 07:45:04 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][20/312] eta 0:02:51 lr 0.000906 time 0.4512 (0.5866) model_time 0.4511 (0.4652) loss 3.2993 (2.9986) grad_norm 2.3715 (1.7751/0.5605) mem 16099MB [2025-01-18 07:45:09 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][30/312] eta 0:02:37 lr 0.000905 time 0.5457 (0.5578) model_time 0.5453 (0.4755) loss 3.4569 (3.0882) grad_norm 1.4142 (1.8179/0.9105) mem 16099MB [2025-01-18 07:45:14 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][40/312] eta 0:02:25 lr 0.000905 time 0.4484 (0.5361) model_time 0.4482 (0.4738) loss 2.9487 (3.0190) grad_norm 4.5167 (2.1112/1.2654) mem 16099MB [2025-01-18 07:45:18 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][50/312] eta 0:02:17 lr 0.000904 time 0.4562 (0.5230) model_time 0.4558 (0.4729) loss 3.5377 (2.9817) grad_norm 1.9523 (2.2875/1.3441) mem 16099MB [2025-01-18 07:45:23 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][60/312] eta 0:02:09 lr 0.000904 time 0.4509 (0.5132) model_time 0.4507 (0.4712) loss 2.8988 (2.9661) grad_norm 1.8733 (2.2874/1.2450) mem 16099MB [2025-01-18 07:45:28 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][70/312] eta 0:02:02 lr 0.000903 time 0.4794 (0.5058) model_time 0.4792 (0.4697) loss 2.4668 (2.9588) grad_norm 2.7012 (2.3381/1.2056) mem 16099MB [2025-01-18 07:45:32 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][80/312] eta 0:01:56 lr 0.000903 time 0.4500 (0.5000) model_time 0.4495 (0.4683) loss 1.9562 (2.9136) grad_norm 2.0692 (2.3091/1.1546) mem 16099MB [2025-01-18 07:45:37 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][90/312] eta 0:01:50 lr 0.000902 time 0.4413 (0.4970) model_time 0.4411 (0.4688) loss 3.2895 (2.9298) grad_norm 1.0114 (2.2205/1.1242) mem 16099MB [2025-01-18 07:45:42 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][100/312] eta 0:01:44 lr 0.000902 time 0.4506 (0.4939) model_time 0.4504 (0.4684) loss 3.3998 (2.9369) grad_norm 3.0625 (2.2063/1.0873) mem 16099MB [2025-01-18 07:45:46 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][110/312] eta 0:01:39 lr 0.000901 time 0.4456 (0.4916) model_time 0.4452 (0.4683) loss 2.0501 (2.9234) grad_norm 1.3748 (2.2363/1.0792) mem 16099MB [2025-01-18 07:45:51 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][120/312] eta 0:01:33 lr 0.000900 time 0.4552 (0.4885) model_time 0.4548 (0.4671) loss 3.0303 (2.9312) grad_norm 2.3578 (2.2100/1.0459) mem 16099MB [2025-01-18 07:45:56 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][130/312] eta 0:01:28 lr 0.000900 time 0.4537 (0.4877) model_time 0.4533 (0.4680) loss 3.0581 (2.9321) grad_norm 3.8932 (2.2250/1.0370) mem 16099MB [2025-01-18 07:46:00 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][140/312] eta 0:01:23 lr 0.000899 time 0.4463 (0.4852) model_time 0.4458 (0.4668) loss 3.1908 (2.9266) grad_norm 3.9504 (2.2391/1.0274) mem 16099MB [2025-01-18 07:46:05 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][150/312] eta 0:01:18 lr 0.000899 time 0.4462 (0.4850) model_time 0.4458 (0.4678) loss 2.7367 (2.9210) grad_norm 3.1277 (2.2110/1.0140) mem 16099MB [2025-01-18 07:46:10 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][160/312] eta 0:01:13 lr 0.000898 time 0.4768 (0.4840) model_time 0.4764 (0.4679) loss 3.4523 (2.9420) grad_norm 1.9198 (2.2016/0.9985) mem 16099MB [2025-01-18 07:46:14 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][170/312] eta 0:01:08 lr 0.000898 time 0.4429 (0.4823) model_time 0.4425 (0.4671) loss 1.9996 (2.9452) grad_norm 2.0616 (2.1706/0.9841) mem 16099MB [2025-01-18 07:46:19 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][180/312] eta 0:01:03 lr 0.000897 time 0.4431 (0.4814) model_time 0.4429 (0.4670) loss 2.1870 (2.9452) grad_norm 3.6078 (2.1750/0.9769) mem 16099MB [2025-01-18 07:46:24 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][190/312] eta 0:00:58 lr 0.000897 time 0.5877 (0.4811) model_time 0.5876 (0.4674) loss 2.6522 (2.9435) grad_norm 1.5542 (2.1869/0.9759) mem 16099MB [2025-01-18 07:46:28 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][200/312] eta 0:00:53 lr 0.000896 time 0.4826 (0.4803) model_time 0.4822 (0.4673) loss 3.0120 (2.9441) grad_norm 2.5103 (2.1862/0.9590) mem 16099MB [2025-01-18 07:46:33 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][210/312] eta 0:00:48 lr 0.000896 time 0.4422 (0.4794) model_time 0.4417 (0.4670) loss 3.4121 (2.9455) grad_norm 1.3951 (2.1728/0.9499) mem 16099MB [2025-01-18 07:46:37 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][220/312] eta 0:00:44 lr 0.000895 time 0.4477 (0.4787) model_time 0.4476 (0.4668) loss 2.6547 (2.9344) grad_norm 1.3339 (2.1367/0.9487) mem 16099MB [2025-01-18 07:46:42 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][230/312] eta 0:00:39 lr 0.000894 time 0.4514 (0.4780) model_time 0.4510 (0.4666) loss 3.1580 (2.9319) grad_norm 1.0181 (2.1395/0.9529) mem 16099MB [2025-01-18 07:46:47 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][240/312] eta 0:00:34 lr 0.000894 time 0.4498 (0.4775) model_time 0.4493 (0.4666) loss 3.4582 (2.9290) grad_norm 3.4891 (2.1421/0.9623) mem 16099MB [2025-01-18 07:46:51 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][250/312] eta 0:00:29 lr 0.000893 time 0.4544 (0.4766) model_time 0.4540 (0.4661) loss 3.2712 (2.9263) grad_norm 4.2804 (2.1659/0.9710) mem 16099MB [2025-01-18 07:46:56 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][260/312] eta 0:00:24 lr 0.000893 time 0.4405 (0.4762) model_time 0.4400 (0.4661) loss 3.6482 (2.9307) grad_norm 2.2973 (2.1614/0.9605) mem 16099MB [2025-01-18 07:47:01 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][270/312] eta 0:00:19 lr 0.000892 time 0.4541 (0.4757) model_time 0.4536 (0.4659) loss 2.7159 (2.9327) grad_norm 3.3046 (2.1595/0.9531) mem 16099MB [2025-01-18 07:47:05 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][280/312] eta 0:00:15 lr 0.000892 time 0.4494 (0.4759) model_time 0.4490 (0.4664) loss 3.2268 (2.9413) grad_norm 0.9695 (2.1666/0.9523) mem 16099MB [2025-01-18 07:47:10 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][290/312] eta 0:00:10 lr 0.000891 time 0.4483 (0.4754) model_time 0.4482 (0.4663) loss 3.4913 (2.9466) grad_norm 3.7692 (2.1799/0.9471) mem 16099MB [2025-01-18 07:47:15 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][300/312] eta 0:00:05 lr 0.000891 time 0.4401 (0.4746) model_time 0.4400 (0.4658) loss 3.0179 (2.9464) grad_norm 1.3404 (2.1874/0.9429) mem 16099MB [2025-01-18 07:47:19 internimage_t_1k_224] (main.py 510): INFO Train: [207/300][310/312] eta 0:00:00 lr 0.000890 time 0.4386 (0.4736) model_time 0.4385 (0.4651) loss 3.1580 (2.9526) grad_norm 1.2731 (2.1975/0.9435) mem 16099MB [2025-01-18 07:47:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 207 training takes 0:02:27 [2025-01-18 07:47:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_207.pth saving...... [2025-01-18 07:47:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_207.pth saved !!! [2025-01-18 07:47:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.286 (7.286) Loss 0.7428 (0.7428) Acc@1 83.887 (83.887) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 07:47:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.990) Loss 1.0634 (0.8676) Acc@1 76.831 (81.507) Acc@5 94.092 (95.821) Mem 16099MB [2025-01-18 07:47:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:207] * Acc@1 81.360 Acc@5 95.843 [2025-01-18 07:47:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.4% [2025-01-18 07:47:32 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.44% [2025-01-18 07:47:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.251 (8.251) Loss 0.7787 (0.7787) Acc@1 84.985 (84.985) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 07:47:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.113) Loss 1.0364 (0.8931) Acc@1 78.198 (82.462) Acc@5 94.946 (96.220) Mem 16099MB [2025-01-18 07:47:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:207] * Acc@1 82.344 Acc@5 96.243 [2025-01-18 07:47:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.3% [2025-01-18 07:47:44 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.36% [2025-01-18 07:47:47 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][0/312] eta 0:17:03 lr 0.000890 time 3.2810 (3.2810) model_time 1.1031 (1.1031) loss 3.0328 (3.0328) grad_norm 2.3590 (2.3590/0.0000) mem 16099MB [2025-01-18 07:47:52 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][10/312] eta 0:03:41 lr 0.000889 time 0.5535 (0.7347) model_time 0.5534 (0.5364) loss 2.7739 (3.0644) grad_norm 1.0892 (1.4458/0.3553) mem 16099MB [2025-01-18 07:47:57 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][20/312] eta 0:02:55 lr 0.000889 time 0.4613 (0.6015) model_time 0.4609 (0.4973) loss 3.2739 (3.0094) grad_norm 1.6286 (1.6576/0.5207) mem 16099MB [2025-01-18 07:48:01 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][30/312] eta 0:02:36 lr 0.000888 time 0.4376 (0.5541) model_time 0.4372 (0.4833) loss 2.4107 (3.0214) grad_norm 1.5790 (1.7740/0.5649) mem 16099MB [2025-01-18 07:48:06 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][40/312] eta 0:02:25 lr 0.000888 time 0.4861 (0.5343) model_time 0.4857 (0.4807) loss 2.8406 (3.0384) grad_norm 3.0652 (2.0399/1.0102) mem 16099MB [2025-01-18 07:48:11 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][50/312] eta 0:02:16 lr 0.000887 time 0.4542 (0.5223) model_time 0.4541 (0.4791) loss 3.0920 (2.9891) grad_norm 5.2521 (2.4519/1.5215) mem 16099MB [2025-01-18 07:48:15 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][60/312] eta 0:02:08 lr 0.000887 time 0.4566 (0.5109) model_time 0.4562 (0.4748) loss 2.6664 (3.0006) grad_norm 2.0263 (2.4771/1.4835) mem 16099MB [2025-01-18 07:48:20 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][70/312] eta 0:02:02 lr 0.000886 time 0.5512 (0.5058) model_time 0.5511 (0.4747) loss 3.1213 (2.9803) grad_norm 2.0808 (2.4888/1.4078) mem 16099MB [2025-01-18 07:48:25 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][80/312] eta 0:01:56 lr 0.000886 time 0.4572 (0.5016) model_time 0.4568 (0.4742) loss 3.2568 (2.9933) grad_norm 2.6059 (2.4433/1.3605) mem 16099MB [2025-01-18 07:48:29 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][90/312] eta 0:01:50 lr 0.000885 time 0.4482 (0.4966) model_time 0.4478 (0.4722) loss 3.6020 (2.9953) grad_norm 5.5973 (2.5682/1.4740) mem 16099MB [2025-01-18 07:48:34 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][100/312] eta 0:01:44 lr 0.000885 time 0.4618 (0.4948) model_time 0.4614 (0.4727) loss 3.5367 (2.9984) grad_norm 1.7746 (2.5768/1.4489) mem 16099MB [2025-01-18 07:48:39 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][110/312] eta 0:01:39 lr 0.000884 time 0.4510 (0.4919) model_time 0.4508 (0.4718) loss 3.4147 (2.9858) grad_norm 2.2499 (2.6021/1.4170) mem 16099MB [2025-01-18 07:48:43 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][120/312] eta 0:01:33 lr 0.000883 time 0.4408 (0.4894) model_time 0.4407 (0.4709) loss 3.0022 (2.9637) grad_norm 1.6408 (2.6666/1.4907) mem 16099MB [2025-01-18 07:48:48 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][130/312] eta 0:01:28 lr 0.000883 time 0.4586 (0.4879) model_time 0.4585 (0.4708) loss 2.9137 (2.9757) grad_norm 2.3894 (2.6628/1.4857) mem 16099MB [2025-01-18 07:48:53 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][140/312] eta 0:01:23 lr 0.000882 time 0.4353 (0.4859) model_time 0.4351 (0.4700) loss 1.8103 (2.9596) grad_norm 1.4933 (2.6498/1.4754) mem 16099MB [2025-01-18 07:48:57 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][150/312] eta 0:01:18 lr 0.000882 time 0.4466 (0.4848) model_time 0.4461 (0.4699) loss 3.6433 (2.9638) grad_norm 0.9512 (2.6181/1.4408) mem 16099MB [2025-01-18 07:49:02 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][160/312] eta 0:01:13 lr 0.000881 time 0.4418 (0.4850) model_time 0.4417 (0.4711) loss 2.9695 (2.9662) grad_norm 1.5096 (2.5559/1.4213) mem 16099MB [2025-01-18 07:49:07 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][170/312] eta 0:01:08 lr 0.000881 time 0.4557 (0.4840) model_time 0.4556 (0.4708) loss 3.5453 (2.9752) grad_norm 1.2963 (2.5133/1.3956) mem 16099MB [2025-01-18 07:49:11 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][180/312] eta 0:01:03 lr 0.000880 time 0.4498 (0.4827) model_time 0.4494 (0.4702) loss 3.0624 (2.9607) grad_norm 4.3103 (2.4877/1.3782) mem 16099MB [2025-01-18 07:49:16 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][190/312] eta 0:00:58 lr 0.000880 time 0.4562 (0.4823) model_time 0.4558 (0.4704) loss 3.5613 (2.9668) grad_norm 1.9500 (2.5088/1.3720) mem 16099MB [2025-01-18 07:49:21 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][200/312] eta 0:00:53 lr 0.000879 time 0.4447 (0.4813) model_time 0.4445 (0.4700) loss 2.7539 (2.9669) grad_norm 1.9738 (2.4979/1.3850) mem 16099MB [2025-01-18 07:49:25 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][210/312] eta 0:00:48 lr 0.000879 time 0.4637 (0.4804) model_time 0.4636 (0.4697) loss 3.5782 (2.9745) grad_norm 2.3844 (2.4758/1.3619) mem 16099MB [2025-01-18 07:49:30 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][220/312] eta 0:00:44 lr 0.000878 time 0.5543 (0.4800) model_time 0.5538 (0.4697) loss 3.2855 (2.9809) grad_norm 3.4606 (2.4429/1.3468) mem 16099MB [2025-01-18 07:49:35 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][230/312] eta 0:00:39 lr 0.000877 time 0.5008 (0.4792) model_time 0.5003 (0.4694) loss 2.4017 (2.9757) grad_norm 1.5348 (2.4262/1.3238) mem 16099MB [2025-01-18 07:49:39 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][240/312] eta 0:00:34 lr 0.000877 time 0.5751 (0.4788) model_time 0.5749 (0.4694) loss 2.9889 (2.9697) grad_norm 3.1943 (2.3989/1.3086) mem 16099MB [2025-01-18 07:49:44 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][250/312] eta 0:00:29 lr 0.000876 time 0.4510 (0.4785) model_time 0.4508 (0.4694) loss 3.3037 (2.9679) grad_norm 1.3061 (2.3749/1.2964) mem 16099MB [2025-01-18 07:49:49 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][260/312] eta 0:00:24 lr 0.000876 time 0.4529 (0.4775) model_time 0.4528 (0.4688) loss 2.9894 (2.9728) grad_norm 1.3129 (2.3765/1.2801) mem 16099MB [2025-01-18 07:49:53 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][270/312] eta 0:00:20 lr 0.000875 time 0.4453 (0.4769) model_time 0.4449 (0.4684) loss 3.2242 (2.9730) grad_norm 1.7997 (2.3577/1.2660) mem 16099MB [2025-01-18 07:49:58 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][280/312] eta 0:00:15 lr 0.000875 time 0.4448 (0.4761) model_time 0.4447 (0.4679) loss 3.5972 (2.9809) grad_norm 3.5986 (2.3552/1.2600) mem 16099MB [2025-01-18 07:50:03 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][290/312] eta 0:00:10 lr 0.000874 time 0.4531 (0.4759) model_time 0.4526 (0.4680) loss 3.4385 (2.9916) grad_norm 1.6816 (2.3604/1.2590) mem 16099MB [2025-01-18 07:50:07 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][300/312] eta 0:00:05 lr 0.000874 time 0.4445 (0.4754) model_time 0.4444 (0.4677) loss 3.1638 (2.9964) grad_norm 1.8160 (2.3596/1.2478) mem 16099MB [2025-01-18 07:50:12 internimage_t_1k_224] (main.py 510): INFO Train: [208/300][310/312] eta 0:00:00 lr 0.000873 time 0.4385 (0.4747) model_time 0.4384 (0.4673) loss 3.1807 (3.0040) grad_norm 1.5521 (2.3764/1.2429) mem 16099MB [2025-01-18 07:50:12 internimage_t_1k_224] (main.py 519): INFO EPOCH 208 training takes 0:02:28 [2025-01-18 07:50:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_208.pth saving...... [2025-01-18 07:50:13 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_208.pth saved !!! [2025-01-18 07:50:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.389 (7.389) Loss 0.7397 (0.7397) Acc@1 84.277 (84.277) Acc@5 97.070 (97.070) Mem 16099MB [2025-01-18 07:50:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.999) Loss 1.0157 (0.8649) Acc@1 77.466 (81.705) Acc@5 94.336 (95.774) Mem 16099MB [2025-01-18 07:50:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:208] * Acc@1 81.534 Acc@5 95.797 [2025-01-18 07:50:24 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.5% [2025-01-18 07:50:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 07:50:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 07:50:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.53% [2025-01-18 07:50:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.294 (7.294) Loss 0.7777 (0.7777) Acc@1 85.034 (85.034) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 07:50:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.996) Loss 1.0352 (0.8920) Acc@1 78.149 (82.466) Acc@5 94.995 (96.218) Mem 16099MB [2025-01-18 07:50:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:208] * Acc@1 82.348 Acc@5 96.241 [2025-01-18 07:50:37 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.3% [2025-01-18 07:50:37 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.36% [2025-01-18 07:50:40 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][0/312] eta 0:16:44 lr 0.000873 time 3.2207 (3.2207) model_time 0.8622 (0.8622) loss 3.8317 (3.8317) grad_norm 2.5994 (2.5994/0.0000) mem 16099MB [2025-01-18 07:50:45 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][10/312] eta 0:03:43 lr 0.000872 time 0.4644 (0.7416) model_time 0.4640 (0.5268) loss 2.9539 (2.8726) grad_norm 1.7271 (2.5087/1.1942) mem 16099MB [2025-01-18 07:50:49 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][20/312] eta 0:02:57 lr 0.000872 time 0.4677 (0.6076) model_time 0.4675 (0.4950) loss 1.9410 (3.0060) grad_norm 3.1980 (2.3433/1.0328) mem 16099MB [2025-01-18 07:50:54 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][30/312] eta 0:02:39 lr 0.000871 time 0.4580 (0.5644) model_time 0.4575 (0.4880) loss 3.2998 (2.9430) grad_norm 1.3661 (2.2566/0.9936) mem 16099MB [2025-01-18 07:50:59 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][40/312] eta 0:02:26 lr 0.000871 time 0.4482 (0.5394) model_time 0.4478 (0.4815) loss 2.2303 (2.9401) grad_norm 1.0126 (2.3009/1.0119) mem 16099MB [2025-01-18 07:51:03 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][50/312] eta 0:02:17 lr 0.000870 time 0.4403 (0.5243) model_time 0.4402 (0.4778) loss 2.0969 (2.9709) grad_norm 1.2114 (2.2659/0.9736) mem 16099MB [2025-01-18 07:51:08 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][60/312] eta 0:02:09 lr 0.000870 time 0.5426 (0.5147) model_time 0.5424 (0.4757) loss 3.8030 (2.9944) grad_norm 2.2045 (2.2749/0.9432) mem 16099MB [2025-01-18 07:51:13 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][70/312] eta 0:02:03 lr 0.000869 time 0.4520 (0.5090) model_time 0.4519 (0.4755) loss 3.0456 (3.0054) grad_norm 3.5577 (2.3692/1.0111) mem 16099MB [2025-01-18 07:51:17 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][80/312] eta 0:01:56 lr 0.000869 time 0.4482 (0.5022) model_time 0.4481 (0.4728) loss 1.7248 (2.9808) grad_norm 4.7068 (2.4840/1.1476) mem 16099MB [2025-01-18 07:51:22 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][90/312] eta 0:01:50 lr 0.000868 time 0.4723 (0.4971) model_time 0.4719 (0.4708) loss 2.4421 (2.9815) grad_norm 1.5706 (2.4679/1.1197) mem 16099MB [2025-01-18 07:51:27 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][100/312] eta 0:01:44 lr 0.000868 time 0.4480 (0.4937) model_time 0.4475 (0.4700) loss 3.4252 (2.9571) grad_norm 1.7158 (2.4027/1.0956) mem 16099MB [2025-01-18 07:51:31 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][110/312] eta 0:01:39 lr 0.000867 time 0.4498 (0.4908) model_time 0.4493 (0.4692) loss 2.8571 (2.9612) grad_norm 1.5281 (2.3960/1.0804) mem 16099MB [2025-01-18 07:51:36 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][120/312] eta 0:01:33 lr 0.000867 time 0.4488 (0.4895) model_time 0.4484 (0.4696) loss 1.9378 (2.9486) grad_norm 1.6231 (2.3657/1.0615) mem 16099MB [2025-01-18 07:51:41 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][130/312] eta 0:01:28 lr 0.000866 time 0.4657 (0.4875) model_time 0.4654 (0.4691) loss 2.1340 (2.9312) grad_norm 2.1887 (2.3495/1.0278) mem 16099MB [2025-01-18 07:51:45 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][140/312] eta 0:01:23 lr 0.000865 time 0.4488 (0.4873) model_time 0.4486 (0.4702) loss 3.0449 (2.9393) grad_norm 1.1438 (2.3099/1.0086) mem 16099MB [2025-01-18 07:51:50 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][150/312] eta 0:01:18 lr 0.000865 time 0.4481 (0.4861) model_time 0.4476 (0.4702) loss 2.9828 (2.9387) grad_norm 4.0952 (2.3138/1.0163) mem 16099MB [2025-01-18 07:51:55 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][160/312] eta 0:01:13 lr 0.000864 time 0.4451 (0.4852) model_time 0.4449 (0.4702) loss 3.5400 (2.9201) grad_norm 3.1923 (2.3759/1.0920) mem 16099MB [2025-01-18 07:51:59 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][170/312] eta 0:01:08 lr 0.000864 time 0.4542 (0.4834) model_time 0.4537 (0.4692) loss 3.3339 (2.9333) grad_norm 1.8907 (2.3760/1.0804) mem 16099MB [2025-01-18 07:52:04 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][180/312] eta 0:01:03 lr 0.000863 time 0.4623 (0.4827) model_time 0.4618 (0.4693) loss 2.3771 (2.9324) grad_norm 1.4490 (2.3435/1.0669) mem 16099MB [2025-01-18 07:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][190/312] eta 0:00:58 lr 0.000863 time 0.4527 (0.4813) model_time 0.4522 (0.4685) loss 2.9788 (2.9385) grad_norm 3.5046 (2.3337/1.0609) mem 16099MB [2025-01-18 07:52:13 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][200/312] eta 0:00:53 lr 0.000862 time 0.4455 (0.4808) model_time 0.4450 (0.4687) loss 2.1827 (2.9432) grad_norm 3.5430 (2.3241/1.0513) mem 16099MB [2025-01-18 07:52:18 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][210/312] eta 0:00:48 lr 0.000862 time 0.4446 (0.4800) model_time 0.4441 (0.4685) loss 3.1866 (2.9570) grad_norm 2.0477 (2.3281/1.0386) mem 16099MB [2025-01-18 07:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][220/312] eta 0:00:44 lr 0.000861 time 0.4521 (0.4788) model_time 0.4516 (0.4678) loss 3.3852 (2.9638) grad_norm 1.6474 (2.3503/1.0392) mem 16099MB [2025-01-18 07:52:27 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][230/312] eta 0:00:39 lr 0.000861 time 0.4979 (0.4784) model_time 0.4975 (0.4678) loss 3.6331 (2.9746) grad_norm 3.3547 (2.3570/1.0337) mem 16099MB [2025-01-18 07:52:32 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][240/312] eta 0:00:34 lr 0.000860 time 0.5411 (0.4778) model_time 0.5407 (0.4676) loss 2.5809 (2.9757) grad_norm 1.9896 (2.3384/1.0223) mem 16099MB [2025-01-18 07:52:37 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][250/312] eta 0:00:29 lr 0.000860 time 0.5643 (0.4784) model_time 0.5638 (0.4686) loss 3.2903 (2.9805) grad_norm 2.6248 (2.3425/1.0201) mem 16099MB [2025-01-18 07:52:41 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][260/312] eta 0:00:24 lr 0.000859 time 0.4591 (0.4774) model_time 0.4586 (0.4680) loss 3.4436 (2.9867) grad_norm 1.0848 (2.3403/1.0220) mem 16099MB [2025-01-18 07:52:46 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][270/312] eta 0:00:20 lr 0.000858 time 0.4607 (0.4767) model_time 0.4602 (0.4676) loss 3.0933 (2.9784) grad_norm 1.2801 (2.3439/1.0376) mem 16099MB [2025-01-18 07:52:51 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][280/312] eta 0:00:15 lr 0.000858 time 0.4537 (0.4765) model_time 0.4532 (0.4677) loss 2.6501 (2.9856) grad_norm 2.9386 (2.3989/1.0789) mem 16099MB [2025-01-18 07:52:55 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][290/312] eta 0:00:10 lr 0.000857 time 0.4502 (0.4757) model_time 0.4498 (0.4672) loss 2.1710 (2.9880) grad_norm 0.9473 (2.3860/1.0765) mem 16099MB [2025-01-18 07:53:00 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][300/312] eta 0:00:05 lr 0.000857 time 0.4435 (0.4755) model_time 0.4434 (0.4673) loss 3.0066 (2.9941) grad_norm 4.5958 (2.4120/1.1162) mem 16099MB [2025-01-18 07:53:05 internimage_t_1k_224] (main.py 510): INFO Train: [209/300][310/312] eta 0:00:00 lr 0.000856 time 0.5518 (0.4763) model_time 0.5517 (0.4683) loss 3.2073 (2.9988) grad_norm 1.8753 (2.4527/1.1623) mem 16099MB [2025-01-18 07:53:05 internimage_t_1k_224] (main.py 519): INFO EPOCH 209 training takes 0:02:28 [2025-01-18 07:53:05 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_209.pth saving...... [2025-01-18 07:53:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_209.pth saved !!! [2025-01-18 07:53:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.585 (7.585) Loss 0.7380 (0.7380) Acc@1 83.594 (83.594) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 07:53:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.005) Loss 0.9981 (0.8374) Acc@1 77.808 (81.805) Acc@5 94.263 (95.832) Mem 16099MB [2025-01-18 07:53:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:209] * Acc@1 81.652 Acc@5 95.839 [2025-01-18 07:53:18 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.7% [2025-01-18 07:53:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 07:53:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 07:53:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.65% [2025-01-18 07:53:26 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.376 (7.376) Loss 0.7764 (0.7764) Acc@1 85.083 (85.083) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 07:53:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.003) Loss 1.0333 (0.8905) Acc@1 78.223 (82.500) Acc@5 94.995 (96.220) Mem 16099MB [2025-01-18 07:53:30 internimage_t_1k_224] (main.py 575): INFO [Epoch:209] * Acc@1 82.378 Acc@5 96.243 [2025-01-18 07:53:30 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.4% [2025-01-18 07:53:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:53:31 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:53:31 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.38% [2025-01-18 07:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][0/312] eta 0:13:46 lr 0.000856 time 2.6499 (2.6499) model_time 0.4788 (0.4788) loss 3.6269 (3.6269) grad_norm 2.0272 (2.0272/0.0000) mem 16099MB [2025-01-18 07:53:39 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][10/312] eta 0:03:17 lr 0.000856 time 0.4485 (0.6537) model_time 0.4481 (0.4560) loss 2.8529 (3.0002) grad_norm 2.9552 (2.4351/1.0877) mem 16099MB [2025-01-18 07:53:43 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][20/312] eta 0:02:44 lr 0.000855 time 0.5702 (0.5649) model_time 0.5698 (0.4612) loss 3.1589 (3.1325) grad_norm 1.2637 (2.2580/0.9885) mem 16099MB [2025-01-18 07:53:48 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][30/312] eta 0:02:30 lr 0.000855 time 0.4500 (0.5332) model_time 0.4498 (0.4628) loss 3.0882 (3.0316) grad_norm 1.1851 (2.0387/0.9193) mem 16099MB [2025-01-18 07:53:53 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][40/312] eta 0:02:20 lr 0.000854 time 0.4912 (0.5171) model_time 0.4910 (0.4638) loss 3.1959 (3.0511) grad_norm 4.0185 (2.1042/0.9116) mem 16099MB [2025-01-18 07:53:57 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][50/312] eta 0:02:13 lr 0.000853 time 0.4509 (0.5078) model_time 0.4505 (0.4649) loss 2.7489 (3.0418) grad_norm 3.5825 (2.2675/1.1143) mem 16099MB [2025-01-18 07:54:02 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][60/312] eta 0:02:05 lr 0.000853 time 0.4503 (0.4998) model_time 0.4499 (0.4639) loss 3.6038 (3.0284) grad_norm 2.5387 (2.3358/1.1512) mem 16099MB [2025-01-18 07:54:06 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][70/312] eta 0:01:59 lr 0.000852 time 0.4454 (0.4934) model_time 0.4450 (0.4624) loss 1.9886 (2.9988) grad_norm 1.6534 (2.3860/1.1367) mem 16099MB [2025-01-18 07:54:11 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][80/312] eta 0:01:53 lr 0.000852 time 0.4755 (0.4908) model_time 0.4753 (0.4637) loss 3.1413 (2.9654) grad_norm 2.4607 (2.3488/1.0934) mem 16099MB [2025-01-18 07:54:16 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][90/312] eta 0:01:48 lr 0.000851 time 0.4591 (0.4867) model_time 0.4587 (0.4625) loss 3.2232 (2.9836) grad_norm 1.4196 (2.3022/1.0594) mem 16099MB [2025-01-18 07:54:20 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][100/312] eta 0:01:42 lr 0.000851 time 0.4479 (0.4843) model_time 0.4474 (0.4625) loss 3.1854 (2.9739) grad_norm 1.7323 (2.2701/1.0314) mem 16099MB [2025-01-18 07:54:25 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][110/312] eta 0:01:37 lr 0.000850 time 0.4499 (0.4814) model_time 0.4495 (0.4614) loss 3.4947 (2.9609) grad_norm 1.4532 (2.2348/1.0129) mem 16099MB [2025-01-18 07:54:29 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][120/312] eta 0:01:32 lr 0.000850 time 0.4553 (0.4792) model_time 0.4549 (0.4609) loss 3.3769 (2.9534) grad_norm 2.4646 (2.2266/0.9813) mem 16099MB [2025-01-18 07:54:34 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][130/312] eta 0:01:27 lr 0.000849 time 0.4564 (0.4781) model_time 0.4562 (0.4611) loss 2.3712 (2.9407) grad_norm 3.2589 (2.2020/0.9732) mem 16099MB [2025-01-18 07:54:39 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][140/312] eta 0:01:22 lr 0.000849 time 0.5350 (0.4769) model_time 0.5346 (0.4611) loss 3.4280 (2.9263) grad_norm 3.2354 (2.2452/1.0181) mem 16099MB [2025-01-18 07:54:43 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][150/312] eta 0:01:17 lr 0.000848 time 0.4499 (0.4772) model_time 0.4494 (0.4625) loss 3.8035 (2.9449) grad_norm 3.0629 (2.2761/0.9968) mem 16099MB [2025-01-18 07:54:48 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][160/312] eta 0:01:12 lr 0.000848 time 0.4488 (0.4769) model_time 0.4486 (0.4630) loss 2.7281 (2.9423) grad_norm 2.3368 (2.2549/0.9775) mem 16099MB [2025-01-18 07:54:53 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][170/312] eta 0:01:07 lr 0.000847 time 0.4510 (0.4761) model_time 0.4509 (0.4630) loss 3.5772 (2.9405) grad_norm 1.8730 (2.2358/0.9709) mem 16099MB [2025-01-18 07:54:57 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][180/312] eta 0:01:02 lr 0.000847 time 0.4504 (0.4753) model_time 0.4500 (0.4630) loss 3.2985 (2.9329) grad_norm 3.8281 (2.2491/0.9896) mem 16099MB [2025-01-18 07:55:02 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][190/312] eta 0:00:57 lr 0.000846 time 0.4416 (0.4742) model_time 0.4415 (0.4624) loss 2.6854 (2.9320) grad_norm 3.0235 (2.3428/1.1524) mem 16099MB [2025-01-18 07:55:07 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][200/312] eta 0:00:53 lr 0.000845 time 0.4500 (0.4732) model_time 0.4499 (0.4620) loss 3.2300 (2.9298) grad_norm 1.6361 (2.3472/1.1298) mem 16099MB [2025-01-18 07:55:11 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][210/312] eta 0:00:48 lr 0.000845 time 0.5305 (0.4731) model_time 0.5300 (0.4625) loss 2.8275 (2.9312) grad_norm 3.1472 (2.3684/1.1281) mem 16099MB [2025-01-18 07:55:16 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][220/312] eta 0:00:43 lr 0.000844 time 0.4527 (0.4726) model_time 0.4523 (0.4624) loss 2.4487 (2.9186) grad_norm 1.4124 (2.3416/1.1126) mem 16099MB [2025-01-18 07:55:21 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][230/312] eta 0:00:38 lr 0.000844 time 0.4511 (0.4724) model_time 0.4506 (0.4626) loss 2.9098 (2.9228) grad_norm 2.4034 (2.3271/1.0963) mem 16099MB [2025-01-18 07:55:25 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][240/312] eta 0:00:33 lr 0.000843 time 0.4516 (0.4719) model_time 0.4515 (0.4625) loss 2.3150 (2.9313) grad_norm 1.8561 (2.3370/1.0982) mem 16099MB [2025-01-18 07:55:30 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][250/312] eta 0:00:29 lr 0.000843 time 0.4598 (0.4720) model_time 0.4597 (0.4629) loss 3.3426 (2.9409) grad_norm 2.3206 (2.3344/1.0832) mem 16099MB [2025-01-18 07:55:35 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][260/312] eta 0:00:24 lr 0.000842 time 0.4490 (0.4717) model_time 0.4486 (0.4630) loss 3.3877 (2.9248) grad_norm 1.1552 (2.3373/1.1091) mem 16099MB [2025-01-18 07:55:39 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][270/312] eta 0:00:19 lr 0.000842 time 0.4580 (0.4717) model_time 0.4576 (0.4633) loss 3.2430 (2.9363) grad_norm 1.8485 (2.3322/1.0948) mem 16099MB [2025-01-18 07:55:44 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][280/312] eta 0:00:15 lr 0.000841 time 0.4514 (0.4715) model_time 0.4509 (0.4634) loss 2.7764 (2.9406) grad_norm 1.1124 (2.2932/1.0953) mem 16099MB [2025-01-18 07:55:48 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][290/312] eta 0:00:10 lr 0.000841 time 0.4403 (0.4710) model_time 0.4398 (0.4631) loss 1.8981 (2.9376) grad_norm 1.8334 (2.2733/1.0851) mem 16099MB [2025-01-18 07:55:53 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][300/312] eta 0:00:05 lr 0.000840 time 0.4385 (0.4711) model_time 0.4384 (0.4635) loss 3.0761 (2.9324) grad_norm 3.6779 (2.2665/1.0756) mem 16099MB [2025-01-18 07:55:58 internimage_t_1k_224] (main.py 510): INFO Train: [210/300][310/312] eta 0:00:00 lr 0.000840 time 0.4386 (0.4709) model_time 0.4385 (0.4635) loss 1.8349 (2.9261) grad_norm 3.6447 (2.2808/1.0844) mem 16099MB [2025-01-18 07:55:58 internimage_t_1k_224] (main.py 519): INFO EPOCH 210 training takes 0:02:26 [2025-01-18 07:55:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_210.pth saving...... [2025-01-18 07:55:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_210.pth saved !!! [2025-01-18 07:56:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.156 (7.156) Loss 0.7260 (0.7260) Acc@1 83.960 (83.960) Acc@5 96.826 (96.826) Mem 16099MB [2025-01-18 07:56:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.973) Loss 1.0210 (0.8472) Acc@1 77.075 (81.723) Acc@5 94.556 (95.761) Mem 16099MB [2025-01-18 07:56:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:210] * Acc@1 81.578 Acc@5 95.797 [2025-01-18 07:56:10 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.6% [2025-01-18 07:56:10 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.65% [2025-01-18 07:56:19 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.221 (8.221) Loss 0.7751 (0.7751) Acc@1 85.083 (85.083) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 07:56:22 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.098) Loss 1.0314 (0.8892) Acc@1 78.198 (82.535) Acc@5 95.020 (96.231) Mem 16099MB [2025-01-18 07:56:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:210] * Acc@1 82.416 Acc@5 96.249 [2025-01-18 07:56:23 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.4% [2025-01-18 07:56:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:56:24 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:56:24 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.42% [2025-01-18 07:56:27 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][0/312] eta 0:14:40 lr 0.000839 time 2.8219 (2.8219) model_time 0.4917 (0.4917) loss 2.6496 (2.6496) grad_norm 2.4123 (2.4123/0.0000) mem 16099MB [2025-01-18 07:56:32 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][10/312] eta 0:03:24 lr 0.000839 time 0.4698 (0.6787) model_time 0.4697 (0.4666) loss 3.5672 (2.8557) grad_norm 1.4056 (2.1347/0.6070) mem 16099MB [2025-01-18 07:56:36 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][20/312] eta 0:02:49 lr 0.000838 time 0.4531 (0.5811) model_time 0.4529 (0.4699) loss 3.8812 (2.9617) grad_norm 2.3286 (2.5240/1.0121) mem 16099MB [2025-01-18 07:56:41 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][30/312] eta 0:02:33 lr 0.000838 time 0.4548 (0.5438) model_time 0.4546 (0.4683) loss 2.3190 (2.9714) grad_norm 2.4277 (2.3468/0.8938) mem 16099MB [2025-01-18 07:56:46 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][40/312] eta 0:02:24 lr 0.000837 time 0.5593 (0.5311) model_time 0.5591 (0.4740) loss 3.0041 (2.9672) grad_norm 2.2902 (2.1794/0.8482) mem 16099MB [2025-01-18 07:56:50 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][50/312] eta 0:02:15 lr 0.000837 time 0.4463 (0.5172) model_time 0.4461 (0.4712) loss 3.3702 (2.9942) grad_norm 1.1206 (2.1601/0.8601) mem 16099MB [2025-01-18 07:56:55 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][60/312] eta 0:02:07 lr 0.000836 time 0.4583 (0.5067) model_time 0.4578 (0.4682) loss 2.5377 (2.9649) grad_norm 2.4168 (2.2482/0.9999) mem 16099MB [2025-01-18 07:57:00 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][70/312] eta 0:02:01 lr 0.000836 time 0.4539 (0.5007) model_time 0.4534 (0.4675) loss 3.9089 (2.9724) grad_norm 1.9101 (2.1756/0.9629) mem 16099MB [2025-01-18 07:57:04 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][80/312] eta 0:01:54 lr 0.000835 time 0.4486 (0.4954) model_time 0.4481 (0.4663) loss 3.5711 (2.9972) grad_norm 3.4915 (2.1685/0.9503) mem 16099MB [2025-01-18 07:57:09 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][90/312] eta 0:01:49 lr 0.000835 time 0.4489 (0.4932) model_time 0.4487 (0.4670) loss 3.3271 (3.0096) grad_norm 2.8485 (2.1732/0.9265) mem 16099MB [2025-01-18 07:57:13 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][100/312] eta 0:01:43 lr 0.000834 time 0.4615 (0.4894) model_time 0.4613 (0.4658) loss 1.8823 (2.9976) grad_norm 2.8523 (2.2721/1.0843) mem 16099MB [2025-01-18 07:57:18 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][110/312] eta 0:01:38 lr 0.000834 time 0.4520 (0.4867) model_time 0.4519 (0.4651) loss 3.6166 (3.0114) grad_norm 2.8473 (2.4100/1.2065) mem 16099MB [2025-01-18 07:57:23 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][120/312] eta 0:01:33 lr 0.000833 time 0.4795 (0.4848) model_time 0.4794 (0.4650) loss 3.0282 (2.9894) grad_norm 1.4904 (2.3447/1.1813) mem 16099MB [2025-01-18 07:57:27 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][130/312] eta 0:01:27 lr 0.000833 time 0.4394 (0.4834) model_time 0.4392 (0.4651) loss 2.6833 (2.9813) grad_norm 0.9177 (2.3471/1.1534) mem 16099MB [2025-01-18 07:57:32 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][140/312] eta 0:01:22 lr 0.000832 time 0.4437 (0.4820) model_time 0.4432 (0.4649) loss 3.2792 (2.9654) grad_norm 1.6920 (2.2965/1.1346) mem 16099MB [2025-01-18 07:57:37 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][150/312] eta 0:01:17 lr 0.000831 time 0.4571 (0.4812) model_time 0.4567 (0.4653) loss 2.5338 (2.9487) grad_norm 2.1260 (2.2856/1.1138) mem 16099MB [2025-01-18 07:57:41 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][160/312] eta 0:01:12 lr 0.000831 time 0.4507 (0.4802) model_time 0.4503 (0.4652) loss 3.2209 (2.9679) grad_norm 1.5015 (2.2766/1.0972) mem 16099MB [2025-01-18 07:57:46 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][170/312] eta 0:01:08 lr 0.000830 time 0.4397 (0.4800) model_time 0.4395 (0.4659) loss 3.0173 (2.9620) grad_norm 2.0306 (2.3050/1.1037) mem 16099MB [2025-01-18 07:57:51 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][180/312] eta 0:01:03 lr 0.000830 time 0.4623 (0.4795) model_time 0.4618 (0.4661) loss 2.8689 (2.9643) grad_norm 4.4805 (2.3606/1.1231) mem 16099MB [2025-01-18 07:57:56 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][190/312] eta 0:00:58 lr 0.000829 time 0.4728 (0.4799) model_time 0.4727 (0.4672) loss 3.1731 (2.9530) grad_norm 3.0857 (2.4173/1.1517) mem 16099MB [2025-01-18 07:58:00 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][200/312] eta 0:00:53 lr 0.000829 time 0.4429 (0.4787) model_time 0.4423 (0.4666) loss 2.2356 (2.9569) grad_norm 1.5311 (2.4218/1.1356) mem 16099MB [2025-01-18 07:58:05 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][210/312] eta 0:00:48 lr 0.000828 time 0.5579 (0.4784) model_time 0.5577 (0.4669) loss 3.2300 (2.9558) grad_norm 1.8152 (2.4089/1.1149) mem 16099MB [2025-01-18 07:58:10 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][220/312] eta 0:00:43 lr 0.000828 time 0.4636 (0.4777) model_time 0.4631 (0.4666) loss 3.0389 (2.9587) grad_norm 2.7919 (2.4014/1.1049) mem 16099MB [2025-01-18 07:58:14 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][230/312] eta 0:00:39 lr 0.000827 time 0.4857 (0.4776) model_time 0.4852 (0.4671) loss 3.2673 (2.9554) grad_norm 2.5324 (2.4284/1.1093) mem 16099MB [2025-01-18 07:58:19 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][240/312] eta 0:00:34 lr 0.000827 time 0.4620 (0.4767) model_time 0.4615 (0.4665) loss 3.2075 (2.9561) grad_norm 2.1648 (2.4321/1.1009) mem 16099MB [2025-01-18 07:58:23 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][250/312] eta 0:00:29 lr 0.000826 time 0.4508 (0.4757) model_time 0.4506 (0.4659) loss 3.7096 (2.9669) grad_norm 1.2696 (2.4094/1.0959) mem 16099MB [2025-01-18 07:58:28 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][260/312] eta 0:00:24 lr 0.000826 time 0.4593 (0.4752) model_time 0.4589 (0.4658) loss 2.8338 (2.9664) grad_norm 1.7153 (2.4017/1.0811) mem 16099MB [2025-01-18 07:58:33 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][270/312] eta 0:00:19 lr 0.000825 time 0.4471 (0.4749) model_time 0.4469 (0.4659) loss 2.1555 (2.9682) grad_norm 1.1937 (2.4034/1.0752) mem 16099MB [2025-01-18 07:58:38 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][280/312] eta 0:00:15 lr 0.000825 time 0.4466 (0.4752) model_time 0.4461 (0.4665) loss 2.5242 (2.9743) grad_norm 3.1146 (2.4057/1.0660) mem 16099MB [2025-01-18 07:58:42 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][290/312] eta 0:00:10 lr 0.000824 time 0.4597 (0.4751) model_time 0.4593 (0.4666) loss 2.4663 (2.9676) grad_norm 2.5749 (2.4155/1.0718) mem 16099MB [2025-01-18 07:58:47 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][300/312] eta 0:00:05 lr 0.000824 time 0.4394 (0.4745) model_time 0.4393 (0.4663) loss 2.5713 (2.9714) grad_norm 3.8171 (2.4174/1.0632) mem 16099MB [2025-01-18 07:58:51 internimage_t_1k_224] (main.py 510): INFO Train: [211/300][310/312] eta 0:00:00 lr 0.000823 time 0.4400 (0.4738) model_time 0.4399 (0.4658) loss 2.7678 (2.9734) grad_norm 3.1402 (2.4144/1.0652) mem 16099MB [2025-01-18 07:58:52 internimage_t_1k_224] (main.py 519): INFO EPOCH 211 training takes 0:02:27 [2025-01-18 07:58:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_211.pth saving...... [2025-01-18 07:58:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_211.pth saved !!! [2025-01-18 07:59:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.201 (7.201) Loss 0.7386 (0.7386) Acc@1 83.887 (83.887) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 07:59:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.976) Loss 1.0273 (0.8624) Acc@1 76.978 (81.630) Acc@5 94.360 (95.801) Mem 16099MB [2025-01-18 07:59:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:211] * Acc@1 81.498 Acc@5 95.847 [2025-01-18 07:59:04 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.5% [2025-01-18 07:59:04 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.65% [2025-01-18 07:59:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.121 (8.121) Loss 0.7737 (0.7737) Acc@1 85.059 (85.059) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 07:59:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.086) Loss 1.0297 (0.8879) Acc@1 78.223 (82.551) Acc@5 95.020 (96.240) Mem 16099MB [2025-01-18 07:59:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:211] * Acc@1 82.438 Acc@5 96.257 [2025-01-18 07:59:16 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.4% [2025-01-18 07:59:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 07:59:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 07:59:17 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.44% [2025-01-18 07:59:20 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][0/312] eta 0:14:31 lr 0.000823 time 2.7946 (2.7946) model_time 0.4729 (0.4729) loss 3.2974 (3.2974) grad_norm 1.1017 (1.1017/0.0000) mem 16099MB [2025-01-18 07:59:25 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][10/312] eta 0:03:22 lr 0.000822 time 0.4602 (0.6704) model_time 0.4597 (0.4590) loss 2.8969 (2.9483) grad_norm 1.7427 (2.0846/0.9281) mem 16099MB [2025-01-18 07:59:29 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][20/312] eta 0:02:46 lr 0.000822 time 0.4599 (0.5691) model_time 0.4597 (0.4582) loss 3.4055 (3.0531) grad_norm 4.8308 (2.2507/0.9891) mem 16099MB [2025-01-18 07:59:34 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][30/312] eta 0:02:32 lr 0.000821 time 0.4601 (0.5413) model_time 0.4597 (0.4660) loss 2.8788 (3.0300) grad_norm 2.0074 (2.6432/1.3278) mem 16099MB [2025-01-18 07:59:39 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][40/312] eta 0:02:22 lr 0.000821 time 0.4484 (0.5225) model_time 0.4482 (0.4655) loss 2.2680 (2.9573) grad_norm 2.7001 (2.9675/1.5616) mem 16099MB [2025-01-18 07:59:44 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][50/312] eta 0:02:15 lr 0.000820 time 0.5467 (0.5168) model_time 0.5462 (0.4709) loss 2.8896 (2.9673) grad_norm 4.4421 (2.9473/1.4579) mem 16099MB [2025-01-18 07:59:48 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][60/312] eta 0:02:08 lr 0.000820 time 0.4464 (0.5101) model_time 0.4462 (0.4716) loss 2.2452 (2.9906) grad_norm 2.2792 (2.8535/1.4059) mem 16099MB [2025-01-18 07:59:53 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][70/312] eta 0:02:01 lr 0.000819 time 0.4451 (0.5022) model_time 0.4446 (0.4691) loss 2.1359 (2.9874) grad_norm 2.4927 (2.7725/1.3760) mem 16099MB [2025-01-18 07:59:58 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][80/312] eta 0:01:55 lr 0.000819 time 0.4641 (0.4987) model_time 0.4639 (0.4697) loss 3.1462 (2.9516) grad_norm 1.2363 (2.7243/1.3702) mem 16099MB [2025-01-18 08:00:02 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][90/312] eta 0:01:49 lr 0.000818 time 0.4456 (0.4936) model_time 0.4454 (0.4677) loss 2.8241 (2.9726) grad_norm 1.3110 (2.6569/1.3489) mem 16099MB [2025-01-18 08:00:07 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][100/312] eta 0:01:43 lr 0.000818 time 0.4506 (0.4896) model_time 0.4504 (0.4662) loss 2.8243 (2.9893) grad_norm 2.4980 (2.7128/1.3687) mem 16099MB [2025-01-18 08:00:12 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][110/312] eta 0:01:39 lr 0.000817 time 0.4506 (0.4924) model_time 0.4504 (0.4711) loss 3.3298 (2.9860) grad_norm 2.7503 (2.6877/1.3321) mem 16099MB [2025-01-18 08:00:17 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][120/312] eta 0:01:34 lr 0.000817 time 0.4613 (0.4896) model_time 0.4608 (0.4700) loss 2.1324 (2.9753) grad_norm 2.1440 (2.6370/1.3029) mem 16099MB [2025-01-18 08:00:21 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][130/312] eta 0:01:28 lr 0.000816 time 0.4564 (0.4874) model_time 0.4563 (0.4693) loss 3.3868 (2.9659) grad_norm 1.6807 (2.5520/1.2955) mem 16099MB [2025-01-18 08:00:26 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][140/312] eta 0:01:23 lr 0.000815 time 0.5643 (0.4867) model_time 0.5638 (0.4699) loss 2.3890 (2.9645) grad_norm 1.0841 (2.5251/1.2681) mem 16099MB [2025-01-18 08:00:31 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][150/312] eta 0:01:18 lr 0.000815 time 0.4401 (0.4861) model_time 0.4399 (0.4703) loss 2.8199 (2.9523) grad_norm 2.2277 (2.5308/1.2616) mem 16099MB [2025-01-18 08:00:35 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][160/312] eta 0:01:13 lr 0.000814 time 0.4705 (0.4853) model_time 0.4701 (0.4705) loss 2.7719 (2.9620) grad_norm 2.8073 (2.4910/1.2484) mem 16099MB [2025-01-18 08:00:40 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][170/312] eta 0:01:08 lr 0.000814 time 0.4527 (0.4856) model_time 0.4522 (0.4716) loss 2.0227 (2.9395) grad_norm 2.6248 (2.4564/1.2271) mem 16099MB [2025-01-18 08:00:45 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][180/312] eta 0:01:03 lr 0.000813 time 0.4401 (0.4842) model_time 0.4396 (0.4709) loss 2.8996 (2.9323) grad_norm 1.8008 (2.4395/1.2076) mem 16099MB [2025-01-18 08:00:50 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][190/312] eta 0:00:59 lr 0.000813 time 0.5373 (0.4837) model_time 0.5368 (0.4711) loss 2.6889 (2.9321) grad_norm 3.1914 (2.4208/1.1868) mem 16099MB [2025-01-18 08:00:54 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][200/312] eta 0:00:53 lr 0.000812 time 0.4602 (0.4821) model_time 0.4597 (0.4701) loss 3.5272 (2.9370) grad_norm 1.4739 (2.3815/1.1793) mem 16099MB [2025-01-18 08:00:59 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][210/312] eta 0:00:49 lr 0.000812 time 0.4490 (0.4812) model_time 0.4487 (0.4698) loss 2.7230 (2.9389) grad_norm 3.0139 (2.4051/1.1727) mem 16099MB [2025-01-18 08:01:04 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][220/312] eta 0:00:44 lr 0.000811 time 0.4458 (0.4808) model_time 0.4453 (0.4699) loss 3.2438 (2.9499) grad_norm 1.6250 (2.4406/1.1777) mem 16099MB [2025-01-18 08:01:08 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][230/312] eta 0:00:39 lr 0.000811 time 0.5564 (0.4805) model_time 0.5559 (0.4700) loss 2.1442 (2.9554) grad_norm 1.9146 (2.4529/1.1783) mem 16099MB [2025-01-18 08:01:13 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][240/312] eta 0:00:34 lr 0.000810 time 0.4510 (0.4798) model_time 0.4508 (0.4698) loss 1.8989 (2.9492) grad_norm 0.8467 (2.4115/1.1739) mem 16099MB [2025-01-18 08:01:17 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][250/312] eta 0:00:29 lr 0.000810 time 0.4536 (0.4788) model_time 0.4535 (0.4691) loss 3.3848 (2.9562) grad_norm 6.8488 (2.4367/1.1965) mem 16099MB [2025-01-18 08:01:22 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][260/312] eta 0:00:24 lr 0.000809 time 0.5398 (0.4781) model_time 0.5397 (0.4688) loss 2.1319 (2.9551) grad_norm 1.2416 (2.4300/1.1851) mem 16099MB [2025-01-18 08:01:27 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][270/312] eta 0:00:20 lr 0.000809 time 0.4555 (0.4781) model_time 0.4551 (0.4692) loss 3.2832 (2.9561) grad_norm 1.9184 (2.4046/1.1718) mem 16099MB [2025-01-18 08:01:32 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][280/312] eta 0:00:15 lr 0.000808 time 0.4698 (0.4777) model_time 0.4696 (0.4690) loss 2.2706 (2.9463) grad_norm 3.9194 (2.4071/1.1672) mem 16099MB [2025-01-18 08:01:36 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][290/312] eta 0:00:10 lr 0.000808 time 0.4400 (0.4775) model_time 0.4398 (0.4691) loss 2.8921 (2.9556) grad_norm 1.0665 (2.4206/1.1741) mem 16099MB [2025-01-18 08:01:41 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][300/312] eta 0:00:05 lr 0.000807 time 0.7061 (0.4778) model_time 0.7060 (0.4697) loss 2.8913 (2.9514) grad_norm 4.8356 (2.4571/1.1918) mem 16099MB [2025-01-18 08:01:46 internimage_t_1k_224] (main.py 510): INFO Train: [212/300][310/312] eta 0:00:00 lr 0.000807 time 0.4393 (0.4766) model_time 0.4392 (0.4687) loss 3.3060 (2.9438) grad_norm 3.1764 (2.4713/1.1896) mem 16099MB [2025-01-18 08:01:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 212 training takes 0:02:28 [2025-01-18 08:01:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_212.pth saving...... [2025-01-18 08:01:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_212.pth saved !!! [2025-01-18 08:01:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.642 (7.642) Loss 0.7836 (0.7836) Acc@1 83.984 (83.984) Acc@5 96.924 (96.924) Mem 16099MB [2025-01-18 08:01:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.024) Loss 1.0652 (0.8908) Acc@1 76.660 (81.663) Acc@5 94.580 (95.890) Mem 16099MB [2025-01-18 08:01:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:212] * Acc@1 81.558 Acc@5 95.887 [2025-01-18 08:01:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.6% [2025-01-18 08:01:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.65% [2025-01-18 08:02:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.276 (8.276) Loss 0.7728 (0.7728) Acc@1 85.083 (85.083) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 08:02:11 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.111) Loss 1.0282 (0.8867) Acc@1 78.247 (82.577) Acc@5 95.020 (96.249) Mem 16099MB [2025-01-18 08:02:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:212] * Acc@1 82.458 Acc@5 96.261 [2025-01-18 08:02:11 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.5% [2025-01-18 08:02:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:02:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:02:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.46% [2025-01-18 08:02:15 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][0/312] eta 0:13:04 lr 0.000806 time 2.5157 (2.5157) model_time 0.5112 (0.5112) loss 3.7605 (3.7605) grad_norm 0.8990 (0.8990/0.0000) mem 16099MB [2025-01-18 08:02:20 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][10/312] eta 0:03:22 lr 0.000806 time 0.5350 (0.6710) model_time 0.5348 (0.4885) loss 3.1148 (3.0603) grad_norm 1.2621 (2.4317/1.1661) mem 16099MB [2025-01-18 08:02:24 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][20/312] eta 0:02:46 lr 0.000805 time 0.4591 (0.5714) model_time 0.4590 (0.4756) loss 2.6073 (2.8745) grad_norm 1.2386 (2.1533/0.9600) mem 16099MB [2025-01-18 08:02:29 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][30/312] eta 0:02:30 lr 0.000805 time 0.4535 (0.5338) model_time 0.4533 (0.4688) loss 2.2718 (2.8980) grad_norm 1.6686 (2.2333/0.9017) mem 16099MB [2025-01-18 08:02:34 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][40/312] eta 0:02:20 lr 0.000804 time 0.4401 (0.5178) model_time 0.4397 (0.4686) loss 1.8615 (2.8331) grad_norm 2.9743 (2.4391/0.9213) mem 16099MB [2025-01-18 08:02:38 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][50/312] eta 0:02:12 lr 0.000804 time 0.4551 (0.5059) model_time 0.4549 (0.4663) loss 3.5455 (2.8634) grad_norm 1.4569 (2.3735/0.9487) mem 16099MB [2025-01-18 08:02:43 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][60/312] eta 0:02:05 lr 0.000803 time 0.4554 (0.4993) model_time 0.4552 (0.4661) loss 3.5798 (2.8911) grad_norm 1.8919 (2.3221/1.0089) mem 16099MB [2025-01-18 08:02:47 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][70/312] eta 0:01:59 lr 0.000803 time 0.4635 (0.4948) model_time 0.4633 (0.4662) loss 2.7490 (2.9225) grad_norm 1.3264 (2.2173/0.9803) mem 16099MB [2025-01-18 08:02:52 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][80/312] eta 0:01:53 lr 0.000802 time 0.4637 (0.4903) model_time 0.4633 (0.4652) loss 2.6921 (2.9166) grad_norm 1.1481 (2.2026/0.9377) mem 16099MB [2025-01-18 08:02:57 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][90/312] eta 0:01:48 lr 0.000802 time 0.4502 (0.4890) model_time 0.4498 (0.4667) loss 3.1748 (2.9232) grad_norm 1.0642 (2.2162/0.9372) mem 16099MB [2025-01-18 08:03:02 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][100/312] eta 0:01:43 lr 0.000801 time 0.5534 (0.4872) model_time 0.5529 (0.4670) loss 3.3994 (2.9289) grad_norm 1.7467 (2.1802/0.9030) mem 16099MB [2025-01-18 08:03:07 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][110/312] eta 0:01:38 lr 0.000801 time 0.4773 (0.4879) model_time 0.4772 (0.4695) loss 3.0565 (2.9424) grad_norm 3.4478 (2.2439/0.9259) mem 16099MB [2025-01-18 08:03:11 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][120/312] eta 0:01:33 lr 0.000800 time 0.5459 (0.4866) model_time 0.5457 (0.4697) loss 3.1902 (2.9387) grad_norm 2.6783 (2.2513/0.9271) mem 16099MB [2025-01-18 08:03:16 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][130/312] eta 0:01:28 lr 0.000800 time 0.5440 (0.4853) model_time 0.5436 (0.4697) loss 3.3287 (2.9432) grad_norm 4.4565 (2.2306/0.9329) mem 16099MB [2025-01-18 08:03:21 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][140/312] eta 0:01:23 lr 0.000799 time 0.4398 (0.4840) model_time 0.4395 (0.4695) loss 3.1051 (2.9250) grad_norm 2.9415 (2.2493/0.9335) mem 16099MB [2025-01-18 08:03:25 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][150/312] eta 0:01:18 lr 0.000799 time 0.4578 (0.4826) model_time 0.4573 (0.4690) loss 3.0987 (2.9197) grad_norm 1.6379 (2.2763/0.9992) mem 16099MB [2025-01-18 08:03:30 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][160/312] eta 0:01:13 lr 0.000798 time 0.7538 (0.4841) model_time 0.7533 (0.4713) loss 2.6990 (2.9217) grad_norm 2.9126 (2.2934/0.9863) mem 16099MB [2025-01-18 08:03:35 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][170/312] eta 0:01:08 lr 0.000798 time 0.4562 (0.4842) model_time 0.4558 (0.4721) loss 3.4114 (2.9041) grad_norm 3.3285 (2.3322/1.0190) mem 16099MB [2025-01-18 08:03:40 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][180/312] eta 0:01:03 lr 0.000797 time 0.4615 (0.4831) model_time 0.4611 (0.4716) loss 3.2209 (2.9053) grad_norm 1.8861 (2.3586/1.0318) mem 16099MB [2025-01-18 08:03:44 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][190/312] eta 0:00:58 lr 0.000796 time 0.4533 (0.4817) model_time 0.4531 (0.4708) loss 3.0714 (2.9099) grad_norm 2.3253 (2.3400/1.0249) mem 16099MB [2025-01-18 08:03:49 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][200/312] eta 0:00:53 lr 0.000796 time 0.4511 (0.4806) model_time 0.4507 (0.4703) loss 3.2600 (2.9198) grad_norm 1.4700 (2.3366/1.0240) mem 16099MB [2025-01-18 08:03:54 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][210/312] eta 0:00:48 lr 0.000795 time 0.4703 (0.4795) model_time 0.4699 (0.4696) loss 3.2644 (2.9206) grad_norm 1.1190 (2.3678/1.0491) mem 16099MB [2025-01-18 08:03:58 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][220/312] eta 0:00:44 lr 0.000795 time 0.4490 (0.4793) model_time 0.4486 (0.4699) loss 3.2710 (2.9283) grad_norm 1.0217 (2.3717/1.0397) mem 16099MB [2025-01-18 08:04:03 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][230/312] eta 0:00:39 lr 0.000794 time 0.4509 (0.4788) model_time 0.4505 (0.4697) loss 3.4527 (2.9301) grad_norm 1.0769 (2.3471/1.0308) mem 16099MB [2025-01-18 08:04:08 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][240/312] eta 0:00:34 lr 0.000794 time 0.4576 (0.4783) model_time 0.4572 (0.4696) loss 3.1665 (2.9243) grad_norm 2.2328 (2.3428/1.0202) mem 16099MB [2025-01-18 08:04:12 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][250/312] eta 0:00:29 lr 0.000793 time 0.4622 (0.4775) model_time 0.4617 (0.4691) loss 3.0235 (2.9338) grad_norm 1.7243 (2.3261/1.0142) mem 16099MB [2025-01-18 08:04:17 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][260/312] eta 0:00:24 lr 0.000793 time 0.4504 (0.4770) model_time 0.4503 (0.4689) loss 3.3397 (2.9366) grad_norm 2.9586 (2.3168/1.0058) mem 16099MB [2025-01-18 08:04:21 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][270/312] eta 0:00:20 lr 0.000792 time 0.4639 (0.4762) model_time 0.4634 (0.4684) loss 3.2895 (2.9370) grad_norm 3.6173 (2.3390/1.0076) mem 16099MB [2025-01-18 08:04:26 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][280/312] eta 0:00:15 lr 0.000792 time 0.4460 (0.4759) model_time 0.4458 (0.4684) loss 3.2264 (2.9407) grad_norm 1.7615 (2.3665/1.0565) mem 16099MB [2025-01-18 08:04:31 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][290/312] eta 0:00:10 lr 0.000791 time 0.4633 (0.4754) model_time 0.4629 (0.4681) loss 3.0628 (2.9400) grad_norm 1.9125 (2.3608/1.0529) mem 16099MB [2025-01-18 08:04:35 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][300/312] eta 0:00:05 lr 0.000791 time 0.4372 (0.4745) model_time 0.4371 (0.4674) loss 2.5399 (2.9353) grad_norm 1.8857 (2.3729/1.0615) mem 16099MB [2025-01-18 08:04:40 internimage_t_1k_224] (main.py 510): INFO Train: [213/300][310/312] eta 0:00:00 lr 0.000790 time 0.4382 (0.4735) model_time 0.4381 (0.4667) loss 3.6061 (2.9383) grad_norm 2.6227 (2.3896/1.0688) mem 16099MB [2025-01-18 08:04:40 internimage_t_1k_224] (main.py 519): INFO EPOCH 213 training takes 0:02:27 [2025-01-18 08:04:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_213.pth saving...... [2025-01-18 08:04:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_213.pth saved !!! [2025-01-18 08:04:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.264 (7.264) Loss 0.7547 (0.7547) Acc@1 84.253 (84.253) Acc@5 96.924 (96.924) Mem 16099MB [2025-01-18 08:04:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.974) Loss 1.0130 (0.8629) Acc@1 77.173 (81.683) Acc@5 94.507 (95.819) Mem 16099MB [2025-01-18 08:04:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:213] * Acc@1 81.602 Acc@5 95.855 [2025-01-18 08:04:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.6% [2025-01-18 08:04:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.65% [2025-01-18 08:05:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.231 (8.231) Loss 0.7721 (0.7721) Acc@1 85.132 (85.132) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 08:05:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.103) Loss 1.0266 (0.8855) Acc@1 78.394 (82.617) Acc@5 94.971 (96.265) Mem 16099MB [2025-01-18 08:05:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:213] * Acc@1 82.494 Acc@5 96.281 [2025-01-18 08:05:04 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.5% [2025-01-18 08:05:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:05:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:05:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.49% [2025-01-18 08:05:09 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][0/312] eta 0:15:40 lr 0.000790 time 3.0134 (3.0134) model_time 0.4733 (0.4733) loss 3.4158 (3.4158) grad_norm 6.7779 (6.7779/0.0000) mem 16099MB [2025-01-18 08:05:13 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][10/312] eta 0:03:31 lr 0.000790 time 0.5404 (0.7018) model_time 0.5402 (0.4705) loss 3.0130 (2.9329) grad_norm 1.3640 (2.8954/1.6184) mem 16099MB [2025-01-18 08:05:18 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][20/312] eta 0:02:52 lr 0.000789 time 0.5354 (0.5921) model_time 0.5353 (0.4707) loss 2.4030 (2.9415) grad_norm 4.4279 (3.0706/1.4630) mem 16099MB [2025-01-18 08:05:23 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][30/312] eta 0:02:34 lr 0.000789 time 0.4569 (0.5474) model_time 0.4568 (0.4651) loss 2.7454 (2.9274) grad_norm 1.2035 (2.9085/1.3394) mem 16099MB [2025-01-18 08:05:27 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][40/312] eta 0:02:22 lr 0.000788 time 0.4531 (0.5246) model_time 0.4527 (0.4622) loss 3.6996 (2.9481) grad_norm 2.5176 (2.6692/1.2715) mem 16099MB [2025-01-18 08:05:32 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][50/312] eta 0:02:15 lr 0.000788 time 0.4440 (0.5183) model_time 0.4436 (0.4681) loss 3.3240 (2.9454) grad_norm 1.1876 (2.5127/1.2430) mem 16099MB [2025-01-18 08:05:37 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][60/312] eta 0:02:08 lr 0.000787 time 0.5403 (0.5094) model_time 0.5398 (0.4674) loss 2.2705 (2.9930) grad_norm 1.8331 (2.4000/1.1932) mem 16099MB [2025-01-18 08:05:41 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][70/312] eta 0:02:01 lr 0.000786 time 0.4412 (0.5015) model_time 0.4408 (0.4654) loss 2.6776 (3.0107) grad_norm 2.8753 (2.3537/1.1306) mem 16099MB [2025-01-18 08:05:46 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][80/312] eta 0:01:55 lr 0.000786 time 0.4452 (0.4967) model_time 0.4450 (0.4650) loss 3.4559 (3.0209) grad_norm 2.3992 (2.3266/1.0994) mem 16099MB [2025-01-18 08:05:51 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][90/312] eta 0:01:49 lr 0.000785 time 0.5409 (0.4946) model_time 0.5405 (0.4663) loss 3.0221 (3.0455) grad_norm 1.9795 (2.3540/1.0848) mem 16099MB [2025-01-18 08:05:56 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][100/312] eta 0:01:44 lr 0.000785 time 0.4427 (0.4939) model_time 0.4423 (0.4683) loss 3.2585 (3.0305) grad_norm 2.2024 (2.3222/1.0434) mem 16099MB [2025-01-18 08:06:00 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][110/312] eta 0:01:39 lr 0.000784 time 0.4522 (0.4913) model_time 0.4521 (0.4680) loss 2.9220 (3.0194) grad_norm 1.5582 (2.3143/1.0762) mem 16099MB [2025-01-18 08:06:05 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][120/312] eta 0:01:33 lr 0.000784 time 0.4589 (0.4880) model_time 0.4587 (0.4666) loss 3.7360 (3.0128) grad_norm 2.2895 (2.3145/1.0583) mem 16099MB [2025-01-18 08:06:10 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][130/312] eta 0:01:28 lr 0.000783 time 0.4403 (0.4884) model_time 0.4401 (0.4686) loss 3.1052 (2.9919) grad_norm 1.8072 (2.2995/1.0495) mem 16099MB [2025-01-18 08:06:14 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][140/312] eta 0:01:23 lr 0.000783 time 0.4490 (0.4871) model_time 0.4486 (0.4687) loss 3.4127 (2.9678) grad_norm 2.6142 (2.2838/1.0310) mem 16099MB [2025-01-18 08:06:20 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][150/312] eta 0:01:19 lr 0.000782 time 0.4498 (0.4893) model_time 0.4497 (0.4721) loss 2.4122 (2.9706) grad_norm 1.4091 (2.2440/1.0130) mem 16099MB [2025-01-18 08:06:24 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][160/312] eta 0:01:14 lr 0.000782 time 0.4532 (0.4885) model_time 0.4527 (0.4723) loss 3.0686 (2.9799) grad_norm 1.2660 (2.2262/1.0151) mem 16099MB [2025-01-18 08:06:29 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][170/312] eta 0:01:09 lr 0.000781 time 0.4615 (0.4866) model_time 0.4611 (0.4714) loss 3.2142 (2.9741) grad_norm 1.2009 (2.2076/1.0060) mem 16099MB [2025-01-18 08:06:34 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][180/312] eta 0:01:04 lr 0.000781 time 0.4638 (0.4866) model_time 0.4633 (0.4722) loss 3.2167 (2.9761) grad_norm 2.5923 (2.2565/1.0275) mem 16099MB [2025-01-18 08:06:38 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][190/312] eta 0:00:59 lr 0.000780 time 0.4523 (0.4848) model_time 0.4518 (0.4711) loss 3.4702 (2.9678) grad_norm 3.4559 (2.3360/1.0657) mem 16099MB [2025-01-18 08:06:43 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][200/312] eta 0:00:54 lr 0.000780 time 0.4617 (0.4835) model_time 0.4616 (0.4705) loss 1.9990 (2.9659) grad_norm 1.0695 (2.3364/1.0618) mem 16099MB [2025-01-18 08:06:48 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][210/312] eta 0:00:49 lr 0.000779 time 0.4518 (0.4824) model_time 0.4517 (0.4699) loss 2.8650 (2.9635) grad_norm 2.2834 (2.3357/1.0418) mem 16099MB [2025-01-18 08:06:53 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][220/312] eta 0:00:44 lr 0.000779 time 0.4409 (0.4833) model_time 0.4404 (0.4714) loss 3.0801 (2.9706) grad_norm 1.0465 (2.3171/1.0272) mem 16099MB [2025-01-18 08:06:57 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][230/312] eta 0:00:39 lr 0.000778 time 0.4435 (0.4825) model_time 0.4431 (0.4711) loss 2.2430 (2.9633) grad_norm 1.1224 (2.3065/1.0171) mem 16099MB [2025-01-18 08:07:02 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][240/312] eta 0:00:34 lr 0.000778 time 0.4522 (0.4813) model_time 0.4517 (0.4704) loss 2.1909 (2.9586) grad_norm 2.1371 (2.3003/1.0186) mem 16099MB [2025-01-18 08:07:07 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][250/312] eta 0:00:29 lr 0.000777 time 0.5487 (0.4814) model_time 0.5486 (0.4709) loss 1.9517 (2.9643) grad_norm 1.2029 (2.3293/1.0356) mem 16099MB [2025-01-18 08:07:11 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][260/312] eta 0:00:25 lr 0.000777 time 0.4465 (0.4816) model_time 0.4463 (0.4715) loss 2.8518 (2.9565) grad_norm 3.6582 (2.3743/1.0664) mem 16099MB [2025-01-18 08:07:16 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][270/312] eta 0:00:20 lr 0.000776 time 0.4542 (0.4815) model_time 0.4537 (0.4718) loss 3.4281 (2.9527) grad_norm 2.8361 (2.3823/1.0581) mem 16099MB [2025-01-18 08:07:21 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][280/312] eta 0:00:15 lr 0.000776 time 0.5618 (0.4811) model_time 0.5614 (0.4716) loss 2.3733 (2.9539) grad_norm 2.1277 (2.3772/1.0529) mem 16099MB [2025-01-18 08:07:26 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][290/312] eta 0:00:10 lr 0.000775 time 0.4884 (0.4805) model_time 0.4882 (0.4714) loss 2.6617 (2.9504) grad_norm 1.8161 (2.3712/1.0466) mem 16099MB [2025-01-18 08:07:30 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][300/312] eta 0:00:05 lr 0.000775 time 0.4385 (0.4799) model_time 0.4384 (0.4711) loss 3.1335 (2.9572) grad_norm 3.0423 (2.3670/1.0106) mem 16099MB [2025-01-18 08:07:35 internimage_t_1k_224] (main.py 510): INFO Train: [214/300][310/312] eta 0:00:00 lr 0.000774 time 0.4425 (0.4790) model_time 0.4424 (0.4704) loss 2.7900 (2.9559) grad_norm 2.0172 (2.3424/1.0022) mem 16099MB [2025-01-18 08:07:35 internimage_t_1k_224] (main.py 519): INFO EPOCH 214 training takes 0:02:29 [2025-01-18 08:07:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_214.pth saving...... [2025-01-18 08:07:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_214.pth saved !!! [2025-01-18 08:07:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.423 (7.423) Loss 0.7539 (0.7539) Acc@1 84.106 (84.106) Acc@5 97.095 (97.095) Mem 16099MB [2025-01-18 08:07:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.007) Loss 1.0285 (0.8643) Acc@1 77.319 (81.676) Acc@5 94.507 (95.770) Mem 16099MB [2025-01-18 08:07:47 internimage_t_1k_224] (main.py 575): INFO [Epoch:214] * Acc@1 81.524 Acc@5 95.787 [2025-01-18 08:07:47 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.5% [2025-01-18 08:07:47 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.65% [2025-01-18 08:07:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.429 (8.429) Loss 0.7711 (0.7711) Acc@1 85.107 (85.107) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 08:08:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.128) Loss 1.0249 (0.8842) Acc@1 78.394 (82.642) Acc@5 95.020 (96.269) Mem 16099MB [2025-01-18 08:08:00 internimage_t_1k_224] (main.py 575): INFO [Epoch:214] * Acc@1 82.520 Acc@5 96.285 [2025-01-18 08:08:00 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.5% [2025-01-18 08:08:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:08:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:08:02 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.52% [2025-01-18 08:08:04 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][0/312] eta 0:13:04 lr 0.000774 time 2.5142 (2.5142) model_time 0.4657 (0.4657) loss 2.5488 (2.5488) grad_norm 1.0443 (1.0443/0.0000) mem 16099MB [2025-01-18 08:08:09 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][10/312] eta 0:03:21 lr 0.000773 time 0.5539 (0.6660) model_time 0.5538 (0.4795) loss 3.1817 (2.7389) grad_norm 3.5623 (1.8812/0.8993) mem 16099MB [2025-01-18 08:08:13 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][20/312] eta 0:02:45 lr 0.000773 time 0.4514 (0.5660) model_time 0.4512 (0.4681) loss 3.6979 (2.9170) grad_norm 4.0497 (2.7401/1.3753) mem 16099MB [2025-01-18 08:08:18 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][30/312] eta 0:02:31 lr 0.000772 time 0.4471 (0.5361) model_time 0.4467 (0.4697) loss 2.3659 (2.7952) grad_norm 4.2465 (2.8173/1.2746) mem 16099MB [2025-01-18 08:08:23 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][40/312] eta 0:02:21 lr 0.000772 time 0.4498 (0.5198) model_time 0.4494 (0.4695) loss 2.1881 (2.8144) grad_norm 4.1505 (2.7363/1.2725) mem 16099MB [2025-01-18 08:08:28 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][50/312] eta 0:02:14 lr 0.000771 time 0.4520 (0.5122) model_time 0.4519 (0.4716) loss 2.4244 (2.8639) grad_norm 0.9418 (2.6208/1.2655) mem 16099MB [2025-01-18 08:08:32 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][60/312] eta 0:02:07 lr 0.000771 time 0.4419 (0.5042) model_time 0.4417 (0.4702) loss 2.0916 (2.8721) grad_norm 0.9234 (2.4395/1.2339) mem 16099MB [2025-01-18 08:08:37 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][70/312] eta 0:02:00 lr 0.000770 time 0.4632 (0.4974) model_time 0.4631 (0.4682) loss 2.4527 (2.8947) grad_norm 1.8993 (2.3488/1.1721) mem 16099MB [2025-01-18 08:08:42 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][80/312] eta 0:01:54 lr 0.000770 time 0.4705 (0.4954) model_time 0.4703 (0.4697) loss 3.3618 (2.8818) grad_norm 1.2963 (2.3587/1.1563) mem 16099MB [2025-01-18 08:08:46 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][90/312] eta 0:01:49 lr 0.000769 time 0.5058 (0.4916) model_time 0.5056 (0.4687) loss 2.7081 (2.8959) grad_norm 1.4409 (2.3398/1.1341) mem 16099MB [2025-01-18 08:08:51 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][100/312] eta 0:01:43 lr 0.000769 time 0.4433 (0.4883) model_time 0.4432 (0.4677) loss 3.7810 (2.9165) grad_norm 1.9538 (2.3748/1.1324) mem 16099MB [2025-01-18 08:08:56 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][110/312] eta 0:01:38 lr 0.000768 time 0.4732 (0.4860) model_time 0.4727 (0.4672) loss 3.1641 (2.9357) grad_norm 3.8051 (2.3665/1.1061) mem 16099MB [2025-01-18 08:09:00 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][120/312] eta 0:01:32 lr 0.000768 time 0.4822 (0.4835) model_time 0.4820 (0.4662) loss 2.4563 (2.9094) grad_norm 2.6035 (2.3262/1.0819) mem 16099MB [2025-01-18 08:09:05 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][130/312] eta 0:01:27 lr 0.000767 time 0.4454 (0.4823) model_time 0.4450 (0.4663) loss 3.0828 (2.9138) grad_norm 1.2441 (2.3189/1.0869) mem 16099MB [2025-01-18 08:09:09 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][140/312] eta 0:01:22 lr 0.000767 time 0.4512 (0.4817) model_time 0.4510 (0.4668) loss 2.7423 (2.9183) grad_norm 1.7392 (2.2984/1.0661) mem 16099MB [2025-01-18 08:09:14 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][150/312] eta 0:01:17 lr 0.000766 time 0.4504 (0.4805) model_time 0.4502 (0.4665) loss 3.2189 (2.9180) grad_norm 2.2466 (2.2639/1.0435) mem 16099MB [2025-01-18 08:09:19 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][160/312] eta 0:01:12 lr 0.000766 time 0.4434 (0.4801) model_time 0.4430 (0.4670) loss 3.0495 (2.9147) grad_norm 0.9430 (2.3167/1.1092) mem 16099MB [2025-01-18 08:09:23 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][170/312] eta 0:01:08 lr 0.000765 time 0.4473 (0.4789) model_time 0.4469 (0.4666) loss 3.2369 (2.8955) grad_norm 3.5919 (2.3272/1.0943) mem 16099MB [2025-01-18 08:09:28 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][180/312] eta 0:01:03 lr 0.000765 time 0.4505 (0.4801) model_time 0.4499 (0.4684) loss 2.7882 (2.8897) grad_norm 1.1892 (2.3323/1.0856) mem 16099MB [2025-01-18 08:09:33 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][190/312] eta 0:00:58 lr 0.000764 time 0.4428 (0.4802) model_time 0.4424 (0.4691) loss 2.7512 (2.8913) grad_norm 1.7897 (2.3302/1.0763) mem 16099MB [2025-01-18 08:09:38 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][200/312] eta 0:00:53 lr 0.000764 time 0.4574 (0.4792) model_time 0.4572 (0.4686) loss 3.5867 (2.8981) grad_norm 1.2609 (2.3208/1.0642) mem 16099MB [2025-01-18 08:09:43 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][210/312] eta 0:00:48 lr 0.000763 time 0.4451 (0.4787) model_time 0.4446 (0.4686) loss 3.3487 (2.9092) grad_norm 2.8124 (2.3394/1.0653) mem 16099MB [2025-01-18 08:09:47 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][220/312] eta 0:00:43 lr 0.000763 time 0.4467 (0.4781) model_time 0.4465 (0.4684) loss 2.9180 (2.9075) grad_norm 4.3860 (2.3657/1.0887) mem 16099MB [2025-01-18 08:09:52 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][230/312] eta 0:00:39 lr 0.000762 time 0.4449 (0.4770) model_time 0.4447 (0.4677) loss 3.0870 (2.9063) grad_norm 1.6310 (2.3440/1.0756) mem 16099MB [2025-01-18 08:09:56 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][240/312] eta 0:00:34 lr 0.000762 time 0.4539 (0.4765) model_time 0.4534 (0.4676) loss 2.0451 (2.8935) grad_norm 1.6666 (2.3412/1.0649) mem 16099MB [2025-01-18 08:10:01 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][250/312] eta 0:00:29 lr 0.000761 time 0.5491 (0.4764) model_time 0.5487 (0.4678) loss 3.3164 (2.8949) grad_norm 1.9026 (2.3083/1.0567) mem 16099MB [2025-01-18 08:10:06 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][260/312] eta 0:00:24 lr 0.000761 time 0.4601 (0.4764) model_time 0.4597 (0.4681) loss 2.9130 (2.8960) grad_norm 1.3599 (2.2875/1.0439) mem 16099MB [2025-01-18 08:10:11 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][270/312] eta 0:00:19 lr 0.000760 time 0.4436 (0.4762) model_time 0.4431 (0.4682) loss 1.8741 (2.9014) grad_norm 1.8676 (2.3165/1.0837) mem 16099MB [2025-01-18 08:10:15 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][280/312] eta 0:00:15 lr 0.000760 time 0.4436 (0.4757) model_time 0.4434 (0.4681) loss 3.2640 (2.9095) grad_norm 1.4147 (2.3410/1.1396) mem 16099MB [2025-01-18 08:10:20 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][290/312] eta 0:00:10 lr 0.000759 time 0.4618 (0.4753) model_time 0.4613 (0.4679) loss 3.1846 (2.9131) grad_norm 1.7096 (2.3173/1.1310) mem 16099MB [2025-01-18 08:10:24 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][300/312] eta 0:00:05 lr 0.000759 time 0.4384 (0.4745) model_time 0.4383 (0.4673) loss 2.1374 (2.9045) grad_norm 1.8813 (2.3306/1.1347) mem 16099MB [2025-01-18 08:10:29 internimage_t_1k_224] (main.py 510): INFO Train: [215/300][310/312] eta 0:00:00 lr 0.000758 time 0.4392 (0.4737) model_time 0.4390 (0.4667) loss 2.9647 (2.9099) grad_norm 1.9228 (2.3523/1.1292) mem 16099MB [2025-01-18 08:10:29 internimage_t_1k_224] (main.py 519): INFO EPOCH 215 training takes 0:02:27 [2025-01-18 08:10:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_215.pth saving...... [2025-01-18 08:10:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_215.pth saved !!! [2025-01-18 08:10:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.464 (7.464) Loss 0.7579 (0.7579) Acc@1 84.131 (84.131) Acc@5 96.899 (96.899) Mem 16099MB [2025-01-18 08:10:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.992) Loss 1.0127 (0.8646) Acc@1 77.368 (81.570) Acc@5 94.727 (95.890) Mem 16099MB [2025-01-18 08:10:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:215] * Acc@1 81.478 Acc@5 95.901 [2025-01-18 08:10:41 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.5% [2025-01-18 08:10:41 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.65% [2025-01-18 08:10:50 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.214 (8.214) Loss 0.7701 (0.7701) Acc@1 85.156 (85.156) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 08:10:53 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.086) Loss 1.0233 (0.8829) Acc@1 78.491 (82.699) Acc@5 95.093 (96.294) Mem 16099MB [2025-01-18 08:10:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:215] * Acc@1 82.576 Acc@5 96.307 [2025-01-18 08:10:54 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.6% [2025-01-18 08:10:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:10:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:10:55 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.58% [2025-01-18 08:10:57 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][0/312] eta 0:10:35 lr 0.000758 time 2.0377 (2.0377) model_time 0.5097 (0.5097) loss 3.4962 (3.4962) grad_norm 1.3917 (1.3917/0.0000) mem 16099MB [2025-01-18 08:11:02 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][10/312] eta 0:03:14 lr 0.000757 time 0.4430 (0.6438) model_time 0.4428 (0.5046) loss 3.2894 (2.8370) grad_norm 1.6341 (1.8464/0.3387) mem 16099MB [2025-01-18 08:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][20/312] eta 0:02:41 lr 0.000757 time 0.4676 (0.5546) model_time 0.4672 (0.4815) loss 2.6891 (2.9474) grad_norm 2.6881 (1.7438/0.4681) mem 16099MB [2025-01-18 08:11:12 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][30/312] eta 0:02:28 lr 0.000756 time 0.4563 (0.5258) model_time 0.4561 (0.4762) loss 2.4323 (2.9044) grad_norm 3.5875 (1.9359/0.7105) mem 16099MB [2025-01-18 08:11:16 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][40/312] eta 0:02:18 lr 0.000756 time 0.4482 (0.5087) model_time 0.4480 (0.4711) loss 2.9045 (2.8999) grad_norm 1.3157 (2.0006/0.7829) mem 16099MB [2025-01-18 08:11:21 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][50/312] eta 0:02:11 lr 0.000755 time 0.4493 (0.5028) model_time 0.4492 (0.4724) loss 3.2986 (2.9307) grad_norm 3.4829 (2.3142/1.1831) mem 16099MB [2025-01-18 08:11:25 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][60/312] eta 0:02:04 lr 0.000755 time 0.4556 (0.4959) model_time 0.4554 (0.4705) loss 2.2582 (2.8950) grad_norm 3.0449 (2.4681/1.1880) mem 16099MB [2025-01-18 08:11:30 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][70/312] eta 0:01:58 lr 0.000754 time 0.4995 (0.4905) model_time 0.4991 (0.4686) loss 2.1343 (2.8856) grad_norm 2.9505 (2.4344/1.1579) mem 16099MB [2025-01-18 08:11:35 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][80/312] eta 0:01:53 lr 0.000754 time 0.4505 (0.4878) model_time 0.4503 (0.4685) loss 3.4401 (2.8927) grad_norm 3.3277 (2.4104/1.1538) mem 16099MB [2025-01-18 08:11:39 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][90/312] eta 0:01:47 lr 0.000753 time 0.5665 (0.4852) model_time 0.5661 (0.4681) loss 3.6314 (2.8737) grad_norm 5.0977 (2.5014/1.1700) mem 16099MB [2025-01-18 08:11:44 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][100/312] eta 0:01:42 lr 0.000753 time 0.4497 (0.4826) model_time 0.4494 (0.4671) loss 3.0635 (2.8592) grad_norm 1.8734 (2.4865/1.1463) mem 16099MB [2025-01-18 08:11:49 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][110/312] eta 0:01:37 lr 0.000752 time 0.4512 (0.4805) model_time 0.4507 (0.4664) loss 3.1898 (2.8819) grad_norm 1.9176 (2.5043/1.1245) mem 16099MB [2025-01-18 08:11:53 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][120/312] eta 0:01:32 lr 0.000752 time 0.4654 (0.4808) model_time 0.4652 (0.4678) loss 3.2359 (2.8708) grad_norm 3.3629 (2.4964/1.0983) mem 16099MB [2025-01-18 08:11:58 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][130/312] eta 0:01:27 lr 0.000751 time 0.4484 (0.4787) model_time 0.4480 (0.4666) loss 2.8290 (2.8836) grad_norm 1.0463 (2.4995/1.0965) mem 16099MB [2025-01-18 08:12:03 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][140/312] eta 0:01:22 lr 0.000751 time 0.5412 (0.4786) model_time 0.5410 (0.4674) loss 2.1607 (2.8631) grad_norm 1.7799 (2.4728/1.0782) mem 16099MB [2025-01-18 08:12:07 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][150/312] eta 0:01:17 lr 0.000750 time 0.4567 (0.4786) model_time 0.4562 (0.4681) loss 2.6022 (2.8679) grad_norm 4.5451 (2.4720/1.0748) mem 16099MB [2025-01-18 08:12:12 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][160/312] eta 0:01:12 lr 0.000750 time 0.4556 (0.4778) model_time 0.4554 (0.4679) loss 2.0984 (2.8573) grad_norm 1.7925 (2.4789/1.0659) mem 16099MB [2025-01-18 08:12:17 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][170/312] eta 0:01:07 lr 0.000749 time 0.4482 (0.4768) model_time 0.4480 (0.4674) loss 2.9811 (2.8644) grad_norm 3.4729 (2.4665/1.0566) mem 16099MB [2025-01-18 08:12:22 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][180/312] eta 0:01:02 lr 0.000749 time 0.4562 (0.4772) model_time 0.4560 (0.4684) loss 2.6213 (2.8770) grad_norm 1.9279 (2.4567/1.0344) mem 16099MB [2025-01-18 08:12:26 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][190/312] eta 0:00:58 lr 0.000748 time 0.4543 (0.4765) model_time 0.4539 (0.4681) loss 2.9836 (2.8802) grad_norm 1.5619 (2.4508/1.0280) mem 16099MB [2025-01-18 08:12:31 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][200/312] eta 0:00:53 lr 0.000748 time 0.5349 (0.4759) model_time 0.5348 (0.4679) loss 2.1940 (2.8867) grad_norm 2.8441 (2.4283/1.0138) mem 16099MB [2025-01-18 08:12:35 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][210/312] eta 0:00:48 lr 0.000747 time 0.4475 (0.4750) model_time 0.4470 (0.4674) loss 3.7222 (2.8850) grad_norm 1.3229 (2.4090/1.0049) mem 16099MB [2025-01-18 08:12:40 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][220/312] eta 0:00:43 lr 0.000747 time 0.4441 (0.4752) model_time 0.4436 (0.4678) loss 2.2916 (2.8901) grad_norm 1.6783 (2.3910/0.9924) mem 16099MB [2025-01-18 08:12:45 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][230/312] eta 0:00:38 lr 0.000746 time 0.4434 (0.4751) model_time 0.4430 (0.4681) loss 3.0201 (2.8938) grad_norm 3.4982 (2.3984/0.9883) mem 16099MB [2025-01-18 08:12:50 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][240/312] eta 0:00:34 lr 0.000746 time 0.4541 (0.4753) model_time 0.4539 (0.4686) loss 3.3580 (2.8961) grad_norm 1.4698 (2.3886/0.9878) mem 16099MB [2025-01-18 08:12:54 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][250/312] eta 0:00:29 lr 0.000745 time 0.5544 (0.4752) model_time 0.5540 (0.4687) loss 3.4021 (2.9036) grad_norm 0.9370 (2.3703/0.9853) mem 16099MB [2025-01-18 08:12:59 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][260/312] eta 0:00:24 lr 0.000745 time 0.4533 (0.4751) model_time 0.4528 (0.4689) loss 3.3084 (2.8986) grad_norm 1.9209 (2.3583/0.9769) mem 16099MB [2025-01-18 08:13:04 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][270/312] eta 0:00:19 lr 0.000744 time 0.4460 (0.4743) model_time 0.4456 (0.4683) loss 1.9285 (2.9029) grad_norm 1.9055 (2.3743/0.9727) mem 16099MB [2025-01-18 08:13:08 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][280/312] eta 0:00:15 lr 0.000744 time 0.4796 (0.4742) model_time 0.4794 (0.4684) loss 3.6891 (2.9148) grad_norm 2.3254 (2.3861/0.9780) mem 16099MB [2025-01-18 08:13:13 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][290/312] eta 0:00:10 lr 0.000743 time 0.4508 (0.4738) model_time 0.4506 (0.4682) loss 2.7616 (2.9174) grad_norm 1.5378 (2.3812/0.9746) mem 16099MB [2025-01-18 08:13:18 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][300/312] eta 0:00:05 lr 0.000743 time 0.4397 (0.4731) model_time 0.4396 (0.4676) loss 3.0656 (2.9130) grad_norm 2.3504 (2.3819/0.9620) mem 16099MB [2025-01-18 08:13:22 internimage_t_1k_224] (main.py 510): INFO Train: [216/300][310/312] eta 0:00:00 lr 0.000742 time 0.4389 (0.4729) model_time 0.4388 (0.4676) loss 3.2262 (2.9189) grad_norm 1.7235 (2.3885/0.9656) mem 16099MB [2025-01-18 08:13:23 internimage_t_1k_224] (main.py 519): INFO EPOCH 216 training takes 0:02:27 [2025-01-18 08:13:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_216.pth saving...... [2025-01-18 08:13:24 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_216.pth saved !!! [2025-01-18 08:13:31 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.269 (7.269) Loss 0.7584 (0.7584) Acc@1 84.302 (84.302) Acc@5 97.119 (97.119) Mem 16099MB [2025-01-18 08:13:35 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.980) Loss 1.0180 (0.8637) Acc@1 77.930 (81.885) Acc@5 94.507 (95.958) Mem 16099MB [2025-01-18 08:13:35 internimage_t_1k_224] (main.py 575): INFO [Epoch:216] * Acc@1 81.756 Acc@5 95.977 [2025-01-18 08:13:35 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.8% [2025-01-18 08:13:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 08:13:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 08:13:36 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.76% [2025-01-18 08:13:43 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.399 (7.399) Loss 0.7692 (0.7692) Acc@1 85.181 (85.181) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 08:13:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.986) Loss 1.0218 (0.8818) Acc@1 78.540 (82.708) Acc@5 95.068 (96.291) Mem 16099MB [2025-01-18 08:13:47 internimage_t_1k_224] (main.py 575): INFO [Epoch:216] * Acc@1 82.594 Acc@5 96.305 [2025-01-18 08:13:47 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.6% [2025-01-18 08:13:47 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:13:49 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:13:49 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.59% [2025-01-18 08:13:51 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][0/312] eta 0:14:04 lr 0.000742 time 2.7060 (2.7060) model_time 0.4992 (0.4992) loss 3.2446 (3.2446) grad_norm 3.0791 (3.0791/0.0000) mem 16099MB [2025-01-18 08:13:56 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][10/312] eta 0:03:21 lr 0.000741 time 0.4535 (0.6661) model_time 0.4533 (0.4652) loss 3.6907 (3.0393) grad_norm 4.1594 (2.9005/0.5673) mem 16099MB [2025-01-18 08:14:00 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][20/312] eta 0:02:45 lr 0.000741 time 0.4452 (0.5651) model_time 0.4451 (0.4597) loss 2.1338 (2.8509) grad_norm 1.1700 (2.9966/0.8168) mem 16099MB [2025-01-18 08:14:05 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][30/312] eta 0:02:29 lr 0.000740 time 0.4652 (0.5304) model_time 0.4650 (0.4588) loss 3.6893 (2.9230) grad_norm 2.7127 (2.7909/0.8569) mem 16099MB [2025-01-18 08:14:10 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][40/312] eta 0:02:19 lr 0.000740 time 0.4521 (0.5120) model_time 0.4520 (0.4578) loss 3.7106 (2.8866) grad_norm 3.3503 (2.7886/0.9096) mem 16099MB [2025-01-18 08:14:14 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][50/312] eta 0:02:12 lr 0.000739 time 0.4496 (0.5049) model_time 0.4494 (0.4613) loss 3.0035 (2.9106) grad_norm 1.3669 (2.7738/0.8737) mem 16099MB [2025-01-18 08:14:19 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][60/312] eta 0:02:05 lr 0.000739 time 0.4460 (0.4994) model_time 0.4456 (0.4629) loss 3.1064 (2.9162) grad_norm 2.1813 (2.6215/0.9055) mem 16099MB [2025-01-18 08:14:24 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][70/312] eta 0:01:59 lr 0.000738 time 0.5525 (0.4948) model_time 0.5524 (0.4634) loss 3.3506 (2.8872) grad_norm 1.3850 (2.5046/0.9005) mem 16099MB [2025-01-18 08:14:29 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][80/312] eta 0:01:54 lr 0.000738 time 0.4638 (0.4932) model_time 0.4636 (0.4656) loss 2.1858 (2.8786) grad_norm 2.7778 (2.4683/0.8881) mem 16099MB [2025-01-18 08:14:33 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][90/312] eta 0:01:48 lr 0.000737 time 0.4530 (0.4889) model_time 0.4525 (0.4643) loss 2.2197 (2.8803) grad_norm 1.0523 (2.4049/0.8773) mem 16099MB [2025-01-18 08:14:38 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][100/312] eta 0:01:43 lr 0.000737 time 0.4495 (0.4862) model_time 0.4491 (0.4640) loss 3.2573 (2.9133) grad_norm 5.9761 (2.5009/1.0349) mem 16099MB [2025-01-18 08:14:42 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][110/312] eta 0:01:37 lr 0.000736 time 0.5829 (0.4849) model_time 0.5828 (0.4646) loss 3.7016 (2.9206) grad_norm 2.1241 (2.5163/1.0426) mem 16099MB [2025-01-18 08:14:47 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][120/312] eta 0:01:32 lr 0.000736 time 0.4521 (0.4834) model_time 0.4517 (0.4648) loss 3.0108 (2.9204) grad_norm 2.2856 (2.5034/1.0451) mem 16099MB [2025-01-18 08:14:52 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][130/312] eta 0:01:27 lr 0.000735 time 0.4493 (0.4831) model_time 0.4489 (0.4659) loss 3.4056 (2.9152) grad_norm 3.1956 (2.5417/1.0501) mem 16099MB [2025-01-18 08:14:57 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][140/312] eta 0:01:23 lr 0.000735 time 0.4604 (0.4846) model_time 0.4600 (0.4686) loss 2.4347 (2.9104) grad_norm 3.7594 (2.5369/1.0463) mem 16099MB [2025-01-18 08:15:01 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][150/312] eta 0:01:18 lr 0.000734 time 0.4541 (0.4827) model_time 0.4537 (0.4678) loss 2.5704 (2.8940) grad_norm 1.6703 (2.5218/1.0346) mem 16099MB [2025-01-18 08:15:06 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][160/312] eta 0:01:13 lr 0.000734 time 0.4523 (0.4821) model_time 0.4518 (0.4680) loss 2.0217 (2.8883) grad_norm 3.1605 (2.5233/1.0286) mem 16099MB [2025-01-18 08:15:11 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][170/312] eta 0:01:08 lr 0.000733 time 0.4573 (0.4818) model_time 0.4569 (0.4685) loss 3.2136 (2.8898) grad_norm 1.7813 (2.4847/1.0207) mem 16099MB [2025-01-18 08:15:16 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][180/312] eta 0:01:03 lr 0.000733 time 0.4659 (0.4806) model_time 0.4654 (0.4680) loss 2.6772 (2.8977) grad_norm 2.6477 (2.4502/1.0106) mem 16099MB [2025-01-18 08:15:20 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][190/312] eta 0:00:58 lr 0.000732 time 0.4661 (0.4794) model_time 0.4656 (0.4674) loss 1.8187 (2.9072) grad_norm 2.9901 (2.4151/1.0004) mem 16099MB [2025-01-18 08:15:25 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][200/312] eta 0:00:53 lr 0.000732 time 0.4550 (0.4782) model_time 0.4548 (0.4668) loss 3.0836 (2.9136) grad_norm 1.1201 (2.4057/0.9879) mem 16099MB [2025-01-18 08:15:29 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][210/312] eta 0:00:48 lr 0.000731 time 0.4517 (0.4774) model_time 0.4512 (0.4665) loss 3.1215 (2.9117) grad_norm 2.9200 (2.4082/0.9700) mem 16099MB [2025-01-18 08:15:34 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][220/312] eta 0:00:43 lr 0.000731 time 0.4506 (0.4764) model_time 0.4505 (0.4660) loss 3.3691 (2.9070) grad_norm 4.5039 (2.4953/1.0941) mem 16099MB [2025-01-18 08:15:39 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][230/312] eta 0:00:39 lr 0.000730 time 0.4863 (0.4759) model_time 0.4858 (0.4660) loss 3.3495 (2.8956) grad_norm 2.1737 (2.5049/1.0809) mem 16099MB [2025-01-18 08:15:43 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][240/312] eta 0:00:34 lr 0.000730 time 0.4692 (0.4762) model_time 0.4690 (0.4667) loss 2.8507 (2.8940) grad_norm 2.8182 (2.5052/1.0722) mem 16099MB [2025-01-18 08:15:48 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][250/312] eta 0:00:29 lr 0.000729 time 0.4653 (0.4760) model_time 0.4648 (0.4668) loss 3.1233 (2.8964) grad_norm 1.4648 (2.4938/1.0598) mem 16099MB [2025-01-18 08:15:53 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][260/312] eta 0:00:24 lr 0.000729 time 0.4467 (0.4751) model_time 0.4462 (0.4663) loss 2.9664 (2.9003) grad_norm 1.5509 (2.4914/1.0483) mem 16099MB [2025-01-18 08:15:57 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][270/312] eta 0:00:19 lr 0.000728 time 0.4858 (0.4745) model_time 0.4853 (0.4660) loss 1.7940 (2.8982) grad_norm 2.5036 (2.4901/1.0498) mem 16099MB [2025-01-18 08:16:02 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][280/312] eta 0:00:15 lr 0.000728 time 0.4499 (0.4738) model_time 0.4495 (0.4655) loss 3.2902 (2.9041) grad_norm 3.1194 (2.4714/1.0454) mem 16099MB [2025-01-18 08:16:07 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][290/312] eta 0:00:10 lr 0.000727 time 0.5435 (0.4741) model_time 0.5430 (0.4661) loss 3.0760 (2.8978) grad_norm 1.3467 (2.4841/1.0534) mem 16099MB [2025-01-18 08:16:11 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][300/312] eta 0:00:05 lr 0.000727 time 0.4457 (0.4739) model_time 0.4456 (0.4662) loss 3.0668 (2.9002) grad_norm 2.4966 (2.5001/1.0761) mem 16099MB [2025-01-18 08:16:16 internimage_t_1k_224] (main.py 510): INFO Train: [217/300][310/312] eta 0:00:00 lr 0.000726 time 0.4392 (0.4736) model_time 0.4391 (0.4661) loss 3.3197 (2.8998) grad_norm 2.1629 (2.5161/1.1080) mem 16099MB [2025-01-18 08:16:16 internimage_t_1k_224] (main.py 519): INFO EPOCH 217 training takes 0:02:27 [2025-01-18 08:16:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_217.pth saving...... [2025-01-18 08:16:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_217.pth saved !!! [2025-01-18 08:16:25 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.335 (7.335) Loss 0.7646 (0.7646) Acc@1 84.351 (84.351) Acc@5 97.021 (97.021) Mem 16099MB [2025-01-18 08:16:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.988) Loss 1.0432 (0.8768) Acc@1 77.344 (81.905) Acc@5 94.556 (95.832) Mem 16099MB [2025-01-18 08:16:29 internimage_t_1k_224] (main.py 575): INFO [Epoch:217] * Acc@1 81.750 Acc@5 95.827 [2025-01-18 08:16:29 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.7% [2025-01-18 08:16:29 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.76% [2025-01-18 08:16:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.115 (8.115) Loss 0.7679 (0.7679) Acc@1 85.278 (85.278) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 08:16:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.092) Loss 1.0198 (0.8801) Acc@1 78.540 (82.735) Acc@5 95.068 (96.309) Mem 16099MB [2025-01-18 08:16:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:217] * Acc@1 82.614 Acc@5 96.325 [2025-01-18 08:16:41 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.6% [2025-01-18 08:16:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:16:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:16:42 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.61% [2025-01-18 08:16:45 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][0/312] eta 0:13:23 lr 0.000726 time 2.5768 (2.5768) model_time 0.5283 (0.5283) loss 2.5317 (2.5317) grad_norm 1.1031 (1.1031/0.0000) mem 16099MB [2025-01-18 08:16:49 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][10/312] eta 0:03:20 lr 0.000726 time 0.4567 (0.6638) model_time 0.4561 (0.4773) loss 3.0615 (2.8805) grad_norm 1.1924 (1.6425/0.4101) mem 16099MB [2025-01-18 08:16:54 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][20/312] eta 0:02:44 lr 0.000725 time 0.4459 (0.5644) model_time 0.4457 (0.4666) loss 2.9012 (2.9774) grad_norm 1.6852 (1.9174/0.8696) mem 16099MB [2025-01-18 08:16:59 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][30/312] eta 0:02:30 lr 0.000725 time 0.4452 (0.5350) model_time 0.4447 (0.4686) loss 2.1203 (2.8772) grad_norm 4.2650 (2.4587/1.1759) mem 16099MB [2025-01-18 08:17:04 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][40/312] eta 0:02:23 lr 0.000724 time 0.5517 (0.5259) model_time 0.5513 (0.4756) loss 2.5211 (2.8569) grad_norm 4.8140 (2.9623/1.4790) mem 16099MB [2025-01-18 08:17:08 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][50/312] eta 0:02:15 lr 0.000724 time 0.4536 (0.5158) model_time 0.4535 (0.4753) loss 2.1655 (2.8522) grad_norm 2.5462 (2.8992/1.4538) mem 16099MB [2025-01-18 08:17:13 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][60/312] eta 0:02:07 lr 0.000723 time 0.4629 (0.5079) model_time 0.4627 (0.4740) loss 2.2761 (2.8580) grad_norm 1.8054 (2.8199/1.4066) mem 16099MB [2025-01-18 08:17:18 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][70/312] eta 0:02:01 lr 0.000723 time 0.4537 (0.5004) model_time 0.4533 (0.4712) loss 3.4345 (2.8708) grad_norm 1.6440 (2.7066/1.3486) mem 16099MB [2025-01-18 08:17:22 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][80/312] eta 0:01:54 lr 0.000722 time 0.4690 (0.4953) model_time 0.4686 (0.4697) loss 2.8617 (2.8798) grad_norm 1.4539 (2.6002/1.3260) mem 16099MB [2025-01-18 08:17:27 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][90/312] eta 0:01:48 lr 0.000722 time 0.4488 (0.4908) model_time 0.4486 (0.4679) loss 2.3880 (2.9035) grad_norm 2.3306 (2.5696/1.2661) mem 16099MB [2025-01-18 08:17:31 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][100/312] eta 0:01:43 lr 0.000721 time 0.4484 (0.4876) model_time 0.4480 (0.4669) loss 2.2928 (2.9160) grad_norm 3.3818 (2.5728/1.2294) mem 16099MB [2025-01-18 08:17:36 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][110/312] eta 0:01:38 lr 0.000721 time 0.4455 (0.4870) model_time 0.4454 (0.4682) loss 3.2783 (2.9042) grad_norm 3.6989 (2.5787/1.2290) mem 16099MB [2025-01-18 08:17:41 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][120/312] eta 0:01:33 lr 0.000720 time 0.4512 (0.4863) model_time 0.4508 (0.4690) loss 2.8579 (2.9303) grad_norm 2.2195 (2.5840/1.2164) mem 16099MB [2025-01-18 08:17:46 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][130/312] eta 0:01:28 lr 0.000720 time 0.4613 (0.4843) model_time 0.4608 (0.4682) loss 3.0827 (2.9183) grad_norm 1.3497 (2.5077/1.2042) mem 16099MB [2025-01-18 08:17:50 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][140/312] eta 0:01:23 lr 0.000719 time 0.4670 (0.4831) model_time 0.4668 (0.4682) loss 2.1066 (2.9121) grad_norm 1.3285 (2.4571/1.1817) mem 16099MB [2025-01-18 08:17:55 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][150/312] eta 0:01:17 lr 0.000719 time 0.4478 (0.4813) model_time 0.4474 (0.4674) loss 3.2290 (2.9060) grad_norm 1.6494 (2.4236/1.1555) mem 16099MB [2025-01-18 08:18:00 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][160/312] eta 0:01:13 lr 0.000718 time 0.4505 (0.4811) model_time 0.4504 (0.4680) loss 3.4252 (2.9278) grad_norm 2.8728 (2.4309/1.1299) mem 16099MB [2025-01-18 08:18:04 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][170/312] eta 0:01:08 lr 0.000718 time 0.4519 (0.4799) model_time 0.4518 (0.4675) loss 2.6929 (2.9358) grad_norm 2.2577 (2.4371/1.1222) mem 16099MB [2025-01-18 08:18:09 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][180/312] eta 0:01:03 lr 0.000717 time 0.4610 (0.4791) model_time 0.4608 (0.4674) loss 3.7561 (2.9442) grad_norm 0.9558 (2.4191/1.1157) mem 16099MB [2025-01-18 08:18:13 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][190/312] eta 0:00:58 lr 0.000717 time 0.4596 (0.4784) model_time 0.4591 (0.4673) loss 3.0538 (2.9394) grad_norm 1.7893 (2.4061/1.0950) mem 16099MB [2025-01-18 08:18:18 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][200/312] eta 0:00:53 lr 0.000716 time 0.4580 (0.4785) model_time 0.4575 (0.4679) loss 3.0343 (2.9425) grad_norm 1.4484 (2.3700/1.0813) mem 16099MB [2025-01-18 08:18:23 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][210/312] eta 0:00:48 lr 0.000716 time 0.4576 (0.4774) model_time 0.4574 (0.4673) loss 3.2160 (2.9469) grad_norm 3.0017 (2.3676/1.0740) mem 16099MB [2025-01-18 08:18:27 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][220/312] eta 0:00:43 lr 0.000715 time 0.4408 (0.4768) model_time 0.4404 (0.4671) loss 2.3254 (2.9527) grad_norm 1.2078 (2.3588/1.0630) mem 16099MB [2025-01-18 08:18:32 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][230/312] eta 0:00:39 lr 0.000715 time 0.4781 (0.4774) model_time 0.4777 (0.4682) loss 2.5702 (2.9528) grad_norm 2.5986 (2.3862/1.0752) mem 16099MB [2025-01-18 08:18:37 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][240/312] eta 0:00:34 lr 0.000714 time 0.4611 (0.4767) model_time 0.4609 (0.4678) loss 2.8378 (2.9594) grad_norm 1.0768 (2.4062/1.0955) mem 16099MB [2025-01-18 08:18:42 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][250/312] eta 0:00:29 lr 0.000714 time 0.4853 (0.4761) model_time 0.4848 (0.4676) loss 2.7348 (2.9625) grad_norm 2.0726 (2.4363/1.1063) mem 16099MB [2025-01-18 08:18:46 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][260/312] eta 0:00:24 lr 0.000713 time 0.4487 (0.4755) model_time 0.4482 (0.4673) loss 3.1001 (2.9652) grad_norm 2.6940 (2.4799/1.1336) mem 16099MB [2025-01-18 08:18:51 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][270/312] eta 0:00:19 lr 0.000713 time 0.4505 (0.4753) model_time 0.4503 (0.4674) loss 3.3491 (2.9573) grad_norm 1.2606 (2.4673/1.1225) mem 16099MB [2025-01-18 08:18:56 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][280/312] eta 0:00:15 lr 0.000712 time 0.4543 (0.4760) model_time 0.4539 (0.4683) loss 3.1524 (2.9528) grad_norm 4.2434 (2.4578/1.1172) mem 16099MB [2025-01-18 08:19:01 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][290/312] eta 0:00:10 lr 0.000712 time 0.4530 (0.4759) model_time 0.4528 (0.4685) loss 2.4155 (2.9571) grad_norm 3.0611 (2.4524/1.1247) mem 16099MB [2025-01-18 08:19:05 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][300/312] eta 0:00:05 lr 0.000711 time 0.4393 (0.4754) model_time 0.4392 (0.4682) loss 3.2656 (2.9620) grad_norm 3.3181 (2.4670/1.1129) mem 16099MB [2025-01-18 08:19:10 internimage_t_1k_224] (main.py 510): INFO Train: [218/300][310/312] eta 0:00:00 lr 0.000711 time 0.4388 (0.4745) model_time 0.4387 (0.4676) loss 3.5620 (2.9631) grad_norm 1.2246 (2.5000/1.1171) mem 16099MB [2025-01-18 08:19:10 internimage_t_1k_224] (main.py 519): INFO EPOCH 218 training takes 0:02:28 [2025-01-18 08:19:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_218.pth saving...... [2025-01-18 08:19:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_218.pth saved !!! [2025-01-18 08:19:19 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.878 (7.878) Loss 0.7677 (0.7677) Acc@1 84.082 (84.082) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 08:19:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.038) Loss 1.0378 (0.8781) Acc@1 77.612 (81.922) Acc@5 94.287 (95.865) Mem 16099MB [2025-01-18 08:19:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:218] * Acc@1 81.752 Acc@5 95.875 [2025-01-18 08:19:23 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.8% [2025-01-18 08:19:23 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.76% [2025-01-18 08:19:31 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.090 (8.090) Loss 0.7667 (0.7667) Acc@1 85.278 (85.278) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 08:19:35 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.073) Loss 1.0182 (0.8788) Acc@1 78.516 (82.761) Acc@5 95.093 (96.322) Mem 16099MB [2025-01-18 08:19:35 internimage_t_1k_224] (main.py 575): INFO [Epoch:218] * Acc@1 82.642 Acc@5 96.337 [2025-01-18 08:19:35 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.6% [2025-01-18 08:19:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:19:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:19:36 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.64% [2025-01-18 08:19:39 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][0/312] eta 0:12:41 lr 0.000711 time 2.4409 (2.4409) model_time 0.4716 (0.4716) loss 3.2238 (3.2238) grad_norm 2.2745 (2.2745/0.0000) mem 16099MB [2025-01-18 08:19:43 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][10/312] eta 0:03:14 lr 0.000710 time 0.4636 (0.6433) model_time 0.4632 (0.4639) loss 2.9994 (3.0100) grad_norm 1.8111 (1.9578/0.6078) mem 16099MB [2025-01-18 08:19:48 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][20/312] eta 0:02:41 lr 0.000710 time 0.4496 (0.5548) model_time 0.4493 (0.4607) loss 2.7682 (3.0434) grad_norm 2.0800 (1.9828/0.7220) mem 16099MB [2025-01-18 08:19:53 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][30/312] eta 0:02:28 lr 0.000709 time 0.4477 (0.5281) model_time 0.4475 (0.4643) loss 2.5188 (3.0063) grad_norm 2.3607 (2.0983/0.8683) mem 16099MB [2025-01-18 08:19:57 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][40/312] eta 0:02:19 lr 0.000709 time 0.4595 (0.5129) model_time 0.4594 (0.4645) loss 3.0555 (3.0076) grad_norm 2.3551 (2.2132/0.8711) mem 16099MB [2025-01-18 08:20:02 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][50/312] eta 0:02:11 lr 0.000708 time 0.4697 (0.5022) model_time 0.4695 (0.4632) loss 2.6168 (3.0341) grad_norm 2.0081 (2.2533/0.9255) mem 16099MB [2025-01-18 08:20:06 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][60/312] eta 0:02:04 lr 0.000708 time 0.4488 (0.4957) model_time 0.4484 (0.4631) loss 2.0741 (3.0133) grad_norm 1.0646 (2.1772/0.8912) mem 16099MB [2025-01-18 08:20:11 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][70/312] eta 0:01:58 lr 0.000707 time 0.4456 (0.4912) model_time 0.4454 (0.4631) loss 2.8916 (3.0032) grad_norm 0.8963 (2.1082/0.8865) mem 16099MB [2025-01-18 08:20:16 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][80/312] eta 0:01:53 lr 0.000707 time 0.5815 (0.4881) model_time 0.5811 (0.4634) loss 2.7285 (3.0083) grad_norm 5.3301 (2.2724/1.1918) mem 16099MB [2025-01-18 08:20:20 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][90/312] eta 0:01:47 lr 0.000706 time 0.4654 (0.4859) model_time 0.4652 (0.4639) loss 2.7633 (2.9931) grad_norm 1.5685 (2.2423/1.1653) mem 16099MB [2025-01-18 08:20:25 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][100/312] eta 0:01:42 lr 0.000706 time 0.4478 (0.4835) model_time 0.4477 (0.4637) loss 3.1937 (2.9897) grad_norm 2.0520 (2.2539/1.1224) mem 16099MB [2025-01-18 08:20:30 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][110/312] eta 0:01:37 lr 0.000705 time 0.5702 (0.4832) model_time 0.5697 (0.4651) loss 3.1169 (3.0144) grad_norm 0.9999 (2.2733/1.1353) mem 16099MB [2025-01-18 08:20:34 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][120/312] eta 0:01:32 lr 0.000705 time 0.4678 (0.4817) model_time 0.4673 (0.4650) loss 3.1072 (3.0090) grad_norm 3.7690 (2.2775/1.1486) mem 16099MB [2025-01-18 08:20:39 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][130/312] eta 0:01:27 lr 0.000704 time 0.4494 (0.4804) model_time 0.4490 (0.4650) loss 3.0073 (2.9862) grad_norm 4.6247 (2.2703/1.1406) mem 16099MB [2025-01-18 08:20:44 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][140/312] eta 0:01:22 lr 0.000704 time 0.5922 (0.4806) model_time 0.5920 (0.4663) loss 3.3588 (2.9988) grad_norm 5.8548 (2.2983/1.1476) mem 16099MB [2025-01-18 08:20:49 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][150/312] eta 0:01:17 lr 0.000703 time 0.4439 (0.4802) model_time 0.4434 (0.4667) loss 2.2810 (2.9997) grad_norm 2.5147 (2.3306/1.1410) mem 16099MB [2025-01-18 08:20:53 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][160/312] eta 0:01:13 lr 0.000703 time 0.5413 (0.4803) model_time 0.5411 (0.4677) loss 3.0123 (2.9973) grad_norm 1.5544 (2.3663/1.1756) mem 16099MB [2025-01-18 08:20:58 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][170/312] eta 0:01:08 lr 0.000702 time 0.4661 (0.4789) model_time 0.4658 (0.4670) loss 3.3590 (2.9815) grad_norm 3.2638 (2.3657/1.1538) mem 16099MB [2025-01-18 08:21:03 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][180/312] eta 0:01:03 lr 0.000702 time 0.4557 (0.4781) model_time 0.4553 (0.4668) loss 3.2463 (2.9763) grad_norm 4.2246 (2.4260/1.1774) mem 16099MB [2025-01-18 08:21:07 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][190/312] eta 0:00:58 lr 0.000701 time 0.4597 (0.4774) model_time 0.4593 (0.4667) loss 2.5242 (2.9608) grad_norm 1.5098 (2.4144/1.1564) mem 16099MB [2025-01-18 08:21:12 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][200/312] eta 0:00:53 lr 0.000701 time 0.4474 (0.4770) model_time 0.4472 (0.4668) loss 3.6449 (2.9752) grad_norm 1.7520 (2.4009/1.1388) mem 16099MB [2025-01-18 08:21:17 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][210/312] eta 0:00:48 lr 0.000700 time 0.4491 (0.4761) model_time 0.4489 (0.4664) loss 2.8294 (2.9739) grad_norm 1.3689 (2.4031/1.1333) mem 16099MB [2025-01-18 08:21:21 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][220/312] eta 0:00:43 lr 0.000700 time 0.4632 (0.4756) model_time 0.4628 (0.4663) loss 3.0349 (2.9776) grad_norm 1.7293 (2.4453/1.1821) mem 16099MB [2025-01-18 08:21:26 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][230/312] eta 0:00:38 lr 0.000699 time 0.4515 (0.4751) model_time 0.4511 (0.4662) loss 3.7607 (2.9818) grad_norm 2.6592 (2.4364/1.1660) mem 16099MB [2025-01-18 08:21:31 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][240/312] eta 0:00:34 lr 0.000699 time 0.4524 (0.4746) model_time 0.4523 (0.4660) loss 3.5319 (2.9890) grad_norm 2.9449 (2.4445/1.1713) mem 16099MB [2025-01-18 08:21:35 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][250/312] eta 0:00:29 lr 0.000698 time 0.4602 (0.4740) model_time 0.4601 (0.4658) loss 3.0820 (2.9789) grad_norm 3.5902 (2.4513/1.1601) mem 16099MB [2025-01-18 08:21:40 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][260/312] eta 0:00:24 lr 0.000698 time 0.4703 (0.4732) model_time 0.4701 (0.4653) loss 3.2760 (2.9784) grad_norm 5.5192 (2.4635/1.1694) mem 16099MB [2025-01-18 08:21:44 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][270/312] eta 0:00:19 lr 0.000697 time 0.4559 (0.4729) model_time 0.4557 (0.4652) loss 2.2852 (2.9785) grad_norm 3.5216 (2.4983/1.1781) mem 16099MB [2025-01-18 08:21:49 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][280/312] eta 0:00:15 lr 0.000697 time 0.4353 (0.4723) model_time 0.4348 (0.4649) loss 3.0922 (2.9743) grad_norm 2.4071 (2.4822/1.1684) mem 16099MB [2025-01-18 08:21:53 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][290/312] eta 0:00:10 lr 0.000696 time 0.4534 (0.4717) model_time 0.4529 (0.4645) loss 3.4926 (2.9757) grad_norm 3.4339 (2.4686/1.1608) mem 16099MB [2025-01-18 08:21:58 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][300/312] eta 0:00:05 lr 0.000696 time 0.4392 (0.4714) model_time 0.4391 (0.4645) loss 2.3032 (2.9795) grad_norm 4.7909 (2.4731/1.1546) mem 16099MB [2025-01-18 08:22:03 internimage_t_1k_224] (main.py 510): INFO Train: [219/300][310/312] eta 0:00:00 lr 0.000695 time 0.4390 (0.4710) model_time 0.4388 (0.4642) loss 3.2812 (2.9723) grad_norm 2.0362 (2.4802/1.1516) mem 16099MB [2025-01-18 08:22:03 internimage_t_1k_224] (main.py 519): INFO EPOCH 219 training takes 0:02:26 [2025-01-18 08:22:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_219.pth saving...... [2025-01-18 08:22:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_219.pth saved !!! [2025-01-18 08:22:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.151 (7.151) Loss 0.7511 (0.7511) Acc@1 84.204 (84.204) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 08:22:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.974) Loss 1.0315 (0.8720) Acc@1 76.953 (81.929) Acc@5 94.629 (95.907) Mem 16099MB [2025-01-18 08:22:15 internimage_t_1k_224] (main.py 575): INFO [Epoch:219] * Acc@1 81.752 Acc@5 95.919 [2025-01-18 08:22:15 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.8% [2025-01-18 08:22:15 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.76% [2025-01-18 08:22:23 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.051 (8.051) Loss 0.7657 (0.7657) Acc@1 85.376 (85.376) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 08:22:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.080) Loss 1.0167 (0.8775) Acc@1 78.491 (82.766) Acc@5 95.068 (96.311) Mem 16099MB [2025-01-18 08:22:27 internimage_t_1k_224] (main.py 575): INFO [Epoch:219] * Acc@1 82.650 Acc@5 96.327 [2025-01-18 08:22:27 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.6% [2025-01-18 08:22:27 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:22:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:22:29 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.65% [2025-01-18 08:22:31 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][0/312] eta 0:13:38 lr 0.000695 time 2.6220 (2.6220) model_time 0.6536 (0.6536) loss 3.2456 (3.2456) grad_norm 1.9994 (1.9994/0.0000) mem 16099MB [2025-01-18 08:22:36 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][10/312] eta 0:03:18 lr 0.000695 time 0.4454 (0.6588) model_time 0.4453 (0.4796) loss 3.2226 (3.1076) grad_norm 3.4767 (2.2908/1.0046) mem 16099MB [2025-01-18 08:22:41 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][20/312] eta 0:02:49 lr 0.000694 time 0.4468 (0.5816) model_time 0.4466 (0.4876) loss 3.2376 (3.1073) grad_norm 1.4824 (2.2104/0.8096) mem 16099MB [2025-01-18 08:22:45 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][30/312] eta 0:02:34 lr 0.000694 time 0.4405 (0.5465) model_time 0.4403 (0.4827) loss 3.5117 (3.0626) grad_norm 2.7027 (2.2031/0.8162) mem 16099MB [2025-01-18 08:22:50 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][40/312] eta 0:02:22 lr 0.000693 time 0.4601 (0.5248) model_time 0.4600 (0.4765) loss 2.0183 (2.9302) grad_norm 2.1674 (2.1823/0.8115) mem 16099MB [2025-01-18 08:22:55 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][50/312] eta 0:02:14 lr 0.000693 time 0.4590 (0.5130) model_time 0.4586 (0.4741) loss 2.8496 (2.9318) grad_norm 3.6256 (2.2545/0.8062) mem 16099MB [2025-01-18 08:22:59 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][60/312] eta 0:02:07 lr 0.000692 time 0.4534 (0.5057) model_time 0.4530 (0.4731) loss 3.2907 (2.8942) grad_norm 1.7804 (2.2795/0.8597) mem 16099MB [2025-01-18 08:23:04 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][70/312] eta 0:02:00 lr 0.000692 time 0.4792 (0.4987) model_time 0.4790 (0.4707) loss 1.8770 (2.8768) grad_norm 3.1648 (2.2976/0.8479) mem 16099MB [2025-01-18 08:23:08 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][80/312] eta 0:01:54 lr 0.000691 time 0.4510 (0.4929) model_time 0.4508 (0.4683) loss 3.1033 (2.9177) grad_norm 2.4641 (2.3739/0.8503) mem 16099MB [2025-01-18 08:23:13 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][90/312] eta 0:01:49 lr 0.000691 time 0.4574 (0.4917) model_time 0.4571 (0.4697) loss 3.3720 (2.9282) grad_norm 3.4970 (2.3780/0.8494) mem 16099MB [2025-01-18 08:23:18 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][100/312] eta 0:01:43 lr 0.000690 time 0.5969 (0.4893) model_time 0.5964 (0.4695) loss 2.9396 (2.9128) grad_norm 1.8094 (2.3723/0.8356) mem 16099MB [2025-01-18 08:23:23 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][110/312] eta 0:01:38 lr 0.000690 time 0.4933 (0.4876) model_time 0.4931 (0.4695) loss 3.2364 (2.9064) grad_norm 3.5656 (2.3506/0.8215) mem 16099MB [2025-01-18 08:23:27 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][120/312] eta 0:01:33 lr 0.000689 time 0.4424 (0.4854) model_time 0.4422 (0.4688) loss 2.1108 (2.8882) grad_norm 1.9241 (2.4098/0.8588) mem 16099MB [2025-01-18 08:23:32 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][130/312] eta 0:01:28 lr 0.000689 time 0.7302 (0.4858) model_time 0.7301 (0.4704) loss 2.5283 (2.8842) grad_norm 1.7097 (2.3891/0.8482) mem 16099MB [2025-01-18 08:23:37 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][140/312] eta 0:01:23 lr 0.000688 time 0.4626 (0.4855) model_time 0.4622 (0.4712) loss 3.1921 (2.8719) grad_norm 4.5898 (2.3872/0.8565) mem 16099MB [2025-01-18 08:23:42 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][150/312] eta 0:01:18 lr 0.000688 time 0.4552 (0.4836) model_time 0.4548 (0.4702) loss 1.6256 (2.8697) grad_norm 1.2630 (2.4130/0.8745) mem 16099MB [2025-01-18 08:23:46 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][160/312] eta 0:01:13 lr 0.000687 time 0.4401 (0.4821) model_time 0.4399 (0.4695) loss 3.2581 (2.8717) grad_norm 1.6660 (2.4100/0.9125) mem 16099MB [2025-01-18 08:23:51 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][170/312] eta 0:01:08 lr 0.000687 time 0.4558 (0.4809) model_time 0.4556 (0.4691) loss 2.3557 (2.8733) grad_norm 2.0990 (2.3820/0.9093) mem 16099MB [2025-01-18 08:23:55 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][180/312] eta 0:01:03 lr 0.000686 time 0.4552 (0.4796) model_time 0.4548 (0.4684) loss 2.5100 (2.8776) grad_norm 1.9015 (2.3598/0.8934) mem 16099MB [2025-01-18 08:24:00 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][190/312] eta 0:00:58 lr 0.000686 time 0.4526 (0.4784) model_time 0.4522 (0.4677) loss 3.4353 (2.8883) grad_norm 2.2442 (2.3674/0.9030) mem 16099MB [2025-01-18 08:24:05 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][200/312] eta 0:00:53 lr 0.000685 time 0.5658 (0.4783) model_time 0.5657 (0.4681) loss 3.0611 (2.8860) grad_norm 2.5109 (2.3512/0.8912) mem 16099MB [2025-01-18 08:24:09 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][210/312] eta 0:00:48 lr 0.000685 time 0.4461 (0.4772) model_time 0.4457 (0.4675) loss 2.3211 (2.8817) grad_norm 4.1770 (2.3888/0.9504) mem 16099MB [2025-01-18 08:24:14 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][220/312] eta 0:00:43 lr 0.000684 time 0.4817 (0.4767) model_time 0.4812 (0.4674) loss 2.9908 (2.8815) grad_norm 4.4065 (2.4671/1.0472) mem 16099MB [2025-01-18 08:24:19 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][230/312] eta 0:00:39 lr 0.000684 time 0.4558 (0.4761) model_time 0.4557 (0.4672) loss 2.9719 (2.8829) grad_norm 1.3872 (2.4867/1.0704) mem 16099MB [2025-01-18 08:24:23 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][240/312] eta 0:00:34 lr 0.000683 time 0.4507 (0.4753) model_time 0.4505 (0.4667) loss 2.8726 (2.8727) grad_norm 3.0074 (2.4579/1.0640) mem 16099MB [2025-01-18 08:24:28 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][250/312] eta 0:00:29 lr 0.000683 time 0.4390 (0.4755) model_time 0.4388 (0.4673) loss 3.3257 (2.8813) grad_norm 1.5212 (2.4511/1.0511) mem 16099MB [2025-01-18 08:24:33 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][260/312] eta 0:00:24 lr 0.000682 time 0.4535 (0.4755) model_time 0.4530 (0.4676) loss 2.3876 (2.8833) grad_norm 3.2864 (2.4761/1.0556) mem 16099MB [2025-01-18 08:24:37 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][270/312] eta 0:00:19 lr 0.000682 time 0.4400 (0.4750) model_time 0.4399 (0.4674) loss 3.2502 (2.8787) grad_norm 4.6958 (2.5099/1.0776) mem 16099MB [2025-01-18 08:24:42 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][280/312] eta 0:00:15 lr 0.000681 time 0.4592 (0.4743) model_time 0.4587 (0.4669) loss 2.7729 (2.8846) grad_norm 1.6921 (2.5185/1.1000) mem 16099MB [2025-01-18 08:24:46 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][290/312] eta 0:00:10 lr 0.000681 time 0.4513 (0.4739) model_time 0.4511 (0.4668) loss 3.0893 (2.8922) grad_norm 2.0769 (2.5073/1.0954) mem 16099MB [2025-01-18 08:24:51 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][300/312] eta 0:00:05 lr 0.000680 time 0.4463 (0.4735) model_time 0.4462 (0.4666) loss 3.0040 (2.8973) grad_norm 2.1320 (2.4967/1.0854) mem 16099MB [2025-01-18 08:24:56 internimage_t_1k_224] (main.py 510): INFO Train: [220/300][310/312] eta 0:00:00 lr 0.000680 time 0.4395 (0.4729) model_time 0.4394 (0.4662) loss 2.2265 (2.8938) grad_norm 3.2936 (2.5064/1.0924) mem 16099MB [2025-01-18 08:24:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 220 training takes 0:02:27 [2025-01-18 08:24:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_220.pth saving...... [2025-01-18 08:24:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_220.pth saved !!! [2025-01-18 08:25:05 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.283 (7.283) Loss 0.7547 (0.7547) Acc@1 84.204 (84.204) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 08:25:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.979) Loss 1.0355 (0.8594) Acc@1 77.319 (82.025) Acc@5 94.336 (95.976) Mem 16099MB [2025-01-18 08:25:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:220] * Acc@1 81.902 Acc@5 96.017 [2025-01-18 08:25:08 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.9% [2025-01-18 08:25:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 08:25:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 08:25:09 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.90% [2025-01-18 08:25:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.438 (7.438) Loss 0.7645 (0.7645) Acc@1 85.400 (85.400) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 08:25:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (1.005) Loss 1.0152 (0.8762) Acc@1 78.589 (82.801) Acc@5 95.190 (96.340) Mem 16099MB [2025-01-18 08:25:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:220] * Acc@1 82.678 Acc@5 96.357 [2025-01-18 08:25:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.7% [2025-01-18 08:25:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:25:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:25:22 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.68% [2025-01-18 08:25:24 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][0/312] eta 0:12:00 lr 0.000680 time 2.3085 (2.3085) model_time 0.4970 (0.4970) loss 2.0438 (2.0438) grad_norm 1.2489 (1.2489/0.0000) mem 16099MB [2025-01-18 08:25:29 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][10/312] eta 0:03:14 lr 0.000679 time 0.4574 (0.6434) model_time 0.4569 (0.4783) loss 3.0002 (3.0209) grad_norm 3.5022 (2.7952/1.0763) mem 16099MB [2025-01-18 08:25:34 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][20/312] eta 0:02:42 lr 0.000679 time 0.4414 (0.5574) model_time 0.4412 (0.4708) loss 3.2651 (3.0511) grad_norm 1.8031 (2.6259/1.0623) mem 16099MB [2025-01-18 08:25:38 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][30/312] eta 0:02:29 lr 0.000678 time 0.4410 (0.5294) model_time 0.4408 (0.4706) loss 2.6049 (2.9904) grad_norm 3.5675 (2.5147/0.9879) mem 16099MB [2025-01-18 08:25:43 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][40/312] eta 0:02:19 lr 0.000678 time 0.4480 (0.5137) model_time 0.4476 (0.4692) loss 3.5456 (2.9758) grad_norm 3.5859 (2.4918/1.0055) mem 16099MB [2025-01-18 08:25:48 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][50/312] eta 0:02:12 lr 0.000677 time 0.4454 (0.5055) model_time 0.4449 (0.4696) loss 2.6414 (2.9767) grad_norm 2.9370 (2.5618/1.0069) mem 16099MB [2025-01-18 08:25:53 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][60/312] eta 0:02:06 lr 0.000677 time 0.4465 (0.5001) model_time 0.4463 (0.4701) loss 3.1459 (2.9783) grad_norm 1.4015 (2.4387/1.0114) mem 16099MB [2025-01-18 08:25:57 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][70/312] eta 0:01:59 lr 0.000676 time 0.4536 (0.4958) model_time 0.4532 (0.4700) loss 2.8556 (2.9513) grad_norm 1.9345 (2.3655/0.9689) mem 16099MB [2025-01-18 08:26:02 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][80/312] eta 0:01:54 lr 0.000676 time 0.4688 (0.4944) model_time 0.4687 (0.4717) loss 3.1053 (2.9516) grad_norm 3.0575 (2.3519/0.9302) mem 16099MB [2025-01-18 08:26:07 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][90/312] eta 0:01:48 lr 0.000675 time 0.4480 (0.4898) model_time 0.4478 (0.4696) loss 3.3545 (2.9062) grad_norm 1.1957 (2.3513/0.9468) mem 16099MB [2025-01-18 08:26:11 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][100/312] eta 0:01:43 lr 0.000675 time 0.4481 (0.4868) model_time 0.4479 (0.4685) loss 3.1086 (2.9266) grad_norm 2.5665 (2.3525/0.9168) mem 16099MB [2025-01-18 08:26:16 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][110/312] eta 0:01:38 lr 0.000674 time 0.4441 (0.4854) model_time 0.4436 (0.4687) loss 3.2249 (2.9491) grad_norm 1.6639 (2.3397/0.9218) mem 16099MB [2025-01-18 08:26:20 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][120/312] eta 0:01:32 lr 0.000674 time 0.4498 (0.4831) model_time 0.4480 (0.4677) loss 3.2778 (2.9309) grad_norm 3.1113 (2.3424/0.9288) mem 16099MB [2025-01-18 08:26:25 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][130/312] eta 0:01:27 lr 0.000673 time 0.4484 (0.4813) model_time 0.4479 (0.4671) loss 1.8124 (2.9189) grad_norm 2.4260 (2.3270/0.9012) mem 16099MB [2025-01-18 08:26:30 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][140/312] eta 0:01:22 lr 0.000673 time 0.4709 (0.4805) model_time 0.4708 (0.4673) loss 3.2816 (2.9036) grad_norm 1.5939 (2.2909/0.8968) mem 16099MB [2025-01-18 08:26:34 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][150/312] eta 0:01:17 lr 0.000672 time 0.4477 (0.4792) model_time 0.4475 (0.4669) loss 3.6352 (2.9036) grad_norm 1.5740 (2.3132/0.9268) mem 16099MB [2025-01-18 08:26:39 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][160/312] eta 0:01:12 lr 0.000672 time 0.4476 (0.4783) model_time 0.4471 (0.4667) loss 3.5541 (2.9003) grad_norm 2.9097 (2.3451/0.9619) mem 16099MB [2025-01-18 08:26:44 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][170/312] eta 0:01:07 lr 0.000671 time 0.4582 (0.4769) model_time 0.4577 (0.4659) loss 3.0826 (2.8925) grad_norm 1.7519 (2.3500/0.9553) mem 16099MB [2025-01-18 08:26:48 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][180/312] eta 0:01:02 lr 0.000671 time 0.4262 (0.4763) model_time 0.4257 (0.4659) loss 2.0843 (2.8893) grad_norm inf (2.3345/0.9499) mem 16099MB [2025-01-18 08:26:53 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][190/312] eta 0:00:58 lr 0.000671 time 0.4502 (0.4757) model_time 0.4500 (0.4658) loss 2.7941 (2.8838) grad_norm 1.1330 (2.3285/0.9436) mem 16099MB [2025-01-18 08:26:57 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][200/312] eta 0:00:53 lr 0.000670 time 0.4736 (0.4751) model_time 0.4734 (0.4657) loss 2.7754 (2.8831) grad_norm 1.1954 (2.3361/0.9614) mem 16099MB [2025-01-18 08:27:02 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][210/312] eta 0:00:48 lr 0.000670 time 0.4320 (0.4748) model_time 0.4318 (0.4659) loss 3.0150 (2.8833) grad_norm 1.4351 (2.3827/0.9943) mem 16099MB [2025-01-18 08:27:07 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][220/312] eta 0:00:43 lr 0.000669 time 0.4430 (0.4745) model_time 0.4426 (0.4659) loss 3.0116 (2.8857) grad_norm 1.8268 (2.3760/0.9873) mem 16099MB [2025-01-18 08:27:11 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][230/312] eta 0:00:38 lr 0.000669 time 0.4546 (0.4740) model_time 0.4544 (0.4658) loss 2.5850 (2.8903) grad_norm 1.6745 (2.3589/0.9803) mem 16099MB [2025-01-18 08:27:16 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][240/312] eta 0:00:34 lr 0.000668 time 0.4613 (0.4733) model_time 0.4611 (0.4654) loss 3.1444 (2.8850) grad_norm 1.8708 (2.3380/0.9698) mem 16099MB [2025-01-18 08:27:21 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][250/312] eta 0:00:29 lr 0.000668 time 0.4369 (0.4729) model_time 0.4367 (0.4653) loss 2.7356 (2.8824) grad_norm 2.9052 (2.3516/0.9779) mem 16099MB [2025-01-18 08:27:25 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][260/312] eta 0:00:24 lr 0.000667 time 0.4497 (0.4723) model_time 0.4496 (0.4649) loss 3.1756 (2.8842) grad_norm 2.6520 (2.3516/0.9734) mem 16099MB [2025-01-18 08:27:30 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][270/312] eta 0:00:19 lr 0.000667 time 0.4415 (0.4719) model_time 0.4410 (0.4648) loss 3.3427 (2.8924) grad_norm 4.2028 (2.3679/0.9733) mem 16099MB [2025-01-18 08:27:35 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][280/312] eta 0:00:15 lr 0.000666 time 0.4503 (0.4715) model_time 0.4501 (0.4647) loss 3.3027 (2.8918) grad_norm 1.1668 (2.3785/0.9777) mem 16099MB [2025-01-18 08:27:39 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][290/312] eta 0:00:10 lr 0.000666 time 0.4581 (0.4716) model_time 0.4580 (0.4650) loss 2.7253 (2.8817) grad_norm 2.8066 (2.4072/0.9955) mem 16099MB [2025-01-18 08:27:44 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][300/312] eta 0:00:05 lr 0.000665 time 0.4373 (0.4715) model_time 0.4372 (0.4651) loss 3.7060 (2.8825) grad_norm 1.3845 (2.4090/0.9924) mem 16099MB [2025-01-18 08:27:49 internimage_t_1k_224] (main.py 510): INFO Train: [221/300][310/312] eta 0:00:00 lr 0.000665 time 0.4382 (0.4713) model_time 0.4381 (0.4651) loss 2.5127 (2.8793) grad_norm 2.0753 (2.3937/0.9787) mem 16099MB [2025-01-18 08:27:49 internimage_t_1k_224] (main.py 519): INFO EPOCH 221 training takes 0:02:27 [2025-01-18 08:27:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_221.pth saving...... [2025-01-18 08:27:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_221.pth saved !!! [2025-01-18 08:27:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.497 (7.497) Loss 0.7429 (0.7429) Acc@1 84.277 (84.277) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 08:28:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.997) Loss 1.0161 (0.8609) Acc@1 77.612 (81.876) Acc@5 94.653 (95.943) Mem 16099MB [2025-01-18 08:28:01 internimage_t_1k_224] (main.py 575): INFO [Epoch:221] * Acc@1 81.772 Acc@5 95.945 [2025-01-18 08:28:01 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.8% [2025-01-18 08:28:01 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.90% [2025-01-18 08:28:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.156 (8.156) Loss 0.7633 (0.7633) Acc@1 85.400 (85.400) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 08:28:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.104) Loss 1.0136 (0.8747) Acc@1 78.638 (82.821) Acc@5 95.239 (96.358) Mem 16099MB [2025-01-18 08:28:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:221] * Acc@1 82.696 Acc@5 96.373 [2025-01-18 08:28:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.7% [2025-01-18 08:28:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:28:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:28:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.70% [2025-01-18 08:28:18 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][0/312] eta 0:12:36 lr 0.000665 time 2.4245 (2.4245) model_time 0.5238 (0.5238) loss 3.0566 (3.0566) grad_norm 2.7216 (2.7216/0.0000) mem 16099MB [2025-01-18 08:28:22 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][10/312] eta 0:03:12 lr 0.000664 time 0.4491 (0.6379) model_time 0.4489 (0.4648) loss 1.9028 (2.9209) grad_norm 2.3479 (1.9526/0.8140) mem 16099MB [2025-01-18 08:28:27 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][20/312] eta 0:02:41 lr 0.000664 time 0.4528 (0.5546) model_time 0.4527 (0.4638) loss 2.5779 (2.8309) grad_norm 1.9039 (2.2827/0.9657) mem 16099MB [2025-01-18 08:28:31 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][30/312] eta 0:02:28 lr 0.000663 time 0.4537 (0.5255) model_time 0.4535 (0.4638) loss 3.4157 (2.9048) grad_norm 2.7098 (2.2625/0.8703) mem 16099MB [2025-01-18 08:28:36 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][40/312] eta 0:02:19 lr 0.000663 time 0.4519 (0.5142) model_time 0.4516 (0.4675) loss 2.6870 (2.8897) grad_norm 1.3094 (2.2255/0.9031) mem 16099MB [2025-01-18 08:28:41 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][50/312] eta 0:02:11 lr 0.000662 time 0.4644 (0.5027) model_time 0.4643 (0.4651) loss 3.1591 (2.8623) grad_norm 3.4416 (2.2310/0.8848) mem 16099MB [2025-01-18 08:28:45 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][60/312] eta 0:02:04 lr 0.000662 time 0.4475 (0.4959) model_time 0.4473 (0.4644) loss 3.1464 (2.9005) grad_norm 2.2102 (2.2536/0.9136) mem 16099MB [2025-01-18 08:28:50 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][70/312] eta 0:01:58 lr 0.000661 time 0.4415 (0.4903) model_time 0.4413 (0.4632) loss 3.3345 (2.9075) grad_norm 1.6861 (2.2237/0.8741) mem 16099MB [2025-01-18 08:28:55 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][80/312] eta 0:01:53 lr 0.000661 time 0.4492 (0.4875) model_time 0.4489 (0.4637) loss 3.0804 (2.9162) grad_norm 1.2453 (2.2159/0.8670) mem 16099MB [2025-01-18 08:28:59 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][90/312] eta 0:01:47 lr 0.000660 time 0.4684 (0.4857) model_time 0.4682 (0.4645) loss 3.3013 (2.9212) grad_norm 8.1706 (2.4796/1.2932) mem 16099MB [2025-01-18 08:29:04 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][100/312] eta 0:01:42 lr 0.000660 time 0.4847 (0.4852) model_time 0.4845 (0.4660) loss 2.9234 (2.9237) grad_norm 2.0787 (2.6060/1.4145) mem 16099MB [2025-01-18 08:29:09 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][110/312] eta 0:01:37 lr 0.000659 time 0.4640 (0.4836) model_time 0.4639 (0.4662) loss 2.9231 (2.9149) grad_norm 1.5771 (2.5276/1.3894) mem 16099MB [2025-01-18 08:29:14 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][120/312] eta 0:01:32 lr 0.000659 time 0.4595 (0.4826) model_time 0.4593 (0.4666) loss 3.1380 (2.9183) grad_norm 4.3148 (2.5845/1.4077) mem 16099MB [2025-01-18 08:29:18 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][130/312] eta 0:01:27 lr 0.000658 time 0.4496 (0.4805) model_time 0.4495 (0.4656) loss 3.1266 (2.9146) grad_norm 3.0743 (2.6248/1.4089) mem 16099MB [2025-01-18 08:29:23 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][140/312] eta 0:01:22 lr 0.000658 time 0.4380 (0.4791) model_time 0.4378 (0.4653) loss 2.7966 (2.8937) grad_norm 1.3063 (2.6143/1.3879) mem 16099MB [2025-01-18 08:29:27 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][150/312] eta 0:01:17 lr 0.000657 time 0.4411 (0.4774) model_time 0.4409 (0.4644) loss 2.8701 (2.8924) grad_norm 1.7112 (2.6056/1.3534) mem 16099MB [2025-01-18 08:29:32 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][160/312] eta 0:01:12 lr 0.000657 time 0.5348 (0.4771) model_time 0.5345 (0.4650) loss 2.9395 (2.9016) grad_norm 1.0406 (2.5622/1.3328) mem 16099MB [2025-01-18 08:29:37 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][170/312] eta 0:01:07 lr 0.000656 time 0.4499 (0.4757) model_time 0.4497 (0.4643) loss 3.2645 (2.9178) grad_norm 3.3614 (2.5961/1.3372) mem 16099MB [2025-01-18 08:29:41 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][180/312] eta 0:01:02 lr 0.000656 time 0.4443 (0.4751) model_time 0.4441 (0.4643) loss 2.9091 (2.9273) grad_norm 3.2472 (2.6045/1.3325) mem 16099MB [2025-01-18 08:29:46 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][190/312] eta 0:00:57 lr 0.000655 time 0.4634 (0.4748) model_time 0.4632 (0.4645) loss 2.2663 (2.9299) grad_norm 2.7119 (2.5985/1.3097) mem 16099MB [2025-01-18 08:29:51 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][200/312] eta 0:00:53 lr 0.000655 time 0.4619 (0.4753) model_time 0.4617 (0.4655) loss 2.5017 (2.9293) grad_norm 1.5236 (2.5784/1.2940) mem 16099MB [2025-01-18 08:29:55 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][210/312] eta 0:00:48 lr 0.000654 time 0.4434 (0.4747) model_time 0.4424 (0.4653) loss 2.0039 (2.9207) grad_norm 2.5861 (2.5986/1.2933) mem 16099MB [2025-01-18 08:30:00 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][220/312] eta 0:00:43 lr 0.000654 time 0.4708 (0.4743) model_time 0.4706 (0.4654) loss 2.9506 (2.9240) grad_norm 3.0581 (2.5593/1.2825) mem 16099MB [2025-01-18 08:30:05 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][230/312] eta 0:00:38 lr 0.000653 time 0.5635 (0.4753) model_time 0.5633 (0.4668) loss 2.7432 (2.9195) grad_norm 1.4354 (2.5338/1.2714) mem 16099MB [2025-01-18 08:30:10 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][240/312] eta 0:00:34 lr 0.000653 time 0.4457 (0.4748) model_time 0.4455 (0.4666) loss 2.8788 (2.9102) grad_norm 2.2617 (2.5311/1.2502) mem 16099MB [2025-01-18 08:30:14 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][250/312] eta 0:00:29 lr 0.000653 time 0.5683 (0.4745) model_time 0.5681 (0.4666) loss 3.1927 (2.9089) grad_norm 1.5277 (2.5468/1.2466) mem 16099MB [2025-01-18 08:30:19 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][260/312] eta 0:00:24 lr 0.000652 time 0.4465 (0.4744) model_time 0.4463 (0.4667) loss 3.5426 (2.9092) grad_norm 3.4318 (2.5423/1.2333) mem 16099MB [2025-01-18 08:30:24 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][270/312] eta 0:00:19 lr 0.000652 time 0.4428 (0.4748) model_time 0.4426 (0.4674) loss 2.8930 (2.9114) grad_norm 1.3482 (2.5246/1.2234) mem 16099MB [2025-01-18 08:30:28 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][280/312] eta 0:00:15 lr 0.000651 time 0.4497 (0.4743) model_time 0.4496 (0.4672) loss 2.2486 (2.9158) grad_norm 3.2322 (2.5285/1.2417) mem 16099MB [2025-01-18 08:30:33 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][290/312] eta 0:00:10 lr 0.000651 time 0.4439 (0.4740) model_time 0.4437 (0.4672) loss 1.7876 (2.9160) grad_norm 4.5051 (2.5791/1.2689) mem 16099MB [2025-01-18 08:30:38 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][300/312] eta 0:00:05 lr 0.000650 time 0.4875 (0.4734) model_time 0.4874 (0.4668) loss 2.4696 (2.9113) grad_norm 1.4800 (2.5680/1.2558) mem 16099MB [2025-01-18 08:30:42 internimage_t_1k_224] (main.py 510): INFO Train: [222/300][310/312] eta 0:00:00 lr 0.000650 time 0.4398 (0.4723) model_time 0.4397 (0.4659) loss 3.1547 (2.9055) grad_norm 2.0644 (2.6159/1.2743) mem 16099MB [2025-01-18 08:30:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 222 training takes 0:02:27 [2025-01-18 08:30:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_222.pth saving...... [2025-01-18 08:30:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_222.pth saved !!! [2025-01-18 08:30:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.214 (7.214) Loss 0.7412 (0.7412) Acc@1 84.302 (84.302) Acc@5 97.168 (97.168) Mem 16099MB [2025-01-18 08:30:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.977) Loss 1.0132 (0.8377) Acc@1 76.831 (81.954) Acc@5 94.556 (95.932) Mem 16099MB [2025-01-18 08:30:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:222] * Acc@1 81.852 Acc@5 95.949 [2025-01-18 08:30:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.9% [2025-01-18 08:30:55 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.90% [2025-01-18 08:31:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.956 (7.956) Loss 0.7621 (0.7621) Acc@1 85.498 (85.498) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 08:31:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.064) Loss 1.0119 (0.8733) Acc@1 78.662 (82.852) Acc@5 95.215 (96.360) Mem 16099MB [2025-01-18 08:31:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:222] * Acc@1 82.728 Acc@5 96.379 [2025-01-18 08:31:06 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.7% [2025-01-18 08:31:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:31:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:31:08 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.73% [2025-01-18 08:31:10 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][0/312] eta 0:10:55 lr 0.000650 time 2.0998 (2.0998) model_time 0.4769 (0.4769) loss 2.5646 (2.5646) grad_norm 2.3379 (2.3379/0.0000) mem 16099MB [2025-01-18 08:31:15 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][10/312] eta 0:03:08 lr 0.000649 time 0.4540 (0.6229) model_time 0.4535 (0.4749) loss 2.5032 (2.6983) grad_norm 2.7466 (2.2365/1.2397) mem 16099MB [2025-01-18 08:31:19 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][20/312] eta 0:02:41 lr 0.000649 time 0.4517 (0.5535) model_time 0.4508 (0.4758) loss 3.1223 (2.7900) grad_norm 3.5975 (2.3134/1.2511) mem 16099MB [2025-01-18 08:31:24 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][30/312] eta 0:02:29 lr 0.000648 time 0.4703 (0.5309) model_time 0.4701 (0.4782) loss 2.7977 (2.7774) grad_norm 1.7306 (2.6658/1.6687) mem 16099MB [2025-01-18 08:31:29 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][40/312] eta 0:02:20 lr 0.000648 time 0.4533 (0.5158) model_time 0.4531 (0.4759) loss 3.0691 (2.8386) grad_norm 2.6858 (3.0506/1.9404) mem 16099MB [2025-01-18 08:31:34 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][50/312] eta 0:02:12 lr 0.000647 time 0.4438 (0.5068) model_time 0.4433 (0.4746) loss 2.5920 (2.7971) grad_norm 3.7886 (3.0144/1.8075) mem 16099MB [2025-01-18 08:31:38 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][60/312] eta 0:02:06 lr 0.000647 time 0.4569 (0.5004) model_time 0.4567 (0.4734) loss 2.9167 (2.8095) grad_norm 3.4970 (2.9459/1.7327) mem 16099MB [2025-01-18 08:31:43 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][70/312] eta 0:01:59 lr 0.000646 time 0.4547 (0.4953) model_time 0.4544 (0.4721) loss 2.2597 (2.8112) grad_norm 1.6174 (2.8751/1.6594) mem 16099MB [2025-01-18 08:31:48 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][80/312] eta 0:01:54 lr 0.000646 time 0.5420 (0.4950) model_time 0.5416 (0.4745) loss 2.5705 (2.8042) grad_norm 1.9065 (2.7354/1.6031) mem 16099MB [2025-01-18 08:31:52 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][90/312] eta 0:01:48 lr 0.000645 time 0.4485 (0.4909) model_time 0.4484 (0.4727) loss 3.5371 (2.8264) grad_norm 1.5094 (2.6373/1.5492) mem 16099MB [2025-01-18 08:31:57 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][100/312] eta 0:01:43 lr 0.000645 time 0.4506 (0.4876) model_time 0.4504 (0.4711) loss 3.2798 (2.8188) grad_norm 1.9347 (2.6261/1.5033) mem 16099MB [2025-01-18 08:32:02 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][110/312] eta 0:01:38 lr 0.000644 time 0.5101 (0.4870) model_time 0.5099 (0.4720) loss 2.5657 (2.8384) grad_norm 3.9112 (2.6278/1.4575) mem 16099MB [2025-01-18 08:32:06 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][120/312] eta 0:01:33 lr 0.000644 time 0.4586 (0.4848) model_time 0.4581 (0.4710) loss 2.9111 (2.8465) grad_norm 1.6679 (2.5749/1.4164) mem 16099MB [2025-01-18 08:32:11 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][130/312] eta 0:01:27 lr 0.000643 time 0.4538 (0.4824) model_time 0.4536 (0.4696) loss 3.4816 (2.8567) grad_norm 2.2634 (2.5154/1.3849) mem 16099MB [2025-01-18 08:32:16 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][140/312] eta 0:01:23 lr 0.000643 time 0.4979 (0.4832) model_time 0.4978 (0.4713) loss 3.1861 (2.8648) grad_norm 1.2590 (2.4958/1.3590) mem 16099MB [2025-01-18 08:32:21 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][150/312] eta 0:01:18 lr 0.000642 time 0.5827 (0.4835) model_time 0.5822 (0.4724) loss 2.6833 (2.8567) grad_norm 1.9014 (2.5066/1.3449) mem 16099MB [2025-01-18 08:32:25 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][160/312] eta 0:01:13 lr 0.000642 time 0.5216 (0.4821) model_time 0.5211 (0.4716) loss 3.6216 (2.8770) grad_norm 1.3859 (2.5370/1.3714) mem 16099MB [2025-01-18 08:32:30 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][170/312] eta 0:01:08 lr 0.000641 time 0.5529 (0.4812) model_time 0.5527 (0.4713) loss 2.4787 (2.8866) grad_norm 3.0425 (2.5506/1.3413) mem 16099MB [2025-01-18 08:32:35 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][180/312] eta 0:01:03 lr 0.000641 time 0.4580 (0.4802) model_time 0.4579 (0.4708) loss 1.8929 (2.8883) grad_norm 4.0114 (2.5778/1.3660) mem 16099MB [2025-01-18 08:32:39 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][190/312] eta 0:00:58 lr 0.000640 time 0.4444 (0.4789) model_time 0.4440 (0.4700) loss 3.0965 (2.9092) grad_norm 2.0871 (2.6233/1.4166) mem 16099MB [2025-01-18 08:32:44 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][200/312] eta 0:00:53 lr 0.000640 time 0.4420 (0.4779) model_time 0.4418 (0.4694) loss 3.0915 (2.9003) grad_norm 2.5560 (2.6601/1.4322) mem 16099MB [2025-01-18 08:32:48 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][210/312] eta 0:00:48 lr 0.000640 time 0.4547 (0.4768) model_time 0.4545 (0.4687) loss 2.7580 (2.8879) grad_norm 2.2108 (2.6830/1.4439) mem 16099MB [2025-01-18 08:32:53 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][220/312] eta 0:00:43 lr 0.000639 time 0.5109 (0.4761) model_time 0.5104 (0.4683) loss 2.4167 (2.8926) grad_norm 1.9167 (2.6573/1.4272) mem 16099MB [2025-01-18 08:32:57 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][230/312] eta 0:00:38 lr 0.000639 time 0.4684 (0.4752) model_time 0.4682 (0.4678) loss 3.1632 (2.8989) grad_norm 1.5597 (2.6465/1.4201) mem 16099MB [2025-01-18 08:33:02 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][240/312] eta 0:00:34 lr 0.000638 time 0.4499 (0.4744) model_time 0.4497 (0.4673) loss 2.9186 (2.8905) grad_norm 1.7685 (2.6260/1.4017) mem 16099MB [2025-01-18 08:33:07 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][250/312] eta 0:00:29 lr 0.000638 time 0.4897 (0.4740) model_time 0.4895 (0.4671) loss 1.8279 (2.8886) grad_norm 2.5517 (2.6057/1.3847) mem 16099MB [2025-01-18 08:33:11 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][260/312] eta 0:00:24 lr 0.000637 time 0.4509 (0.4736) model_time 0.4507 (0.4670) loss 2.3733 (2.8910) grad_norm 1.2065 (2.6185/1.3815) mem 16099MB [2025-01-18 08:33:16 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][270/312] eta 0:00:19 lr 0.000637 time 0.4519 (0.4729) model_time 0.4514 (0.4665) loss 3.2663 (2.8997) grad_norm 1.6250 (2.6018/1.3652) mem 16099MB [2025-01-18 08:33:21 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][280/312] eta 0:00:15 lr 0.000636 time 0.4461 (0.4730) model_time 0.4456 (0.4668) loss 2.9537 (2.8923) grad_norm 1.1697 (2.5758/1.3536) mem 16099MB [2025-01-18 08:33:25 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][290/312] eta 0:00:10 lr 0.000636 time 0.4513 (0.4728) model_time 0.4511 (0.4668) loss 3.2144 (2.8983) grad_norm 1.1950 (2.5553/1.3395) mem 16099MB [2025-01-18 08:33:30 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][300/312] eta 0:00:05 lr 0.000635 time 0.5202 (0.4726) model_time 0.5201 (0.4668) loss 2.1210 (2.8792) grad_norm 1.5680 (2.5335/1.3288) mem 16099MB [2025-01-18 08:33:34 internimage_t_1k_224] (main.py 510): INFO Train: [223/300][310/312] eta 0:00:00 lr 0.000635 time 0.4405 (0.4719) model_time 0.4403 (0.4663) loss 3.0867 (2.8803) grad_norm 4.3332 (2.5572/1.3238) mem 16099MB [2025-01-18 08:33:35 internimage_t_1k_224] (main.py 519): INFO EPOCH 223 training takes 0:02:27 [2025-01-18 08:33:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_223.pth saving...... [2025-01-18 08:33:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_223.pth saved !!! [2025-01-18 08:33:43 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.155 (7.155) Loss 0.7653 (0.7653) Acc@1 84.668 (84.668) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 08:33:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.973) Loss 1.0598 (0.8777) Acc@1 76.611 (81.949) Acc@5 94.897 (95.967) Mem 16099MB [2025-01-18 08:33:47 internimage_t_1k_224] (main.py 575): INFO [Epoch:223] * Acc@1 81.790 Acc@5 95.989 [2025-01-18 08:33:47 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.8% [2025-01-18 08:33:47 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.90% [2025-01-18 08:33:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.079 (8.079) Loss 0.7613 (0.7613) Acc@1 85.522 (85.522) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 08:33:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.097) Loss 1.0103 (0.8722) Acc@1 78.735 (82.890) Acc@5 95.239 (96.362) Mem 16099MB [2025-01-18 08:33:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:223] * Acc@1 82.758 Acc@5 96.385 [2025-01-18 08:33:59 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.8% [2025-01-18 08:33:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:34:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:34:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.76% [2025-01-18 08:34:03 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][0/312] eta 0:12:46 lr 0.000635 time 2.4554 (2.4554) model_time 0.4676 (0.4676) loss 3.0779 (3.0779) grad_norm 6.8553 (6.8553/0.0000) mem 16099MB [2025-01-18 08:34:08 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][10/312] eta 0:03:18 lr 0.000634 time 0.4617 (0.6569) model_time 0.4612 (0.4759) loss 3.4352 (2.8944) grad_norm 2.8178 (2.7108/1.4125) mem 16099MB [2025-01-18 08:34:12 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][20/312] eta 0:02:45 lr 0.000634 time 0.4481 (0.5658) model_time 0.4480 (0.4709) loss 3.2435 (2.9028) grad_norm 2.2647 (2.7288/1.1347) mem 16099MB [2025-01-18 08:34:17 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][30/312] eta 0:02:30 lr 0.000633 time 0.4652 (0.5341) model_time 0.4650 (0.4697) loss 2.4554 (2.8972) grad_norm 3.3361 (2.6407/1.1345) mem 16099MB [2025-01-18 08:34:22 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][40/312] eta 0:02:19 lr 0.000633 time 0.4481 (0.5141) model_time 0.4479 (0.4652) loss 3.2781 (2.9170) grad_norm 2.3597 (2.4265/1.0749) mem 16099MB [2025-01-18 08:34:26 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][50/312] eta 0:02:12 lr 0.000632 time 0.4476 (0.5051) model_time 0.4474 (0.4658) loss 3.3029 (2.9492) grad_norm 2.4825 (2.3820/1.0088) mem 16099MB [2025-01-18 08:34:31 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][60/312] eta 0:02:05 lr 0.000632 time 0.4557 (0.4985) model_time 0.4553 (0.4656) loss 3.0616 (2.9184) grad_norm 2.8545 (2.3552/0.9723) mem 16099MB [2025-01-18 08:34:36 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][70/312] eta 0:01:59 lr 0.000631 time 0.4505 (0.4948) model_time 0.4500 (0.4664) loss 2.1406 (2.9112) grad_norm 2.3226 (2.3734/0.9889) mem 16099MB [2025-01-18 08:34:40 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][80/312] eta 0:01:53 lr 0.000631 time 0.4725 (0.4905) model_time 0.4722 (0.4655) loss 2.7218 (2.8944) grad_norm 1.4592 (2.3604/0.9851) mem 16099MB [2025-01-18 08:34:45 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][90/312] eta 0:01:48 lr 0.000630 time 0.4371 (0.4869) model_time 0.4366 (0.4647) loss 2.4301 (2.8845) grad_norm 1.5187 (2.3074/0.9739) mem 16099MB [2025-01-18 08:34:49 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][100/312] eta 0:01:42 lr 0.000630 time 0.4365 (0.4851) model_time 0.4361 (0.4650) loss 1.9618 (2.8623) grad_norm 1.6373 (2.2681/0.9408) mem 16099MB [2025-01-18 08:34:54 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][110/312] eta 0:01:38 lr 0.000629 time 0.5488 (0.4860) model_time 0.5486 (0.4677) loss 3.1820 (2.8647) grad_norm 1.9228 (2.2262/0.9191) mem 16099MB [2025-01-18 08:34:59 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][120/312] eta 0:01:32 lr 0.000629 time 0.4570 (0.4839) model_time 0.4568 (0.4671) loss 2.8774 (2.8395) grad_norm 1.5765 (2.2295/0.9110) mem 16099MB [2025-01-18 08:35:04 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][130/312] eta 0:01:27 lr 0.000629 time 0.4496 (0.4830) model_time 0.4494 (0.4674) loss 3.2337 (2.8494) grad_norm 1.2406 (2.2471/0.9182) mem 16099MB [2025-01-18 08:35:08 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][140/312] eta 0:01:22 lr 0.000628 time 0.4484 (0.4820) model_time 0.4480 (0.4674) loss 3.1228 (2.8432) grad_norm 2.4373 (2.2780/0.9269) mem 16099MB [2025-01-18 08:35:13 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][150/312] eta 0:01:17 lr 0.000628 time 0.5535 (0.4813) model_time 0.5534 (0.4677) loss 2.5896 (2.8324) grad_norm 5.3213 (2.3381/0.9784) mem 16099MB [2025-01-18 08:35:18 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][160/312] eta 0:01:13 lr 0.000627 time 0.5339 (0.4811) model_time 0.5334 (0.4683) loss 3.1491 (2.8463) grad_norm 1.6074 (2.4500/1.1456) mem 16099MB [2025-01-18 08:35:23 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][170/312] eta 0:01:08 lr 0.000627 time 0.4580 (0.4802) model_time 0.4575 (0.4682) loss 2.0579 (2.8423) grad_norm 1.5097 (2.4133/1.1320) mem 16099MB [2025-01-18 08:35:27 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][180/312] eta 0:01:03 lr 0.000626 time 0.4469 (0.4791) model_time 0.4465 (0.4677) loss 3.0290 (2.8459) grad_norm 2.1183 (2.3752/1.1185) mem 16099MB [2025-01-18 08:35:32 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][190/312] eta 0:00:58 lr 0.000626 time 0.4484 (0.4783) model_time 0.4479 (0.4675) loss 3.1663 (2.8611) grad_norm 2.4483 (2.3993/1.1093) mem 16099MB [2025-01-18 08:35:36 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][200/312] eta 0:00:53 lr 0.000625 time 0.4514 (0.4771) model_time 0.4509 (0.4668) loss 3.0611 (2.8621) grad_norm 2.4007 (2.4149/1.0980) mem 16099MB [2025-01-18 08:35:41 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][210/312] eta 0:00:48 lr 0.000625 time 0.5495 (0.4764) model_time 0.5490 (0.4666) loss 2.5918 (2.8468) grad_norm 6.1129 (2.4733/1.1967) mem 16099MB [2025-01-18 08:35:46 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][220/312] eta 0:00:43 lr 0.000624 time 0.4501 (0.4756) model_time 0.4497 (0.4661) loss 1.8354 (2.8455) grad_norm 1.1116 (2.4785/1.2021) mem 16099MB [2025-01-18 08:35:50 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][230/312] eta 0:00:39 lr 0.000624 time 0.4409 (0.4756) model_time 0.4407 (0.4666) loss 2.4228 (2.8495) grad_norm 2.1289 (2.4778/1.1937) mem 16099MB [2025-01-18 08:35:55 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][240/312] eta 0:00:34 lr 0.000623 time 0.4589 (0.4751) model_time 0.4584 (0.4665) loss 2.2749 (2.8529) grad_norm 1.6614 (2.4478/1.1839) mem 16099MB [2025-01-18 08:36:00 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][250/312] eta 0:00:29 lr 0.000623 time 0.4629 (0.4746) model_time 0.4624 (0.4663) loss 2.2329 (2.8444) grad_norm 2.3694 (2.4444/1.1661) mem 16099MB [2025-01-18 08:36:04 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][260/312] eta 0:00:24 lr 0.000622 time 0.4596 (0.4741) model_time 0.4594 (0.4660) loss 3.5696 (2.8519) grad_norm 1.6047 (2.4612/1.1677) mem 16099MB [2025-01-18 08:36:09 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][270/312] eta 0:00:19 lr 0.000622 time 0.4538 (0.4740) model_time 0.4537 (0.4662) loss 3.1597 (2.8617) grad_norm 1.9115 (2.4929/1.1843) mem 16099MB [2025-01-18 08:36:14 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][280/312] eta 0:00:15 lr 0.000621 time 0.4496 (0.4736) model_time 0.4491 (0.4661) loss 2.6501 (2.8605) grad_norm 2.3338 (2.4760/1.1742) mem 16099MB [2025-01-18 08:36:18 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][290/312] eta 0:00:10 lr 0.000621 time 0.4517 (0.4729) model_time 0.4512 (0.4656) loss 3.0846 (2.8540) grad_norm 1.3219 (2.4701/1.1626) mem 16099MB [2025-01-18 08:36:23 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][300/312] eta 0:00:05 lr 0.000620 time 0.4384 (0.4727) model_time 0.4383 (0.4656) loss 3.0806 (2.8598) grad_norm 1.7142 (2.4411/1.1303) mem 16099MB [2025-01-18 08:36:27 internimage_t_1k_224] (main.py 510): INFO Train: [224/300][310/312] eta 0:00:00 lr 0.000620 time 0.4421 (0.4720) model_time 0.4420 (0.4652) loss 2.7224 (2.8653) grad_norm 4.2015 (2.4498/1.1462) mem 16099MB [2025-01-18 08:36:28 internimage_t_1k_224] (main.py 519): INFO EPOCH 224 training takes 0:02:27 [2025-01-18 08:36:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_224.pth saving...... [2025-01-18 08:36:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_224.pth saved !!! [2025-01-18 08:36:36 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.240 (7.240) Loss 0.7522 (0.7522) Acc@1 85.083 (85.083) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 08:36:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.979) Loss 1.0255 (0.8679) Acc@1 77.051 (81.938) Acc@5 94.995 (95.958) Mem 16099MB [2025-01-18 08:36:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:224] * Acc@1 81.866 Acc@5 95.987 [2025-01-18 08:36:40 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.9% [2025-01-18 08:36:40 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.90% [2025-01-18 08:36:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.192 (8.192) Loss 0.7601 (0.7601) Acc@1 85.571 (85.571) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 08:36:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.093) Loss 1.0087 (0.8708) Acc@1 78.784 (82.928) Acc@5 95.239 (96.371) Mem 16099MB [2025-01-18 08:36:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:224] * Acc@1 82.788 Acc@5 96.393 [2025-01-18 08:36:52 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.8% [2025-01-18 08:36:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:36:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:36:53 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.79% [2025-01-18 08:36:56 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][0/312] eta 0:12:20 lr 0.000620 time 2.3730 (2.3730) model_time 0.4551 (0.4551) loss 2.7730 (2.7730) grad_norm 3.5375 (3.5375/0.0000) mem 16099MB [2025-01-18 08:37:00 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][10/312] eta 0:03:17 lr 0.000619 time 0.4496 (0.6546) model_time 0.4495 (0.4798) loss 3.0348 (2.9009) grad_norm 1.7911 (2.6193/1.1748) mem 16099MB [2025-01-18 08:37:05 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][20/312] eta 0:02:45 lr 0.000619 time 0.4626 (0.5683) model_time 0.4624 (0.4766) loss 3.3028 (2.8516) grad_norm 2.7176 (2.8950/1.2385) mem 16099MB [2025-01-18 08:37:10 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][30/312] eta 0:02:31 lr 0.000619 time 0.4532 (0.5370) model_time 0.4527 (0.4748) loss 3.5690 (2.7814) grad_norm 2.4374 (2.6964/1.2617) mem 16099MB [2025-01-18 08:37:14 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][40/312] eta 0:02:21 lr 0.000618 time 0.4604 (0.5201) model_time 0.4602 (0.4730) loss 3.0866 (2.8434) grad_norm 0.9241 (2.5250/1.2316) mem 16099MB [2025-01-18 08:37:19 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][50/312] eta 0:02:13 lr 0.000618 time 0.4503 (0.5096) model_time 0.4498 (0.4716) loss 1.9069 (2.8173) grad_norm 1.8258 (2.4831/1.1807) mem 16099MB [2025-01-18 08:37:24 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][60/312] eta 0:02:06 lr 0.000617 time 0.4427 (0.5037) model_time 0.4422 (0.4719) loss 2.7370 (2.8078) grad_norm 2.5634 (2.5097/1.1500) mem 16099MB [2025-01-18 08:37:28 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][70/312] eta 0:02:00 lr 0.000617 time 0.4467 (0.4972) model_time 0.4462 (0.4698) loss 3.0693 (2.8320) grad_norm 1.1383 (2.4897/1.1335) mem 16099MB [2025-01-18 08:37:33 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][80/312] eta 0:01:54 lr 0.000616 time 0.5831 (0.4950) model_time 0.5827 (0.4709) loss 2.1172 (2.8205) grad_norm 1.2342 (2.4618/1.1025) mem 16099MB [2025-01-18 08:37:38 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][90/312] eta 0:01:49 lr 0.000616 time 0.4480 (0.4916) model_time 0.4478 (0.4701) loss 3.3443 (2.8400) grad_norm 2.8041 (2.3894/1.0800) mem 16099MB [2025-01-18 08:37:43 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][100/312] eta 0:01:43 lr 0.000615 time 0.4477 (0.4886) model_time 0.4475 (0.4692) loss 2.6175 (2.8594) grad_norm 1.8582 (2.3213/1.0505) mem 16099MB [2025-01-18 08:37:47 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][110/312] eta 0:01:38 lr 0.000615 time 0.4647 (0.4873) model_time 0.4645 (0.4696) loss 2.4260 (2.8449) grad_norm 1.2666 (2.3244/1.0483) mem 16099MB [2025-01-18 08:37:52 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][120/312] eta 0:01:33 lr 0.000614 time 0.4428 (0.4853) model_time 0.4423 (0.4690) loss 2.5617 (2.8454) grad_norm 1.4600 (2.2834/1.0234) mem 16099MB [2025-01-18 08:37:57 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][130/312] eta 0:01:27 lr 0.000614 time 0.4415 (0.4835) model_time 0.4411 (0.4685) loss 3.3841 (2.8556) grad_norm 2.2485 (2.3148/1.0253) mem 16099MB [2025-01-18 08:38:01 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][140/312] eta 0:01:23 lr 0.000613 time 0.4610 (0.4826) model_time 0.4605 (0.4686) loss 2.9618 (2.8670) grad_norm 3.0516 (2.3228/1.0115) mem 16099MB [2025-01-18 08:38:06 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][150/312] eta 0:01:17 lr 0.000613 time 0.4460 (0.4810) model_time 0.4455 (0.4679) loss 2.3530 (2.8783) grad_norm 2.5139 (2.3464/1.0583) mem 16099MB [2025-01-18 08:38:10 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][160/312] eta 0:01:12 lr 0.000612 time 0.4349 (0.4794) model_time 0.4348 (0.4670) loss 2.0926 (2.8792) grad_norm 2.6400 (2.3711/1.0565) mem 16099MB [2025-01-18 08:38:15 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][170/312] eta 0:01:07 lr 0.000612 time 0.4544 (0.4784) model_time 0.4542 (0.4667) loss 3.4409 (2.8779) grad_norm 2.8893 (2.3954/1.0817) mem 16099MB [2025-01-18 08:38:19 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][180/312] eta 0:01:02 lr 0.000611 time 0.4478 (0.4768) model_time 0.4473 (0.4658) loss 3.0887 (2.8909) grad_norm 1.1942 (2.3805/1.0636) mem 16099MB [2025-01-18 08:38:24 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][190/312] eta 0:00:58 lr 0.000611 time 0.4494 (0.4756) model_time 0.4492 (0.4652) loss 2.8829 (2.9008) grad_norm 1.6079 (2.3812/1.0723) mem 16099MB [2025-01-18 08:38:29 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][200/312] eta 0:00:53 lr 0.000611 time 0.4633 (0.4752) model_time 0.4629 (0.4652) loss 3.1152 (2.8966) grad_norm 3.6535 (2.3676/1.0640) mem 16099MB [2025-01-18 08:38:33 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][210/312] eta 0:00:48 lr 0.000610 time 0.4461 (0.4742) model_time 0.4456 (0.4647) loss 2.7777 (2.9052) grad_norm 1.3935 (2.3857/1.0912) mem 16099MB [2025-01-18 08:38:38 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][220/312] eta 0:00:43 lr 0.000610 time 0.4540 (0.4736) model_time 0.4538 (0.4645) loss 2.9932 (2.9095) grad_norm 2.1647 (2.3742/1.0805) mem 16099MB [2025-01-18 08:38:42 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][230/312] eta 0:00:38 lr 0.000609 time 0.4492 (0.4728) model_time 0.4490 (0.4641) loss 3.0320 (2.9025) grad_norm 2.3977 (2.3465/1.0716) mem 16099MB [2025-01-18 08:38:47 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][240/312] eta 0:00:34 lr 0.000609 time 0.5613 (0.4729) model_time 0.5609 (0.4645) loss 2.5090 (2.8996) grad_norm 3.8097 (2.3720/1.0796) mem 16099MB [2025-01-18 08:38:52 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][250/312] eta 0:00:29 lr 0.000608 time 0.4890 (0.4728) model_time 0.4888 (0.4647) loss 2.9766 (2.9004) grad_norm 2.1395 (2.3698/1.0748) mem 16099MB [2025-01-18 08:38:57 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][260/312] eta 0:00:24 lr 0.000608 time 0.4547 (0.4726) model_time 0.4545 (0.4648) loss 2.9084 (2.9030) grad_norm 2.0948 (2.3747/1.0614) mem 16099MB [2025-01-18 08:39:01 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][270/312] eta 0:00:19 lr 0.000607 time 0.4438 (0.4727) model_time 0.4436 (0.4652) loss 3.0856 (2.8986) grad_norm 2.2836 (2.3905/1.0600) mem 16099MB [2025-01-18 08:39:06 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][280/312] eta 0:00:15 lr 0.000607 time 0.4524 (0.4726) model_time 0.4520 (0.4654) loss 3.1567 (2.9030) grad_norm 5.5407 (2.4007/1.0711) mem 16099MB [2025-01-18 08:39:11 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][290/312] eta 0:00:10 lr 0.000606 time 0.4561 (0.4727) model_time 0.4559 (0.4657) loss 3.6265 (2.9012) grad_norm 1.1204 (2.4350/1.0933) mem 16099MB [2025-01-18 08:39:15 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][300/312] eta 0:00:05 lr 0.000606 time 0.4361 (0.4726) model_time 0.4360 (0.4658) loss 2.8261 (2.8973) grad_norm 2.5581 (2.4348/1.0851) mem 16099MB [2025-01-18 08:39:20 internimage_t_1k_224] (main.py 510): INFO Train: [225/300][310/312] eta 0:00:00 lr 0.000605 time 0.4423 (0.4722) model_time 0.4422 (0.4656) loss 2.0732 (2.8978) grad_norm 1.1838 (2.4077/1.0733) mem 16099MB [2025-01-18 08:39:20 internimage_t_1k_224] (main.py 519): INFO EPOCH 225 training takes 0:02:27 [2025-01-18 08:39:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_225.pth saving...... [2025-01-18 08:39:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_225.pth saved !!! [2025-01-18 08:39:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.236 (7.236) Loss 0.7370 (0.7370) Acc@1 84.326 (84.326) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 08:39:32 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.956) Loss 0.9925 (0.8597) Acc@1 77.637 (82.138) Acc@5 94.922 (95.985) Mem 16099MB [2025-01-18 08:39:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:225] * Acc@1 81.928 Acc@5 95.973 [2025-01-18 08:39:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.9% [2025-01-18 08:39:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 08:39:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 08:39:34 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.93% [2025-01-18 08:39:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 6.949 (6.949) Loss 0.7589 (0.7589) Acc@1 85.596 (85.596) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 08:39:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.944) Loss 1.0069 (0.8694) Acc@1 78.857 (82.966) Acc@5 95.264 (96.382) Mem 16099MB [2025-01-18 08:39:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:225] * Acc@1 82.829 Acc@5 96.405 [2025-01-18 08:39:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.8% [2025-01-18 08:39:44 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:39:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:39:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.83% [2025-01-18 08:39:47 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][0/312] eta 0:10:44 lr 0.000605 time 2.0651 (2.0651) model_time 0.6398 (0.6398) loss 2.9382 (2.9382) grad_norm 1.1766 (1.1766/0.0000) mem 16099MB [2025-01-18 08:39:52 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][10/312] eta 0:03:07 lr 0.000605 time 0.4582 (0.6200) model_time 0.4580 (0.4901) loss 2.9228 (3.0301) grad_norm 1.4374 (2.4301/1.2770) mem 16099MB [2025-01-18 08:39:57 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][20/312] eta 0:02:45 lr 0.000604 time 0.4543 (0.5681) model_time 0.4541 (0.4998) loss 3.3058 (3.0435) grad_norm 1.1419 (2.2988/1.0718) mem 16099MB [2025-01-18 08:40:02 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][30/312] eta 0:02:30 lr 0.000604 time 0.4578 (0.5345) model_time 0.4576 (0.4881) loss 1.9960 (3.0582) grad_norm 2.6343 (2.2833/0.9180) mem 16099MB [2025-01-18 08:40:06 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][40/312] eta 0:02:20 lr 0.000603 time 0.4770 (0.5156) model_time 0.4766 (0.4804) loss 2.1846 (2.9722) grad_norm 2.2678 (2.2167/0.8362) mem 16099MB [2025-01-18 08:40:11 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][50/312] eta 0:02:13 lr 0.000603 time 0.4516 (0.5078) model_time 0.4514 (0.4794) loss 1.8512 (2.9630) grad_norm 1.8270 (2.1163/0.8194) mem 16099MB [2025-01-18 08:40:16 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][60/312] eta 0:02:05 lr 0.000603 time 0.4539 (0.4997) model_time 0.4537 (0.4760) loss 2.7557 (2.9638) grad_norm 2.8291 (2.1279/0.7747) mem 16099MB [2025-01-18 08:40:20 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][70/312] eta 0:01:59 lr 0.000602 time 0.4792 (0.4944) model_time 0.4788 (0.4739) loss 2.0922 (2.9340) grad_norm 2.0202 (2.1114/0.7263) mem 16099MB [2025-01-18 08:40:25 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][80/312] eta 0:01:54 lr 0.000602 time 0.4481 (0.4915) model_time 0.4480 (0.4735) loss 2.6761 (2.9364) grad_norm 5.0553 (2.2433/0.8715) mem 16099MB [2025-01-18 08:40:30 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][90/312] eta 0:01:48 lr 0.000601 time 0.4527 (0.4886) model_time 0.4525 (0.4726) loss 2.2377 (2.9544) grad_norm 2.7372 (2.3086/0.9832) mem 16099MB [2025-01-18 08:40:34 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][100/312] eta 0:01:42 lr 0.000601 time 0.4548 (0.4853) model_time 0.4546 (0.4708) loss 3.2124 (2.9532) grad_norm 2.7874 (2.4036/1.1116) mem 16099MB [2025-01-18 08:40:39 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][110/312] eta 0:01:37 lr 0.000600 time 0.4500 (0.4836) model_time 0.4498 (0.4704) loss 3.0656 (2.9363) grad_norm 3.4437 (2.5133/1.1611) mem 16099MB [2025-01-18 08:40:44 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][120/312] eta 0:01:32 lr 0.000600 time 0.4494 (0.4813) model_time 0.4489 (0.4692) loss 2.8954 (2.9280) grad_norm 2.0088 (2.5760/1.1868) mem 16099MB [2025-01-18 08:40:48 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][130/312] eta 0:01:27 lr 0.000599 time 0.4460 (0.4797) model_time 0.4458 (0.4685) loss 2.1969 (2.9267) grad_norm 1.3223 (2.6176/1.2338) mem 16099MB [2025-01-18 08:40:53 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][140/312] eta 0:01:22 lr 0.000599 time 0.5488 (0.4792) model_time 0.5484 (0.4687) loss 3.3006 (2.9250) grad_norm 1.5119 (2.6242/1.2362) mem 16099MB [2025-01-18 08:40:57 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][150/312] eta 0:01:17 lr 0.000598 time 0.4491 (0.4783) model_time 0.4486 (0.4685) loss 3.1128 (2.9280) grad_norm 3.2767 (2.6606/1.2489) mem 16099MB [2025-01-18 08:41:02 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][160/312] eta 0:01:12 lr 0.000598 time 0.5437 (0.4786) model_time 0.5435 (0.4693) loss 3.2463 (2.9341) grad_norm 2.1351 (2.6354/1.2192) mem 16099MB [2025-01-18 08:41:07 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][170/312] eta 0:01:07 lr 0.000597 time 0.4506 (0.4775) model_time 0.4504 (0.4688) loss 2.1603 (2.9381) grad_norm 2.1474 (2.6125/1.1962) mem 16099MB [2025-01-18 08:41:12 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][180/312] eta 0:01:02 lr 0.000597 time 0.5812 (0.4771) model_time 0.5810 (0.4688) loss 3.2004 (2.9414) grad_norm 2.3878 (2.6214/1.1822) mem 16099MB [2025-01-18 08:41:16 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][190/312] eta 0:00:58 lr 0.000597 time 0.4440 (0.4763) model_time 0.4435 (0.4685) loss 3.3744 (2.9444) grad_norm 2.0528 (2.5901/1.1713) mem 16099MB [2025-01-18 08:41:21 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][200/312] eta 0:00:53 lr 0.000596 time 0.4568 (0.4755) model_time 0.4563 (0.4680) loss 2.0032 (2.9434) grad_norm 1.7827 (2.5784/1.1551) mem 16099MB [2025-01-18 08:41:26 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][210/312] eta 0:00:48 lr 0.000596 time 0.4399 (0.4758) model_time 0.4395 (0.4687) loss 3.0619 (2.9419) grad_norm 1.8289 (2.5685/1.1414) mem 16099MB [2025-01-18 08:41:30 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][220/312] eta 0:00:43 lr 0.000595 time 0.4524 (0.4758) model_time 0.4519 (0.4689) loss 2.9572 (2.9453) grad_norm 1.5815 (2.5690/1.1466) mem 16099MB [2025-01-18 08:41:35 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][230/312] eta 0:00:38 lr 0.000595 time 0.4516 (0.4753) model_time 0.4512 (0.4687) loss 2.5434 (2.9386) grad_norm 2.9725 (2.5816/1.1452) mem 16099MB [2025-01-18 08:41:40 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][240/312] eta 0:00:34 lr 0.000594 time 0.4636 (0.4746) model_time 0.4632 (0.4683) loss 2.4189 (2.9272) grad_norm 3.4496 (2.5540/1.1423) mem 16099MB [2025-01-18 08:41:44 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][250/312] eta 0:00:29 lr 0.000594 time 0.5373 (0.4748) model_time 0.5369 (0.4687) loss 3.2731 (2.9263) grad_norm 2.6997 (2.5486/1.1271) mem 16099MB [2025-01-18 08:41:49 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][260/312] eta 0:00:24 lr 0.000593 time 0.4806 (0.4740) model_time 0.4804 (0.4682) loss 3.5495 (2.9217) grad_norm 3.2158 (2.5373/1.1278) mem 16099MB [2025-01-18 08:41:54 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][270/312] eta 0:00:19 lr 0.000593 time 0.4503 (0.4735) model_time 0.4498 (0.4678) loss 3.5498 (2.9200) grad_norm 1.9976 (2.5376/1.1274) mem 16099MB [2025-01-18 08:41:58 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][280/312] eta 0:00:15 lr 0.000592 time 0.4439 (0.4733) model_time 0.4435 (0.4678) loss 1.9600 (2.9069) grad_norm 3.1358 (2.5345/1.1339) mem 16099MB [2025-01-18 08:42:03 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][290/312] eta 0:00:10 lr 0.000592 time 0.4859 (0.4730) model_time 0.4857 (0.4677) loss 2.0251 (2.8948) grad_norm 1.2833 (2.5244/1.1221) mem 16099MB [2025-01-18 08:42:08 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][300/312] eta 0:00:05 lr 0.000591 time 0.4424 (0.4726) model_time 0.4423 (0.4675) loss 2.3972 (2.8954) grad_norm 1.3157 (2.5473/1.1409) mem 16099MB [2025-01-18 08:42:12 internimage_t_1k_224] (main.py 510): INFO Train: [226/300][310/312] eta 0:00:00 lr 0.000591 time 0.4373 (0.4717) model_time 0.4372 (0.4667) loss 3.3444 (2.8931) grad_norm 1.0556 (2.5648/1.1513) mem 16099MB [2025-01-18 08:42:12 internimage_t_1k_224] (main.py 519): INFO EPOCH 226 training takes 0:02:27 [2025-01-18 08:42:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_226.pth saving...... [2025-01-18 08:42:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_226.pth saved !!! [2025-01-18 08:42:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.062 (7.062) Loss 0.7554 (0.7554) Acc@1 84.009 (84.009) Acc@5 97.266 (97.266) Mem 16099MB [2025-01-18 08:42:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.970) Loss 1.0284 (0.8668) Acc@1 77.563 (81.896) Acc@5 94.507 (95.927) Mem 16099MB [2025-01-18 08:42:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:226] * Acc@1 81.786 Acc@5 95.959 [2025-01-18 08:42:24 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.8% [2025-01-18 08:42:24 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.93% [2025-01-18 08:42:32 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.099 (8.099) Loss 0.7582 (0.7582) Acc@1 85.645 (85.645) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 08:42:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.076) Loss 1.0055 (0.8684) Acc@1 78.857 (83.008) Acc@5 95.288 (96.382) Mem 16099MB [2025-01-18 08:42:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:226] * Acc@1 82.871 Acc@5 96.405 [2025-01-18 08:42:36 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.9% [2025-01-18 08:42:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:42:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:42:38 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.87% [2025-01-18 08:42:40 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][0/312] eta 0:10:49 lr 0.000591 time 2.0828 (2.0828) model_time 0.4773 (0.4773) loss 3.2920 (3.2920) grad_norm 1.9456 (1.9456/0.0000) mem 16099MB [2025-01-18 08:42:44 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][10/312] eta 0:03:06 lr 0.000590 time 0.4530 (0.6188) model_time 0.4523 (0.4725) loss 2.7528 (2.9806) grad_norm 2.9667 (2.1227/0.5369) mem 16099MB [2025-01-18 08:42:49 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][20/312] eta 0:02:39 lr 0.000590 time 0.4516 (0.5453) model_time 0.4512 (0.4685) loss 2.5559 (2.8495) grad_norm 3.0539 (2.4221/0.8173) mem 16099MB [2025-01-18 08:42:54 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][30/312] eta 0:02:26 lr 0.000590 time 0.4569 (0.5209) model_time 0.4567 (0.4687) loss 3.0263 (2.9086) grad_norm 3.1763 (2.7715/1.2318) mem 16099MB [2025-01-18 08:42:58 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][40/312] eta 0:02:17 lr 0.000589 time 0.4545 (0.5038) model_time 0.4544 (0.4642) loss 3.1639 (2.9281) grad_norm 2.0460 (2.9840/1.4131) mem 16099MB [2025-01-18 08:43:03 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][50/312] eta 0:02:10 lr 0.000589 time 0.4484 (0.4965) model_time 0.4480 (0.4647) loss 2.1498 (2.8979) grad_norm 1.5954 (2.9487/1.4187) mem 16099MB [2025-01-18 08:43:07 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][60/312] eta 0:02:03 lr 0.000588 time 0.4553 (0.4897) model_time 0.4551 (0.4630) loss 2.9033 (2.8624) grad_norm 4.3614 (2.8885/1.3567) mem 16099MB [2025-01-18 08:43:12 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][70/312] eta 0:01:57 lr 0.000588 time 0.4404 (0.4846) model_time 0.4396 (0.4616) loss 2.4772 (2.8793) grad_norm 1.9039 (2.8800/1.3046) mem 16099MB [2025-01-18 08:43:17 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][80/312] eta 0:01:51 lr 0.000587 time 0.4541 (0.4817) model_time 0.4537 (0.4615) loss 1.7457 (2.8704) grad_norm 1.6128 (2.8364/1.2911) mem 16099MB [2025-01-18 08:43:21 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][90/312] eta 0:01:46 lr 0.000587 time 0.4515 (0.4796) model_time 0.4514 (0.4616) loss 3.0437 (2.8964) grad_norm 1.4505 (2.8071/1.2441) mem 16099MB [2025-01-18 08:43:26 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][100/312] eta 0:01:41 lr 0.000586 time 0.4513 (0.4781) model_time 0.4512 (0.4618) loss 2.6601 (2.8791) grad_norm 2.7963 (2.7808/1.2176) mem 16099MB [2025-01-18 08:43:30 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][110/312] eta 0:01:36 lr 0.000586 time 0.4617 (0.4762) model_time 0.4616 (0.4613) loss 2.6581 (2.8609) grad_norm 4.2474 (2.8795/1.3112) mem 16099MB [2025-01-18 08:43:35 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][120/312] eta 0:01:31 lr 0.000585 time 0.4379 (0.4756) model_time 0.4374 (0.4620) loss 3.6026 (2.8783) grad_norm 2.5634 (2.8677/1.2768) mem 16099MB [2025-01-18 08:43:40 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][130/312] eta 0:01:26 lr 0.000585 time 0.4546 (0.4762) model_time 0.4544 (0.4635) loss 2.9315 (2.8997) grad_norm 2.7110 (2.8363/1.2508) mem 16099MB [2025-01-18 08:43:45 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][140/312] eta 0:01:21 lr 0.000584 time 0.4518 (0.4764) model_time 0.4516 (0.4646) loss 2.8081 (2.9134) grad_norm 1.8192 (2.7766/1.2367) mem 16099MB [2025-01-18 08:43:50 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][150/312] eta 0:01:17 lr 0.000584 time 0.4724 (0.4766) model_time 0.4723 (0.4655) loss 3.3656 (2.9202) grad_norm 1.5737 (2.7178/1.2179) mem 16099MB [2025-01-18 08:43:54 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][160/312] eta 0:01:12 lr 0.000584 time 0.4459 (0.4773) model_time 0.4457 (0.4669) loss 2.9988 (2.9184) grad_norm 1.4014 (2.6804/1.2062) mem 16099MB [2025-01-18 08:43:59 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][170/312] eta 0:01:07 lr 0.000583 time 0.4579 (0.4761) model_time 0.4577 (0.4663) loss 3.0344 (2.9065) grad_norm 1.5638 (2.6541/1.1967) mem 16099MB [2025-01-18 08:44:04 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][180/312] eta 0:01:02 lr 0.000583 time 0.4481 (0.4753) model_time 0.4479 (0.4661) loss 1.8520 (2.9004) grad_norm 2.1625 (2.6435/1.1812) mem 16099MB [2025-01-18 08:44:08 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][190/312] eta 0:00:57 lr 0.000582 time 0.4636 (0.4747) model_time 0.4634 (0.4659) loss 3.0838 (2.9103) grad_norm 5.0940 (2.6595/1.1849) mem 16099MB [2025-01-18 08:44:13 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][200/312] eta 0:00:53 lr 0.000582 time 0.4535 (0.4741) model_time 0.4530 (0.4657) loss 2.6137 (2.9129) grad_norm 2.3399 (2.6449/1.1685) mem 16099MB [2025-01-18 08:44:17 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][210/312] eta 0:00:48 lr 0.000581 time 0.4469 (0.4734) model_time 0.4468 (0.4654) loss 3.8031 (2.9117) grad_norm 4.1215 (2.6629/1.1735) mem 16099MB [2025-01-18 08:44:22 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][220/312] eta 0:00:43 lr 0.000581 time 0.4531 (0.4726) model_time 0.4529 (0.4649) loss 3.0218 (2.9217) grad_norm 1.5946 (2.6243/1.1654) mem 16099MB [2025-01-18 08:44:27 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][230/312] eta 0:00:38 lr 0.000580 time 0.4577 (0.4732) model_time 0.4570 (0.4658) loss 3.1080 (2.9262) grad_norm 3.1763 (2.6178/1.1708) mem 16099MB [2025-01-18 08:44:32 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][240/312] eta 0:00:34 lr 0.000580 time 0.4584 (0.4730) model_time 0.4582 (0.4660) loss 2.7651 (2.9157) grad_norm 4.0552 (2.6363/1.1702) mem 16099MB [2025-01-18 08:44:36 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][250/312] eta 0:00:29 lr 0.000579 time 0.4544 (0.4729) model_time 0.4542 (0.4661) loss 2.4926 (2.9067) grad_norm 4.4126 (2.6727/1.1744) mem 16099MB [2025-01-18 08:44:41 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][260/312] eta 0:00:24 lr 0.000579 time 0.4448 (0.4730) model_time 0.4443 (0.4664) loss 3.0553 (2.9043) grad_norm 1.7524 (2.6697/1.1659) mem 16099MB [2025-01-18 08:44:46 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][270/312] eta 0:00:19 lr 0.000579 time 0.4454 (0.4724) model_time 0.4452 (0.4661) loss 2.3869 (2.8970) grad_norm 3.4512 (2.6612/1.1613) mem 16099MB [2025-01-18 08:44:50 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][280/312] eta 0:00:15 lr 0.000578 time 0.4385 (0.4717) model_time 0.4380 (0.4656) loss 2.9404 (2.8957) grad_norm 1.8869 (2.6643/1.1569) mem 16099MB [2025-01-18 08:44:55 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][290/312] eta 0:00:10 lr 0.000578 time 0.4741 (0.4718) model_time 0.4739 (0.4659) loss 3.1084 (2.8943) grad_norm 3.1812 (2.6543/1.1513) mem 16099MB [2025-01-18 08:45:00 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][300/312] eta 0:00:05 lr 0.000577 time 0.4425 (0.4716) model_time 0.4423 (0.4658) loss 3.0770 (2.9000) grad_norm 3.9620 (2.6491/1.1562) mem 16099MB [2025-01-18 08:45:04 internimage_t_1k_224] (main.py 510): INFO Train: [227/300][310/312] eta 0:00:00 lr 0.000577 time 0.4398 (0.4706) model_time 0.4397 (0.4651) loss 2.3670 (2.8989) grad_norm 2.6614 (2.6600/1.1549) mem 16099MB [2025-01-18 08:45:04 internimage_t_1k_224] (main.py 519): INFO EPOCH 227 training takes 0:02:26 [2025-01-18 08:45:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_227.pth saving...... [2025-01-18 08:45:05 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_227.pth saved !!! [2025-01-18 08:45:13 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.469 (7.469) Loss 0.7362 (0.7362) Acc@1 83.911 (83.911) Acc@5 97.144 (97.144) Mem 16099MB [2025-01-18 08:45:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.991) Loss 0.9810 (0.8404) Acc@1 78.149 (82.109) Acc@5 94.775 (95.976) Mem 16099MB [2025-01-18 08:45:17 internimage_t_1k_224] (main.py 575): INFO [Epoch:227] * Acc@1 81.968 Acc@5 95.979 [2025-01-18 08:45:17 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.0% [2025-01-18 08:45:17 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 08:45:18 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 08:45:18 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 81.97% [2025-01-18 08:45:25 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.239 (7.239) Loss 0.7571 (0.7571) Acc@1 85.645 (85.645) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 08:45:29 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.982) Loss 1.0040 (0.8671) Acc@1 79.004 (83.046) Acc@5 95.312 (96.398) Mem 16099MB [2025-01-18 08:45:29 internimage_t_1k_224] (main.py 575): INFO [Epoch:227] * Acc@1 82.909 Acc@5 96.417 [2025-01-18 08:45:29 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 82.9% [2025-01-18 08:45:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:45:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:45:30 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.91% [2025-01-18 08:45:32 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][0/312] eta 0:11:20 lr 0.000577 time 2.1814 (2.1814) model_time 0.5210 (0.5210) loss 2.9011 (2.9011) grad_norm 4.6184 (4.6184/0.0000) mem 16099MB [2025-01-18 08:45:37 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][10/312] eta 0:03:12 lr 0.000576 time 0.4516 (0.6385) model_time 0.4515 (0.4873) loss 2.3336 (2.6544) grad_norm 2.3355 (3.2370/1.4112) mem 16099MB [2025-01-18 08:45:42 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][20/312] eta 0:02:42 lr 0.000576 time 0.4475 (0.5577) model_time 0.4473 (0.4783) loss 2.2419 (2.7874) grad_norm 1.6036 (3.2090/1.4950) mem 16099MB [2025-01-18 08:45:46 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][30/312] eta 0:02:28 lr 0.000575 time 0.4456 (0.5275) model_time 0.4454 (0.4736) loss 2.3634 (2.8315) grad_norm 2.9403 (2.9719/1.3767) mem 16099MB [2025-01-18 08:45:51 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][40/312] eta 0:02:18 lr 0.000575 time 0.4521 (0.5091) model_time 0.4517 (0.4682) loss 2.5494 (2.8681) grad_norm 2.5091 (2.8096/1.2882) mem 16099MB [2025-01-18 08:45:55 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][50/312] eta 0:02:10 lr 0.000574 time 0.4475 (0.4984) model_time 0.4472 (0.4654) loss 2.8453 (2.8968) grad_norm 1.8311 (2.6835/1.2055) mem 16099MB [2025-01-18 08:46:00 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][60/312] eta 0:02:04 lr 0.000574 time 0.4512 (0.4928) model_time 0.4506 (0.4652) loss 2.1797 (2.8494) grad_norm 1.7874 (2.6504/1.1540) mem 16099MB [2025-01-18 08:46:05 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][70/312] eta 0:01:58 lr 0.000573 time 0.4395 (0.4878) model_time 0.4393 (0.4640) loss 3.2314 (2.8523) grad_norm 1.6510 (2.5810/1.1152) mem 16099MB [2025-01-18 08:46:09 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][80/312] eta 0:01:52 lr 0.000573 time 0.4512 (0.4847) model_time 0.4510 (0.4638) loss 3.1841 (2.8604) grad_norm 1.5656 (2.5772/1.1149) mem 16099MB [2025-01-18 08:46:14 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][90/312] eta 0:01:46 lr 0.000573 time 0.4497 (0.4812) model_time 0.4492 (0.4626) loss 2.9544 (2.8532) grad_norm 3.1764 (2.4926/1.0955) mem 16099MB [2025-01-18 08:46:19 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][100/312] eta 0:01:42 lr 0.000572 time 0.4502 (0.4821) model_time 0.4501 (0.4653) loss 2.9805 (2.8712) grad_norm 1.2221 (2.5165/1.1141) mem 16099MB [2025-01-18 08:46:24 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][110/312] eta 0:01:37 lr 0.000572 time 0.4586 (0.4827) model_time 0.4582 (0.4673) loss 2.8021 (2.8930) grad_norm 2.0788 (2.4681/1.0904) mem 16099MB [2025-01-18 08:46:29 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][120/312] eta 0:01:33 lr 0.000571 time 0.4540 (0.4857) model_time 0.4538 (0.4716) loss 2.1020 (2.8822) grad_norm 6.0235 (2.4817/1.1108) mem 16099MB [2025-01-18 08:46:34 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][130/312] eta 0:01:28 lr 0.000571 time 0.4649 (0.4865) model_time 0.4648 (0.4734) loss 3.1555 (2.8885) grad_norm 4.5845 (2.5090/1.0984) mem 16099MB [2025-01-18 08:46:39 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][140/312] eta 0:01:23 lr 0.000570 time 0.4587 (0.4867) model_time 0.4582 (0.4745) loss 3.4989 (2.9027) grad_norm 1.7023 (2.5459/1.1176) mem 16099MB [2025-01-18 08:46:43 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][150/312] eta 0:01:18 lr 0.000570 time 0.4555 (0.4863) model_time 0.4550 (0.4749) loss 2.9438 (2.8834) grad_norm 3.1217 (2.5398/1.1089) mem 16099MB [2025-01-18 08:46:48 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][160/312] eta 0:01:13 lr 0.000569 time 0.4602 (0.4850) model_time 0.4598 (0.4743) loss 2.7557 (2.8716) grad_norm 2.6113 (2.5258/1.0847) mem 16099MB [2025-01-18 08:46:53 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][170/312] eta 0:01:08 lr 0.000569 time 0.4383 (0.4831) model_time 0.4381 (0.4730) loss 3.0367 (2.8754) grad_norm 2.5791 (2.5309/1.0981) mem 16099MB [2025-01-18 08:46:57 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][180/312] eta 0:01:03 lr 0.000568 time 0.4680 (0.4817) model_time 0.4675 (0.4721) loss 3.3019 (2.8855) grad_norm 3.2698 (2.5410/1.0900) mem 16099MB [2025-01-18 08:47:02 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][190/312] eta 0:00:58 lr 0.000568 time 0.4555 (0.4806) model_time 0.4554 (0.4715) loss 3.2854 (2.8633) grad_norm 2.5400 (2.6228/1.2400) mem 16099MB [2025-01-18 08:47:07 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][200/312] eta 0:00:53 lr 0.000568 time 0.4486 (0.4802) model_time 0.4484 (0.4715) loss 2.7041 (2.8532) grad_norm 2.9296 (2.6636/1.2468) mem 16099MB [2025-01-18 08:47:11 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][210/312] eta 0:00:48 lr 0.000567 time 0.5334 (0.4796) model_time 0.5333 (0.4713) loss 3.3232 (2.8463) grad_norm 1.7700 (2.6247/1.2323) mem 16099MB [2025-01-18 08:47:16 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][220/312] eta 0:00:44 lr 0.000567 time 0.4513 (0.4796) model_time 0.4508 (0.4717) loss 3.3841 (2.8384) grad_norm 5.4321 (2.6277/1.2309) mem 16099MB [2025-01-18 08:47:21 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][230/312] eta 0:00:39 lr 0.000566 time 0.4531 (0.4785) model_time 0.4529 (0.4709) loss 2.6944 (2.8380) grad_norm 3.0189 (2.6192/1.2212) mem 16099MB [2025-01-18 08:47:25 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][240/312] eta 0:00:34 lr 0.000566 time 0.4475 (0.4774) model_time 0.4470 (0.4701) loss 2.9782 (2.8325) grad_norm 4.3630 (2.6283/1.2185) mem 16099MB [2025-01-18 08:47:30 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][250/312] eta 0:00:29 lr 0.000565 time 0.4391 (0.4768) model_time 0.4387 (0.4698) loss 2.3943 (2.8382) grad_norm 4.1506 (2.6327/1.2178) mem 16099MB [2025-01-18 08:47:34 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][260/312] eta 0:00:24 lr 0.000565 time 0.4573 (0.4766) model_time 0.4571 (0.4698) loss 2.6664 (2.8458) grad_norm 1.0308 (2.6100/1.2119) mem 16099MB [2025-01-18 08:47:39 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][270/312] eta 0:00:19 lr 0.000564 time 0.4541 (0.4758) model_time 0.4536 (0.4693) loss 3.2295 (2.8468) grad_norm 1.7877 (2.5948/1.2028) mem 16099MB [2025-01-18 08:47:44 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][280/312] eta 0:00:15 lr 0.000564 time 0.4501 (0.4753) model_time 0.4500 (0.4690) loss 3.1834 (2.8557) grad_norm 3.3963 (2.6014/1.2133) mem 16099MB [2025-01-18 08:47:48 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][290/312] eta 0:00:10 lr 0.000564 time 0.4681 (0.4755) model_time 0.4677 (0.4693) loss 3.3352 (2.8445) grad_norm 2.0351 (2.5960/1.2117) mem 16099MB [2025-01-18 08:47:53 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][300/312] eta 0:00:05 lr 0.000563 time 0.4402 (0.4749) model_time 0.4401 (0.4690) loss 2.8984 (2.8481) grad_norm 2.3518 (2.5938/1.2266) mem 16099MB [2025-01-18 08:47:57 internimage_t_1k_224] (main.py 510): INFO Train: [228/300][310/312] eta 0:00:00 lr 0.000563 time 0.4423 (0.4741) model_time 0.4422 (0.4684) loss 3.0631 (2.8604) grad_norm 2.7114 (2.5643/1.1937) mem 16099MB [2025-01-18 08:47:58 internimage_t_1k_224] (main.py 519): INFO EPOCH 228 training takes 0:02:27 [2025-01-18 08:47:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_228.pth saving...... [2025-01-18 08:47:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_228.pth saved !!! [2025-01-18 08:48:06 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 6.970 (6.970) Loss 0.7518 (0.7518) Acc@1 84.375 (84.375) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 08:48:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.942) Loss 1.0157 (0.8554) Acc@1 77.271 (82.198) Acc@5 94.580 (96.014) Mem 16099MB [2025-01-18 08:48:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:228] * Acc@1 82.004 Acc@5 96.049 [2025-01-18 08:48:10 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.0% [2025-01-18 08:48:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 08:48:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 08:48:11 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.00% [2025-01-18 08:48:18 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 6.967 (6.967) Loss 0.7562 (0.7562) Acc@1 85.669 (85.669) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 08:48:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.949) Loss 1.0028 (0.8660) Acc@1 78.955 (83.079) Acc@5 95.264 (96.400) Mem 16099MB [2025-01-18 08:48:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:228] * Acc@1 82.953 Acc@5 96.417 [2025-01-18 08:48:21 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.0% [2025-01-18 08:48:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:48:23 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:48:23 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.95% [2025-01-18 08:48:25 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][0/312] eta 0:11:17 lr 0.000563 time 2.1709 (2.1709) model_time 0.4664 (0.4664) loss 2.6775 (2.6775) grad_norm 1.4164 (1.4164/0.0000) mem 16099MB [2025-01-18 08:48:30 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][10/312] eta 0:03:14 lr 0.000562 time 0.4528 (0.6442) model_time 0.4526 (0.4879) loss 3.0448 (3.0268) grad_norm 0.9503 (2.9311/1.3286) mem 16099MB [2025-01-18 08:48:34 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][20/312] eta 0:02:42 lr 0.000562 time 0.4527 (0.5558) model_time 0.4525 (0.4738) loss 3.1304 (2.9529) grad_norm 2.8018 (2.9901/1.2317) mem 16099MB [2025-01-18 08:48:39 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][30/312] eta 0:02:29 lr 0.000561 time 0.4667 (0.5292) model_time 0.4664 (0.4735) loss 3.1667 (2.9303) grad_norm 4.5308 (2.7118/1.3158) mem 16099MB [2025-01-18 08:48:44 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][40/312] eta 0:02:18 lr 0.000561 time 0.4516 (0.5104) model_time 0.4514 (0.4682) loss 3.0938 (2.9124) grad_norm 2.6939 (2.6432/1.2554) mem 16099MB [2025-01-18 08:48:48 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][50/312] eta 0:02:11 lr 0.000560 time 0.4364 (0.5020) model_time 0.4362 (0.4680) loss 2.9473 (2.8997) grad_norm 1.9254 (2.8899/1.5441) mem 16099MB [2025-01-18 08:48:53 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][60/312] eta 0:02:04 lr 0.000560 time 0.4480 (0.4948) model_time 0.4478 (0.4663) loss 2.9431 (2.8727) grad_norm 1.7803 (2.8196/1.5369) mem 16099MB [2025-01-18 08:48:58 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][70/312] eta 0:01:59 lr 0.000559 time 0.5405 (0.4933) model_time 0.5403 (0.4687) loss 2.5482 (2.8252) grad_norm 2.4812 (2.7168/1.4588) mem 16099MB [2025-01-18 08:49:02 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][80/312] eta 0:01:53 lr 0.000559 time 0.4608 (0.4899) model_time 0.4606 (0.4684) loss 3.3022 (2.8182) grad_norm 1.6217 (2.8055/1.4881) mem 16099MB [2025-01-18 08:49:07 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][90/312] eta 0:01:48 lr 0.000558 time 0.4621 (0.4877) model_time 0.4616 (0.4685) loss 1.8972 (2.8055) grad_norm 3.2861 (2.7434/1.4329) mem 16099MB [2025-01-18 08:49:12 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][100/312] eta 0:01:42 lr 0.000558 time 0.4540 (0.4850) model_time 0.4538 (0.4676) loss 2.4948 (2.8044) grad_norm 1.6331 (2.6887/1.4226) mem 16099MB [2025-01-18 08:49:16 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][110/312] eta 0:01:37 lr 0.000558 time 0.4587 (0.4822) model_time 0.4582 (0.4664) loss 2.4210 (2.8040) grad_norm 1.9910 (2.6129/1.3920) mem 16099MB [2025-01-18 08:49:21 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][120/312] eta 0:01:32 lr 0.000557 time 0.5399 (0.4809) model_time 0.5397 (0.4663) loss 2.7963 (2.8094) grad_norm 2.8700 (2.5627/1.3553) mem 16099MB [2025-01-18 08:49:26 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][130/312] eta 0:01:27 lr 0.000557 time 0.4669 (0.4801) model_time 0.4667 (0.4666) loss 1.8874 (2.8098) grad_norm 3.7210 (2.5741/1.3434) mem 16099MB [2025-01-18 08:49:30 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][140/312] eta 0:01:22 lr 0.000556 time 0.4864 (0.4798) model_time 0.4862 (0.4672) loss 1.9580 (2.8113) grad_norm 8.1568 (2.6661/1.4629) mem 16099MB [2025-01-18 08:49:35 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][150/312] eta 0:01:17 lr 0.000556 time 0.4647 (0.4810) model_time 0.4645 (0.4693) loss 2.1646 (2.8113) grad_norm 1.7051 (2.7986/1.5783) mem 16099MB [2025-01-18 08:49:40 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][160/312] eta 0:01:12 lr 0.000555 time 0.4471 (0.4793) model_time 0.4470 (0.4683) loss 3.2481 (2.8183) grad_norm 2.5548 (2.7989/1.5668) mem 16099MB [2025-01-18 08:49:44 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][170/312] eta 0:01:07 lr 0.000555 time 0.4407 (0.4776) model_time 0.4402 (0.4672) loss 3.7736 (2.8313) grad_norm 1.6482 (2.7718/1.5465) mem 16099MB [2025-01-18 08:49:49 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][180/312] eta 0:01:03 lr 0.000554 time 0.4542 (0.4774) model_time 0.4537 (0.4676) loss 3.2546 (2.8418) grad_norm 2.8745 (2.7576/1.5236) mem 16099MB [2025-01-18 08:49:54 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][190/312] eta 0:00:58 lr 0.000554 time 0.5442 (0.4774) model_time 0.5436 (0.4680) loss 2.9011 (2.8432) grad_norm 2.7018 (2.7193/1.5016) mem 16099MB [2025-01-18 08:49:59 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][200/312] eta 0:00:53 lr 0.000554 time 0.4495 (0.4767) model_time 0.4493 (0.4678) loss 2.7788 (2.8322) grad_norm 2.4088 (2.6981/1.4827) mem 16099MB [2025-01-18 08:50:03 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][210/312] eta 0:00:48 lr 0.000553 time 0.4358 (0.4757) model_time 0.4353 (0.4672) loss 3.0060 (2.8325) grad_norm 0.8788 (2.6550/1.4675) mem 16099MB [2025-01-18 08:50:08 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][220/312] eta 0:00:43 lr 0.000553 time 0.4527 (0.4751) model_time 0.4522 (0.4669) loss 2.6610 (2.8323) grad_norm 2.8053 (2.6417/1.4385) mem 16099MB [2025-01-18 08:50:12 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][230/312] eta 0:00:38 lr 0.000552 time 0.4525 (0.4742) model_time 0.4523 (0.4664) loss 3.1269 (2.8422) grad_norm 5.8466 (2.6715/1.4397) mem 16099MB [2025-01-18 08:50:17 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][240/312] eta 0:00:34 lr 0.000552 time 0.4682 (0.4738) model_time 0.4679 (0.4663) loss 2.7738 (2.8428) grad_norm 1.9251 (2.6827/1.4235) mem 16099MB [2025-01-18 08:50:22 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][250/312] eta 0:00:29 lr 0.000551 time 0.5264 (0.4734) model_time 0.5262 (0.4662) loss 3.6364 (2.8555) grad_norm 1.7915 (2.6586/1.4048) mem 16099MB [2025-01-18 08:50:26 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][260/312] eta 0:00:24 lr 0.000551 time 0.4461 (0.4735) model_time 0.4458 (0.4665) loss 2.7417 (2.8615) grad_norm 1.3891 (2.6407/1.3950) mem 16099MB [2025-01-18 08:50:31 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][270/312] eta 0:00:19 lr 0.000550 time 0.4503 (0.4727) model_time 0.4501 (0.4660) loss 3.1449 (2.8571) grad_norm 2.1407 (2.6521/1.3891) mem 16099MB [2025-01-18 08:50:36 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][280/312] eta 0:00:15 lr 0.000550 time 0.4451 (0.4727) model_time 0.4449 (0.4662) loss 3.7694 (2.8582) grad_norm 1.7695 (2.6288/1.3730) mem 16099MB [2025-01-18 08:50:40 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][290/312] eta 0:00:10 lr 0.000550 time 0.4461 (0.4724) model_time 0.4454 (0.4661) loss 2.6392 (2.8560) grad_norm 3.5425 (2.6079/1.3628) mem 16099MB [2025-01-18 08:50:45 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][300/312] eta 0:00:05 lr 0.000549 time 0.4387 (0.4718) model_time 0.4386 (0.4657) loss 3.4024 (2.8604) grad_norm 2.3987 (2.5898/1.3492) mem 16099MB [2025-01-18 08:50:50 internimage_t_1k_224] (main.py 510): INFO Train: [229/300][310/312] eta 0:00:00 lr 0.000549 time 0.5502 (0.4728) model_time 0.5501 (0.4669) loss 3.0930 (2.8684) grad_norm 1.6656 (2.5661/1.3307) mem 16099MB [2025-01-18 08:50:50 internimage_t_1k_224] (main.py 519): INFO EPOCH 229 training takes 0:02:27 [2025-01-18 08:50:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_229.pth saving...... [2025-01-18 08:50:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_229.pth saved !!! [2025-01-18 08:50:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.064 (7.064) Loss 0.7363 (0.7363) Acc@1 84.619 (84.619) Acc@5 97.339 (97.339) Mem 16099MB [2025-01-18 08:51:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.944) Loss 1.0160 (0.8453) Acc@1 77.905 (82.111) Acc@5 94.434 (95.983) Mem 16099MB [2025-01-18 08:51:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:229] * Acc@1 81.920 Acc@5 95.995 [2025-01-18 08:51:02 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 81.9% [2025-01-18 08:51:02 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.00% [2025-01-18 08:51:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.150 (8.150) Loss 0.7551 (0.7551) Acc@1 85.693 (85.693) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 08:51:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.090) Loss 1.0015 (0.8646) Acc@1 79.028 (83.081) Acc@5 95.312 (96.411) Mem 16099MB [2025-01-18 08:51:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:229] * Acc@1 82.957 Acc@5 96.425 [2025-01-18 08:51:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.0% [2025-01-18 08:51:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:51:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:51:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.96% [2025-01-18 08:51:18 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][0/312] eta 0:11:19 lr 0.000549 time 2.1764 (2.1764) model_time 0.4669 (0.4669) loss 2.1923 (2.1923) grad_norm 2.6552 (2.6552/0.0000) mem 16099MB [2025-01-18 08:51:22 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][10/312] eta 0:03:13 lr 0.000548 time 0.4492 (0.6401) model_time 0.4490 (0.4845) loss 3.2591 (2.8349) grad_norm 1.5908 (2.6598/1.1964) mem 16099MB [2025-01-18 08:51:27 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][20/312] eta 0:02:42 lr 0.000548 time 0.4547 (0.5557) model_time 0.4545 (0.4740) loss 1.9724 (2.8578) grad_norm 4.6263 (2.7684/1.0383) mem 16099MB [2025-01-18 08:51:32 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][30/312] eta 0:02:31 lr 0.000547 time 0.4449 (0.5362) model_time 0.4447 (0.4808) loss 2.1419 (2.7444) grad_norm 1.9717 (2.9384/1.2489) mem 16099MB [2025-01-18 08:51:37 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][40/312] eta 0:02:20 lr 0.000547 time 0.4640 (0.5180) model_time 0.4638 (0.4760) loss 1.8927 (2.7473) grad_norm 1.5710 (2.8644/1.1709) mem 16099MB [2025-01-18 08:51:41 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][50/312] eta 0:02:12 lr 0.000546 time 0.4620 (0.5057) model_time 0.4615 (0.4719) loss 3.3337 (2.7754) grad_norm 1.0615 (2.5880/1.1933) mem 16099MB [2025-01-18 08:51:46 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][60/312] eta 0:02:05 lr 0.000546 time 0.4513 (0.4980) model_time 0.4506 (0.4696) loss 2.1590 (2.7656) grad_norm 1.4433 (2.4833/1.1617) mem 16099MB [2025-01-18 08:51:50 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][70/312] eta 0:01:59 lr 0.000545 time 0.5108 (0.4927) model_time 0.5106 (0.4683) loss 3.1679 (2.7883) grad_norm 3.0063 (2.6486/1.2837) mem 16099MB [2025-01-18 08:51:55 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][80/312] eta 0:01:53 lr 0.000545 time 0.4500 (0.4886) model_time 0.4495 (0.4671) loss 2.3776 (2.7967) grad_norm 3.9799 (2.8866/1.5152) mem 16099MB [2025-01-18 08:52:00 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][90/312] eta 0:01:47 lr 0.000545 time 0.4617 (0.4860) model_time 0.4615 (0.4669) loss 2.7690 (2.8145) grad_norm 1.5000 (2.8994/1.4989) mem 16099MB [2025-01-18 08:52:04 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][100/312] eta 0:01:42 lr 0.000544 time 0.4841 (0.4846) model_time 0.4839 (0.4674) loss 2.0557 (2.8064) grad_norm 2.5880 (2.8225/1.4674) mem 16099MB [2025-01-18 08:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][110/312] eta 0:01:37 lr 0.000544 time 0.4651 (0.4821) model_time 0.4649 (0.4663) loss 2.8601 (2.8056) grad_norm 1.3987 (2.7692/1.4309) mem 16099MB [2025-01-18 08:52:14 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][120/312] eta 0:01:32 lr 0.000543 time 0.4922 (0.4813) model_time 0.4919 (0.4668) loss 3.6130 (2.8008) grad_norm 2.1820 (2.6927/1.4031) mem 16099MB [2025-01-18 08:52:18 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][130/312] eta 0:01:27 lr 0.000543 time 0.4458 (0.4809) model_time 0.4453 (0.4675) loss 2.5338 (2.7827) grad_norm 3.2385 (2.7009/1.3609) mem 16099MB [2025-01-18 08:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][140/312] eta 0:01:22 lr 0.000542 time 0.4435 (0.4799) model_time 0.4433 (0.4674) loss 2.5126 (2.7784) grad_norm 2.9911 (2.6531/1.3350) mem 16099MB [2025-01-18 08:52:28 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][150/312] eta 0:01:17 lr 0.000542 time 0.4556 (0.4791) model_time 0.4555 (0.4675) loss 3.1354 (2.7697) grad_norm 3.1295 (2.6782/1.3257) mem 16099MB [2025-01-18 08:52:32 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][160/312] eta 0:01:12 lr 0.000541 time 0.5416 (0.4779) model_time 0.5415 (0.4670) loss 3.0023 (2.7698) grad_norm 2.8406 (2.6820/1.3003) mem 16099MB [2025-01-18 08:52:37 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][170/312] eta 0:01:07 lr 0.000541 time 0.4409 (0.4769) model_time 0.4407 (0.4666) loss 2.9119 (2.7642) grad_norm 4.1284 (2.6680/1.2852) mem 16099MB [2025-01-18 08:52:41 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][180/312] eta 0:01:02 lr 0.000541 time 0.4617 (0.4757) model_time 0.4612 (0.4659) loss 2.9767 (2.7683) grad_norm 1.8357 (2.6573/1.2724) mem 16099MB [2025-01-18 08:52:46 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][190/312] eta 0:00:57 lr 0.000540 time 0.4523 (0.4754) model_time 0.4522 (0.4661) loss 2.9648 (2.7775) grad_norm 3.4946 (2.6751/1.2784) mem 16099MB [2025-01-18 08:52:51 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][200/312] eta 0:00:53 lr 0.000540 time 0.4507 (0.4752) model_time 0.4502 (0.4663) loss 2.9381 (2.7779) grad_norm 6.0535 (2.7274/1.3500) mem 16099MB [2025-01-18 08:52:55 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][210/312] eta 0:00:48 lr 0.000539 time 0.4557 (0.4742) model_time 0.4555 (0.4657) loss 3.0170 (2.7877) grad_norm 3.2177 (2.7310/1.3257) mem 16099MB [2025-01-18 08:53:00 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][220/312] eta 0:00:43 lr 0.000539 time 0.4600 (0.4732) model_time 0.4597 (0.4652) loss 1.9351 (2.7924) grad_norm 2.9271 (2.7603/1.3508) mem 16099MB [2025-01-18 08:53:04 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][230/312] eta 0:00:38 lr 0.000538 time 0.4420 (0.4725) model_time 0.4415 (0.4647) loss 3.1642 (2.8046) grad_norm 1.8265 (2.7314/1.3400) mem 16099MB [2025-01-18 08:53:09 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][240/312] eta 0:00:34 lr 0.000538 time 0.5473 (0.4723) model_time 0.5472 (0.4648) loss 3.4420 (2.8098) grad_norm 2.2534 (2.7073/1.3239) mem 16099MB [2025-01-18 08:53:14 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][250/312] eta 0:00:29 lr 0.000538 time 0.4395 (0.4737) model_time 0.4394 (0.4665) loss 2.9917 (2.8131) grad_norm 1.9913 (2.6704/1.3124) mem 16099MB [2025-01-18 08:53:19 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][260/312] eta 0:00:24 lr 0.000537 time 0.4493 (0.4731) model_time 0.4491 (0.4662) loss 2.9610 (2.8210) grad_norm 8.0143 (2.6798/1.3422) mem 16099MB [2025-01-18 08:53:24 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][270/312] eta 0:00:19 lr 0.000537 time 0.4511 (0.4731) model_time 0.4510 (0.4664) loss 3.1440 (2.8195) grad_norm 3.4459 (2.6935/1.3456) mem 16099MB [2025-01-18 08:53:28 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][280/312] eta 0:00:15 lr 0.000536 time 0.4536 (0.4725) model_time 0.4534 (0.4661) loss 3.3304 (2.8195) grad_norm 2.2736 (2.6862/1.3296) mem 16099MB [2025-01-18 08:53:33 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][290/312] eta 0:00:10 lr 0.000536 time 0.4601 (0.4726) model_time 0.4599 (0.4664) loss 3.2612 (2.8193) grad_norm 3.1197 (2.6729/1.3193) mem 16099MB [2025-01-18 08:53:38 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][300/312] eta 0:00:05 lr 0.000535 time 0.4388 (0.4724) model_time 0.4387 (0.4664) loss 3.2133 (2.8139) grad_norm 1.1915 (2.6806/1.3201) mem 16099MB [2025-01-18 08:53:42 internimage_t_1k_224] (main.py 510): INFO Train: [230/300][310/312] eta 0:00:00 lr 0.000535 time 0.4378 (0.4721) model_time 0.4377 (0.4663) loss 2.7827 (2.8167) grad_norm 3.6173 (2.6992/1.3195) mem 16099MB [2025-01-18 08:53:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 230 training takes 0:02:27 [2025-01-18 08:53:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_230.pth saving...... [2025-01-18 08:53:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_230.pth saved !!! [2025-01-18 08:53:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.367 (7.367) Loss 0.7417 (0.7417) Acc@1 85.059 (85.059) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 08:53:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.987) Loss 0.9973 (0.8516) Acc@1 78.271 (82.417) Acc@5 94.604 (96.098) Mem 16099MB [2025-01-18 08:53:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:230] * Acc@1 82.224 Acc@5 96.111 [2025-01-18 08:53:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.2% [2025-01-18 08:53:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 08:53:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 08:53:56 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.22% [2025-01-18 08:54:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.268 (7.268) Loss 0.7542 (0.7542) Acc@1 85.742 (85.742) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 08:54:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.980) Loss 1.0001 (0.8634) Acc@1 79.053 (83.081) Acc@5 95.288 (96.413) Mem 16099MB [2025-01-18 08:54:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:230] * Acc@1 82.961 Acc@5 96.427 [2025-01-18 08:54:07 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.0% [2025-01-18 08:54:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:54:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:54:08 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.96% [2025-01-18 08:54:10 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][0/312] eta 0:11:40 lr 0.000535 time 2.2442 (2.2442) model_time 0.4683 (0.4683) loss 3.0660 (3.0660) grad_norm 3.1370 (3.1370/0.0000) mem 16099MB [2025-01-18 08:54:15 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][10/312] eta 0:03:08 lr 0.000534 time 0.4497 (0.6243) model_time 0.4496 (0.4625) loss 3.4273 (2.9671) grad_norm 3.0180 (3.6867/1.3818) mem 16099MB [2025-01-18 08:54:20 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][20/312] eta 0:02:39 lr 0.000534 time 0.4544 (0.5470) model_time 0.4542 (0.4621) loss 2.5886 (2.9338) grad_norm 2.1650 (3.1035/1.2903) mem 16099MB [2025-01-18 08:54:24 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][30/312] eta 0:02:27 lr 0.000533 time 0.4476 (0.5221) model_time 0.4470 (0.4644) loss 2.9672 (2.9261) grad_norm 4.9124 (2.9564/1.2845) mem 16099MB [2025-01-18 08:54:29 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][40/312] eta 0:02:18 lr 0.000533 time 0.4632 (0.5106) model_time 0.4628 (0.4669) loss 3.2987 (2.9685) grad_norm 5.2920 (2.9492/1.2891) mem 16099MB [2025-01-18 08:54:34 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][50/312] eta 0:02:11 lr 0.000533 time 0.4508 (0.5007) model_time 0.4506 (0.4655) loss 2.9367 (2.9486) grad_norm 2.6304 (2.9218/1.2646) mem 16099MB [2025-01-18 08:54:38 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][60/312] eta 0:02:04 lr 0.000532 time 0.4682 (0.4937) model_time 0.4681 (0.4642) loss 3.0708 (2.9154) grad_norm 2.0990 (2.7383/1.2463) mem 16099MB [2025-01-18 08:54:43 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][70/312] eta 0:01:58 lr 0.000532 time 0.4561 (0.4890) model_time 0.4559 (0.4636) loss 2.6424 (2.8795) grad_norm 3.5388 (2.6628/1.2191) mem 16099MB [2025-01-18 08:54:47 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][80/312] eta 0:01:52 lr 0.000531 time 0.4578 (0.4867) model_time 0.4576 (0.4644) loss 2.0424 (2.8701) grad_norm 1.3201 (2.6411/1.2141) mem 16099MB [2025-01-18 08:54:52 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][90/312] eta 0:01:47 lr 0.000531 time 0.4533 (0.4840) model_time 0.4532 (0.4642) loss 3.5387 (2.8633) grad_norm 4.4493 (2.6947/1.2028) mem 16099MB [2025-01-18 08:54:57 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][100/312] eta 0:01:42 lr 0.000530 time 0.4495 (0.4822) model_time 0.4493 (0.4643) loss 2.5078 (2.8454) grad_norm 1.1869 (2.6357/1.1819) mem 16099MB [2025-01-18 08:55:02 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][110/312] eta 0:01:37 lr 0.000530 time 0.4538 (0.4821) model_time 0.4537 (0.4657) loss 3.7198 (2.8411) grad_norm 3.5747 (2.6391/1.1587) mem 16099MB [2025-01-18 08:55:06 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][120/312] eta 0:01:32 lr 0.000530 time 0.4726 (0.4810) model_time 0.4722 (0.4659) loss 3.0059 (2.8209) grad_norm 1.9745 (2.5849/1.1427) mem 16099MB [2025-01-18 08:55:11 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][130/312] eta 0:01:27 lr 0.000529 time 0.4487 (0.4799) model_time 0.4486 (0.4659) loss 2.8305 (2.8269) grad_norm 2.1054 (2.6113/1.1637) mem 16099MB [2025-01-18 08:55:16 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][140/312] eta 0:01:22 lr 0.000529 time 0.5694 (0.4787) model_time 0.5690 (0.4658) loss 3.1911 (2.8427) grad_norm 5.6346 (2.6868/1.1983) mem 16099MB [2025-01-18 08:55:20 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][150/312] eta 0:01:17 lr 0.000528 time 0.4465 (0.4785) model_time 0.4463 (0.4664) loss 2.7731 (2.8513) grad_norm 1.6091 (2.7181/1.2275) mem 16099MB [2025-01-18 08:55:25 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][160/312] eta 0:01:12 lr 0.000528 time 0.4542 (0.4779) model_time 0.4538 (0.4666) loss 3.2755 (2.8634) grad_norm 3.0264 (2.6667/1.2197) mem 16099MB [2025-01-18 08:55:30 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][170/312] eta 0:01:07 lr 0.000527 time 0.4457 (0.4766) model_time 0.4455 (0.4658) loss 1.9851 (2.8563) grad_norm 2.4287 (2.6256/1.2152) mem 16099MB [2025-01-18 08:55:34 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][180/312] eta 0:01:02 lr 0.000527 time 0.4518 (0.4754) model_time 0.4513 (0.4652) loss 3.2704 (2.8465) grad_norm 3.0847 (2.6265/1.2005) mem 16099MB [2025-01-18 08:55:39 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][190/312] eta 0:00:57 lr 0.000526 time 0.4494 (0.4746) model_time 0.4492 (0.4649) loss 3.6374 (2.8600) grad_norm 3.7442 (2.6178/1.1862) mem 16099MB [2025-01-18 08:55:43 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][200/312] eta 0:00:53 lr 0.000526 time 0.5807 (0.4742) model_time 0.5803 (0.4650) loss 2.4447 (2.8669) grad_norm 1.6353 (2.6117/1.1842) mem 16099MB [2025-01-18 08:55:48 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][210/312] eta 0:00:48 lr 0.000526 time 0.4838 (0.4739) model_time 0.4834 (0.4651) loss 3.1817 (2.8775) grad_norm 1.9844 (2.6074/1.1711) mem 16099MB [2025-01-18 08:55:53 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][220/312] eta 0:00:43 lr 0.000525 time 0.4564 (0.4732) model_time 0.4560 (0.4648) loss 3.2816 (2.8833) grad_norm 4.5676 (2.5995/1.1672) mem 16099MB [2025-01-18 08:55:57 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][230/312] eta 0:00:38 lr 0.000525 time 0.4593 (0.4724) model_time 0.4589 (0.4643) loss 3.0755 (2.8824) grad_norm 1.6573 (2.5657/1.1648) mem 16099MB [2025-01-18 08:56:02 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][240/312] eta 0:00:34 lr 0.000524 time 0.4865 (0.4722) model_time 0.4860 (0.4645) loss 3.1076 (2.8850) grad_norm 1.8959 (2.5361/1.1595) mem 16099MB [2025-01-18 08:56:06 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][250/312] eta 0:00:29 lr 0.000524 time 0.4516 (0.4716) model_time 0.4512 (0.4641) loss 3.3890 (2.8820) grad_norm 7.2596 (2.5512/1.1913) mem 16099MB [2025-01-18 08:56:11 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][260/312] eta 0:00:24 lr 0.000523 time 0.4475 (0.4716) model_time 0.4473 (0.4644) loss 3.2772 (2.8772) grad_norm 3.3541 (2.5503/1.1744) mem 16099MB [2025-01-18 08:56:16 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][270/312] eta 0:00:19 lr 0.000523 time 0.4478 (0.4714) model_time 0.4476 (0.4644) loss 2.4539 (2.8770) grad_norm 4.6264 (2.5798/1.1983) mem 16099MB [2025-01-18 08:56:21 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][280/312] eta 0:00:15 lr 0.000523 time 0.4430 (0.4720) model_time 0.4425 (0.4653) loss 2.5989 (2.8750) grad_norm 3.5267 (2.5991/1.1982) mem 16099MB [2025-01-18 08:56:25 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][290/312] eta 0:00:10 lr 0.000522 time 0.4499 (0.4719) model_time 0.4497 (0.4654) loss 2.6414 (2.8718) grad_norm 1.8010 (2.5894/1.1920) mem 16099MB [2025-01-18 08:56:30 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][300/312] eta 0:00:05 lr 0.000522 time 0.5460 (0.4715) model_time 0.5459 (0.4652) loss 3.6695 (2.8676) grad_norm 1.4953 (2.5623/1.1829) mem 16099MB [2025-01-18 08:56:34 internimage_t_1k_224] (main.py 510): INFO Train: [231/300][310/312] eta 0:00:00 lr 0.000521 time 0.4378 (0.4706) model_time 0.4377 (0.4645) loss 2.9609 (2.8617) grad_norm 2.3726 (2.4985/1.1426) mem 16099MB [2025-01-18 08:56:35 internimage_t_1k_224] (main.py 519): INFO EPOCH 231 training takes 0:02:26 [2025-01-18 08:56:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_231.pth saving...... [2025-01-18 08:56:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_231.pth saved !!! [2025-01-18 08:56:43 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.178 (7.178) Loss 0.7141 (0.7141) Acc@1 84.741 (84.741) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 08:56:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (0.952) Loss 0.9708 (0.8266) Acc@1 78.149 (82.264) Acc@5 94.629 (96.145) Mem 16099MB [2025-01-18 08:56:47 internimage_t_1k_224] (main.py 575): INFO [Epoch:231] * Acc@1 82.084 Acc@5 96.141 [2025-01-18 08:56:47 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.1% [2025-01-18 08:56:47 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.22% [2025-01-18 08:56:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.176 (8.176) Loss 0.7532 (0.7532) Acc@1 85.742 (85.742) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 08:56:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.079) Loss 0.9988 (0.8623) Acc@1 79.053 (83.101) Acc@5 95.288 (96.409) Mem 16099MB [2025-01-18 08:56:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:231] * Acc@1 82.983 Acc@5 96.423 [2025-01-18 08:56:59 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.0% [2025-01-18 08:56:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:57:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:57:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.98% [2025-01-18 08:57:02 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][0/312] eta 0:12:30 lr 0.000521 time 2.4043 (2.4043) model_time 0.4767 (0.4767) loss 2.8735 (2.8735) grad_norm 2.6199 (2.6199/0.0000) mem 16099MB [2025-01-18 08:57:07 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][10/312] eta 0:03:13 lr 0.000521 time 0.4587 (0.6421) model_time 0.4586 (0.4666) loss 2.2090 (3.0292) grad_norm 3.6125 (3.4748/1.5481) mem 16099MB [2025-01-18 08:57:12 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][20/312] eta 0:02:44 lr 0.000520 time 0.5693 (0.5618) model_time 0.5688 (0.4697) loss 2.9486 (2.8371) grad_norm 2.4944 (3.1212/1.4326) mem 16099MB [2025-01-18 08:57:17 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][30/312] eta 0:02:31 lr 0.000520 time 0.4509 (0.5377) model_time 0.4504 (0.4752) loss 2.3747 (2.8266) grad_norm 2.2598 (3.0903/1.3647) mem 16099MB [2025-01-18 08:57:22 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][40/312] eta 0:02:23 lr 0.000519 time 0.4708 (0.5261) model_time 0.4703 (0.4788) loss 2.3438 (2.7625) grad_norm 1.5278 (3.0971/1.3833) mem 16099MB [2025-01-18 08:57:26 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][50/312] eta 0:02:14 lr 0.000519 time 0.4865 (0.5152) model_time 0.4864 (0.4771) loss 3.1746 (2.7675) grad_norm 3.5939 (3.2048/1.3937) mem 16099MB [2025-01-18 08:57:31 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][60/312] eta 0:02:07 lr 0.000519 time 0.4583 (0.5068) model_time 0.4581 (0.4748) loss 3.4265 (2.7556) grad_norm 1.8822 (3.0778/1.3572) mem 16099MB [2025-01-18 08:57:36 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][70/312] eta 0:02:00 lr 0.000518 time 0.4531 (0.4992) model_time 0.4527 (0.4717) loss 3.0195 (2.7923) grad_norm 1.8842 (3.0575/1.3472) mem 16099MB [2025-01-18 08:57:40 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][80/312] eta 0:01:54 lr 0.000518 time 0.4524 (0.4949) model_time 0.4522 (0.4708) loss 2.4569 (2.7988) grad_norm 1.5114 (2.9883/1.3061) mem 16099MB [2025-01-18 08:57:45 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][90/312] eta 0:01:48 lr 0.000517 time 0.4554 (0.4905) model_time 0.4552 (0.4690) loss 2.0679 (2.8140) grad_norm 1.5577 (2.9409/1.3075) mem 16099MB [2025-01-18 08:57:49 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][100/312] eta 0:01:43 lr 0.000517 time 0.4498 (0.4890) model_time 0.4493 (0.4696) loss 2.8617 (2.7979) grad_norm 1.7969 (2.8227/1.3002) mem 16099MB [2025-01-18 08:57:54 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][110/312] eta 0:01:38 lr 0.000516 time 0.4506 (0.4864) model_time 0.4504 (0.4687) loss 2.2822 (2.7945) grad_norm 2.7807 (2.7729/1.2606) mem 16099MB [2025-01-18 08:57:59 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][120/312] eta 0:01:33 lr 0.000516 time 0.4474 (0.4846) model_time 0.4473 (0.4683) loss 3.2266 (2.8017) grad_norm 1.9503 (2.7553/1.2414) mem 16099MB [2025-01-18 08:58:04 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][130/312] eta 0:01:28 lr 0.000516 time 0.4623 (0.4847) model_time 0.4621 (0.4696) loss 2.4870 (2.7796) grad_norm 2.6332 (2.7490/1.2211) mem 16099MB [2025-01-18 08:58:08 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][140/312] eta 0:01:23 lr 0.000515 time 0.5899 (0.4849) model_time 0.5897 (0.4709) loss 3.1259 (2.7830) grad_norm 4.1834 (2.7057/1.2069) mem 16099MB [2025-01-18 08:58:13 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][150/312] eta 0:01:18 lr 0.000515 time 0.4502 (0.4839) model_time 0.4498 (0.4708) loss 3.1471 (2.7703) grad_norm 4.5278 (2.7406/1.2084) mem 16099MB [2025-01-18 08:58:18 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][160/312] eta 0:01:13 lr 0.000514 time 0.4464 (0.4827) model_time 0.4460 (0.4703) loss 2.0470 (2.7743) grad_norm 2.5773 (2.7529/1.1997) mem 16099MB [2025-01-18 08:58:22 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][170/312] eta 0:01:08 lr 0.000514 time 0.4484 (0.4814) model_time 0.4482 (0.4697) loss 2.2331 (2.7822) grad_norm 1.7428 (2.7414/1.1863) mem 16099MB [2025-01-18 08:58:27 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][180/312] eta 0:01:03 lr 0.000513 time 0.4561 (0.4802) model_time 0.4557 (0.4692) loss 2.3514 (2.7657) grad_norm 2.8317 (2.7113/1.1685) mem 16099MB [2025-01-18 08:58:32 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][190/312] eta 0:00:58 lr 0.000513 time 0.4598 (0.4796) model_time 0.4597 (0.4692) loss 3.2522 (2.7657) grad_norm 2.2780 (2.6769/1.1515) mem 16099MB [2025-01-18 08:58:36 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][200/312] eta 0:00:53 lr 0.000512 time 0.4490 (0.4787) model_time 0.4485 (0.4687) loss 2.8979 (2.7662) grad_norm 1.9070 (2.6525/1.1342) mem 16099MB [2025-01-18 08:58:41 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][210/312] eta 0:00:48 lr 0.000512 time 0.4487 (0.4778) model_time 0.4486 (0.4683) loss 3.2535 (2.7707) grad_norm 1.7336 (2.6569/1.1336) mem 16099MB [2025-01-18 08:58:46 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][220/312] eta 0:00:43 lr 0.000512 time 0.4527 (0.4773) model_time 0.4526 (0.4682) loss 2.5451 (2.7615) grad_norm 1.7031 (2.6524/1.1429) mem 16099MB [2025-01-18 08:58:50 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][230/312] eta 0:00:39 lr 0.000511 time 0.4529 (0.4767) model_time 0.4525 (0.4680) loss 1.8703 (2.7596) grad_norm 1.3515 (2.6424/1.1389) mem 16099MB [2025-01-18 08:58:55 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][240/312] eta 0:00:34 lr 0.000511 time 0.4615 (0.4758) model_time 0.4611 (0.4674) loss 3.0942 (2.7611) grad_norm 2.8839 (2.6703/1.1515) mem 16099MB [2025-01-18 08:58:59 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][250/312] eta 0:00:29 lr 0.000510 time 0.4510 (0.4752) model_time 0.4509 (0.4672) loss 3.1316 (2.7692) grad_norm 1.4297 (2.6806/1.1452) mem 16099MB [2025-01-18 08:59:04 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][260/312] eta 0:00:24 lr 0.000510 time 0.4530 (0.4765) model_time 0.4526 (0.4688) loss 2.9785 (2.7833) grad_norm 2.2888 (2.6947/1.1504) mem 16099MB [2025-01-18 08:59:09 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][270/312] eta 0:00:20 lr 0.000509 time 0.4577 (0.4764) model_time 0.4576 (0.4689) loss 3.7216 (2.7899) grad_norm 3.4138 (2.7108/1.1501) mem 16099MB [2025-01-18 08:59:14 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][280/312] eta 0:00:15 lr 0.000509 time 0.4619 (0.4760) model_time 0.4617 (0.4687) loss 3.2925 (2.7963) grad_norm 3.6671 (2.7116/1.1503) mem 16099MB [2025-01-18 08:59:19 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][290/312] eta 0:00:10 lr 0.000509 time 0.4495 (0.4762) model_time 0.4493 (0.4692) loss 3.0719 (2.7884) grad_norm 0.8997 (2.7137/1.1547) mem 16099MB [2025-01-18 08:59:23 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][300/312] eta 0:00:05 lr 0.000508 time 0.4390 (0.4756) model_time 0.4389 (0.4688) loss 2.2498 (2.7916) grad_norm 1.8300 (2.7131/1.1494) mem 16099MB [2025-01-18 08:59:28 internimage_t_1k_224] (main.py 510): INFO Train: [232/300][310/312] eta 0:00:00 lr 0.000508 time 0.4417 (0.4750) model_time 0.4417 (0.4684) loss 3.4677 (2.7878) grad_norm 1.9929 (2.6607/1.1187) mem 16099MB [2025-01-18 08:59:28 internimage_t_1k_224] (main.py 519): INFO EPOCH 232 training takes 0:02:28 [2025-01-18 08:59:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_232.pth saving...... [2025-01-18 08:59:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_232.pth saved !!! [2025-01-18 08:59:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.340 (7.340) Loss 0.7370 (0.7370) Acc@1 84.766 (84.766) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 08:59:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.989) Loss 0.9785 (0.8418) Acc@1 78.735 (82.480) Acc@5 95.117 (96.154) Mem 16099MB [2025-01-18 08:59:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:232] * Acc@1 82.288 Acc@5 96.135 [2025-01-18 08:59:40 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.3% [2025-01-18 08:59:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 08:59:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 08:59:42 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.29% [2025-01-18 08:59:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.263 (7.263) Loss 0.7522 (0.7522) Acc@1 85.840 (85.840) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 08:59:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.980) Loss 0.9973 (0.8610) Acc@1 78.955 (83.114) Acc@5 95.312 (96.411) Mem 16099MB [2025-01-18 08:59:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:232] * Acc@1 82.989 Acc@5 96.429 [2025-01-18 08:59:53 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.0% [2025-01-18 08:59:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 08:59:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 08:59:54 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.99% [2025-01-18 08:59:57 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][0/312] eta 0:13:59 lr 0.000508 time 2.6916 (2.6916) model_time 0.4651 (0.4651) loss 3.4324 (3.4324) grad_norm 1.5291 (1.5291/0.0000) mem 16099MB [2025-01-18 09:00:01 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][10/312] eta 0:03:20 lr 0.000507 time 0.4451 (0.6647) model_time 0.4450 (0.4620) loss 3.1564 (3.1485) grad_norm 4.1885 (2.2975/0.6606) mem 16099MB [2025-01-18 09:00:06 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][20/312] eta 0:02:45 lr 0.000507 time 0.4598 (0.5672) model_time 0.4594 (0.4608) loss 3.4002 (3.0304) grad_norm 7.5554 (3.0004/1.6037) mem 16099MB [2025-01-18 09:00:11 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][30/312] eta 0:02:33 lr 0.000506 time 0.4654 (0.5460) model_time 0.4652 (0.4739) loss 2.3690 (2.9693) grad_norm 1.5324 (2.8447/1.4710) mem 16099MB [2025-01-18 09:00:15 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][40/312] eta 0:02:22 lr 0.000506 time 0.4703 (0.5247) model_time 0.4698 (0.4701) loss 1.8059 (2.9624) grad_norm 3.8487 (2.6179/1.3961) mem 16099MB [2025-01-18 09:00:20 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][50/312] eta 0:02:14 lr 0.000506 time 0.4428 (0.5146) model_time 0.4426 (0.4706) loss 1.9994 (2.9283) grad_norm 1.2154 (2.6166/1.3423) mem 16099MB [2025-01-18 09:00:25 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][60/312] eta 0:02:07 lr 0.000505 time 0.4542 (0.5059) model_time 0.4537 (0.4690) loss 3.3239 (2.9258) grad_norm 3.9722 (2.7608/1.4333) mem 16099MB [2025-01-18 09:00:29 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][70/312] eta 0:02:00 lr 0.000505 time 0.4503 (0.4990) model_time 0.4501 (0.4672) loss 3.4097 (2.9033) grad_norm 3.2276 (2.7371/1.3687) mem 16099MB [2025-01-18 09:00:34 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][80/312] eta 0:01:54 lr 0.000504 time 0.4534 (0.4943) model_time 0.4530 (0.4665) loss 3.0589 (2.8819) grad_norm 2.2104 (2.7057/1.3311) mem 16099MB [2025-01-18 09:00:39 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][90/312] eta 0:01:49 lr 0.000504 time 0.4887 (0.4916) model_time 0.4885 (0.4668) loss 1.9214 (2.8544) grad_norm 2.5537 (2.7038/1.3065) mem 16099MB [2025-01-18 09:00:43 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][100/312] eta 0:01:43 lr 0.000503 time 0.4505 (0.4894) model_time 0.4503 (0.4670) loss 2.9983 (2.8655) grad_norm 2.1053 (2.6998/1.2753) mem 16099MB [2025-01-18 09:00:48 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][110/312] eta 0:01:38 lr 0.000503 time 0.4573 (0.4867) model_time 0.4568 (0.4663) loss 2.1624 (2.8476) grad_norm 2.5998 (2.5998/1.2644) mem 16099MB [2025-01-18 09:00:53 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][120/312] eta 0:01:33 lr 0.000503 time 0.4501 (0.4854) model_time 0.4496 (0.4666) loss 2.6402 (2.8467) grad_norm 1.3549 (2.5656/1.2452) mem 16099MB [2025-01-18 09:00:57 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][130/312] eta 0:01:28 lr 0.000502 time 0.4913 (0.4843) model_time 0.4909 (0.4669) loss 2.9566 (2.8413) grad_norm 1.9397 (2.5188/1.2140) mem 16099MB [2025-01-18 09:01:02 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][140/312] eta 0:01:23 lr 0.000502 time 0.4456 (0.4838) model_time 0.4454 (0.4677) loss 3.0047 (2.8460) grad_norm 1.3079 (2.5023/1.1975) mem 16099MB [2025-01-18 09:01:07 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][150/312] eta 0:01:18 lr 0.000501 time 0.5652 (0.4833) model_time 0.5648 (0.4682) loss 3.0301 (2.8558) grad_norm 2.1981 (2.4979/1.1767) mem 16099MB [2025-01-18 09:01:11 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][160/312] eta 0:01:13 lr 0.000501 time 0.4528 (0.4823) model_time 0.4526 (0.4681) loss 2.5826 (2.8450) grad_norm 2.2129 (2.5180/1.1712) mem 16099MB [2025-01-18 09:01:16 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][170/312] eta 0:01:08 lr 0.000500 time 0.4413 (0.4833) model_time 0.4409 (0.4699) loss 3.0831 (2.8464) grad_norm 1.9054 (2.4954/1.1527) mem 16099MB [2025-01-18 09:01:21 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][180/312] eta 0:01:03 lr 0.000500 time 0.5429 (0.4823) model_time 0.5424 (0.4696) loss 3.3537 (2.8445) grad_norm 3.2488 (2.4741/1.1389) mem 16099MB [2025-01-18 09:01:26 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][190/312] eta 0:00:58 lr 0.000500 time 0.4535 (0.4818) model_time 0.4531 (0.4698) loss 2.3567 (2.8526) grad_norm 2.5591 (2.4683/1.1270) mem 16099MB [2025-01-18 09:01:30 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][200/312] eta 0:00:53 lr 0.000499 time 0.4590 (0.4807) model_time 0.4586 (0.4693) loss 3.5063 (2.8642) grad_norm 1.9439 (2.5053/1.1579) mem 16099MB [2025-01-18 09:01:35 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][210/312] eta 0:00:48 lr 0.000499 time 0.4577 (0.4803) model_time 0.4575 (0.4693) loss 2.0710 (2.8531) grad_norm 3.1135 (2.5253/1.1746) mem 16099MB [2025-01-18 09:01:40 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][220/312] eta 0:00:44 lr 0.000498 time 0.4406 (0.4794) model_time 0.4402 (0.4689) loss 3.3282 (2.8650) grad_norm 1.3839 (2.5838/1.2273) mem 16099MB [2025-01-18 09:01:44 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][230/312] eta 0:00:39 lr 0.000498 time 0.4469 (0.4783) model_time 0.4467 (0.4683) loss 3.2808 (2.8580) grad_norm 2.2646 (2.6100/1.2606) mem 16099MB [2025-01-18 09:01:49 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][240/312] eta 0:00:34 lr 0.000497 time 0.4560 (0.4774) model_time 0.4556 (0.4678) loss 2.9930 (2.8556) grad_norm 4.1624 (2.5991/1.2459) mem 16099MB [2025-01-18 09:01:54 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][250/312] eta 0:00:29 lr 0.000497 time 0.4801 (0.4771) model_time 0.4797 (0.4679) loss 2.2194 (2.8586) grad_norm 1.4762 (2.5774/1.2359) mem 16099MB [2025-01-18 09:01:58 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][260/312] eta 0:00:24 lr 0.000497 time 0.4495 (0.4765) model_time 0.4491 (0.4676) loss 3.7501 (2.8594) grad_norm 2.7364 (2.5849/1.2289) mem 16099MB [2025-01-18 09:02:03 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][270/312] eta 0:00:19 lr 0.000496 time 0.4430 (0.4759) model_time 0.4425 (0.4673) loss 3.1734 (2.8593) grad_norm 1.0298 (2.6006/1.2622) mem 16099MB [2025-01-18 09:02:07 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][280/312] eta 0:00:15 lr 0.000496 time 0.4588 (0.4753) model_time 0.4584 (0.4670) loss 3.6367 (2.8655) grad_norm 3.3200 (2.5967/1.2714) mem 16099MB [2025-01-18 09:02:12 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][290/312] eta 0:00:10 lr 0.000495 time 0.4478 (0.4758) model_time 0.4474 (0.4678) loss 2.7757 (2.8733) grad_norm 3.2908 (2.6064/1.2640) mem 16099MB [2025-01-18 09:02:17 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][300/312] eta 0:00:05 lr 0.000495 time 0.4383 (0.4749) model_time 0.4382 (0.4671) loss 3.3180 (2.8775) grad_norm 1.1776 (2.6205/1.2624) mem 16099MB [2025-01-18 09:02:21 internimage_t_1k_224] (main.py 510): INFO Train: [233/300][310/312] eta 0:00:00 lr 0.000494 time 0.4401 (0.4742) model_time 0.4400 (0.4666) loss 3.2937 (2.8798) grad_norm 2.8917 (2.6332/1.2685) mem 16099MB [2025-01-18 09:02:22 internimage_t_1k_224] (main.py 519): INFO EPOCH 233 training takes 0:02:27 [2025-01-18 09:02:22 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_233.pth saving...... [2025-01-18 09:02:23 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_233.pth saved !!! [2025-01-18 09:02:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.170 (7.170) Loss 0.7413 (0.7413) Acc@1 84.546 (84.546) Acc@5 97.290 (97.290) Mem 16099MB [2025-01-18 09:02:34 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.981) Loss 1.0163 (0.8620) Acc@1 78.101 (82.340) Acc@5 94.824 (96.127) Mem 16099MB [2025-01-18 09:02:34 internimage_t_1k_224] (main.py 575): INFO [Epoch:233] * Acc@1 82.202 Acc@5 96.127 [2025-01-18 09:02:34 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.2% [2025-01-18 09:02:34 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.29% [2025-01-18 09:02:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.165 (8.165) Loss 0.7513 (0.7513) Acc@1 85.840 (85.840) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 09:02:46 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.094) Loss 0.9959 (0.8599) Acc@1 78.955 (83.110) Acc@5 95.312 (96.398) Mem 16099MB [2025-01-18 09:02:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:233] * Acc@1 82.993 Acc@5 96.417 [2025-01-18 09:02:46 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.0% [2025-01-18 09:02:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:02:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:02:47 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 82.99% [2025-01-18 09:02:50 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][0/312] eta 0:13:40 lr 0.000494 time 2.6302 (2.6302) model_time 0.4832 (0.4832) loss 2.3983 (2.3983) grad_norm 1.6688 (1.6688/0.0000) mem 16099MB [2025-01-18 09:02:55 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][10/312] eta 0:03:25 lr 0.000494 time 0.6280 (0.6814) model_time 0.6276 (0.4792) loss 3.2134 (2.6046) grad_norm 2.2438 (2.9262/1.3429) mem 16099MB [2025-01-18 09:03:00 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][20/312] eta 0:02:47 lr 0.000494 time 0.4540 (0.5742) model_time 0.4538 (0.4682) loss 2.9221 (2.7026) grad_norm 2.5715 (2.8252/1.1845) mem 16099MB [2025-01-18 09:03:04 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][30/312] eta 0:02:34 lr 0.000493 time 0.4445 (0.5468) model_time 0.4441 (0.4748) loss 3.3037 (2.8135) grad_norm 1.4244 (2.4816/1.1242) mem 16099MB [2025-01-18 09:03:09 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][40/312] eta 0:02:23 lr 0.000493 time 0.4553 (0.5260) model_time 0.4549 (0.4715) loss 2.7971 (2.7751) grad_norm 1.9609 (2.6461/1.2219) mem 16099MB [2025-01-18 09:03:14 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][50/312] eta 0:02:14 lr 0.000492 time 0.4632 (0.5141) model_time 0.4631 (0.4702) loss 1.7594 (2.7384) grad_norm 3.1341 (2.7810/1.2683) mem 16099MB [2025-01-18 09:03:18 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][60/312] eta 0:02:07 lr 0.000492 time 0.4587 (0.5046) model_time 0.4585 (0.4679) loss 3.3226 (2.8024) grad_norm 2.2332 (2.7102/1.1991) mem 16099MB [2025-01-18 09:03:23 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][70/312] eta 0:02:00 lr 0.000491 time 0.4588 (0.4980) model_time 0.4583 (0.4664) loss 3.2536 (2.8229) grad_norm 1.5842 (2.5721/1.1667) mem 16099MB [2025-01-18 09:03:27 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][80/312] eta 0:01:54 lr 0.000491 time 0.4495 (0.4934) model_time 0.4490 (0.4656) loss 2.1125 (2.8208) grad_norm 2.3080 (2.5057/1.1167) mem 16099MB [2025-01-18 09:03:32 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][90/312] eta 0:01:48 lr 0.000491 time 0.4591 (0.4898) model_time 0.4589 (0.4650) loss 3.3320 (2.8499) grad_norm 4.1932 (2.5565/1.1558) mem 16099MB [2025-01-18 09:03:37 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][100/312] eta 0:01:43 lr 0.000490 time 0.4488 (0.4872) model_time 0.4484 (0.4648) loss 2.7130 (2.8324) grad_norm 1.0043 (2.5722/1.1548) mem 16099MB [2025-01-18 09:03:41 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][110/312] eta 0:01:37 lr 0.000490 time 0.4540 (0.4847) model_time 0.4538 (0.4643) loss 3.1002 (2.8308) grad_norm 2.6495 (2.6656/1.1854) mem 16099MB [2025-01-18 09:03:46 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][120/312] eta 0:01:33 lr 0.000489 time 0.5352 (0.4847) model_time 0.5351 (0.4660) loss 3.1260 (2.8408) grad_norm 3.4450 (2.7014/1.1523) mem 16099MB [2025-01-18 09:03:51 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][130/312] eta 0:01:27 lr 0.000489 time 0.4612 (0.4832) model_time 0.4608 (0.4659) loss 3.0224 (2.8608) grad_norm 1.9619 (2.8145/1.2762) mem 16099MB [2025-01-18 09:03:55 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][140/312] eta 0:01:22 lr 0.000488 time 0.4592 (0.4823) model_time 0.4590 (0.4661) loss 2.5991 (2.8503) grad_norm 5.0551 (2.8030/1.2643) mem 16099MB [2025-01-18 09:04:00 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][150/312] eta 0:01:18 lr 0.000488 time 0.5666 (0.4828) model_time 0.5662 (0.4677) loss 2.9094 (2.8475) grad_norm 3.0930 (2.7806/1.2598) mem 16099MB [2025-01-18 09:04:05 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][160/312] eta 0:01:13 lr 0.000488 time 0.5537 (0.4821) model_time 0.5535 (0.4679) loss 3.2345 (2.8453) grad_norm 2.1440 (2.7198/1.2466) mem 16099MB [2025-01-18 09:04:10 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][170/312] eta 0:01:08 lr 0.000487 time 0.4542 (0.4811) model_time 0.4541 (0.4678) loss 3.1322 (2.8493) grad_norm 1.5259 (2.6764/1.2267) mem 16099MB [2025-01-18 09:04:14 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][180/312] eta 0:01:03 lr 0.000487 time 0.4083 (0.4804) model_time 0.4082 (0.4677) loss 3.0963 (2.8442) grad_norm inf (2.6786/1.2124) mem 16099MB [2025-01-18 09:04:19 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][190/312] eta 0:00:58 lr 0.000486 time 0.4771 (0.4796) model_time 0.4769 (0.4676) loss 2.8984 (2.8593) grad_norm 2.9695 (2.6962/1.2140) mem 16099MB [2025-01-18 09:04:24 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][200/312] eta 0:00:53 lr 0.000486 time 0.5149 (0.4791) model_time 0.5144 (0.4677) loss 1.9946 (2.8627) grad_norm 1.0268 (2.6937/1.1964) mem 16099MB [2025-01-18 09:04:28 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][210/312] eta 0:00:48 lr 0.000486 time 0.4552 (0.4786) model_time 0.4548 (0.4677) loss 3.0213 (2.8677) grad_norm 2.9181 (2.7148/1.2027) mem 16099MB [2025-01-18 09:04:33 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][220/312] eta 0:00:43 lr 0.000485 time 0.4571 (0.4776) model_time 0.4567 (0.4672) loss 2.7074 (2.8688) grad_norm 1.2861 (2.6857/1.1868) mem 16099MB [2025-01-18 09:04:38 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][230/312] eta 0:00:39 lr 0.000485 time 0.4608 (0.4766) model_time 0.4607 (0.4666) loss 2.9393 (2.8649) grad_norm 3.5437 (2.6845/1.1812) mem 16099MB [2025-01-18 09:04:42 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][240/312] eta 0:00:34 lr 0.000484 time 0.4583 (0.4766) model_time 0.4578 (0.4669) loss 2.2709 (2.8597) grad_norm 1.2160 (2.6688/1.1700) mem 16099MB [2025-01-18 09:04:47 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][250/312] eta 0:00:29 lr 0.000484 time 0.4515 (0.4758) model_time 0.4511 (0.4665) loss 2.7534 (2.8614) grad_norm 1.7753 (2.6565/1.1587) mem 16099MB [2025-01-18 09:04:52 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][260/312] eta 0:00:24 lr 0.000483 time 0.4431 (0.4758) model_time 0.4426 (0.4668) loss 3.4132 (2.8650) grad_norm 1.4558 (2.6605/1.1573) mem 16099MB [2025-01-18 09:04:56 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][270/312] eta 0:00:19 lr 0.000483 time 0.4578 (0.4755) model_time 0.4574 (0.4669) loss 1.7580 (2.8701) grad_norm 1.9333 (2.6699/1.1512) mem 16099MB [2025-01-18 09:05:01 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][280/312] eta 0:00:15 lr 0.000483 time 0.4535 (0.4747) model_time 0.4534 (0.4664) loss 3.3682 (2.8717) grad_norm 2.5751 (2.6802/1.1379) mem 16099MB [2025-01-18 09:05:06 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][290/312] eta 0:00:10 lr 0.000482 time 0.4512 (0.4752) model_time 0.4507 (0.4672) loss 2.6588 (2.8693) grad_norm 2.3015 (2.6618/1.1280) mem 16099MB [2025-01-18 09:05:10 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][300/312] eta 0:00:05 lr 0.000482 time 0.4512 (0.4746) model_time 0.4511 (0.4668) loss 2.8942 (2.8700) grad_norm 1.0855 (2.6430/1.1301) mem 16099MB [2025-01-18 09:05:15 internimage_t_1k_224] (main.py 510): INFO Train: [234/300][310/312] eta 0:00:00 lr 0.000481 time 0.4390 (0.4740) model_time 0.4389 (0.4664) loss 3.2453 (2.8644) grad_norm 2.3452 (2.6119/1.1133) mem 16099MB [2025-01-18 09:05:15 internimage_t_1k_224] (main.py 519): INFO EPOCH 234 training takes 0:02:27 [2025-01-18 09:05:15 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_234.pth saving...... [2025-01-18 09:05:16 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_234.pth saved !!! [2025-01-18 09:05:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.576 (7.576) Loss 0.7350 (0.7350) Acc@1 84.863 (84.863) Acc@5 97.437 (97.437) Mem 16099MB [2025-01-18 09:05:27 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.005) Loss 0.9875 (0.8352) Acc@1 77.661 (82.451) Acc@5 95.044 (96.140) Mem 16099MB [2025-01-18 09:05:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:234] * Acc@1 82.288 Acc@5 96.141 [2025-01-18 09:05:28 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.3% [2025-01-18 09:05:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 09:05:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 09:05:29 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.29% [2025-01-18 09:05:36 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.128 (7.128) Loss 0.7504 (0.7504) Acc@1 85.840 (85.840) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 09:05:40 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.969) Loss 0.9949 (0.8588) Acc@1 79.028 (83.143) Acc@5 95.435 (96.418) Mem 16099MB [2025-01-18 09:05:40 internimage_t_1k_224] (main.py 575): INFO [Epoch:234] * Acc@1 83.025 Acc@5 96.433 [2025-01-18 09:05:40 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.0% [2025-01-18 09:05:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:05:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:05:41 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.03% [2025-01-18 09:05:44 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][0/312] eta 0:11:59 lr 0.000481 time 2.3058 (2.3058) model_time 0.5331 (0.5331) loss 3.2716 (3.2716) grad_norm 1.5660 (1.5660/0.0000) mem 16099MB [2025-01-18 09:05:49 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][10/312] eta 0:03:25 lr 0.000481 time 0.4464 (0.6807) model_time 0.4463 (0.4833) loss 2.7835 (2.7350) grad_norm 2.2742 (2.0554/0.4869) mem 16099MB [2025-01-18 09:05:53 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][20/312] eta 0:02:47 lr 0.000480 time 0.4581 (0.5728) model_time 0.4580 (0.4693) loss 3.2361 (2.7586) grad_norm 2.2664 (2.3083/0.8471) mem 16099MB [2025-01-18 09:05:58 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][30/312] eta 0:02:32 lr 0.000480 time 0.4513 (0.5391) model_time 0.4511 (0.4689) loss 3.2960 (2.8070) grad_norm 1.9160 (2.2523/0.7642) mem 16099MB [2025-01-18 09:06:03 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][40/312] eta 0:02:21 lr 0.000480 time 0.4583 (0.5215) model_time 0.4578 (0.4683) loss 3.0822 (2.8321) grad_norm 1.8031 (2.2132/0.7734) mem 16099MB [2025-01-18 09:06:07 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][50/312] eta 0:02:14 lr 0.000479 time 0.4522 (0.5119) model_time 0.4520 (0.4691) loss 3.0021 (2.8374) grad_norm 2.1320 (2.2995/0.8074) mem 16099MB [2025-01-18 09:06:12 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][60/312] eta 0:02:07 lr 0.000479 time 0.4720 (0.5069) model_time 0.4716 (0.4710) loss 2.9348 (2.8169) grad_norm 3.0909 (2.4231/1.0299) mem 16099MB [2025-01-18 09:06:17 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][70/312] eta 0:02:01 lr 0.000478 time 0.4489 (0.5035) model_time 0.4487 (0.4727) loss 2.7857 (2.8101) grad_norm 2.0802 (2.4311/1.0535) mem 16099MB [2025-01-18 09:06:22 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][80/312] eta 0:01:55 lr 0.000478 time 0.4421 (0.4995) model_time 0.4417 (0.4724) loss 2.3990 (2.8168) grad_norm 3.4528 (2.4470/1.0373) mem 16099MB [2025-01-18 09:06:26 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][90/312] eta 0:01:49 lr 0.000477 time 0.4469 (0.4947) model_time 0.4467 (0.4706) loss 2.8547 (2.8060) grad_norm 2.5174 (2.5335/1.1731) mem 16099MB [2025-01-18 09:06:31 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][100/312] eta 0:01:44 lr 0.000477 time 0.4508 (0.4908) model_time 0.4504 (0.4690) loss 3.3313 (2.8256) grad_norm 3.5309 (2.4902/1.1422) mem 16099MB [2025-01-18 09:06:35 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][110/312] eta 0:01:38 lr 0.000477 time 0.4701 (0.4879) model_time 0.4699 (0.4680) loss 3.4715 (2.8228) grad_norm 5.1177 (2.5974/1.2320) mem 16099MB [2025-01-18 09:06:40 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][120/312] eta 0:01:33 lr 0.000476 time 0.4497 (0.4862) model_time 0.4493 (0.4679) loss 2.4780 (2.8341) grad_norm 1.7470 (2.5868/1.2342) mem 16099MB [2025-01-18 09:06:45 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][130/312] eta 0:01:28 lr 0.000476 time 0.4499 (0.4864) model_time 0.4498 (0.4695) loss 2.9257 (2.8297) grad_norm 3.0553 (2.6205/1.2243) mem 16099MB [2025-01-18 09:06:50 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][140/312] eta 0:01:23 lr 0.000475 time 0.4635 (0.4853) model_time 0.4630 (0.4695) loss 3.3803 (2.8424) grad_norm 1.5715 (2.6021/1.2173) mem 16099MB [2025-01-18 09:06:55 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][150/312] eta 0:01:18 lr 0.000475 time 0.4620 (0.4865) model_time 0.4619 (0.4718) loss 2.9450 (2.8321) grad_norm 2.4904 (2.5614/1.1942) mem 16099MB [2025-01-18 09:06:59 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][160/312] eta 0:01:13 lr 0.000475 time 0.4548 (0.4849) model_time 0.4547 (0.4711) loss 3.0879 (2.8391) grad_norm 2.2736 (2.5387/1.1690) mem 16099MB [2025-01-18 09:07:04 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][170/312] eta 0:01:08 lr 0.000474 time 0.4913 (0.4833) model_time 0.4908 (0.4702) loss 3.1701 (2.8506) grad_norm 4.2216 (2.5345/1.1586) mem 16099MB [2025-01-18 09:07:09 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][180/312] eta 0:01:03 lr 0.000474 time 0.4546 (0.4823) model_time 0.4544 (0.4700) loss 2.4209 (2.8397) grad_norm 1.7894 (2.5419/1.2036) mem 16099MB [2025-01-18 09:07:13 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][190/312] eta 0:00:58 lr 0.000473 time 0.4487 (0.4808) model_time 0.4483 (0.4691) loss 2.6303 (2.8437) grad_norm 5.8041 (2.5892/1.2473) mem 16099MB [2025-01-18 09:07:18 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][200/312] eta 0:00:53 lr 0.000473 time 0.4514 (0.4795) model_time 0.4511 (0.4683) loss 2.7948 (2.8414) grad_norm 2.0594 (2.6732/1.3300) mem 16099MB [2025-01-18 09:07:22 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][210/312] eta 0:00:48 lr 0.000473 time 0.4596 (0.4796) model_time 0.4594 (0.4689) loss 3.0895 (2.8451) grad_norm 1.4694 (2.6914/1.3365) mem 16099MB [2025-01-18 09:07:27 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][220/312] eta 0:00:44 lr 0.000472 time 0.4624 (0.4788) model_time 0.4619 (0.4686) loss 2.7366 (2.8473) grad_norm 2.6543 (2.6970/1.3376) mem 16099MB [2025-01-18 09:07:32 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][230/312] eta 0:00:39 lr 0.000472 time 0.4496 (0.4782) model_time 0.4492 (0.4685) loss 2.9955 (2.8423) grad_norm 3.0930 (2.6922/1.3200) mem 16099MB [2025-01-18 09:07:36 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][240/312] eta 0:00:34 lr 0.000471 time 0.4405 (0.4780) model_time 0.4403 (0.4686) loss 2.7665 (2.8312) grad_norm 1.8914 (2.7270/1.3462) mem 16099MB [2025-01-18 09:07:41 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][250/312] eta 0:00:29 lr 0.000471 time 0.4623 (0.4770) model_time 0.4619 (0.4680) loss 3.1838 (2.8343) grad_norm 2.6819 (2.7116/1.3253) mem 16099MB [2025-01-18 09:07:46 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][260/312] eta 0:00:24 lr 0.000470 time 0.4791 (0.4766) model_time 0.4786 (0.4679) loss 1.8799 (2.8298) grad_norm 3.2173 (2.7189/1.3338) mem 16099MB [2025-01-18 09:07:50 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][270/312] eta 0:00:19 lr 0.000470 time 0.4577 (0.4759) model_time 0.4573 (0.4675) loss 3.0642 (2.8329) grad_norm 1.1903 (2.7122/1.3244) mem 16099MB [2025-01-18 09:07:55 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][280/312] eta 0:00:15 lr 0.000470 time 0.4708 (0.4753) model_time 0.4704 (0.4672) loss 2.2726 (2.8233) grad_norm 5.9924 (2.7252/1.3336) mem 16099MB [2025-01-18 09:07:59 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][290/312] eta 0:00:10 lr 0.000469 time 0.4514 (0.4749) model_time 0.4513 (0.4670) loss 2.9425 (2.8331) grad_norm 1.7205 (2.7371/1.3237) mem 16099MB [2025-01-18 09:08:04 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][300/312] eta 0:00:05 lr 0.000469 time 0.4374 (0.4744) model_time 0.4372 (0.4668) loss 2.9920 (2.8305) grad_norm 2.3591 (2.7371/1.3227) mem 16099MB [2025-01-18 09:08:09 internimage_t_1k_224] (main.py 510): INFO Train: [235/300][310/312] eta 0:00:00 lr 0.000468 time 0.4415 (0.4739) model_time 0.4414 (0.4665) loss 3.0188 (2.8323) grad_norm 2.0966 (2.7269/1.3296) mem 16099MB [2025-01-18 09:08:09 internimage_t_1k_224] (main.py 519): INFO EPOCH 235 training takes 0:02:27 [2025-01-18 09:08:09 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_235.pth saving...... [2025-01-18 09:08:10 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_235.pth saved !!! [2025-01-18 09:08:18 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.455 (7.455) Loss 0.7189 (0.7189) Acc@1 85.278 (85.278) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 09:08:21 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.000) Loss 0.9955 (0.8435) Acc@1 78.003 (82.571) Acc@5 94.653 (96.112) Mem 16099MB [2025-01-18 09:08:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:235] * Acc@1 82.368 Acc@5 96.119 [2025-01-18 09:08:21 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.4% [2025-01-18 09:08:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 09:08:23 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 09:08:23 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.37% [2025-01-18 09:08:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.610 (7.610) Loss 0.7495 (0.7495) Acc@1 85.864 (85.864) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 09:08:34 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.011) Loss 0.9938 (0.8577) Acc@1 79.053 (83.201) Acc@5 95.410 (96.424) Mem 16099MB [2025-01-18 09:08:34 internimage_t_1k_224] (main.py 575): INFO [Epoch:235] * Acc@1 83.079 Acc@5 96.441 [2025-01-18 09:08:34 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.1% [2025-01-18 09:08:34 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:08:35 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:08:35 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.08% [2025-01-18 09:08:38 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][0/312] eta 0:14:39 lr 0.000468 time 2.8188 (2.8188) model_time 0.4815 (0.4815) loss 3.0282 (3.0282) grad_norm 1.5771 (1.5771/0.0000) mem 16099MB [2025-01-18 09:08:43 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][10/312] eta 0:03:30 lr 0.000468 time 0.5519 (0.6965) model_time 0.5517 (0.4838) loss 2.3333 (2.7281) grad_norm 4.4562 (3.2531/1.5634) mem 16099MB [2025-01-18 09:08:47 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][20/312] eta 0:02:49 lr 0.000467 time 0.4705 (0.5814) model_time 0.4704 (0.4698) loss 2.9015 (2.7732) grad_norm 1.6109 (2.8286/1.3108) mem 16099MB [2025-01-18 09:08:52 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][30/312] eta 0:02:35 lr 0.000467 time 0.5456 (0.5522) model_time 0.5455 (0.4765) loss 3.1586 (2.7119) grad_norm 2.6302 (2.5861/1.1778) mem 16099MB [2025-01-18 09:08:57 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][40/312] eta 0:02:24 lr 0.000467 time 0.4686 (0.5307) model_time 0.4682 (0.4734) loss 2.5419 (2.7488) grad_norm 5.5871 (2.6178/1.1840) mem 16099MB [2025-01-18 09:09:02 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][50/312] eta 0:02:17 lr 0.000466 time 0.4501 (0.5245) model_time 0.4496 (0.4783) loss 2.6986 (2.7542) grad_norm 1.9403 (2.4656/1.1319) mem 16099MB [2025-01-18 09:09:07 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][60/312] eta 0:02:09 lr 0.000466 time 0.4492 (0.5152) model_time 0.4490 (0.4765) loss 3.2404 (2.7823) grad_norm 2.0335 (2.4686/1.1104) mem 16099MB [2025-01-18 09:09:11 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][70/312] eta 0:02:02 lr 0.000465 time 0.4498 (0.5065) model_time 0.4493 (0.4732) loss 2.3161 (2.7322) grad_norm 1.4341 (2.6511/1.4509) mem 16099MB [2025-01-18 09:09:16 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][80/312] eta 0:01:56 lr 0.000465 time 0.5537 (0.5023) model_time 0.5535 (0.4731) loss 2.2158 (2.7227) grad_norm 2.1803 (2.6724/1.4582) mem 16099MB [2025-01-18 09:09:20 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][90/312] eta 0:01:50 lr 0.000465 time 0.4648 (0.4970) model_time 0.4646 (0.4710) loss 3.0778 (2.7283) grad_norm 1.4987 (2.8075/1.5221) mem 16099MB [2025-01-18 09:09:25 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][100/312] eta 0:01:44 lr 0.000464 time 0.4435 (0.4946) model_time 0.4433 (0.4710) loss 2.9898 (2.7484) grad_norm 2.1362 (2.7662/1.4905) mem 16099MB [2025-01-18 09:09:30 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][110/312] eta 0:01:39 lr 0.000464 time 0.4589 (0.4921) model_time 0.4584 (0.4707) loss 3.1097 (2.7589) grad_norm 2.6806 (2.7259/1.4610) mem 16099MB [2025-01-18 09:09:35 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][120/312] eta 0:01:34 lr 0.000463 time 0.4512 (0.4905) model_time 0.4507 (0.4708) loss 2.4042 (2.7538) grad_norm 3.6540 (2.7682/1.4649) mem 16099MB [2025-01-18 09:09:39 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][130/312] eta 0:01:29 lr 0.000463 time 0.4473 (0.4903) model_time 0.4471 (0.4721) loss 3.2029 (2.7734) grad_norm 1.4390 (2.7244/1.4346) mem 16099MB [2025-01-18 09:09:44 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][140/312] eta 0:01:24 lr 0.000463 time 0.4533 (0.4897) model_time 0.4531 (0.4727) loss 2.2410 (2.7609) grad_norm 2.8178 (2.7455/1.4193) mem 16099MB [2025-01-18 09:09:49 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][150/312] eta 0:01:19 lr 0.000462 time 0.4493 (0.4882) model_time 0.4488 (0.4723) loss 2.7859 (2.7672) grad_norm 3.1234 (2.7641/1.4093) mem 16099MB [2025-01-18 09:09:54 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][160/312] eta 0:01:13 lr 0.000462 time 0.4837 (0.4867) model_time 0.4833 (0.4718) loss 1.9978 (2.7735) grad_norm 2.0634 (2.7511/1.4231) mem 16099MB [2025-01-18 09:09:58 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][170/312] eta 0:01:08 lr 0.000461 time 0.5053 (0.4852) model_time 0.5049 (0.4711) loss 2.3846 (2.7890) grad_norm 1.6545 (2.7582/1.4190) mem 16099MB [2025-01-18 09:10:03 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][180/312] eta 0:01:03 lr 0.000461 time 0.4829 (0.4841) model_time 0.4824 (0.4708) loss 2.1991 (2.7876) grad_norm 3.8393 (2.8092/1.4552) mem 16099MB [2025-01-18 09:10:08 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][190/312] eta 0:00:58 lr 0.000460 time 0.4496 (0.4830) model_time 0.4491 (0.4704) loss 2.5637 (2.7910) grad_norm 1.3075 (2.8271/1.4619) mem 16099MB [2025-01-18 09:10:12 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][200/312] eta 0:00:54 lr 0.000460 time 0.4472 (0.4831) model_time 0.4468 (0.4710) loss 3.0738 (2.7860) grad_norm 1.7732 (2.7861/1.4417) mem 16099MB [2025-01-18 09:10:17 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][210/312] eta 0:00:49 lr 0.000460 time 0.4459 (0.4822) model_time 0.4454 (0.4707) loss 2.9742 (2.8027) grad_norm 1.3085 (2.7742/1.4276) mem 16099MB [2025-01-18 09:10:22 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][220/312] eta 0:00:44 lr 0.000459 time 0.4799 (0.4811) model_time 0.4795 (0.4701) loss 2.1737 (2.8014) grad_norm 2.4802 (2.7694/1.4047) mem 16099MB [2025-01-18 09:10:26 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][230/312] eta 0:00:39 lr 0.000459 time 0.4463 (0.4806) model_time 0.4461 (0.4701) loss 2.9859 (2.8061) grad_norm 1.9374 (2.7441/1.3854) mem 16099MB [2025-01-18 09:10:31 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][240/312] eta 0:00:34 lr 0.000458 time 0.4545 (0.4797) model_time 0.4541 (0.4696) loss 2.4881 (2.7992) grad_norm 2.6638 (2.7265/1.3654) mem 16099MB [2025-01-18 09:10:36 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][250/312] eta 0:00:29 lr 0.000458 time 0.4592 (0.4793) model_time 0.4590 (0.4696) loss 2.4020 (2.7982) grad_norm 2.4786 (2.7096/1.3473) mem 16099MB [2025-01-18 09:10:40 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][260/312] eta 0:00:24 lr 0.000458 time 0.4433 (0.4785) model_time 0.4428 (0.4691) loss 3.0256 (2.7966) grad_norm 2.7582 (2.7172/1.3384) mem 16099MB [2025-01-18 09:10:45 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][270/312] eta 0:00:20 lr 0.000457 time 0.4438 (0.4786) model_time 0.4434 (0.4695) loss 3.4918 (2.7983) grad_norm 1.1406 (2.7019/1.3294) mem 16099MB [2025-01-18 09:10:50 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][280/312] eta 0:00:15 lr 0.000457 time 0.4597 (0.4778) model_time 0.4593 (0.4691) loss 3.1620 (2.8055) grad_norm 2.7467 (2.7097/1.3118) mem 16099MB [2025-01-18 09:10:54 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][290/312] eta 0:00:10 lr 0.000456 time 0.4636 (0.4777) model_time 0.4632 (0.4693) loss 2.3968 (2.8054) grad_norm 0.9733 (2.7262/1.3289) mem 16099MB [2025-01-18 09:10:59 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][300/312] eta 0:00:05 lr 0.000456 time 0.4456 (0.4774) model_time 0.4455 (0.4692) loss 2.5544 (2.8048) grad_norm 2.1118 (2.7220/1.3189) mem 16099MB [2025-01-18 09:11:03 internimage_t_1k_224] (main.py 510): INFO Train: [236/300][310/312] eta 0:00:00 lr 0.000456 time 0.4384 (0.4762) model_time 0.4382 (0.4683) loss 3.3637 (2.8072) grad_norm 2.2922 (2.6895/1.2871) mem 16099MB [2025-01-18 09:11:04 internimage_t_1k_224] (main.py 519): INFO EPOCH 236 training takes 0:02:28 [2025-01-18 09:11:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_236.pth saving...... [2025-01-18 09:11:05 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_236.pth saved !!! [2025-01-18 09:11:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.351 (7.351) Loss 0.7082 (0.7082) Acc@1 84.741 (84.741) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 09:11:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.989) Loss 0.9825 (0.8274) Acc@1 78.052 (82.444) Acc@5 94.824 (96.063) Mem 16099MB [2025-01-18 09:11:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:236] * Acc@1 82.296 Acc@5 96.085 [2025-01-18 09:11:16 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.3% [2025-01-18 09:11:16 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.37% [2025-01-18 09:11:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.483 (8.483) Loss 0.7484 (0.7484) Acc@1 85.815 (85.815) Acc@5 97.632 (97.632) Mem 16099MB [2025-01-18 09:11:29 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.146) Loss 0.9924 (0.8565) Acc@1 79.004 (83.203) Acc@5 95.410 (96.433) Mem 16099MB [2025-01-18 09:11:29 internimage_t_1k_224] (main.py 575): INFO [Epoch:236] * Acc@1 83.083 Acc@5 96.451 [2025-01-18 09:11:29 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.1% [2025-01-18 09:11:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:11:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:11:30 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.08% [2025-01-18 09:11:32 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][0/312] eta 0:10:59 lr 0.000455 time 2.1134 (2.1134) model_time 0.4728 (0.4728) loss 2.3258 (2.3258) grad_norm 3.4774 (3.4774/0.0000) mem 16099MB [2025-01-18 09:11:37 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][10/312] eta 0:03:05 lr 0.000455 time 0.4597 (0.6129) model_time 0.4592 (0.4633) loss 2.3567 (2.5271) grad_norm 2.6817 (2.7634/0.7484) mem 16099MB [2025-01-18 09:11:42 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][20/312] eta 0:02:38 lr 0.000455 time 0.4662 (0.5432) model_time 0.4657 (0.4647) loss 2.7528 (2.7094) grad_norm 1.4276 (2.8787/0.8150) mem 16099MB [2025-01-18 09:11:46 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][30/312] eta 0:02:26 lr 0.000454 time 0.4700 (0.5196) model_time 0.4698 (0.4664) loss 3.0549 (2.7301) grad_norm 1.6695 (3.1386/1.1900) mem 16099MB [2025-01-18 09:11:51 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][40/312] eta 0:02:18 lr 0.000454 time 0.4498 (0.5087) model_time 0.4493 (0.4683) loss 2.5967 (2.7452) grad_norm 5.8541 (3.2859/1.2991) mem 16099MB [2025-01-18 09:11:56 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][50/312] eta 0:02:11 lr 0.000453 time 0.4429 (0.5003) model_time 0.4424 (0.4678) loss 2.7157 (2.7985) grad_norm 1.7344 (3.2690/1.3304) mem 16099MB [2025-01-18 09:12:00 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][60/312] eta 0:02:04 lr 0.000453 time 0.4507 (0.4951) model_time 0.4505 (0.4678) loss 2.3216 (2.7929) grad_norm 3.8498 (3.3028/1.3465) mem 16099MB [2025-01-18 09:12:05 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][70/312] eta 0:01:59 lr 0.000453 time 0.4498 (0.4924) model_time 0.4496 (0.4690) loss 3.1412 (2.7931) grad_norm 1.1142 (3.2030/1.3947) mem 16099MB [2025-01-18 09:12:10 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][80/312] eta 0:01:54 lr 0.000452 time 0.4533 (0.4941) model_time 0.4529 (0.4735) loss 3.0244 (2.8155) grad_norm 3.6876 (3.1650/1.4078) mem 16099MB [2025-01-18 09:12:15 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][90/312] eta 0:01:49 lr 0.000452 time 0.4599 (0.4917) model_time 0.4597 (0.4733) loss 3.3167 (2.8225) grad_norm 4.3395 (3.1280/1.3560) mem 16099MB [2025-01-18 09:12:20 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][100/312] eta 0:01:44 lr 0.000451 time 0.4538 (0.4908) model_time 0.4536 (0.4742) loss 2.6768 (2.8089) grad_norm 1.9336 (3.0875/1.3459) mem 16099MB [2025-01-18 09:12:24 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][110/312] eta 0:01:38 lr 0.000451 time 0.4625 (0.4877) model_time 0.4620 (0.4725) loss 3.1289 (2.8099) grad_norm 2.2506 (3.0475/1.3378) mem 16099MB [2025-01-18 09:12:29 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][120/312] eta 0:01:33 lr 0.000451 time 0.4501 (0.4875) model_time 0.4497 (0.4735) loss 2.5837 (2.8180) grad_norm 2.4376 (3.0024/1.3106) mem 16099MB [2025-01-18 09:12:34 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][130/312] eta 0:01:28 lr 0.000450 time 0.4540 (0.4858) model_time 0.4535 (0.4729) loss 2.7168 (2.8211) grad_norm 3.8954 (2.9729/1.2864) mem 16099MB [2025-01-18 09:12:38 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][140/312] eta 0:01:23 lr 0.000450 time 0.4510 (0.4844) model_time 0.4508 (0.4724) loss 2.7342 (2.8288) grad_norm 2.4976 (2.9623/1.2853) mem 16099MB [2025-01-18 09:12:43 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][150/312] eta 0:01:18 lr 0.000449 time 0.4433 (0.4824) model_time 0.4428 (0.4711) loss 3.1389 (2.8357) grad_norm 4.3091 (2.9780/1.2847) mem 16099MB [2025-01-18 09:12:48 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][160/312] eta 0:01:13 lr 0.000449 time 0.4826 (0.4829) model_time 0.4824 (0.4724) loss 2.4273 (2.8292) grad_norm 4.5794 (3.0128/1.3164) mem 16099MB [2025-01-18 09:12:52 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][170/312] eta 0:01:08 lr 0.000449 time 0.4404 (0.4817) model_time 0.4400 (0.4717) loss 2.8144 (2.8412) grad_norm 2.3176 (3.0062/1.2979) mem 16099MB [2025-01-18 09:12:57 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][180/312] eta 0:01:03 lr 0.000448 time 0.4952 (0.4814) model_time 0.4948 (0.4719) loss 2.9517 (2.8554) grad_norm 1.3343 (3.0019/1.3051) mem 16099MB [2025-01-18 09:13:02 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][190/312] eta 0:00:58 lr 0.000448 time 0.4440 (0.4800) model_time 0.4438 (0.4710) loss 3.2360 (2.8553) grad_norm 3.0386 (2.9586/1.2907) mem 16099MB [2025-01-18 09:13:06 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][200/312] eta 0:00:53 lr 0.000447 time 0.4502 (0.4795) model_time 0.4498 (0.4710) loss 2.8539 (2.8496) grad_norm 1.4621 (2.9074/1.2843) mem 16099MB [2025-01-18 09:13:11 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][210/312] eta 0:00:48 lr 0.000447 time 0.5467 (0.4794) model_time 0.5462 (0.4712) loss 2.9497 (2.8460) grad_norm 2.6547 (2.8711/1.2714) mem 16099MB [2025-01-18 09:13:16 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][220/312] eta 0:00:44 lr 0.000447 time 0.4551 (0.4785) model_time 0.4549 (0.4707) loss 2.8457 (2.8498) grad_norm 2.9729 (2.8374/1.2566) mem 16099MB [2025-01-18 09:13:21 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][230/312] eta 0:00:39 lr 0.000446 time 0.4513 (0.4781) model_time 0.4512 (0.4707) loss 2.0065 (2.8356) grad_norm 3.2537 (2.8297/1.2488) mem 16099MB [2025-01-18 09:13:25 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][240/312] eta 0:00:34 lr 0.000446 time 0.4659 (0.4777) model_time 0.4654 (0.4705) loss 2.7230 (2.8454) grad_norm 2.4358 (2.8115/1.2438) mem 16099MB [2025-01-18 09:13:30 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][250/312] eta 0:00:29 lr 0.000445 time 0.4568 (0.4771) model_time 0.4566 (0.4701) loss 3.2474 (2.8446) grad_norm 2.1431 (2.7638/1.2431) mem 16099MB [2025-01-18 09:13:35 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][260/312] eta 0:00:24 lr 0.000445 time 0.5004 (0.4770) model_time 0.5002 (0.4703) loss 2.5443 (2.8439) grad_norm 2.6545 (2.7462/1.2323) mem 16099MB [2025-01-18 09:13:39 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][270/312] eta 0:00:20 lr 0.000445 time 0.4438 (0.4771) model_time 0.4434 (0.4707) loss 2.8890 (2.8348) grad_norm 5.0195 (2.7560/1.2443) mem 16099MB [2025-01-18 09:13:44 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][280/312] eta 0:00:15 lr 0.000444 time 0.4403 (0.4763) model_time 0.4401 (0.4701) loss 3.1139 (2.8261) grad_norm 1.6032 (2.7418/1.2356) mem 16099MB [2025-01-18 09:13:49 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][290/312] eta 0:00:10 lr 0.000444 time 0.4956 (0.4764) model_time 0.4951 (0.4704) loss 2.8381 (2.8206) grad_norm 1.8913 (2.7468/1.2253) mem 16099MB [2025-01-18 09:13:53 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][300/312] eta 0:00:05 lr 0.000443 time 0.4384 (0.4758) model_time 0.4383 (0.4699) loss 2.0235 (2.8181) grad_norm 2.9680 (2.7363/1.2159) mem 16099MB [2025-01-18 09:13:58 internimage_t_1k_224] (main.py 510): INFO Train: [237/300][310/312] eta 0:00:00 lr 0.000443 time 0.4389 (0.4749) model_time 0.4387 (0.4693) loss 2.4630 (2.8195) grad_norm 1.1541 (2.7280/1.2253) mem 16099MB [2025-01-18 09:13:58 internimage_t_1k_224] (main.py 519): INFO EPOCH 237 training takes 0:02:28 [2025-01-18 09:13:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_237.pth saving...... [2025-01-18 09:13:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_237.pth saved !!! [2025-01-18 09:14:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.525 (7.525) Loss 0.7293 (0.7293) Acc@1 85.010 (85.010) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 09:14:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.000) Loss 0.9731 (0.8377) Acc@1 78.052 (82.477) Acc@5 94.995 (96.169) Mem 16099MB [2025-01-18 09:14:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:237] * Acc@1 82.374 Acc@5 96.181 [2025-01-18 09:14:11 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.4% [2025-01-18 09:14:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 09:14:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 09:14:12 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.37% [2025-01-18 09:14:19 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.435 (7.435) Loss 0.7476 (0.7476) Acc@1 85.864 (85.864) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:14:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (0.996) Loss 0.9912 (0.8555) Acc@1 79.004 (83.201) Acc@5 95.288 (96.424) Mem 16099MB [2025-01-18 09:14:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:237] * Acc@1 83.073 Acc@5 96.451 [2025-01-18 09:14:23 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.1% [2025-01-18 09:14:23 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.08% [2025-01-18 09:14:26 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][0/312] eta 0:16:33 lr 0.000443 time 3.1842 (3.1842) model_time 0.9772 (0.9772) loss 2.7988 (2.7988) grad_norm 3.7014 (3.7014/0.0000) mem 16099MB [2025-01-18 09:14:31 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][10/312] eta 0:03:39 lr 0.000442 time 0.4532 (0.7262) model_time 0.4528 (0.5251) loss 2.8716 (2.8612) grad_norm 3.0454 (2.7572/0.6943) mem 16099MB [2025-01-18 09:14:35 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][20/312] eta 0:02:54 lr 0.000442 time 0.4622 (0.5965) model_time 0.4617 (0.4910) loss 3.2764 (2.8910) grad_norm 3.7206 (3.0374/1.1553) mem 16099MB [2025-01-18 09:14:40 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][30/312] eta 0:02:37 lr 0.000442 time 0.4498 (0.5569) model_time 0.4496 (0.4854) loss 2.9304 (2.8460) grad_norm 1.9944 (2.9988/1.1773) mem 16099MB [2025-01-18 09:14:45 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][40/312] eta 0:02:24 lr 0.000441 time 0.4462 (0.5325) model_time 0.4457 (0.4783) loss 2.0106 (2.8637) grad_norm 4.0840 (3.0327/1.2021) mem 16099MB [2025-01-18 09:14:49 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][50/312] eta 0:02:15 lr 0.000441 time 0.4521 (0.5186) model_time 0.4517 (0.4750) loss 2.9873 (2.8516) grad_norm 4.1489 (3.0011/1.2102) mem 16099MB [2025-01-18 09:14:54 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][60/312] eta 0:02:08 lr 0.000440 time 0.4403 (0.5107) model_time 0.4401 (0.4742) loss 1.9358 (2.8446) grad_norm 1.9888 (2.9580/1.1673) mem 16099MB [2025-01-18 09:14:59 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][70/312] eta 0:02:02 lr 0.000440 time 0.4474 (0.5061) model_time 0.4469 (0.4747) loss 3.4365 (2.8662) grad_norm 7.4417 (2.8796/1.2958) mem 16099MB [2025-01-18 09:15:04 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][80/312] eta 0:01:56 lr 0.000440 time 0.4551 (0.5034) model_time 0.4550 (0.4758) loss 3.0677 (2.8780) grad_norm 1.6575 (3.0144/1.5171) mem 16099MB [2025-01-18 09:15:08 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][90/312] eta 0:01:50 lr 0.000439 time 0.4468 (0.4997) model_time 0.4466 (0.4751) loss 3.2740 (2.8686) grad_norm 3.4407 (3.0180/1.4722) mem 16099MB [2025-01-18 09:15:13 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][100/312] eta 0:01:45 lr 0.000439 time 0.4518 (0.4955) model_time 0.4516 (0.4733) loss 3.5098 (2.8983) grad_norm 1.6883 (2.8999/1.4483) mem 16099MB [2025-01-18 09:15:18 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][110/312] eta 0:01:39 lr 0.000438 time 0.4614 (0.4939) model_time 0.4609 (0.4737) loss 2.8001 (2.9021) grad_norm 3.1563 (2.8516/1.4132) mem 16099MB [2025-01-18 09:15:22 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][120/312] eta 0:01:34 lr 0.000438 time 0.5373 (0.4913) model_time 0.5368 (0.4727) loss 2.3845 (2.8872) grad_norm 2.7406 (2.8388/1.3747) mem 16099MB [2025-01-18 09:15:27 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][130/312] eta 0:01:29 lr 0.000438 time 0.5310 (0.4901) model_time 0.5309 (0.4729) loss 2.2605 (2.8948) grad_norm 3.1809 (2.8387/1.3586) mem 16099MB [2025-01-18 09:15:32 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][140/312] eta 0:01:24 lr 0.000437 time 0.4571 (0.4894) model_time 0.4567 (0.4734) loss 2.5179 (2.9003) grad_norm 5.4575 (2.8280/1.3554) mem 16099MB [2025-01-18 09:15:37 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][150/312] eta 0:01:19 lr 0.000437 time 0.4516 (0.4885) model_time 0.4512 (0.4735) loss 2.3040 (2.8858) grad_norm 3.9121 (2.8334/1.3332) mem 16099MB [2025-01-18 09:15:41 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][160/312] eta 0:01:13 lr 0.000436 time 0.4508 (0.4864) model_time 0.4502 (0.4724) loss 2.7319 (2.8706) grad_norm 3.4285 (2.8690/1.3367) mem 16099MB [2025-01-18 09:15:46 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][170/312] eta 0:01:09 lr 0.000436 time 0.4631 (0.4860) model_time 0.4630 (0.4727) loss 2.8752 (2.8703) grad_norm 1.3612 (2.8728/1.3313) mem 16099MB [2025-01-18 09:15:51 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][180/312] eta 0:01:03 lr 0.000436 time 0.4490 (0.4847) model_time 0.4489 (0.4722) loss 3.0629 (2.8617) grad_norm 2.5235 (2.8783/1.2989) mem 16099MB [2025-01-18 09:15:55 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][190/312] eta 0:00:59 lr 0.000435 time 0.4788 (0.4838) model_time 0.4783 (0.4719) loss 3.3325 (2.8513) grad_norm 3.6147 (2.9193/1.3067) mem 16099MB [2025-01-18 09:16:00 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][200/312] eta 0:00:54 lr 0.000435 time 0.4580 (0.4833) model_time 0.4575 (0.4720) loss 2.9922 (2.8501) grad_norm 1.4055 (2.9121/1.3483) mem 16099MB [2025-01-18 09:16:05 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][210/312] eta 0:00:49 lr 0.000434 time 0.4681 (0.4821) model_time 0.4679 (0.4713) loss 3.2134 (2.8563) grad_norm 2.0257 (2.8654/1.3365) mem 16099MB [2025-01-18 09:16:09 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][220/312] eta 0:00:44 lr 0.000434 time 0.4551 (0.4816) model_time 0.4550 (0.4713) loss 2.5273 (2.8619) grad_norm 2.4378 (2.8631/1.3290) mem 16099MB [2025-01-18 09:16:14 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][230/312] eta 0:00:39 lr 0.000434 time 0.4403 (0.4813) model_time 0.4398 (0.4714) loss 2.7119 (2.8605) grad_norm 4.8606 (2.8468/1.3217) mem 16099MB [2025-01-18 09:16:19 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][240/312] eta 0:00:34 lr 0.000433 time 0.4458 (0.4807) model_time 0.4454 (0.4712) loss 3.1782 (2.8572) grad_norm 1.4102 (2.8566/1.3297) mem 16099MB [2025-01-18 09:16:23 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][250/312] eta 0:00:29 lr 0.000433 time 0.4466 (0.4802) model_time 0.4461 (0.4710) loss 3.2039 (2.8504) grad_norm 2.2698 (2.8221/1.3164) mem 16099MB [2025-01-18 09:16:28 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][260/312] eta 0:00:24 lr 0.000432 time 0.4659 (0.4799) model_time 0.4657 (0.4710) loss 3.0031 (2.8484) grad_norm 2.3019 (2.8073/1.3059) mem 16099MB [2025-01-18 09:16:33 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][270/312] eta 0:00:20 lr 0.000432 time 0.4501 (0.4791) model_time 0.4497 (0.4706) loss 3.2224 (2.8477) grad_norm 2.7155 (2.7954/1.2904) mem 16099MB [2025-01-18 09:16:37 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][280/312] eta 0:00:15 lr 0.000432 time 0.5310 (0.4788) model_time 0.5305 (0.4706) loss 2.7185 (2.8491) grad_norm 6.4040 (2.8037/1.3024) mem 16099MB [2025-01-18 09:16:42 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][290/312] eta 0:00:10 lr 0.000431 time 0.4679 (0.4780) model_time 0.4677 (0.4700) loss 1.9975 (2.8369) grad_norm 1.1549 (2.7782/1.2932) mem 16099MB [2025-01-18 09:16:46 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][300/312] eta 0:00:05 lr 0.000431 time 0.4399 (0.4772) model_time 0.4398 (0.4695) loss 2.3306 (2.8343) grad_norm 1.8283 (2.7505/1.2857) mem 16099MB [2025-01-18 09:16:51 internimage_t_1k_224] (main.py 510): INFO Train: [238/300][310/312] eta 0:00:00 lr 0.000431 time 0.4404 (0.4771) model_time 0.4403 (0.4696) loss 2.0352 (2.8357) grad_norm 1.8377 (2.7691/1.3041) mem 16099MB [2025-01-18 09:16:52 internimage_t_1k_224] (main.py 519): INFO EPOCH 238 training takes 0:02:28 [2025-01-18 09:16:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_238.pth saving...... [2025-01-18 09:16:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_238.pth saved !!! [2025-01-18 09:17:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.390 (7.390) Loss 0.7494 (0.7494) Acc@1 84.888 (84.888) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 09:17:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.996) Loss 0.9991 (0.8572) Acc@1 78.491 (82.366) Acc@5 94.971 (96.158) Mem 16099MB [2025-01-18 09:17:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:238] * Acc@1 82.208 Acc@5 96.153 [2025-01-18 09:17:04 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.2% [2025-01-18 09:17:04 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.37% [2025-01-18 09:17:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.103 (8.103) Loss 0.7464 (0.7464) Acc@1 85.864 (85.864) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:17:16 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.101) Loss 0.9895 (0.8540) Acc@1 79.028 (83.201) Acc@5 95.337 (96.431) Mem 16099MB [2025-01-18 09:17:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:238] * Acc@1 83.077 Acc@5 96.457 [2025-01-18 09:17:16 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.1% [2025-01-18 09:17:16 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.08% [2025-01-18 09:17:19 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][0/312] eta 0:16:59 lr 0.000430 time 3.2662 (3.2662) model_time 0.7979 (0.7979) loss 3.0733 (3.0733) grad_norm 1.7145 (1.7145/0.0000) mem 16099MB [2025-01-18 09:17:24 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][10/312] eta 0:03:46 lr 0.000430 time 0.4506 (0.7508) model_time 0.4505 (0.5259) loss 2.6972 (2.8411) grad_norm 2.4346 (2.7535/0.7545) mem 16099MB [2025-01-18 09:17:29 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][20/312] eta 0:02:58 lr 0.000430 time 0.4551 (0.6098) model_time 0.4546 (0.4918) loss 3.1574 (2.8515) grad_norm 1.9723 (2.3930/0.7995) mem 16099MB [2025-01-18 09:17:34 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][30/312] eta 0:02:40 lr 0.000429 time 0.5675 (0.5705) model_time 0.5670 (0.4904) loss 3.5257 (2.8542) grad_norm 2.7652 (2.2884/0.7517) mem 16099MB [2025-01-18 09:17:39 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][40/312] eta 0:02:28 lr 0.000429 time 0.4540 (0.5464) model_time 0.4538 (0.4858) loss 2.6943 (2.9217) grad_norm 1.8598 (2.3326/0.8361) mem 16099MB [2025-01-18 09:17:43 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][50/312] eta 0:02:19 lr 0.000428 time 0.5532 (0.5313) model_time 0.5530 (0.4825) loss 3.0782 (2.8545) grad_norm 5.0849 (2.5144/1.0742) mem 16099MB [2025-01-18 09:17:48 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][60/312] eta 0:02:11 lr 0.000428 time 0.5531 (0.5205) model_time 0.5527 (0.4796) loss 2.7163 (2.7934) grad_norm 1.7861 (2.5074/0.9998) mem 16099MB [2025-01-18 09:17:52 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][70/312] eta 0:02:03 lr 0.000428 time 0.4609 (0.5120) model_time 0.4608 (0.4769) loss 3.5091 (2.8540) grad_norm 1.8548 (2.4638/0.9729) mem 16099MB [2025-01-18 09:17:57 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][80/312] eta 0:01:57 lr 0.000427 time 0.4519 (0.5074) model_time 0.4517 (0.4765) loss 1.8451 (2.8484) grad_norm 2.1325 (2.4948/0.9886) mem 16099MB [2025-01-18 09:18:02 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][90/312] eta 0:01:51 lr 0.000427 time 0.4520 (0.5026) model_time 0.4516 (0.4751) loss 3.0083 (2.8564) grad_norm 1.9664 (2.5106/1.0176) mem 16099MB [2025-01-18 09:18:06 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][100/312] eta 0:01:45 lr 0.000426 time 0.4586 (0.4987) model_time 0.4582 (0.4739) loss 2.8115 (2.8550) grad_norm 2.1376 (2.4865/1.0408) mem 16099MB [2025-01-18 09:18:11 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][110/312] eta 0:01:40 lr 0.000426 time 0.4602 (0.4952) model_time 0.4600 (0.4726) loss 2.8116 (2.8640) grad_norm 2.5198 (2.4704/1.0214) mem 16099MB [2025-01-18 09:18:16 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][120/312] eta 0:01:34 lr 0.000426 time 0.4508 (0.4924) model_time 0.4504 (0.4716) loss 3.3756 (2.8662) grad_norm 2.2641 (2.4469/1.0027) mem 16099MB [2025-01-18 09:18:20 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][130/312] eta 0:01:29 lr 0.000425 time 0.4648 (0.4909) model_time 0.4646 (0.4717) loss 2.3713 (2.8611) grad_norm 2.3272 (2.4547/0.9896) mem 16099MB [2025-01-18 09:18:25 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][140/312] eta 0:01:24 lr 0.000425 time 0.4757 (0.4902) model_time 0.4756 (0.4723) loss 3.2027 (2.8524) grad_norm 6.7189 (2.5102/1.0398) mem 16099MB [2025-01-18 09:18:30 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][150/312] eta 0:01:19 lr 0.000424 time 0.4623 (0.4888) model_time 0.4618 (0.4721) loss 3.4073 (2.8570) grad_norm 1.1590 (2.5204/1.0645) mem 16099MB [2025-01-18 09:18:35 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][160/312] eta 0:01:14 lr 0.000424 time 0.4869 (0.4872) model_time 0.4867 (0.4715) loss 2.9328 (2.8658) grad_norm 1.8645 (2.5426/1.1349) mem 16099MB [2025-01-18 09:18:39 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][170/312] eta 0:01:09 lr 0.000424 time 0.4477 (0.4864) model_time 0.4475 (0.4716) loss 2.8711 (2.8797) grad_norm 5.2441 (2.6002/1.1728) mem 16099MB [2025-01-18 09:18:44 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][180/312] eta 0:01:04 lr 0.000423 time 0.5715 (0.4863) model_time 0.5714 (0.4722) loss 3.0815 (2.8774) grad_norm 6.1189 (2.6587/1.2442) mem 16099MB [2025-01-18 09:18:49 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][190/312] eta 0:00:59 lr 0.000423 time 0.4777 (0.4851) model_time 0.4775 (0.4718) loss 3.1681 (2.8746) grad_norm 4.5556 (2.7505/1.3185) mem 16099MB [2025-01-18 09:18:53 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][200/312] eta 0:00:54 lr 0.000423 time 0.4522 (0.4840) model_time 0.4518 (0.4713) loss 2.7771 (2.8658) grad_norm 4.2463 (2.7367/1.3183) mem 16099MB [2025-01-18 09:18:58 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][210/312] eta 0:00:49 lr 0.000422 time 0.4417 (0.4832) model_time 0.4416 (0.4711) loss 3.5112 (2.8594) grad_norm 5.1798 (2.7341/1.3109) mem 16099MB [2025-01-18 09:19:03 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][220/312] eta 0:00:44 lr 0.000422 time 0.4514 (0.4822) model_time 0.4512 (0.4707) loss 3.1384 (2.8607) grad_norm 2.0052 (2.7006/1.2929) mem 16099MB [2025-01-18 09:19:07 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][230/312] eta 0:00:39 lr 0.000421 time 0.4416 (0.4815) model_time 0.4411 (0.4704) loss 3.0342 (2.8656) grad_norm 3.7942 (2.7034/1.2850) mem 16099MB [2025-01-18 09:19:12 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][240/312] eta 0:00:34 lr 0.000421 time 0.4449 (0.4807) model_time 0.4445 (0.4701) loss 3.1628 (2.8722) grad_norm 2.2211 (2.7183/1.2796) mem 16099MB [2025-01-18 09:19:17 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][250/312] eta 0:00:29 lr 0.000421 time 0.4432 (0.4807) model_time 0.4427 (0.4704) loss 3.0550 (2.8690) grad_norm 3.8607 (2.7052/1.2629) mem 16099MB [2025-01-18 09:19:21 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][260/312] eta 0:00:24 lr 0.000420 time 0.4707 (0.4802) model_time 0.4705 (0.4704) loss 2.7961 (2.8623) grad_norm 2.7138 (2.7098/1.2467) mem 16099MB [2025-01-18 09:19:26 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][270/312] eta 0:00:20 lr 0.000420 time 0.4410 (0.4798) model_time 0.4408 (0.4703) loss 3.7231 (2.8612) grad_norm 1.8388 (2.6724/1.2430) mem 16099MB [2025-01-18 09:19:31 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][280/312] eta 0:00:15 lr 0.000419 time 0.4405 (0.4794) model_time 0.4403 (0.4702) loss 3.0139 (2.8620) grad_norm 1.7399 (2.6735/1.2466) mem 16099MB [2025-01-18 09:19:35 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][290/312] eta 0:00:10 lr 0.000419 time 0.4553 (0.4788) model_time 0.4548 (0.4700) loss 3.3150 (2.8656) grad_norm 1.1172 (2.7108/1.2808) mem 16099MB [2025-01-18 09:19:40 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][300/312] eta 0:00:05 lr 0.000419 time 0.4385 (0.4784) model_time 0.4384 (0.4698) loss 3.4492 (2.8645) grad_norm 2.6797 (2.7117/1.2798) mem 16099MB [2025-01-18 09:19:45 internimage_t_1k_224] (main.py 510): INFO Train: [239/300][310/312] eta 0:00:00 lr 0.000418 time 0.5247 (0.4774) model_time 0.5246 (0.4691) loss 2.1004 (2.8561) grad_norm 2.3807 (2.6784/1.2873) mem 16099MB [2025-01-18 09:19:45 internimage_t_1k_224] (main.py 519): INFO EPOCH 239 training takes 0:02:28 [2025-01-18 09:19:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_239.pth saving...... [2025-01-18 09:19:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_239.pth saved !!! [2025-01-18 09:19:53 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.298 (7.298) Loss 0.7183 (0.7183) Acc@1 85.107 (85.107) Acc@5 97.339 (97.339) Mem 16099MB [2025-01-18 09:19:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.994) Loss 0.9908 (0.8410) Acc@1 77.954 (82.466) Acc@5 94.971 (96.096) Mem 16099MB [2025-01-18 09:19:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:239] * Acc@1 82.294 Acc@5 96.083 [2025-01-18 09:19:57 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.3% [2025-01-18 09:19:57 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.37% [2025-01-18 09:20:06 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.424 (8.424) Loss 0.7454 (0.7454) Acc@1 85.815 (85.815) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:20:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.140) Loss 0.9882 (0.8529) Acc@1 79.126 (83.236) Acc@5 95.337 (96.433) Mem 16099MB [2025-01-18 09:20:10 internimage_t_1k_224] (main.py 575): INFO [Epoch:239] * Acc@1 83.111 Acc@5 96.459 [2025-01-18 09:20:10 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.1% [2025-01-18 09:20:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:20:11 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:20:11 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.11% [2025-01-18 09:20:14 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][0/312] eta 0:11:24 lr 0.000418 time 2.1951 (2.1951) model_time 0.4696 (0.4696) loss 2.5113 (2.5113) grad_norm 1.8868 (1.8868/0.0000) mem 16099MB [2025-01-18 09:20:19 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][10/312] eta 0:03:14 lr 0.000418 time 0.4550 (0.6452) model_time 0.4545 (0.4879) loss 2.4524 (2.8774) grad_norm 2.6616 (2.2638/0.5348) mem 16099MB [2025-01-18 09:20:23 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][20/312] eta 0:02:43 lr 0.000417 time 0.4523 (0.5610) model_time 0.4519 (0.4784) loss 3.2459 (2.8330) grad_norm 1.9369 (2.3718/0.7852) mem 16099MB [2025-01-18 09:20:28 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][30/312] eta 0:02:30 lr 0.000417 time 0.5105 (0.5320) model_time 0.5101 (0.4760) loss 1.8396 (2.8522) grad_norm 1.5665 (2.2574/0.8075) mem 16099MB [2025-01-18 09:20:33 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][40/312] eta 0:02:21 lr 0.000417 time 0.4523 (0.5193) model_time 0.4518 (0.4768) loss 2.7771 (2.8313) grad_norm 2.3070 (2.3610/0.8424) mem 16099MB [2025-01-18 09:20:37 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][50/312] eta 0:02:13 lr 0.000416 time 0.4435 (0.5102) model_time 0.4430 (0.4760) loss 2.2076 (2.8246) grad_norm 6.4157 (2.5387/1.0541) mem 16099MB [2025-01-18 09:20:42 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][60/312] eta 0:02:06 lr 0.000416 time 0.4605 (0.5031) model_time 0.4603 (0.4744) loss 2.6827 (2.8372) grad_norm 2.4980 (2.6882/1.1739) mem 16099MB [2025-01-18 09:20:47 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][70/312] eta 0:02:00 lr 0.000415 time 0.4536 (0.4978) model_time 0.4531 (0.4731) loss 2.9239 (2.8206) grad_norm 4.4017 (2.9665/1.5184) mem 16099MB [2025-01-18 09:20:51 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][80/312] eta 0:01:54 lr 0.000415 time 0.4438 (0.4924) model_time 0.4437 (0.4707) loss 2.0513 (2.8117) grad_norm 2.4373 (3.0358/1.4882) mem 16099MB [2025-01-18 09:20:56 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][90/312] eta 0:01:48 lr 0.000415 time 0.4641 (0.4892) model_time 0.4640 (0.4698) loss 2.7998 (2.7983) grad_norm 2.0702 (2.9030/1.4614) mem 16099MB [2025-01-18 09:21:01 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][100/312] eta 0:01:43 lr 0.000414 time 0.4463 (0.4875) model_time 0.4461 (0.4701) loss 1.7607 (2.7949) grad_norm 2.3305 (2.8302/1.4324) mem 16099MB [2025-01-18 09:21:05 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][110/312] eta 0:01:38 lr 0.000414 time 0.4440 (0.4853) model_time 0.4435 (0.4694) loss 1.8016 (2.7973) grad_norm 1.3237 (2.8441/1.3927) mem 16099MB [2025-01-18 09:21:10 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][120/312] eta 0:01:32 lr 0.000413 time 0.4435 (0.4835) model_time 0.4431 (0.4689) loss 2.5485 (2.7964) grad_norm 2.1972 (2.8094/1.3836) mem 16099MB [2025-01-18 09:21:14 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][130/312] eta 0:01:27 lr 0.000413 time 0.4409 (0.4813) model_time 0.4407 (0.4677) loss 3.1018 (2.7910) grad_norm 1.8910 (2.7674/1.3532) mem 16099MB [2025-01-18 09:21:19 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][140/312] eta 0:01:22 lr 0.000413 time 0.5272 (0.4802) model_time 0.5268 (0.4676) loss 2.5941 (2.7876) grad_norm 5.3386 (2.7909/1.3522) mem 16099MB [2025-01-18 09:21:24 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][150/312] eta 0:01:17 lr 0.000412 time 0.4492 (0.4801) model_time 0.4488 (0.4683) loss 2.8741 (2.7922) grad_norm 4.4244 (2.8283/1.3507) mem 16099MB [2025-01-18 09:21:29 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][160/312] eta 0:01:12 lr 0.000412 time 0.4441 (0.4802) model_time 0.4437 (0.4691) loss 3.2632 (2.7907) grad_norm 1.9912 (2.8560/1.3493) mem 16099MB [2025-01-18 09:21:33 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][170/312] eta 0:01:08 lr 0.000412 time 0.4570 (0.4791) model_time 0.4569 (0.4686) loss 3.0083 (2.7985) grad_norm 1.9397 (2.8553/1.3414) mem 16099MB [2025-01-18 09:21:38 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][180/312] eta 0:01:03 lr 0.000411 time 0.5577 (0.4795) model_time 0.5575 (0.4696) loss 2.8242 (2.7987) grad_norm 2.5721 (2.8096/1.3251) mem 16099MB [2025-01-18 09:21:43 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][190/312] eta 0:00:58 lr 0.000411 time 0.4931 (0.4784) model_time 0.4927 (0.4689) loss 2.9770 (2.7956) grad_norm 5.6103 (2.8441/1.3508) mem 16099MB [2025-01-18 09:21:48 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][200/312] eta 0:00:53 lr 0.000410 time 0.4496 (0.4784) model_time 0.4492 (0.4694) loss 2.3332 (2.7853) grad_norm 4.3006 (2.8377/1.3289) mem 16099MB [2025-01-18 09:21:52 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][210/312] eta 0:00:48 lr 0.000410 time 0.4425 (0.4775) model_time 0.4423 (0.4690) loss 3.1717 (2.7936) grad_norm 2.3411 (2.8590/1.3744) mem 16099MB [2025-01-18 09:21:57 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][220/312] eta 0:00:43 lr 0.000410 time 0.4766 (0.4768) model_time 0.4764 (0.4686) loss 2.7759 (2.7924) grad_norm 2.7391 (2.8268/1.3556) mem 16099MB [2025-01-18 09:22:01 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][230/312] eta 0:00:39 lr 0.000409 time 0.5299 (0.4761) model_time 0.5295 (0.4682) loss 3.0036 (2.8015) grad_norm 2.5747 (2.7947/1.3435) mem 16099MB [2025-01-18 09:22:06 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][240/312] eta 0:00:34 lr 0.000409 time 0.4553 (0.4752) model_time 0.4550 (0.4676) loss 3.0136 (2.8026) grad_norm 1.7372 (2.8148/1.3560) mem 16099MB [2025-01-18 09:22:11 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][250/312] eta 0:00:29 lr 0.000408 time 0.4513 (0.4751) model_time 0.4508 (0.4678) loss 3.6138 (2.8055) grad_norm 2.8528 (2.8095/1.3624) mem 16099MB [2025-01-18 09:22:15 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][260/312] eta 0:00:24 lr 0.000408 time 0.4722 (0.4745) model_time 0.4717 (0.4675) loss 2.9191 (2.8045) grad_norm 1.9309 (2.7745/1.3517) mem 16099MB [2025-01-18 09:22:20 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][270/312] eta 0:00:19 lr 0.000408 time 0.4430 (0.4743) model_time 0.4425 (0.4675) loss 3.1605 (2.8002) grad_norm 4.5891 (2.7739/1.3466) mem 16099MB [2025-01-18 09:22:25 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][280/312] eta 0:00:15 lr 0.000407 time 0.4967 (0.4740) model_time 0.4963 (0.4675) loss 3.5432 (2.7983) grad_norm 2.2049 (2.7562/1.3318) mem 16099MB [2025-01-18 09:22:29 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][290/312] eta 0:00:10 lr 0.000407 time 0.4611 (0.4739) model_time 0.4609 (0.4676) loss 3.1594 (2.8013) grad_norm 3.5350 (2.7579/1.3202) mem 16099MB [2025-01-18 09:22:34 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][300/312] eta 0:00:05 lr 0.000407 time 0.4387 (0.4740) model_time 0.4386 (0.4679) loss 2.9546 (2.8036) grad_norm 3.1319 (2.7358/1.3103) mem 16099MB [2025-01-18 09:22:39 internimage_t_1k_224] (main.py 510): INFO Train: [240/300][310/312] eta 0:00:00 lr 0.000406 time 0.4389 (0.4731) model_time 0.4389 (0.4672) loss 2.7996 (2.8023) grad_norm 2.2394 (2.7196/1.3165) mem 16099MB [2025-01-18 09:22:39 internimage_t_1k_224] (main.py 519): INFO EPOCH 240 training takes 0:02:27 [2025-01-18 09:22:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_240.pth saving...... [2025-01-18 09:22:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_240.pth saved !!! [2025-01-18 09:22:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.281 (7.281) Loss 0.7301 (0.7301) Acc@1 84.863 (84.863) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 09:22:51 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.971) Loss 0.9697 (0.8401) Acc@1 78.931 (82.575) Acc@5 95.142 (96.180) Mem 16099MB [2025-01-18 09:22:51 internimage_t_1k_224] (main.py 575): INFO [Epoch:240] * Acc@1 82.438 Acc@5 96.163 [2025-01-18 09:22:51 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.4% [2025-01-18 09:22:51 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 09:22:52 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 09:22:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.44% [2025-01-18 09:22:59 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.212 (7.212) Loss 0.7445 (0.7445) Acc@1 85.815 (85.815) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:23:03 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.965) Loss 0.9867 (0.8517) Acc@1 79.126 (83.245) Acc@5 95.386 (96.436) Mem 16099MB [2025-01-18 09:23:03 internimage_t_1k_224] (main.py 575): INFO [Epoch:240] * Acc@1 83.113 Acc@5 96.461 [2025-01-18 09:23:03 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.1% [2025-01-18 09:23:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:23:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:23:04 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.11% [2025-01-18 09:23:07 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][0/312] eta 0:14:04 lr 0.000406 time 2.7074 (2.7074) model_time 0.4732 (0.4732) loss 2.0333 (2.0333) grad_norm 2.0198 (2.0198/0.0000) mem 16099MB [2025-01-18 09:23:12 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][10/312] eta 0:03:19 lr 0.000406 time 0.4663 (0.6611) model_time 0.4659 (0.4576) loss 2.8539 (2.8993) grad_norm 3.6030 (2.0920/0.6188) mem 16099MB [2025-01-18 09:23:16 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][20/312] eta 0:02:44 lr 0.000405 time 0.4720 (0.5626) model_time 0.4715 (0.4558) loss 2.7933 (2.7272) grad_norm 1.6752 (2.3491/0.9545) mem 16099MB [2025-01-18 09:23:21 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][30/312] eta 0:02:31 lr 0.000405 time 0.4739 (0.5366) model_time 0.4735 (0.4642) loss 3.3473 (2.8005) grad_norm 1.7425 (2.4578/0.9481) mem 16099MB [2025-01-18 09:23:26 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][40/312] eta 0:02:21 lr 0.000405 time 0.4593 (0.5185) model_time 0.4592 (0.4636) loss 2.7074 (2.8503) grad_norm 2.6522 (2.8533/1.3585) mem 16099MB [2025-01-18 09:23:30 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][50/312] eta 0:02:13 lr 0.000404 time 0.4433 (0.5100) model_time 0.4431 (0.4658) loss 3.4667 (2.8137) grad_norm 2.6038 (2.8746/1.2573) mem 16099MB [2025-01-18 09:23:35 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][60/312] eta 0:02:07 lr 0.000404 time 0.4443 (0.5042) model_time 0.4441 (0.4672) loss 2.7688 (2.8185) grad_norm 4.1083 (2.8673/1.2455) mem 16099MB [2025-01-18 09:23:40 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][70/312] eta 0:02:00 lr 0.000403 time 0.4651 (0.4998) model_time 0.4649 (0.4680) loss 2.7228 (2.7972) grad_norm 4.9710 (3.0078/1.2714) mem 16099MB [2025-01-18 09:23:45 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][80/312] eta 0:01:55 lr 0.000403 time 0.4505 (0.4959) model_time 0.4503 (0.4679) loss 3.1263 (2.8062) grad_norm 2.1132 (2.9854/1.2592) mem 16099MB [2025-01-18 09:23:49 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][90/312] eta 0:01:49 lr 0.000403 time 0.4551 (0.4920) model_time 0.4547 (0.4670) loss 2.2383 (2.8084) grad_norm 7.2286 (3.1391/1.3868) mem 16099MB [2025-01-18 09:23:54 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][100/312] eta 0:01:43 lr 0.000402 time 0.4556 (0.4905) model_time 0.4552 (0.4680) loss 2.5168 (2.8198) grad_norm 3.9686 (3.2198/1.3816) mem 16099MB [2025-01-18 09:23:59 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][110/312] eta 0:01:38 lr 0.000402 time 0.4563 (0.4872) model_time 0.4562 (0.4667) loss 2.9995 (2.8304) grad_norm 2.2098 (3.1802/1.3748) mem 16099MB [2025-01-18 09:24:03 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][120/312] eta 0:01:33 lr 0.000401 time 0.4466 (0.4846) model_time 0.4462 (0.4657) loss 2.8542 (2.8406) grad_norm 2.1018 (3.0741/1.3691) mem 16099MB [2025-01-18 09:24:08 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][130/312] eta 0:01:28 lr 0.000401 time 0.4599 (0.4857) model_time 0.4595 (0.4683) loss 3.1031 (2.8437) grad_norm 2.0176 (2.9925/1.3533) mem 16099MB [2025-01-18 09:24:13 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][140/312] eta 0:01:23 lr 0.000401 time 0.4514 (0.4863) model_time 0.4513 (0.4701) loss 3.0048 (2.8440) grad_norm 2.2216 (3.0380/1.4091) mem 16099MB [2025-01-18 09:24:18 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][150/312] eta 0:01:18 lr 0.000400 time 0.4460 (0.4850) model_time 0.4458 (0.4699) loss 1.8812 (2.8395) grad_norm 2.5124 (3.0895/1.4153) mem 16099MB [2025-01-18 09:24:23 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][160/312] eta 0:01:13 lr 0.000400 time 0.4430 (0.4852) model_time 0.4429 (0.4709) loss 2.1851 (2.8249) grad_norm 2.2281 (3.0655/1.3968) mem 16099MB [2025-01-18 09:24:27 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][170/312] eta 0:01:08 lr 0.000400 time 0.4492 (0.4834) model_time 0.4488 (0.4699) loss 3.1012 (2.8131) grad_norm 2.0978 (3.0764/1.4054) mem 16099MB [2025-01-18 09:24:32 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][180/312] eta 0:01:03 lr 0.000399 time 0.4528 (0.4829) model_time 0.4523 (0.4701) loss 3.3695 (2.8210) grad_norm 1.6106 (3.0414/1.4068) mem 16099MB [2025-01-18 09:24:37 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][190/312] eta 0:00:58 lr 0.000399 time 0.4527 (0.4832) model_time 0.4525 (0.4711) loss 2.3889 (2.8121) grad_norm 2.3059 (2.9962/1.4010) mem 16099MB [2025-01-18 09:24:41 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][200/312] eta 0:00:54 lr 0.000398 time 0.4633 (0.4822) model_time 0.4628 (0.4707) loss 3.1622 (2.8114) grad_norm 3.0390 (3.0246/1.3855) mem 16099MB [2025-01-18 09:24:46 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][210/312] eta 0:00:49 lr 0.000398 time 0.4471 (0.4818) model_time 0.4466 (0.4708) loss 3.1597 (2.8166) grad_norm 2.6075 (3.0132/1.3778) mem 16099MB [2025-01-18 09:24:51 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][220/312] eta 0:00:44 lr 0.000398 time 0.4490 (0.4809) model_time 0.4486 (0.4704) loss 3.1382 (2.8189) grad_norm 5.4506 (3.0120/1.3760) mem 16099MB [2025-01-18 09:24:55 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][230/312] eta 0:00:39 lr 0.000397 time 0.4479 (0.4803) model_time 0.4477 (0.4702) loss 3.1688 (2.8274) grad_norm 3.0971 (3.0136/1.3689) mem 16099MB [2025-01-18 09:25:00 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][240/312] eta 0:00:34 lr 0.000397 time 0.4485 (0.4794) model_time 0.4483 (0.4697) loss 3.3654 (2.8268) grad_norm 2.4254 (2.9707/1.3637) mem 16099MB [2025-01-18 09:25:05 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][250/312] eta 0:00:29 lr 0.000396 time 0.4543 (0.4783) model_time 0.4538 (0.4690) loss 3.5530 (2.8309) grad_norm 1.9701 (2.9517/1.3515) mem 16099MB [2025-01-18 09:25:09 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][260/312] eta 0:00:24 lr 0.000396 time 0.4450 (0.4777) model_time 0.4448 (0.4688) loss 3.3705 (2.8330) grad_norm 3.2924 (2.9827/1.3573) mem 16099MB [2025-01-18 09:25:14 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][270/312] eta 0:00:20 lr 0.000396 time 0.4802 (0.4777) model_time 0.4797 (0.4691) loss 2.8564 (2.8333) grad_norm 1.4197 (2.9688/1.3463) mem 16099MB [2025-01-18 09:25:18 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][280/312] eta 0:00:15 lr 0.000395 time 0.4488 (0.4770) model_time 0.4486 (0.4686) loss 2.7801 (2.8340) grad_norm 1.6679 (2.9359/1.3347) mem 16099MB [2025-01-18 09:25:23 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][290/312] eta 0:00:10 lr 0.000395 time 0.4526 (0.4772) model_time 0.4524 (0.4691) loss 2.4350 (2.8286) grad_norm 1.1934 (2.9001/1.3302) mem 16099MB [2025-01-18 09:25:28 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][300/312] eta 0:00:05 lr 0.000395 time 0.4482 (0.4770) model_time 0.4481 (0.4692) loss 2.7194 (2.8275) grad_norm 5.7137 (2.9123/1.3384) mem 16099MB [2025-01-18 09:25:33 internimage_t_1k_224] (main.py 510): INFO Train: [241/300][310/312] eta 0:00:00 lr 0.000394 time 0.4392 (0.4764) model_time 0.4391 (0.4688) loss 2.6961 (2.8286) grad_norm 1.8234 (2.9128/1.3436) mem 16099MB [2025-01-18 09:25:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 241 training takes 0:02:28 [2025-01-18 09:25:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_241.pth saving...... [2025-01-18 09:25:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_241.pth saved !!! [2025-01-18 09:25:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.368 (7.368) Loss 0.7313 (0.7313) Acc@1 84.912 (84.912) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 09:25:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.996) Loss 0.9841 (0.8346) Acc@1 78.320 (82.599) Acc@5 94.824 (96.134) Mem 16099MB [2025-01-18 09:25:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:241] * Acc@1 82.456 Acc@5 96.127 [2025-01-18 09:25:45 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.5% [2025-01-18 09:25:45 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 09:25:46 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 09:25:46 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.46% [2025-01-18 09:25:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.403 (7.403) Loss 0.7435 (0.7435) Acc@1 85.767 (85.767) Acc@5 97.681 (97.681) Mem 16099MB [2025-01-18 09:25:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.990) Loss 0.9851 (0.8505) Acc@1 79.077 (83.259) Acc@5 95.410 (96.436) Mem 16099MB [2025-01-18 09:25:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:241] * Acc@1 83.131 Acc@5 96.463 [2025-01-18 09:25:58 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.1% [2025-01-18 09:25:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:25:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:25:59 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.13% [2025-01-18 09:26:01 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][0/312] eta 0:12:36 lr 0.000394 time 2.4238 (2.4238) model_time 0.4786 (0.4786) loss 2.2894 (2.2894) grad_norm 3.8117 (3.8117/0.0000) mem 16099MB [2025-01-18 09:26:06 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][10/312] eta 0:03:15 lr 0.000394 time 0.4538 (0.6467) model_time 0.4536 (0.4695) loss 3.0710 (2.9537) grad_norm 1.6906 (2.6248/0.8849) mem 16099MB [2025-01-18 09:26:11 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][20/312] eta 0:02:42 lr 0.000393 time 0.4532 (0.5559) model_time 0.4530 (0.4629) loss 2.5201 (2.8829) grad_norm 2.8332 (2.9997/1.0565) mem 16099MB [2025-01-18 09:26:15 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][30/312] eta 0:02:29 lr 0.000393 time 0.4593 (0.5285) model_time 0.4589 (0.4654) loss 3.4460 (2.8611) grad_norm 1.5566 (2.8453/1.1050) mem 16099MB [2025-01-18 09:26:20 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][40/312] eta 0:02:19 lr 0.000393 time 0.5785 (0.5130) model_time 0.5783 (0.4652) loss 1.9704 (2.8378) grad_norm 1.5078 (2.8072/1.0683) mem 16099MB [2025-01-18 09:26:25 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][50/312] eta 0:02:13 lr 0.000392 time 0.4637 (0.5078) model_time 0.4635 (0.4693) loss 2.9449 (2.8080) grad_norm 2.4933 (2.7478/1.0402) mem 16099MB [2025-01-18 09:26:30 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][60/312] eta 0:02:06 lr 0.000392 time 0.4460 (0.5002) model_time 0.4455 (0.4680) loss 3.1729 (2.8104) grad_norm 2.8015 (2.7580/1.0410) mem 16099MB [2025-01-18 09:26:34 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][70/312] eta 0:01:59 lr 0.000391 time 0.4561 (0.4938) model_time 0.4559 (0.4661) loss 2.5736 (2.8049) grad_norm 1.1797 (2.6705/1.0251) mem 16099MB [2025-01-18 09:26:39 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][80/312] eta 0:01:53 lr 0.000391 time 0.4574 (0.4901) model_time 0.4572 (0.4658) loss 3.4905 (2.8195) grad_norm 1.1817 (2.5280/1.0452) mem 16099MB [2025-01-18 09:26:43 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][90/312] eta 0:01:47 lr 0.000391 time 0.4485 (0.4861) model_time 0.4483 (0.4644) loss 3.3345 (2.8374) grad_norm 1.7888 (2.4850/1.0115) mem 16099MB [2025-01-18 09:26:48 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][100/312] eta 0:01:42 lr 0.000390 time 0.4564 (0.4845) model_time 0.4560 (0.4649) loss 3.1085 (2.8349) grad_norm 2.6613 (2.5349/1.0479) mem 16099MB [2025-01-18 09:26:53 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][110/312] eta 0:01:37 lr 0.000390 time 0.4530 (0.4839) model_time 0.4529 (0.4661) loss 3.3388 (2.8439) grad_norm 2.9248 (2.5297/1.0280) mem 16099MB [2025-01-18 09:26:57 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][120/312] eta 0:01:32 lr 0.000390 time 0.4589 (0.4823) model_time 0.4584 (0.4659) loss 2.9168 (2.8406) grad_norm 2.8292 (2.6262/1.0734) mem 16099MB [2025-01-18 09:27:02 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][130/312] eta 0:01:27 lr 0.000389 time 0.4537 (0.4814) model_time 0.4532 (0.4662) loss 3.2843 (2.8459) grad_norm 1.9226 (2.5907/1.0589) mem 16099MB [2025-01-18 09:27:07 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][140/312] eta 0:01:22 lr 0.000389 time 0.4621 (0.4814) model_time 0.4619 (0.4672) loss 3.0790 (2.8518) grad_norm 1.0243 (2.5928/1.0589) mem 16099MB [2025-01-18 09:27:12 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][150/312] eta 0:01:17 lr 0.000388 time 0.4506 (0.4807) model_time 0.4501 (0.4675) loss 2.9419 (2.8465) grad_norm 6.3920 (2.6985/1.1736) mem 16099MB [2025-01-18 09:27:17 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][160/312] eta 0:01:13 lr 0.000388 time 0.5808 (0.4816) model_time 0.5806 (0.4691) loss 3.6442 (2.8531) grad_norm 2.1961 (2.7619/1.2533) mem 16099MB [2025-01-18 09:27:21 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][170/312] eta 0:01:08 lr 0.000388 time 0.4586 (0.4805) model_time 0.4581 (0.4688) loss 3.2070 (2.8638) grad_norm 1.8777 (2.7416/1.2313) mem 16099MB [2025-01-18 09:27:26 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][180/312] eta 0:01:03 lr 0.000387 time 0.4676 (0.4800) model_time 0.4672 (0.4689) loss 3.1049 (2.8620) grad_norm 2.8743 (2.7170/1.2103) mem 16099MB [2025-01-18 09:27:31 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][190/312] eta 0:00:58 lr 0.000387 time 0.4458 (0.4791) model_time 0.4453 (0.4685) loss 3.1218 (2.8551) grad_norm 1.3932 (2.7377/1.2217) mem 16099MB [2025-01-18 09:27:35 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][200/312] eta 0:00:53 lr 0.000387 time 0.5264 (0.4783) model_time 0.5263 (0.4682) loss 3.4706 (2.8579) grad_norm 2.1256 (2.7144/1.2139) mem 16099MB [2025-01-18 09:27:40 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][210/312] eta 0:00:48 lr 0.000386 time 0.5455 (0.4780) model_time 0.5453 (0.4684) loss 2.7051 (2.8589) grad_norm 6.7942 (2.7834/1.2958) mem 16099MB [2025-01-18 09:27:45 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][220/312] eta 0:00:43 lr 0.000386 time 0.4461 (0.4774) model_time 0.4460 (0.4683) loss 3.0122 (2.8578) grad_norm 3.7433 (2.8127/1.3018) mem 16099MB [2025-01-18 09:27:49 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][230/312] eta 0:00:39 lr 0.000385 time 0.4441 (0.4766) model_time 0.4437 (0.4679) loss 2.8402 (2.8571) grad_norm 7.3173 (2.8375/1.3300) mem 16099MB [2025-01-18 09:27:54 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][240/312] eta 0:00:34 lr 0.000385 time 0.4577 (0.4765) model_time 0.4575 (0.4680) loss 2.7059 (2.8599) grad_norm 6.9383 (2.8786/1.3490) mem 16099MB [2025-01-18 09:27:58 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][250/312] eta 0:00:29 lr 0.000385 time 0.4683 (0.4756) model_time 0.4679 (0.4675) loss 2.5982 (2.8551) grad_norm 1.4178 (2.8660/1.3512) mem 16099MB [2025-01-18 09:28:03 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][260/312] eta 0:00:24 lr 0.000384 time 0.4502 (0.4746) model_time 0.4498 (0.4668) loss 3.2570 (2.8582) grad_norm 1.6033 (2.8498/1.3465) mem 16099MB [2025-01-18 09:28:08 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][270/312] eta 0:00:19 lr 0.000384 time 0.4650 (0.4746) model_time 0.4645 (0.4671) loss 3.0247 (2.8562) grad_norm 1.8396 (2.8302/1.3415) mem 16099MB [2025-01-18 09:28:12 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][280/312] eta 0:00:15 lr 0.000384 time 0.4614 (0.4743) model_time 0.4613 (0.4670) loss 2.9552 (2.8519) grad_norm 3.6032 (2.8286/1.3288) mem 16099MB [2025-01-18 09:28:17 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][290/312] eta 0:00:10 lr 0.000383 time 0.4543 (0.4741) model_time 0.4539 (0.4670) loss 2.8032 (2.8490) grad_norm 2.8857 (2.8108/1.3143) mem 16099MB [2025-01-18 09:28:22 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][300/312] eta 0:00:05 lr 0.000383 time 0.4418 (0.4736) model_time 0.4417 (0.4667) loss 1.7509 (2.8491) grad_norm 1.8546 (2.8015/1.2989) mem 16099MB [2025-01-18 09:28:26 internimage_t_1k_224] (main.py 510): INFO Train: [242/300][310/312] eta 0:00:00 lr 0.000382 time 0.4393 (0.4734) model_time 0.4392 (0.4667) loss 2.9099 (2.8408) grad_norm 2.0281 (2.7970/1.3076) mem 16099MB [2025-01-18 09:28:27 internimage_t_1k_224] (main.py 519): INFO EPOCH 242 training takes 0:02:27 [2025-01-18 09:28:27 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_242.pth saving...... [2025-01-18 09:28:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_242.pth saved !!! [2025-01-18 09:28:35 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.418 (7.418) Loss 0.7330 (0.7330) Acc@1 85.181 (85.181) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 09:28:39 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.000) Loss 0.9724 (0.8373) Acc@1 79.370 (82.779) Acc@5 94.922 (96.238) Mem 16099MB [2025-01-18 09:28:39 internimage_t_1k_224] (main.py 575): INFO [Epoch:242] * Acc@1 82.628 Acc@5 96.235 [2025-01-18 09:28:39 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.6% [2025-01-18 09:28:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 09:28:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 09:28:40 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:28:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.436 (7.436) Loss 0.7426 (0.7426) Acc@1 85.742 (85.742) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 09:28:51 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.016) Loss 0.9838 (0.8495) Acc@1 79.126 (83.287) Acc@5 95.459 (96.444) Mem 16099MB [2025-01-18 09:28:51 internimage_t_1k_224] (main.py 575): INFO [Epoch:242] * Acc@1 83.159 Acc@5 96.471 [2025-01-18 09:28:51 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:28:51 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:28:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:28:53 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.16% [2025-01-18 09:28:55 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][0/312] eta 0:12:17 lr 0.000382 time 2.3626 (2.3626) model_time 0.4712 (0.4712) loss 1.9095 (1.9095) grad_norm 2.9911 (2.9911/0.0000) mem 16099MB [2025-01-18 09:29:00 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][10/312] eta 0:03:21 lr 0.000382 time 0.4470 (0.6674) model_time 0.4469 (0.4952) loss 2.9387 (2.6749) grad_norm 3.7459 (2.7527/0.8086) mem 16099MB [2025-01-18 09:29:05 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][20/312] eta 0:02:46 lr 0.000382 time 0.4454 (0.5719) model_time 0.4453 (0.4814) loss 3.4961 (2.7841) grad_norm 1.3336 (2.3511/0.7893) mem 16099MB [2025-01-18 09:29:10 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][30/312] eta 0:02:31 lr 0.000381 time 0.4532 (0.5380) model_time 0.4528 (0.4765) loss 2.4335 (2.7416) grad_norm 4.5316 (2.4114/0.9051) mem 16099MB [2025-01-18 09:29:14 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][40/312] eta 0:02:21 lr 0.000381 time 0.4472 (0.5193) model_time 0.4471 (0.4728) loss 2.9390 (2.8011) grad_norm 3.5294 (2.4911/0.9724) mem 16099MB [2025-01-18 09:29:19 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][50/312] eta 0:02:12 lr 0.000381 time 0.4478 (0.5072) model_time 0.4476 (0.4698) loss 3.0540 (2.8161) grad_norm 3.9031 (2.7769/1.1953) mem 16099MB [2025-01-18 09:29:24 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][60/312] eta 0:02:07 lr 0.000380 time 0.4526 (0.5062) model_time 0.4525 (0.4748) loss 2.9238 (2.8228) grad_norm 3.3007 (2.6658/1.1470) mem 16099MB [2025-01-18 09:29:28 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][70/312] eta 0:02:01 lr 0.000380 time 0.4587 (0.5014) model_time 0.4585 (0.4744) loss 1.7371 (2.7919) grad_norm 2.1957 (2.5890/1.1169) mem 16099MB [2025-01-18 09:29:33 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][80/312] eta 0:01:55 lr 0.000379 time 0.4540 (0.4967) model_time 0.4538 (0.4730) loss 2.7499 (2.7869) grad_norm 2.1908 (2.5436/1.0778) mem 16099MB [2025-01-18 09:29:38 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][90/312] eta 0:01:49 lr 0.000379 time 0.5368 (0.4931) model_time 0.5364 (0.4720) loss 2.7738 (2.7919) grad_norm 3.7474 (2.7792/1.4192) mem 16099MB [2025-01-18 09:29:42 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][100/312] eta 0:01:43 lr 0.000379 time 0.4708 (0.4904) model_time 0.4707 (0.4713) loss 2.9835 (2.7895) grad_norm 2.4547 (2.8777/1.5100) mem 16099MB [2025-01-18 09:29:47 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][110/312] eta 0:01:38 lr 0.000378 time 0.4573 (0.4878) model_time 0.4568 (0.4704) loss 1.9649 (2.7847) grad_norm 5.5140 (2.9351/1.5356) mem 16099MB [2025-01-18 09:29:52 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][120/312] eta 0:01:33 lr 0.000378 time 0.4483 (0.4877) model_time 0.4479 (0.4717) loss 2.7337 (2.7821) grad_norm 4.3410 (2.9299/1.5417) mem 16099MB [2025-01-18 09:29:57 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][130/312] eta 0:01:28 lr 0.000378 time 0.4471 (0.4863) model_time 0.4467 (0.4715) loss 2.8277 (2.7853) grad_norm 2.0633 (2.9664/1.5161) mem 16099MB [2025-01-18 09:30:02 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][140/312] eta 0:01:23 lr 0.000377 time 0.4451 (0.4882) model_time 0.4450 (0.4744) loss 2.4413 (2.7851) grad_norm 1.3164 (2.8856/1.5032) mem 16099MB [2025-01-18 09:30:06 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][150/312] eta 0:01:18 lr 0.000377 time 0.4510 (0.4863) model_time 0.4508 (0.4734) loss 2.4349 (2.7741) grad_norm 3.6963 (2.8349/1.4783) mem 16099MB [2025-01-18 09:30:11 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][160/312] eta 0:01:13 lr 0.000376 time 0.4441 (0.4849) model_time 0.4440 (0.4728) loss 2.7715 (2.7817) grad_norm 4.4029 (2.8465/1.4588) mem 16099MB [2025-01-18 09:30:16 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][170/312] eta 0:01:08 lr 0.000376 time 0.4510 (0.4849) model_time 0.4506 (0.4734) loss 2.7716 (2.7793) grad_norm 2.3028 (2.8606/1.4606) mem 16099MB [2025-01-18 09:30:20 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][180/312] eta 0:01:03 lr 0.000376 time 0.4697 (0.4834) model_time 0.4692 (0.4725) loss 2.2303 (2.7697) grad_norm 1.4150 (2.8530/1.4481) mem 16099MB [2025-01-18 09:30:25 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][190/312] eta 0:00:58 lr 0.000375 time 0.4599 (0.4818) model_time 0.4597 (0.4715) loss 1.7137 (2.7601) grad_norm 5.1618 (2.8206/1.4382) mem 16099MB [2025-01-18 09:30:30 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][200/312] eta 0:00:53 lr 0.000375 time 0.4521 (0.4811) model_time 0.4519 (0.4713) loss 2.0508 (2.7568) grad_norm 1.8384 (2.8114/1.4080) mem 16099MB [2025-01-18 09:30:34 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][210/312] eta 0:00:48 lr 0.000375 time 0.4552 (0.4802) model_time 0.4548 (0.4708) loss 3.1033 (2.7581) grad_norm 1.5594 (2.7582/1.3965) mem 16099MB [2025-01-18 09:30:39 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][220/312] eta 0:00:44 lr 0.000374 time 0.4520 (0.4796) model_time 0.4515 (0.4706) loss 3.3667 (2.7655) grad_norm 3.0842 (2.7202/1.3828) mem 16099MB [2025-01-18 09:30:43 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][230/312] eta 0:00:39 lr 0.000374 time 0.4540 (0.4791) model_time 0.4535 (0.4705) loss 2.6762 (2.7609) grad_norm 2.5110 (2.7484/1.3803) mem 16099MB [2025-01-18 09:30:48 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][240/312] eta 0:00:34 lr 0.000373 time 0.4480 (0.4785) model_time 0.4478 (0.4703) loss 2.7606 (2.7569) grad_norm 5.3785 (2.7617/1.3756) mem 16099MB [2025-01-18 09:30:53 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][250/312] eta 0:00:29 lr 0.000373 time 0.4579 (0.4791) model_time 0.4574 (0.4711) loss 2.7556 (2.7561) grad_norm 1.3634 (2.7572/1.3625) mem 16099MB [2025-01-18 09:30:58 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][260/312] eta 0:00:24 lr 0.000373 time 0.4467 (0.4782) model_time 0.4463 (0.4705) loss 2.7861 (2.7640) grad_norm 2.1939 (2.7600/1.3558) mem 16099MB [2025-01-18 09:31:02 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][270/312] eta 0:00:20 lr 0.000372 time 0.4547 (0.4778) model_time 0.4542 (0.4704) loss 3.0603 (2.7722) grad_norm 1.7893 (2.7889/1.3629) mem 16099MB [2025-01-18 09:31:07 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][280/312] eta 0:00:15 lr 0.000372 time 0.4611 (0.4774) model_time 0.4607 (0.4702) loss 2.8117 (2.7738) grad_norm 1.1107 (2.7707/1.3540) mem 16099MB [2025-01-18 09:31:12 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][290/312] eta 0:00:10 lr 0.000372 time 0.4534 (0.4769) model_time 0.4532 (0.4700) loss 2.7834 (2.7771) grad_norm 3.5451 (2.7765/1.3389) mem 16099MB [2025-01-18 09:31:16 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][300/312] eta 0:00:05 lr 0.000371 time 0.4389 (0.4767) model_time 0.4388 (0.4701) loss 3.4400 (2.7817) grad_norm 4.6903 (2.8193/1.3726) mem 16099MB [2025-01-18 09:31:21 internimage_t_1k_224] (main.py 510): INFO Train: [243/300][310/312] eta 0:00:00 lr 0.000371 time 0.4424 (0.4756) model_time 0.4424 (0.4692) loss 3.0641 (2.7856) grad_norm 2.1710 (2.8249/1.3726) mem 16099MB [2025-01-18 09:31:21 internimage_t_1k_224] (main.py 519): INFO EPOCH 243 training takes 0:02:28 [2025-01-18 09:31:21 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_243.pth saving...... [2025-01-18 09:31:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_243.pth saved !!! [2025-01-18 09:31:30 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.531 (7.531) Loss 0.7069 (0.7069) Acc@1 85.205 (85.205) Acc@5 97.339 (97.339) Mem 16099MB [2025-01-18 09:31:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.998) Loss 0.9699 (0.8336) Acc@1 78.857 (82.591) Acc@5 94.971 (96.118) Mem 16099MB [2025-01-18 09:31:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:243] * Acc@1 82.418 Acc@5 96.117 [2025-01-18 09:31:33 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.4% [2025-01-18 09:31:33 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:31:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.137 (8.137) Loss 0.7417 (0.7417) Acc@1 85.767 (85.767) Acc@5 97.681 (97.681) Mem 16099MB [2025-01-18 09:31:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.111 (1.090) Loss 0.9822 (0.8483) Acc@1 79.126 (83.285) Acc@5 95.435 (96.444) Mem 16099MB [2025-01-18 09:31:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:243] * Acc@1 83.151 Acc@5 96.469 [2025-01-18 09:31:46 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:31:46 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.16% [2025-01-18 09:31:49 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][0/312] eta 0:15:43 lr 0.000371 time 3.0241 (3.0241) model_time 1.0798 (1.0798) loss 3.3510 (3.3510) grad_norm 4.9097 (4.9097/0.0000) mem 16099MB [2025-01-18 09:31:53 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][10/312] eta 0:03:35 lr 0.000370 time 0.4525 (0.7135) model_time 0.4521 (0.5362) loss 2.7265 (2.9374) grad_norm 1.7449 (3.4844/1.7633) mem 16099MB [2025-01-18 09:31:58 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][20/312] eta 0:02:52 lr 0.000370 time 0.4555 (0.5901) model_time 0.4554 (0.4965) loss 2.8442 (2.8605) grad_norm 2.9351 (3.1480/1.4264) mem 16099MB [2025-01-18 09:32:03 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][30/312] eta 0:02:35 lr 0.000370 time 0.4562 (0.5527) model_time 0.4560 (0.4892) loss 2.2379 (2.7667) grad_norm 3.8628 (2.8810/1.3163) mem 16099MB [2025-01-18 09:32:07 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][40/312] eta 0:02:23 lr 0.000369 time 0.4585 (0.5287) model_time 0.4581 (0.4806) loss 3.1555 (2.7850) grad_norm 3.5864 (3.0186/1.2747) mem 16099MB [2025-01-18 09:32:12 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][50/312] eta 0:02:15 lr 0.000369 time 0.4514 (0.5155) model_time 0.4512 (0.4767) loss 3.2833 (2.7927) grad_norm 2.1278 (2.8898/1.2880) mem 16099MB [2025-01-18 09:32:16 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][60/312] eta 0:02:07 lr 0.000369 time 0.4497 (0.5058) model_time 0.4496 (0.4733) loss 2.9043 (2.7896) grad_norm 2.8173 (2.9094/1.2727) mem 16099MB [2025-01-18 09:32:21 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][70/312] eta 0:02:01 lr 0.000368 time 0.4591 (0.5002) model_time 0.4589 (0.4723) loss 3.1663 (2.7943) grad_norm 4.1106 (2.8994/1.2429) mem 16099MB [2025-01-18 09:32:26 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][80/312] eta 0:01:55 lr 0.000368 time 0.4548 (0.4994) model_time 0.4546 (0.4749) loss 2.2635 (2.7727) grad_norm 1.6981 (2.9004/1.2494) mem 16099MB [2025-01-18 09:32:31 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][90/312] eta 0:01:50 lr 0.000368 time 0.4536 (0.4964) model_time 0.4534 (0.4745) loss 3.0145 (2.7735) grad_norm 5.4083 (2.9648/1.3809) mem 16099MB [2025-01-18 09:32:35 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][100/312] eta 0:01:44 lr 0.000367 time 0.4529 (0.4932) model_time 0.4525 (0.4735) loss 3.5237 (2.7924) grad_norm 3.3900 (2.9922/1.3562) mem 16099MB [2025-01-18 09:32:40 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][110/312] eta 0:01:39 lr 0.000367 time 0.4742 (0.4917) model_time 0.4741 (0.4737) loss 2.7595 (2.7961) grad_norm 2.4881 (2.9668/1.3382) mem 16099MB [2025-01-18 09:32:45 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][120/312] eta 0:01:33 lr 0.000366 time 0.4495 (0.4887) model_time 0.4493 (0.4722) loss 3.5882 (2.7814) grad_norm 3.7114 (2.9048/1.3219) mem 16099MB [2025-01-18 09:32:49 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][130/312] eta 0:01:28 lr 0.000366 time 0.4481 (0.4873) model_time 0.4479 (0.4720) loss 2.0805 (2.7841) grad_norm 1.6170 (2.8796/1.3306) mem 16099MB [2025-01-18 09:32:54 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][140/312] eta 0:01:23 lr 0.000366 time 0.5409 (0.4863) model_time 0.5405 (0.4721) loss 2.7818 (2.7850) grad_norm 2.1176 (2.8162/1.3073) mem 16099MB [2025-01-18 09:32:59 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][150/312] eta 0:01:18 lr 0.000365 time 0.4556 (0.4854) model_time 0.4552 (0.4721) loss 3.5256 (2.7926) grad_norm 1.6339 (2.8333/1.3063) mem 16099MB [2025-01-18 09:33:04 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][160/312] eta 0:01:13 lr 0.000365 time 0.5407 (0.4847) model_time 0.5406 (0.4722) loss 3.2057 (2.7871) grad_norm 1.3799 (2.8206/1.2844) mem 16099MB [2025-01-18 09:33:08 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][170/312] eta 0:01:08 lr 0.000365 time 0.4506 (0.4831) model_time 0.4502 (0.4713) loss 2.4759 (2.7776) grad_norm 1.8407 (2.7954/1.2668) mem 16099MB [2025-01-18 09:33:13 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][180/312] eta 0:01:03 lr 0.000364 time 0.4484 (0.4814) model_time 0.4482 (0.4703) loss 3.1544 (2.7786) grad_norm 2.8183 (2.7637/1.2427) mem 16099MB [2025-01-18 09:33:18 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][190/312] eta 0:00:58 lr 0.000364 time 0.7339 (0.4815) model_time 0.7337 (0.4709) loss 1.8717 (2.7746) grad_norm 1.8882 (2.7385/1.2258) mem 16099MB [2025-01-18 09:33:22 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][200/312] eta 0:00:53 lr 0.000363 time 0.4489 (0.4807) model_time 0.4485 (0.4706) loss 3.2515 (2.7725) grad_norm 3.2195 (2.7117/1.2137) mem 16099MB [2025-01-18 09:33:27 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][210/312] eta 0:00:48 lr 0.000363 time 0.4568 (0.4797) model_time 0.4567 (0.4700) loss 3.0847 (2.7711) grad_norm 1.4794 (2.6880/1.2056) mem 16099MB [2025-01-18 09:33:31 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][220/312] eta 0:00:44 lr 0.000363 time 0.4489 (0.4790) model_time 0.4487 (0.4698) loss 2.7820 (2.7798) grad_norm 1.2709 (2.6442/1.2016) mem 16099MB [2025-01-18 09:33:36 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][230/312] eta 0:00:39 lr 0.000362 time 0.4796 (0.4780) model_time 0.4791 (0.4692) loss 1.8944 (2.7773) grad_norm 3.3087 (2.6441/1.1920) mem 16099MB [2025-01-18 09:33:41 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][240/312] eta 0:00:34 lr 0.000362 time 0.4552 (0.4769) model_time 0.4548 (0.4684) loss 3.2335 (2.7743) grad_norm 3.7580 (2.6718/1.1888) mem 16099MB [2025-01-18 09:33:45 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][250/312] eta 0:00:29 lr 0.000362 time 0.5619 (0.4772) model_time 0.5618 (0.4690) loss 2.6285 (2.7748) grad_norm 2.2971 (2.7236/1.2464) mem 16099MB [2025-01-18 09:33:50 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][260/312] eta 0:00:24 lr 0.000361 time 0.4716 (0.4769) model_time 0.4714 (0.4690) loss 3.3433 (2.7694) grad_norm 3.7451 (2.7238/1.2404) mem 16099MB [2025-01-18 09:33:55 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][270/312] eta 0:00:20 lr 0.000361 time 0.4413 (0.4765) model_time 0.4407 (0.4689) loss 3.5234 (2.7761) grad_norm 1.9436 (2.7328/1.2590) mem 16099MB [2025-01-18 09:34:00 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][280/312] eta 0:00:15 lr 0.000361 time 0.4503 (0.4771) model_time 0.4498 (0.4698) loss 2.9306 (2.7865) grad_norm 4.4010 (2.7340/1.2571) mem 16099MB [2025-01-18 09:34:04 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][290/312] eta 0:00:10 lr 0.000360 time 0.4571 (0.4764) model_time 0.4566 (0.4693) loss 2.4624 (2.7828) grad_norm 1.2679 (2.7175/1.2493) mem 16099MB [2025-01-18 09:34:09 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][300/312] eta 0:00:05 lr 0.000360 time 0.4390 (0.4755) model_time 0.4389 (0.4687) loss 2.8666 (2.7805) grad_norm 4.2105 (2.7076/1.2401) mem 16099MB [2025-01-18 09:34:13 internimage_t_1k_224] (main.py 510): INFO Train: [244/300][310/312] eta 0:00:00 lr 0.000360 time 0.4391 (0.4749) model_time 0.4390 (0.4683) loss 2.7781 (2.7838) grad_norm 2.3051 (2.6750/1.1972) mem 16099MB [2025-01-18 09:34:14 internimage_t_1k_224] (main.py 519): INFO EPOCH 244 training takes 0:02:28 [2025-01-18 09:34:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_244.pth saving...... [2025-01-18 09:34:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_244.pth saved !!! [2025-01-18 09:34:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.289 (7.289) Loss 0.7346 (0.7346) Acc@1 84.741 (84.741) Acc@5 97.339 (97.339) Mem 16099MB [2025-01-18 09:34:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.999) Loss 0.9784 (0.8395) Acc@1 78.491 (82.571) Acc@5 94.800 (96.174) Mem 16099MB [2025-01-18 09:34:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:244] * Acc@1 82.446 Acc@5 96.175 [2025-01-18 09:34:26 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.4% [2025-01-18 09:34:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:34:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.137 (8.137) Loss 0.7408 (0.7408) Acc@1 85.791 (85.791) Acc@5 97.681 (97.681) Mem 16099MB [2025-01-18 09:34:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.106) Loss 0.9805 (0.8470) Acc@1 79.175 (83.294) Acc@5 95.435 (96.451) Mem 16099MB [2025-01-18 09:34:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:244] * Acc@1 83.165 Acc@5 96.477 [2025-01-18 09:34:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:34:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:34:40 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:34:40 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.17% [2025-01-18 09:34:42 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][0/312] eta 0:11:29 lr 0.000359 time 2.2115 (2.2115) model_time 0.4798 (0.4798) loss 2.4411 (2.4411) grad_norm 1.3112 (1.3112/0.0000) mem 16099MB [2025-01-18 09:34:47 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][10/312] eta 0:03:16 lr 0.000359 time 0.4561 (0.6519) model_time 0.4557 (0.4942) loss 2.9402 (2.9204) grad_norm 1.7811 (1.7991/0.5481) mem 16099MB [2025-01-18 09:34:52 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][20/312] eta 0:02:43 lr 0.000359 time 0.4649 (0.5594) model_time 0.4648 (0.4766) loss 2.5818 (2.7827) grad_norm 3.6018 (1.9793/0.8313) mem 16099MB [2025-01-18 09:34:57 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][30/312] eta 0:02:30 lr 0.000358 time 0.4442 (0.5336) model_time 0.4440 (0.4774) loss 3.2130 (2.6996) grad_norm 2.9924 (2.2870/1.0355) mem 16099MB [2025-01-18 09:35:01 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][40/312] eta 0:02:20 lr 0.000358 time 0.4578 (0.5147) model_time 0.4574 (0.4721) loss 2.0832 (2.7164) grad_norm 2.0606 (2.5712/1.2692) mem 16099MB [2025-01-18 09:35:06 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][50/312] eta 0:02:12 lr 0.000358 time 0.4572 (0.5040) model_time 0.4567 (0.4697) loss 1.7206 (2.7319) grad_norm 2.8857 (2.4986/1.2103) mem 16099MB [2025-01-18 09:35:10 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][60/312] eta 0:02:05 lr 0.000357 time 0.4730 (0.4967) model_time 0.4725 (0.4680) loss 3.4502 (2.7479) grad_norm 1.2070 (2.4570/1.1407) mem 16099MB [2025-01-18 09:35:15 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][70/312] eta 0:01:58 lr 0.000357 time 0.4665 (0.4906) model_time 0.4663 (0.4658) loss 2.8990 (2.7579) grad_norm 2.5034 (2.4984/1.1915) mem 16099MB [2025-01-18 09:35:20 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][80/312] eta 0:01:53 lr 0.000357 time 0.5259 (0.4877) model_time 0.5258 (0.4660) loss 2.5139 (2.7515) grad_norm 1.4292 (2.5084/1.1548) mem 16099MB [2025-01-18 09:35:24 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][90/312] eta 0:01:47 lr 0.000356 time 0.4581 (0.4847) model_time 0.4577 (0.4653) loss 1.8099 (2.7327) grad_norm 2.2911 (2.4611/1.1215) mem 16099MB [2025-01-18 09:35:29 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][100/312] eta 0:01:42 lr 0.000356 time 0.4449 (0.4819) model_time 0.4445 (0.4644) loss 3.2945 (2.7839) grad_norm 3.6682 (2.5312/1.1936) mem 16099MB [2025-01-18 09:35:34 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][110/312] eta 0:01:37 lr 0.000355 time 0.4605 (0.4813) model_time 0.4603 (0.4653) loss 3.2691 (2.7877) grad_norm 2.3178 (2.6244/1.2340) mem 16099MB [2025-01-18 09:35:38 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][120/312] eta 0:01:32 lr 0.000355 time 0.5455 (0.4811) model_time 0.5451 (0.4664) loss 3.1392 (2.7845) grad_norm 3.3202 (2.6826/1.2706) mem 16099MB [2025-01-18 09:35:43 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][130/312] eta 0:01:27 lr 0.000355 time 0.4530 (0.4790) model_time 0.4526 (0.4654) loss 2.8138 (2.7752) grad_norm 1.2234 (2.6522/1.2558) mem 16099MB [2025-01-18 09:35:47 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][140/312] eta 0:01:22 lr 0.000354 time 0.4555 (0.4774) model_time 0.4551 (0.4647) loss 2.8691 (2.7745) grad_norm 1.6403 (2.6076/1.2386) mem 16099MB [2025-01-18 09:35:52 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][150/312] eta 0:01:17 lr 0.000354 time 0.4433 (0.4777) model_time 0.4431 (0.4658) loss 3.3334 (2.7856) grad_norm 2.0314 (2.6238/1.2388) mem 16099MB [2025-01-18 09:35:57 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][160/312] eta 0:01:12 lr 0.000354 time 0.5480 (0.4802) model_time 0.5478 (0.4691) loss 2.1934 (2.7862) grad_norm 4.0436 (2.6890/1.2898) mem 16099MB [2025-01-18 09:36:02 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][170/312] eta 0:01:08 lr 0.000353 time 0.4544 (0.4793) model_time 0.4540 (0.4687) loss 2.0419 (2.7831) grad_norm 1.9330 (2.7257/1.3225) mem 16099MB [2025-01-18 09:36:07 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][180/312] eta 0:01:03 lr 0.000353 time 0.4817 (0.4804) model_time 0.4813 (0.4704) loss 3.2275 (2.7886) grad_norm 4.3773 (2.7393/1.3048) mem 16099MB [2025-01-18 09:36:12 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][190/312] eta 0:00:58 lr 0.000353 time 0.4570 (0.4791) model_time 0.4568 (0.4696) loss 3.4828 (2.7923) grad_norm 4.1234 (2.7815/1.2995) mem 16099MB [2025-01-18 09:36:17 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][200/312] eta 0:00:53 lr 0.000352 time 0.4574 (0.4816) model_time 0.4570 (0.4726) loss 2.0394 (2.7912) grad_norm 4.3048 (2.8158/1.3060) mem 16099MB [2025-01-18 09:36:22 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][210/312] eta 0:00:49 lr 0.000352 time 0.4533 (0.4809) model_time 0.4529 (0.4723) loss 1.6971 (2.7799) grad_norm 3.1526 (2.8019/1.2866) mem 16099MB [2025-01-18 09:36:26 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][220/312] eta 0:00:44 lr 0.000352 time 0.4508 (0.4798) model_time 0.4503 (0.4716) loss 3.1856 (2.7821) grad_norm 1.3848 (2.8083/1.2803) mem 16099MB [2025-01-18 09:36:31 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][230/312] eta 0:00:39 lr 0.000351 time 0.4575 (0.4788) model_time 0.4573 (0.4710) loss 3.1547 (2.7820) grad_norm 2.8433 (2.8056/1.2717) mem 16099MB [2025-01-18 09:36:35 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][240/312] eta 0:00:34 lr 0.000351 time 0.4597 (0.4779) model_time 0.4593 (0.4704) loss 3.1471 (2.7891) grad_norm 1.2910 (2.7923/1.2623) mem 16099MB [2025-01-18 09:36:40 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][250/312] eta 0:00:29 lr 0.000350 time 0.4455 (0.4784) model_time 0.4451 (0.4711) loss 2.8579 (2.7946) grad_norm 4.3366 (2.7952/1.2603) mem 16099MB [2025-01-18 09:36:45 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][260/312] eta 0:00:24 lr 0.000350 time 0.4595 (0.4781) model_time 0.4593 (0.4711) loss 3.1150 (2.7904) grad_norm 2.4526 (2.7701/1.2522) mem 16099MB [2025-01-18 09:36:49 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][270/312] eta 0:00:20 lr 0.000350 time 0.4751 (0.4773) model_time 0.4750 (0.4706) loss 1.9968 (2.7870) grad_norm 2.2997 (2.7569/1.2388) mem 16099MB [2025-01-18 09:36:54 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][280/312] eta 0:00:15 lr 0.000349 time 0.4734 (0.4766) model_time 0.4729 (0.4700) loss 2.8283 (2.7876) grad_norm 2.8825 (2.7417/1.2294) mem 16099MB [2025-01-18 09:36:59 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][290/312] eta 0:00:10 lr 0.000349 time 0.4636 (0.4763) model_time 0.4632 (0.4700) loss 3.1634 (2.7881) grad_norm 1.9597 (2.7549/1.2283) mem 16099MB [2025-01-18 09:37:03 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][300/312] eta 0:00:05 lr 0.000349 time 0.4405 (0.4755) model_time 0.4404 (0.4694) loss 2.7118 (2.7821) grad_norm 2.3725 (2.7990/1.2332) mem 16099MB [2025-01-18 09:37:08 internimage_t_1k_224] (main.py 510): INFO Train: [245/300][310/312] eta 0:00:00 lr 0.000348 time 0.4403 (0.4746) model_time 0.4402 (0.4686) loss 3.2281 (2.7835) grad_norm 2.9176 (2.8099/1.2307) mem 16099MB [2025-01-18 09:37:08 internimage_t_1k_224] (main.py 519): INFO EPOCH 245 training takes 0:02:28 [2025-01-18 09:37:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_245.pth saving...... [2025-01-18 09:37:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_245.pth saved !!! [2025-01-18 09:37:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.387 (7.387) Loss 0.7244 (0.7244) Acc@1 85.181 (85.181) Acc@5 97.290 (97.290) Mem 16099MB [2025-01-18 09:37:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.995) Loss 0.9671 (0.8282) Acc@1 78.516 (82.602) Acc@5 95.020 (96.149) Mem 16099MB [2025-01-18 09:37:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:245] * Acc@1 82.452 Acc@5 96.147 [2025-01-18 09:37:20 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.5% [2025-01-18 09:37:20 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:37:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.246 (8.246) Loss 0.7396 (0.7396) Acc@1 85.767 (85.767) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 09:37:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.110) Loss 0.9787 (0.8456) Acc@1 79.248 (83.325) Acc@5 95.410 (96.467) Mem 16099MB [2025-01-18 09:37:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:245] * Acc@1 83.195 Acc@5 96.491 [2025-01-18 09:37:33 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:37:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:37:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:37:34 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.20% [2025-01-18 09:37:37 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][0/312] eta 0:13:18 lr 0.000348 time 2.5600 (2.5600) model_time 0.4708 (0.4708) loss 2.8611 (2.8611) grad_norm 3.5883 (3.5883/0.0000) mem 16099MB [2025-01-18 09:37:42 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][10/312] eta 0:03:18 lr 0.000348 time 0.4531 (0.6557) model_time 0.4526 (0.4654) loss 2.3111 (2.7408) grad_norm 1.4470 (3.2979/1.7042) mem 16099MB [2025-01-18 09:37:46 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][20/312] eta 0:02:46 lr 0.000348 time 0.4518 (0.5712) model_time 0.4517 (0.4714) loss 3.6486 (2.8173) grad_norm 2.7594 (2.9463/1.3682) mem 16099MB [2025-01-18 09:37:51 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][30/312] eta 0:02:30 lr 0.000347 time 0.4531 (0.5351) model_time 0.4526 (0.4674) loss 2.3265 (2.7838) grad_norm 2.3598 (3.1703/1.5142) mem 16099MB [2025-01-18 09:37:56 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][40/312] eta 0:02:20 lr 0.000347 time 0.4593 (0.5157) model_time 0.4588 (0.4644) loss 3.2055 (2.7802) grad_norm 4.7848 (3.3098/1.4777) mem 16099MB [2025-01-18 09:38:00 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][50/312] eta 0:02:12 lr 0.000346 time 0.4503 (0.5048) model_time 0.4502 (0.4635) loss 3.3551 (2.8099) grad_norm 2.0100 (3.1955/1.3926) mem 16099MB [2025-01-18 09:38:05 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][60/312] eta 0:02:05 lr 0.000346 time 0.4652 (0.4976) model_time 0.4651 (0.4630) loss 3.0914 (2.8130) grad_norm 1.9064 (3.0396/1.3703) mem 16099MB [2025-01-18 09:38:09 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][70/312] eta 0:01:59 lr 0.000346 time 0.5438 (0.4931) model_time 0.5436 (0.4633) loss 3.1563 (2.8147) grad_norm 2.2200 (2.8504/1.3639) mem 16099MB [2025-01-18 09:38:14 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][80/312] eta 0:01:53 lr 0.000345 time 0.5414 (0.4893) model_time 0.5412 (0.4630) loss 2.1600 (2.8194) grad_norm 1.9793 (2.7748/1.3022) mem 16099MB [2025-01-18 09:38:19 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][90/312] eta 0:01:48 lr 0.000345 time 0.4422 (0.4874) model_time 0.4421 (0.4640) loss 3.1393 (2.8317) grad_norm 4.7553 (2.8597/1.3335) mem 16099MB [2025-01-18 09:38:23 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][100/312] eta 0:01:42 lr 0.000345 time 0.4462 (0.4841) model_time 0.4460 (0.4630) loss 2.6099 (2.8070) grad_norm 2.4302 (2.9743/1.3805) mem 16099MB [2025-01-18 09:38:28 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][110/312] eta 0:01:37 lr 0.000344 time 0.5641 (0.4844) model_time 0.5640 (0.4651) loss 3.1337 (2.8232) grad_norm 2.7226 (3.0346/1.3864) mem 16099MB [2025-01-18 09:38:33 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][120/312] eta 0:01:32 lr 0.000344 time 0.4668 (0.4823) model_time 0.4663 (0.4646) loss 2.6389 (2.8225) grad_norm 1.8582 (3.0365/1.3706) mem 16099MB [2025-01-18 09:38:38 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][130/312] eta 0:01:27 lr 0.000344 time 0.4551 (0.4823) model_time 0.4549 (0.4659) loss 2.5621 (2.8204) grad_norm 4.6367 (3.0317/1.3477) mem 16099MB [2025-01-18 09:38:42 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][140/312] eta 0:01:22 lr 0.000343 time 0.4654 (0.4811) model_time 0.4652 (0.4658) loss 2.5790 (2.8278) grad_norm 2.2661 (2.9814/1.3232) mem 16099MB [2025-01-18 09:38:47 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][150/312] eta 0:01:18 lr 0.000343 time 0.5378 (0.4826) model_time 0.5377 (0.4683) loss 2.2966 (2.8226) grad_norm 1.4765 (2.9560/1.2999) mem 16099MB [2025-01-18 09:38:52 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][160/312] eta 0:01:13 lr 0.000343 time 0.4707 (0.4815) model_time 0.4703 (0.4681) loss 2.0894 (2.8185) grad_norm 4.3686 (2.9471/1.2972) mem 16099MB [2025-01-18 09:38:57 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][170/312] eta 0:01:08 lr 0.000342 time 0.4482 (0.4811) model_time 0.4480 (0.4685) loss 2.9998 (2.8225) grad_norm 3.4598 (2.9270/1.2742) mem 16099MB [2025-01-18 09:39:01 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][180/312] eta 0:01:03 lr 0.000342 time 0.4408 (0.4801) model_time 0.4406 (0.4682) loss 3.1883 (2.8165) grad_norm 4.2603 (2.9649/1.2663) mem 16099MB [2025-01-18 09:39:06 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][190/312] eta 0:00:58 lr 0.000341 time 0.4517 (0.4789) model_time 0.4515 (0.4676) loss 3.1051 (2.8151) grad_norm 3.6624 (2.9648/1.2860) mem 16099MB [2025-01-18 09:39:10 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][200/312] eta 0:00:53 lr 0.000341 time 0.4580 (0.4779) model_time 0.4576 (0.4671) loss 3.2578 (2.8126) grad_norm 2.2012 (2.9700/1.2906) mem 16099MB [2025-01-18 09:39:15 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][210/312] eta 0:00:48 lr 0.000341 time 0.4445 (0.4779) model_time 0.4441 (0.4676) loss 2.6485 (2.8081) grad_norm 1.4878 (2.9767/1.2869) mem 16099MB [2025-01-18 09:39:20 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][220/312] eta 0:00:43 lr 0.000340 time 0.4530 (0.4767) model_time 0.4526 (0.4669) loss 3.6036 (2.8075) grad_norm 1.5329 (2.9222/1.2923) mem 16099MB [2025-01-18 09:39:24 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][230/312] eta 0:00:39 lr 0.000340 time 0.4635 (0.4758) model_time 0.4633 (0.4664) loss 2.9437 (2.7961) grad_norm 2.4560 (2.8996/1.2771) mem 16099MB [2025-01-18 09:39:29 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][240/312] eta 0:00:34 lr 0.000340 time 0.4438 (0.4753) model_time 0.4437 (0.4663) loss 2.2778 (2.7942) grad_norm 3.1942 (2.8869/1.2680) mem 16099MB [2025-01-18 09:39:34 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][250/312] eta 0:00:29 lr 0.000339 time 0.4409 (0.4752) model_time 0.4405 (0.4665) loss 2.7972 (2.7905) grad_norm 1.2976 (2.9184/1.3069) mem 16099MB [2025-01-18 09:39:38 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][260/312] eta 0:00:24 lr 0.000339 time 0.4487 (0.4743) model_time 0.4486 (0.4659) loss 3.3230 (2.7929) grad_norm 3.3043 (2.9262/1.3008) mem 16099MB [2025-01-18 09:39:43 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][270/312] eta 0:00:19 lr 0.000339 time 0.4412 (0.4739) model_time 0.4411 (0.4658) loss 2.7547 (2.7924) grad_norm 5.8669 (2.9572/1.3185) mem 16099MB [2025-01-18 09:39:47 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][280/312] eta 0:00:15 lr 0.000338 time 0.4578 (0.4735) model_time 0.4576 (0.4657) loss 3.0756 (2.7912) grad_norm 2.4770 (2.9484/1.3211) mem 16099MB [2025-01-18 09:39:52 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][290/312] eta 0:00:10 lr 0.000338 time 0.4551 (0.4729) model_time 0.4549 (0.4653) loss 2.7881 (2.7903) grad_norm 3.7303 (2.9276/1.3158) mem 16099MB [2025-01-18 09:39:57 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][300/312] eta 0:00:05 lr 0.000338 time 0.4401 (0.4727) model_time 0.4401 (0.4654) loss 2.7347 (2.7911) grad_norm 2.2812 (2.9351/1.3271) mem 16099MB [2025-01-18 09:40:01 internimage_t_1k_224] (main.py 510): INFO Train: [246/300][310/312] eta 0:00:00 lr 0.000337 time 0.4416 (0.4727) model_time 0.4415 (0.4656) loss 3.4181 (2.7890) grad_norm 2.4569 (2.9198/1.2971) mem 16099MB [2025-01-18 09:40:02 internimage_t_1k_224] (main.py 519): INFO EPOCH 246 training takes 0:02:27 [2025-01-18 09:40:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_246.pth saving...... [2025-01-18 09:40:03 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_246.pth saved !!! [2025-01-18 09:40:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.286 (7.286) Loss 0.7320 (0.7320) Acc@1 84.937 (84.937) Acc@5 97.339 (97.339) Mem 16099MB [2025-01-18 09:40:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (0.977) Loss 0.9847 (0.8364) Acc@1 78.540 (82.508) Acc@5 94.849 (96.118) Mem 16099MB [2025-01-18 09:40:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:246] * Acc@1 82.380 Acc@5 96.109 [2025-01-18 09:40:14 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.4% [2025-01-18 09:40:14 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:40:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.293 (8.293) Loss 0.7387 (0.7387) Acc@1 85.767 (85.767) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:40:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.101 (1.104) Loss 0.9774 (0.8445) Acc@1 79.321 (83.352) Acc@5 95.410 (96.471) Mem 16099MB [2025-01-18 09:40:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:246] * Acc@1 83.225 Acc@5 96.493 [2025-01-18 09:40:26 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:40:26 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:40:28 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:40:28 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.23% [2025-01-18 09:40:30 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][0/312] eta 0:12:01 lr 0.000337 time 2.3132 (2.3132) model_time 0.4947 (0.4947) loss 2.9511 (2.9511) grad_norm 2.2756 (2.2756/0.0000) mem 16099MB [2025-01-18 09:40:35 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][10/312] eta 0:03:16 lr 0.000337 time 0.5225 (0.6511) model_time 0.5221 (0.4830) loss 3.2062 (2.8262) grad_norm 1.1179 (2.6770/0.9266) mem 16099MB [2025-01-18 09:40:40 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][20/312] eta 0:02:44 lr 0.000337 time 0.4599 (0.5635) model_time 0.4598 (0.4752) loss 2.8063 (2.8202) grad_norm 2.5460 (2.7641/0.9595) mem 16099MB [2025-01-18 09:40:44 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][30/312] eta 0:02:30 lr 0.000336 time 0.5338 (0.5329) model_time 0.5337 (0.4731) loss 2.8092 (2.8650) grad_norm 2.7641 (2.7057/0.8882) mem 16099MB [2025-01-18 09:40:49 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][40/312] eta 0:02:20 lr 0.000336 time 0.4407 (0.5167) model_time 0.4406 (0.4714) loss 2.6077 (2.8549) grad_norm 1.8696 (2.7137/0.9107) mem 16099MB [2025-01-18 09:40:54 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][50/312] eta 0:02:13 lr 0.000335 time 0.4565 (0.5083) model_time 0.4563 (0.4718) loss 3.1097 (2.8697) grad_norm 1.7796 (2.6343/0.8691) mem 16099MB [2025-01-18 09:40:58 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][60/312] eta 0:02:06 lr 0.000335 time 0.4452 (0.5014) model_time 0.4451 (0.4708) loss 2.7417 (2.8455) grad_norm 2.5766 (2.5402/0.9122) mem 16099MB [2025-01-18 09:41:03 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][70/312] eta 0:02:00 lr 0.000335 time 0.4409 (0.4980) model_time 0.4408 (0.4717) loss 3.0279 (2.7910) grad_norm 5.4879 (2.5492/0.9585) mem 16099MB [2025-01-18 09:41:08 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][80/312] eta 0:01:54 lr 0.000334 time 0.4499 (0.4940) model_time 0.4495 (0.4709) loss 3.2796 (2.8020) grad_norm 4.7086 (2.7130/1.2113) mem 16099MB [2025-01-18 09:41:12 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][90/312] eta 0:01:48 lr 0.000334 time 0.4511 (0.4897) model_time 0.4507 (0.4690) loss 2.8991 (2.8037) grad_norm 1.4784 (2.7184/1.1839) mem 16099MB [2025-01-18 09:41:17 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][100/312] eta 0:01:43 lr 0.000334 time 0.4517 (0.4874) model_time 0.4512 (0.4686) loss 2.7216 (2.8052) grad_norm 2.5995 (2.7651/1.1805) mem 16099MB [2025-01-18 09:41:22 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][110/312] eta 0:01:38 lr 0.000333 time 0.4556 (0.4852) model_time 0.4552 (0.4681) loss 2.8345 (2.8218) grad_norm 1.1673 (2.8390/1.2148) mem 16099MB [2025-01-18 09:41:26 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][120/312] eta 0:01:32 lr 0.000333 time 0.5352 (0.4843) model_time 0.5347 (0.4685) loss 2.5452 (2.8189) grad_norm 4.9956 (2.8977/1.2500) mem 16099MB [2025-01-18 09:41:31 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][130/312] eta 0:01:27 lr 0.000333 time 0.4708 (0.4824) model_time 0.4703 (0.4678) loss 2.5954 (2.8213) grad_norm 1.6973 (2.9419/1.2901) mem 16099MB [2025-01-18 09:41:36 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][140/312] eta 0:01:22 lr 0.000332 time 0.4534 (0.4807) model_time 0.4532 (0.4671) loss 3.0343 (2.8180) grad_norm 1.7973 (2.8923/1.2755) mem 16099MB [2025-01-18 09:41:40 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][150/312] eta 0:01:17 lr 0.000332 time 0.4810 (0.4803) model_time 0.4806 (0.4676) loss 2.9258 (2.8276) grad_norm 2.1957 (2.9141/1.2741) mem 16099MB [2025-01-18 09:41:45 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][160/312] eta 0:01:13 lr 0.000332 time 0.4451 (0.4805) model_time 0.4450 (0.4685) loss 3.1295 (2.8192) grad_norm 6.2175 (2.9722/1.2976) mem 16099MB [2025-01-18 09:41:50 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][170/312] eta 0:01:08 lr 0.000331 time 0.4843 (0.4795) model_time 0.4839 (0.4682) loss 2.8499 (2.8307) grad_norm 2.7967 (3.0098/1.2990) mem 16099MB [2025-01-18 09:41:54 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][180/312] eta 0:01:03 lr 0.000331 time 0.4576 (0.4787) model_time 0.4574 (0.4680) loss 3.0209 (2.8387) grad_norm 1.4068 (2.9888/1.3013) mem 16099MB [2025-01-18 09:41:59 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][190/312] eta 0:00:58 lr 0.000331 time 0.4620 (0.4774) model_time 0.4619 (0.4672) loss 3.0581 (2.8344) grad_norm 1.2886 (2.9698/1.2910) mem 16099MB [2025-01-18 09:42:04 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][200/312] eta 0:00:53 lr 0.000330 time 0.4685 (0.4767) model_time 0.4681 (0.4671) loss 3.1357 (2.8313) grad_norm 2.4417 (2.9503/1.2758) mem 16099MB [2025-01-18 09:42:08 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][210/312] eta 0:00:48 lr 0.000330 time 0.4568 (0.4756) model_time 0.4567 (0.4663) loss 2.8341 (2.8243) grad_norm 3.7728 (2.9426/1.2629) mem 16099MB [2025-01-18 09:42:13 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][220/312] eta 0:00:43 lr 0.000330 time 0.4475 (0.4750) model_time 0.4471 (0.4662) loss 3.0817 (2.8225) grad_norm 1.3097 (2.9229/1.2723) mem 16099MB [2025-01-18 09:42:17 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][230/312] eta 0:00:38 lr 0.000329 time 0.4439 (0.4744) model_time 0.4434 (0.4660) loss 2.1965 (2.8148) grad_norm 5.4101 (2.9504/1.3034) mem 16099MB [2025-01-18 09:42:22 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][240/312] eta 0:00:34 lr 0.000329 time 0.5296 (0.4744) model_time 0.5292 (0.4663) loss 3.1979 (2.8170) grad_norm 4.5946 (2.9297/1.2967) mem 16099MB [2025-01-18 09:42:27 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][250/312] eta 0:00:29 lr 0.000329 time 0.4659 (0.4746) model_time 0.4655 (0.4668) loss 2.6937 (2.8124) grad_norm 2.3413 (2.9553/1.2874) mem 16099MB [2025-01-18 09:42:32 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][260/312] eta 0:00:24 lr 0.000328 time 0.5390 (0.4743) model_time 0.5386 (0.4667) loss 3.1919 (2.8182) grad_norm 1.2387 (2.9500/1.2924) mem 16099MB [2025-01-18 09:42:36 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][270/312] eta 0:00:19 lr 0.000328 time 0.4472 (0.4739) model_time 0.4470 (0.4666) loss 2.9625 (2.8160) grad_norm 1.7627 (2.9405/1.2846) mem 16099MB [2025-01-18 09:42:41 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][280/312] eta 0:00:15 lr 0.000327 time 0.4449 (0.4736) model_time 0.4445 (0.4665) loss 2.9702 (2.8220) grad_norm 2.0211 (2.9171/1.2710) mem 16099MB [2025-01-18 09:42:46 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][290/312] eta 0:00:10 lr 0.000327 time 0.4468 (0.4735) model_time 0.4466 (0.4667) loss 3.0108 (2.8277) grad_norm 1.9801 (2.9046/1.2595) mem 16099MB [2025-01-18 09:42:50 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][300/312] eta 0:00:05 lr 0.000327 time 0.4392 (0.4730) model_time 0.4391 (0.4665) loss 1.5498 (2.8201) grad_norm 2.4071 (2.8850/1.2609) mem 16099MB [2025-01-18 09:42:55 internimage_t_1k_224] (main.py 510): INFO Train: [247/300][310/312] eta 0:00:00 lr 0.000326 time 0.4404 (0.4720) model_time 0.4403 (0.4656) loss 2.4997 (2.8167) grad_norm 1.7506 (2.8650/1.2656) mem 16099MB [2025-01-18 09:42:55 internimage_t_1k_224] (main.py 519): INFO EPOCH 247 training takes 0:02:27 [2025-01-18 09:42:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_247.pth saving...... [2025-01-18 09:42:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_247.pth saved !!! [2025-01-18 09:43:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.426 (7.426) Loss 0.7361 (0.7361) Acc@1 85.010 (85.010) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 09:43:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.988) Loss 0.9873 (0.8400) Acc@1 78.003 (82.579) Acc@5 95.117 (96.140) Mem 16099MB [2025-01-18 09:43:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:247] * Acc@1 82.458 Acc@5 96.141 [2025-01-18 09:43:07 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.5% [2025-01-18 09:43:07 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:43:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.153 (8.153) Loss 0.7376 (0.7376) Acc@1 85.791 (85.791) Acc@5 97.681 (97.681) Mem 16099MB [2025-01-18 09:43:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.103) Loss 0.9758 (0.8431) Acc@1 79.272 (83.352) Acc@5 95.410 (96.471) Mem 16099MB [2025-01-18 09:43:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:247] * Acc@1 83.229 Acc@5 96.499 [2025-01-18 09:43:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:43:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:43:21 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:43:21 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.23% [2025-01-18 09:43:24 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][0/312] eta 0:12:19 lr 0.000326 time 2.3696 (2.3696) model_time 0.4827 (0.4827) loss 2.4544 (2.4544) grad_norm 1.5082 (1.5082/0.0000) mem 16099MB [2025-01-18 09:43:28 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][10/312] eta 0:03:12 lr 0.000326 time 0.4388 (0.6383) model_time 0.4385 (0.4665) loss 2.8412 (2.8456) grad_norm 1.9109 (2.0518/0.4986) mem 16099MB [2025-01-18 09:43:33 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][20/312] eta 0:02:45 lr 0.000326 time 0.5394 (0.5665) model_time 0.5393 (0.4763) loss 3.1447 (2.8732) grad_norm 2.6326 (2.0709/0.4969) mem 16099MB [2025-01-18 09:43:38 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][30/312] eta 0:02:31 lr 0.000325 time 0.4437 (0.5358) model_time 0.4435 (0.4746) loss 2.1894 (2.8680) grad_norm 1.4929 (2.3978/1.0099) mem 16099MB [2025-01-18 09:43:43 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][40/312] eta 0:02:22 lr 0.000325 time 0.4562 (0.5240) model_time 0.4558 (0.4776) loss 2.0460 (2.8931) grad_norm 6.1215 (2.4771/1.0891) mem 16099MB [2025-01-18 09:43:47 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][50/312] eta 0:02:14 lr 0.000325 time 0.4602 (0.5135) model_time 0.4600 (0.4762) loss 3.2430 (2.8978) grad_norm 3.0905 (2.4734/1.0288) mem 16099MB [2025-01-18 09:43:52 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][60/312] eta 0:02:07 lr 0.000324 time 0.5386 (0.5068) model_time 0.5381 (0.4755) loss 2.0669 (2.8280) grad_norm 7.1831 (2.6221/1.2319) mem 16099MB [2025-01-18 09:43:57 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][70/312] eta 0:02:01 lr 0.000324 time 0.4577 (0.5033) model_time 0.4572 (0.4764) loss 3.1064 (2.7943) grad_norm 1.4469 (2.6383/1.2163) mem 16099MB [2025-01-18 09:44:02 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][80/312] eta 0:01:55 lr 0.000324 time 0.4446 (0.4998) model_time 0.4444 (0.4761) loss 2.9892 (2.7915) grad_norm 4.7571 (2.6179/1.1947) mem 16099MB [2025-01-18 09:44:06 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][90/312] eta 0:01:49 lr 0.000323 time 0.4728 (0.4953) model_time 0.4726 (0.4742) loss 2.0227 (2.7744) grad_norm 3.3214 (2.5931/1.2173) mem 16099MB [2025-01-18 09:44:11 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][100/312] eta 0:01:44 lr 0.000323 time 0.4513 (0.4912) model_time 0.4509 (0.4722) loss 2.1469 (2.7840) grad_norm 2.7594 (2.6306/1.1733) mem 16099MB [2025-01-18 09:44:15 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][110/312] eta 0:01:38 lr 0.000323 time 0.5385 (0.4887) model_time 0.5380 (0.4713) loss 2.6762 (2.7778) grad_norm 3.7678 (2.6641/1.1737) mem 16099MB [2025-01-18 09:44:20 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][120/312] eta 0:01:33 lr 0.000322 time 0.4410 (0.4859) model_time 0.4408 (0.4699) loss 1.7239 (2.7722) grad_norm 4.5898 (2.8146/1.3535) mem 16099MB [2025-01-18 09:44:24 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][130/312] eta 0:01:27 lr 0.000322 time 0.4415 (0.4832) model_time 0.4410 (0.4685) loss 3.1519 (2.7824) grad_norm 4.1277 (2.8656/1.3814) mem 16099MB [2025-01-18 09:44:29 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][140/312] eta 0:01:23 lr 0.000322 time 0.5485 (0.4827) model_time 0.5483 (0.4690) loss 2.5670 (2.7805) grad_norm 1.8779 (2.9137/1.4020) mem 16099MB [2025-01-18 09:44:34 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][150/312] eta 0:01:18 lr 0.000321 time 0.4567 (0.4821) model_time 0.4563 (0.4693) loss 2.6609 (2.7762) grad_norm 3.0870 (2.9048/1.3876) mem 16099MB [2025-01-18 09:44:39 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][160/312] eta 0:01:13 lr 0.000321 time 0.4570 (0.4815) model_time 0.4565 (0.4694) loss 2.1823 (2.7527) grad_norm 1.8763 (2.8926/1.3856) mem 16099MB [2025-01-18 09:44:43 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][170/312] eta 0:01:08 lr 0.000321 time 0.4563 (0.4800) model_time 0.4558 (0.4685) loss 2.4187 (2.7602) grad_norm 1.3799 (2.8574/1.3633) mem 16099MB [2025-01-18 09:44:48 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][180/312] eta 0:01:03 lr 0.000320 time 0.4391 (0.4783) model_time 0.4387 (0.4675) loss 2.9614 (2.7552) grad_norm 2.7990 (2.8279/1.3382) mem 16099MB [2025-01-18 09:44:52 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][190/312] eta 0:00:58 lr 0.000320 time 0.4583 (0.4773) model_time 0.4581 (0.4671) loss 3.0252 (2.7562) grad_norm 2.4260 (2.8175/1.3231) mem 16099MB [2025-01-18 09:44:57 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][200/312] eta 0:00:53 lr 0.000320 time 0.5468 (0.4774) model_time 0.5463 (0.4676) loss 2.8287 (2.7536) grad_norm 3.0247 (2.7701/1.3121) mem 16099MB [2025-01-18 09:45:02 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][210/312] eta 0:00:48 lr 0.000319 time 0.4552 (0.4781) model_time 0.4550 (0.4688) loss 2.8598 (2.7568) grad_norm 1.6181 (2.7569/1.3005) mem 16099MB [2025-01-18 09:45:07 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][220/312] eta 0:00:43 lr 0.000319 time 0.4667 (0.4774) model_time 0.4666 (0.4685) loss 2.7461 (2.7586) grad_norm 4.9347 (2.7828/1.2982) mem 16099MB [2025-01-18 09:45:11 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][230/312] eta 0:00:39 lr 0.000319 time 0.4544 (0.4765) model_time 0.4543 (0.4679) loss 3.1283 (2.7595) grad_norm 5.6877 (2.8517/1.3374) mem 16099MB [2025-01-18 09:45:16 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][240/312] eta 0:00:34 lr 0.000318 time 0.4436 (0.4767) model_time 0.4434 (0.4685) loss 2.3672 (2.7649) grad_norm 3.5126 (2.8858/1.3680) mem 16099MB [2025-01-18 09:45:21 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][250/312] eta 0:00:29 lr 0.000318 time 0.5432 (0.4769) model_time 0.5428 (0.4690) loss 1.9778 (2.7591) grad_norm 1.5644 (2.8690/1.3524) mem 16099MB [2025-01-18 09:45:25 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][260/312] eta 0:00:24 lr 0.000317 time 0.4569 (0.4764) model_time 0.4565 (0.4688) loss 2.1453 (2.7598) grad_norm 1.4974 (2.8654/1.3351) mem 16099MB [2025-01-18 09:45:30 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][270/312] eta 0:00:19 lr 0.000317 time 0.4398 (0.4755) model_time 0.4397 (0.4682) loss 3.3019 (2.7569) grad_norm 1.9763 (2.8868/1.3427) mem 16099MB [2025-01-18 09:45:35 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][280/312] eta 0:00:15 lr 0.000317 time 0.4432 (0.4755) model_time 0.4431 (0.4684) loss 3.0548 (2.7512) grad_norm 3.2182 (2.8966/1.3346) mem 16099MB [2025-01-18 09:45:39 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][290/312] eta 0:00:10 lr 0.000316 time 0.4605 (0.4751) model_time 0.4604 (0.4682) loss 3.0305 (2.7538) grad_norm 2.4398 (2.8788/1.3230) mem 16099MB [2025-01-18 09:45:44 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][300/312] eta 0:00:05 lr 0.000316 time 0.4405 (0.4756) model_time 0.4404 (0.4689) loss 3.1442 (2.7548) grad_norm 1.6176 (2.8795/1.3194) mem 16099MB [2025-01-18 09:45:49 internimage_t_1k_224] (main.py 510): INFO Train: [248/300][310/312] eta 0:00:00 lr 0.000316 time 0.4410 (0.4757) model_time 0.4409 (0.4693) loss 2.2962 (2.7504) grad_norm 3.2990 (2.9256/1.3333) mem 16099MB [2025-01-18 09:45:50 internimage_t_1k_224] (main.py 519): INFO EPOCH 248 training takes 0:02:28 [2025-01-18 09:45:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_248.pth saving...... [2025-01-18 09:45:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_248.pth saved !!! [2025-01-18 09:45:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.280 (7.280) Loss 0.7420 (0.7420) Acc@1 84.985 (84.985) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 09:46:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.976) Loss 0.9752 (0.8443) Acc@1 78.833 (82.659) Acc@5 95.142 (96.191) Mem 16099MB [2025-01-18 09:46:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:248] * Acc@1 82.458 Acc@5 96.171 [2025-01-18 09:46:02 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.5% [2025-01-18 09:46:02 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:46:10 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.186 (8.186) Loss 0.7367 (0.7367) Acc@1 85.742 (85.742) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:46:14 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.102) Loss 0.9745 (0.8421) Acc@1 79.419 (83.365) Acc@5 95.410 (96.467) Mem 16099MB [2025-01-18 09:46:14 internimage_t_1k_224] (main.py 575): INFO [Epoch:248] * Acc@1 83.243 Acc@5 96.491 [2025-01-18 09:46:14 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:46:14 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:46:15 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:46:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.24% [2025-01-18 09:46:18 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][0/312] eta 0:12:07 lr 0.000316 time 2.3313 (2.3313) model_time 0.5217 (0.5217) loss 1.6951 (1.6951) grad_norm 2.2814 (2.2814/0.0000) mem 16099MB [2025-01-18 09:46:22 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][10/312] eta 0:03:12 lr 0.000315 time 0.5350 (0.6384) model_time 0.5345 (0.4735) loss 2.1434 (2.4051) grad_norm 2.4796 (2.2592/0.8591) mem 16099MB [2025-01-18 09:46:27 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][20/312] eta 0:02:41 lr 0.000315 time 0.4664 (0.5516) model_time 0.4660 (0.4650) loss 1.9446 (2.5057) grad_norm 2.0005 (2.6681/1.0415) mem 16099MB [2025-01-18 09:46:31 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][30/312] eta 0:02:27 lr 0.000315 time 0.4489 (0.5221) model_time 0.4484 (0.4633) loss 3.1839 (2.5263) grad_norm 1.8244 (2.6071/1.0048) mem 16099MB [2025-01-18 09:46:36 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][40/312] eta 0:02:18 lr 0.000314 time 0.5276 (0.5089) model_time 0.5274 (0.4643) loss 2.7727 (2.5453) grad_norm 3.3298 (2.5508/0.9342) mem 16099MB [2025-01-18 09:46:41 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][50/312] eta 0:02:10 lr 0.000314 time 0.4505 (0.4986) model_time 0.4500 (0.4627) loss 3.1845 (2.5504) grad_norm 2.5449 (2.7060/1.1102) mem 16099MB [2025-01-18 09:46:45 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][60/312] eta 0:02:04 lr 0.000314 time 0.4527 (0.4926) model_time 0.4523 (0.4625) loss 2.2928 (2.5845) grad_norm 1.2177 (2.8300/1.2228) mem 16099MB [2025-01-18 09:46:50 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][70/312] eta 0:01:58 lr 0.000313 time 0.4573 (0.4885) model_time 0.4569 (0.4627) loss 3.2697 (2.6197) grad_norm 5.3659 (2.8882/1.2091) mem 16099MB [2025-01-18 09:46:55 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][80/312] eta 0:01:52 lr 0.000313 time 0.4402 (0.4844) model_time 0.4398 (0.4617) loss 1.8805 (2.6546) grad_norm 1.1444 (3.1465/1.5329) mem 16099MB [2025-01-18 09:46:59 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][90/312] eta 0:01:46 lr 0.000313 time 0.4635 (0.4819) model_time 0.4630 (0.4616) loss 1.7716 (2.6795) grad_norm 3.7966 (3.0961/1.4928) mem 16099MB [2025-01-18 09:47:04 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][100/312] eta 0:01:41 lr 0.000312 time 0.4531 (0.4791) model_time 0.4527 (0.4608) loss 3.4089 (2.6714) grad_norm 2.2495 (3.0580/1.5235) mem 16099MB [2025-01-18 09:47:08 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][110/312] eta 0:01:36 lr 0.000312 time 0.4537 (0.4772) model_time 0.4532 (0.4605) loss 2.8801 (2.6996) grad_norm 1.9051 (2.9569/1.4995) mem 16099MB [2025-01-18 09:47:13 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][120/312] eta 0:01:31 lr 0.000312 time 0.4611 (0.4767) model_time 0.4606 (0.4614) loss 2.2245 (2.7003) grad_norm 2.0145 (2.8859/1.4729) mem 16099MB [2025-01-18 09:47:18 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][130/312] eta 0:01:26 lr 0.000311 time 0.4438 (0.4775) model_time 0.4434 (0.4633) loss 2.4116 (2.7088) grad_norm 3.1205 (2.8425/1.4453) mem 16099MB [2025-01-18 09:47:23 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][140/312] eta 0:01:22 lr 0.000311 time 0.4419 (0.4777) model_time 0.4414 (0.4645) loss 3.4360 (2.6949) grad_norm 1.9522 (2.8477/1.4303) mem 16099MB [2025-01-18 09:47:27 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][150/312] eta 0:01:17 lr 0.000311 time 0.4538 (0.4770) model_time 0.4534 (0.4645) loss 2.1648 (2.7030) grad_norm 1.8299 (2.8006/1.4098) mem 16099MB [2025-01-18 09:47:32 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][160/312] eta 0:01:12 lr 0.000310 time 0.4506 (0.4767) model_time 0.4504 (0.4650) loss 3.4793 (2.7029) grad_norm 3.5778 (2.7627/1.3838) mem 16099MB [2025-01-18 09:47:37 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][170/312] eta 0:01:07 lr 0.000310 time 0.4428 (0.4780) model_time 0.4424 (0.4670) loss 2.9269 (2.7132) grad_norm 4.2243 (2.7557/1.3590) mem 16099MB [2025-01-18 09:47:42 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][180/312] eta 0:01:02 lr 0.000310 time 0.4555 (0.4765) model_time 0.4553 (0.4660) loss 3.2948 (2.7295) grad_norm 1.7128 (2.7392/1.3307) mem 16099MB [2025-01-18 09:47:46 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][190/312] eta 0:00:57 lr 0.000309 time 0.4629 (0.4754) model_time 0.4624 (0.4655) loss 2.3806 (2.7251) grad_norm 1.7782 (2.7047/1.3114) mem 16099MB [2025-01-18 09:47:51 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][200/312] eta 0:00:53 lr 0.000309 time 0.4555 (0.4746) model_time 0.4554 (0.4652) loss 2.5802 (2.7244) grad_norm 3.9755 (2.7082/1.2950) mem 16099MB [2025-01-18 09:47:55 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][210/312] eta 0:00:48 lr 0.000309 time 0.4728 (0.4739) model_time 0.4724 (0.4649) loss 1.8146 (2.7165) grad_norm 5.4407 (2.7719/1.3446) mem 16099MB [2025-01-18 09:48:00 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][220/312] eta 0:00:43 lr 0.000308 time 0.4516 (0.4728) model_time 0.4512 (0.4642) loss 1.8627 (2.7180) grad_norm 4.7504 (2.8045/1.3603) mem 16099MB [2025-01-18 09:48:05 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][230/312] eta 0:00:38 lr 0.000308 time 0.4461 (0.4728) model_time 0.4457 (0.4646) loss 3.1268 (2.7281) grad_norm 3.5426 (2.8206/1.3551) mem 16099MB [2025-01-18 09:48:09 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][240/312] eta 0:00:33 lr 0.000308 time 0.4584 (0.4721) model_time 0.4583 (0.4642) loss 3.0110 (2.7387) grad_norm 1.6288 (2.8246/1.3628) mem 16099MB [2025-01-18 09:48:14 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][250/312] eta 0:00:29 lr 0.000307 time 0.4423 (0.4716) model_time 0.4421 (0.4640) loss 3.3010 (2.7353) grad_norm 1.2642 (2.8211/1.3672) mem 16099MB [2025-01-18 09:48:18 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][260/312] eta 0:00:24 lr 0.000307 time 0.4587 (0.4711) model_time 0.4583 (0.4637) loss 1.8625 (2.7413) grad_norm 1.8865 (2.8115/1.3470) mem 16099MB [2025-01-18 09:48:23 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][270/312] eta 0:00:19 lr 0.000307 time 0.4402 (0.4709) model_time 0.4400 (0.4638) loss 3.0928 (2.7432) grad_norm 3.2807 (2.8175/1.3332) mem 16099MB [2025-01-18 09:48:28 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][280/312] eta 0:00:15 lr 0.000306 time 0.4511 (0.4706) model_time 0.4507 (0.4638) loss 2.9726 (2.7436) grad_norm 6.2726 (2.8405/1.3387) mem 16099MB [2025-01-18 09:48:32 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][290/312] eta 0:00:10 lr 0.000306 time 0.4599 (0.4712) model_time 0.4594 (0.4646) loss 3.1070 (2.7459) grad_norm 2.8582 (2.8059/1.3331) mem 16099MB [2025-01-18 09:48:37 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][300/312] eta 0:00:05 lr 0.000306 time 0.4371 (0.4712) model_time 0.4370 (0.4648) loss 2.8659 (2.7448) grad_norm 3.4151 (2.8135/1.3342) mem 16099MB [2025-01-18 09:48:42 internimage_t_1k_224] (main.py 510): INFO Train: [249/300][310/312] eta 0:00:00 lr 0.000305 time 0.4401 (0.4707) model_time 0.4400 (0.4645) loss 3.2238 (2.7405) grad_norm 2.7255 (2.8449/1.3377) mem 16099MB [2025-01-18 09:48:42 internimage_t_1k_224] (main.py 519): INFO EPOCH 249 training takes 0:02:26 [2025-01-18 09:48:42 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_249.pth saving...... [2025-01-18 09:48:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_249.pth saved !!! [2025-01-18 09:48:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.483 (7.483) Loss 0.7276 (0.7276) Acc@1 84.766 (84.766) Acc@5 97.339 (97.339) Mem 16099MB [2025-01-18 09:48:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.987) Loss 0.9865 (0.8358) Acc@1 78.247 (82.728) Acc@5 95.068 (96.131) Mem 16099MB [2025-01-18 09:48:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:249] * Acc@1 82.568 Acc@5 96.125 [2025-01-18 09:48:54 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.6% [2025-01-18 09:48:54 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:49:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.256 (8.256) Loss 0.7359 (0.7359) Acc@1 85.693 (85.693) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:49:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.103) Loss 0.9732 (0.8410) Acc@1 79.370 (83.376) Acc@5 95.459 (96.467) Mem 16099MB [2025-01-18 09:49:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:249] * Acc@1 83.255 Acc@5 96.491 [2025-01-18 09:49:07 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 09:49:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:49:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:49:08 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.26% [2025-01-18 09:49:11 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][0/312] eta 0:12:47 lr 0.000305 time 2.4584 (2.4584) model_time 0.4563 (0.4563) loss 2.2794 (2.2794) grad_norm 2.2789 (2.2789/0.0000) mem 16099MB [2025-01-18 09:49:15 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][10/312] eta 0:03:18 lr 0.000305 time 0.4472 (0.6574) model_time 0.4466 (0.4751) loss 2.6914 (2.6429) grad_norm 1.9039 (2.4325/0.9145) mem 16099MB [2025-01-18 09:49:20 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][20/312] eta 0:02:44 lr 0.000305 time 0.4400 (0.5647) model_time 0.4398 (0.4691) loss 1.8761 (2.7061) grad_norm 3.1688 (2.5041/0.8054) mem 16099MB [2025-01-18 09:49:25 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][30/312] eta 0:02:30 lr 0.000304 time 0.5237 (0.5320) model_time 0.5235 (0.4671) loss 3.1001 (2.6959) grad_norm 3.0681 (2.6074/0.9154) mem 16099MB [2025-01-18 09:49:30 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][40/312] eta 0:02:22 lr 0.000304 time 0.4609 (0.5250) model_time 0.4608 (0.4759) loss 1.8197 (2.7469) grad_norm 3.2628 (2.8453/1.1153) mem 16099MB [2025-01-18 09:49:34 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][50/312] eta 0:02:14 lr 0.000304 time 0.4537 (0.5141) model_time 0.4532 (0.4745) loss 2.1422 (2.7474) grad_norm 2.3289 (2.7720/1.0782) mem 16099MB [2025-01-18 09:49:39 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][60/312] eta 0:02:07 lr 0.000303 time 0.4564 (0.5047) model_time 0.4559 (0.4715) loss 2.9283 (2.7964) grad_norm 2.8286 (2.7484/1.0442) mem 16099MB [2025-01-18 09:49:44 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][70/312] eta 0:02:00 lr 0.000303 time 0.4618 (0.4994) model_time 0.4616 (0.4708) loss 1.7684 (2.7819) grad_norm 1.7915 (2.6914/1.0707) mem 16099MB [2025-01-18 09:49:48 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][80/312] eta 0:01:54 lr 0.000303 time 0.4501 (0.4951) model_time 0.4497 (0.4700) loss 1.8632 (2.7604) grad_norm 2.2965 (2.6371/1.0233) mem 16099MB [2025-01-18 09:49:53 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][90/312] eta 0:01:48 lr 0.000302 time 0.4485 (0.4907) model_time 0.4481 (0.4684) loss 2.9129 (2.7562) grad_norm 4.5467 (2.7464/1.0648) mem 16099MB [2025-01-18 09:49:57 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][100/312] eta 0:01:43 lr 0.000302 time 0.4573 (0.4885) model_time 0.4572 (0.4683) loss 2.8832 (2.7774) grad_norm 2.7314 (2.8929/1.2093) mem 16099MB [2025-01-18 09:50:02 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][110/312] eta 0:01:38 lr 0.000302 time 0.4497 (0.4855) model_time 0.4495 (0.4671) loss 2.3853 (2.7792) grad_norm 2.0699 (2.9270/1.2168) mem 16099MB [2025-01-18 09:50:07 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][120/312] eta 0:01:32 lr 0.000301 time 0.4725 (0.4835) model_time 0.4720 (0.4665) loss 3.0172 (2.7711) grad_norm 4.3201 (2.9644/1.2350) mem 16099MB [2025-01-18 09:50:11 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][130/312] eta 0:01:27 lr 0.000301 time 0.4501 (0.4835) model_time 0.4499 (0.4678) loss 3.2348 (2.7860) grad_norm 1.8942 (2.9655/1.2810) mem 16099MB [2025-01-18 09:50:16 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][140/312] eta 0:01:22 lr 0.000301 time 0.4712 (0.4826) model_time 0.4708 (0.4680) loss 2.9539 (2.7907) grad_norm 1.3994 (2.9549/1.2816) mem 16099MB [2025-01-18 09:50:21 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][150/312] eta 0:01:18 lr 0.000300 time 0.4503 (0.4835) model_time 0.4501 (0.4698) loss 3.0212 (2.7851) grad_norm 3.1160 (2.9908/1.2657) mem 16099MB [2025-01-18 09:50:26 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][160/312] eta 0:01:13 lr 0.000300 time 0.4510 (0.4848) model_time 0.4506 (0.4720) loss 2.8119 (2.7972) grad_norm 4.3635 (3.1025/1.3231) mem 16099MB [2025-01-18 09:50:31 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][170/312] eta 0:01:08 lr 0.000300 time 0.4486 (0.4830) model_time 0.4485 (0.4709) loss 3.0869 (2.8006) grad_norm 2.9866 (3.0984/1.3024) mem 16099MB [2025-01-18 09:50:35 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][180/312] eta 0:01:03 lr 0.000299 time 0.4518 (0.4817) model_time 0.4516 (0.4703) loss 2.7834 (2.8044) grad_norm 3.2703 (3.0999/1.2874) mem 16099MB [2025-01-18 09:50:40 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][190/312] eta 0:00:58 lr 0.000299 time 0.4612 (0.4805) model_time 0.4607 (0.4696) loss 3.0136 (2.8050) grad_norm 1.4514 (3.0562/1.2825) mem 16099MB [2025-01-18 09:50:45 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][200/312] eta 0:00:53 lr 0.000299 time 0.4541 (0.4800) model_time 0.4539 (0.4696) loss 2.0041 (2.7997) grad_norm 1.1744 (3.0294/1.2836) mem 16099MB [2025-01-18 09:50:49 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][210/312] eta 0:00:48 lr 0.000298 time 0.4669 (0.4797) model_time 0.4665 (0.4699) loss 2.5958 (2.7867) grad_norm 1.7775 (2.9834/1.2757) mem 16099MB [2025-01-18 09:50:54 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][220/312] eta 0:00:44 lr 0.000298 time 0.6044 (0.4792) model_time 0.6043 (0.4698) loss 3.0627 (2.7963) grad_norm 4.1201 (2.9676/1.2635) mem 16099MB [2025-01-18 09:50:59 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][230/312] eta 0:00:39 lr 0.000298 time 0.4484 (0.4785) model_time 0.4482 (0.4694) loss 2.6150 (2.8027) grad_norm 2.6325 (2.9408/1.2497) mem 16099MB [2025-01-18 09:51:03 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][240/312] eta 0:00:34 lr 0.000297 time 0.4614 (0.4778) model_time 0.4610 (0.4691) loss 3.3400 (2.8017) grad_norm 1.3194 (2.9308/1.2443) mem 16099MB [2025-01-18 09:51:08 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][250/312] eta 0:00:29 lr 0.000297 time 0.4470 (0.4775) model_time 0.4466 (0.4692) loss 2.7330 (2.7868) grad_norm 2.5588 (2.9263/1.2290) mem 16099MB [2025-01-18 09:51:13 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][260/312] eta 0:00:24 lr 0.000297 time 0.4574 (0.4770) model_time 0.4570 (0.4690) loss 2.3564 (2.7892) grad_norm 1.3337 (2.9229/1.2304) mem 16099MB [2025-01-18 09:51:17 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][270/312] eta 0:00:20 lr 0.000296 time 0.4469 (0.4767) model_time 0.4468 (0.4689) loss 3.0338 (2.7852) grad_norm 1.9262 (2.8890/1.2275) mem 16099MB [2025-01-18 09:51:22 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][280/312] eta 0:00:15 lr 0.000296 time 0.5648 (0.4767) model_time 0.5647 (0.4692) loss 2.6995 (2.7760) grad_norm 3.2484 (2.8688/1.2188) mem 16099MB [2025-01-18 09:51:27 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][290/312] eta 0:00:10 lr 0.000296 time 0.4620 (0.4765) model_time 0.4616 (0.4692) loss 2.4638 (2.7747) grad_norm 1.3240 (2.8674/1.2235) mem 16099MB [2025-01-18 09:51:31 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][300/312] eta 0:00:05 lr 0.000295 time 0.4375 (0.4762) model_time 0.4374 (0.4692) loss 2.9976 (2.7790) grad_norm 1.2749 (2.8310/1.2265) mem 16099MB [2025-01-18 09:51:36 internimage_t_1k_224] (main.py 510): INFO Train: [250/300][310/312] eta 0:00:00 lr 0.000295 time 0.5304 (0.4755) model_time 0.5303 (0.4687) loss 2.7762 (2.7767) grad_norm 4.8186 (2.8581/1.2245) mem 16099MB [2025-01-18 09:51:36 internimage_t_1k_224] (main.py 519): INFO EPOCH 250 training takes 0:02:28 [2025-01-18 09:51:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_250.pth saving...... [2025-01-18 09:51:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_250.pth saved !!! [2025-01-18 09:51:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.753 (7.753) Loss 0.7358 (0.7358) Acc@1 85.107 (85.107) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 09:51:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.036) Loss 0.9825 (0.8410) Acc@1 78.027 (82.733) Acc@5 94.873 (96.191) Mem 16099MB [2025-01-18 09:51:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:250] * Acc@1 82.598 Acc@5 96.177 [2025-01-18 09:51:49 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.6% [2025-01-18 09:51:49 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.63% [2025-01-18 09:51:57 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.327 (8.327) Loss 0.7350 (0.7350) Acc@1 85.742 (85.742) Acc@5 97.632 (97.632) Mem 16099MB [2025-01-18 09:52:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (1.121) Loss 0.9718 (0.8398) Acc@1 79.395 (83.372) Acc@5 95.532 (96.471) Mem 16099MB [2025-01-18 09:52:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:250] * Acc@1 83.247 Acc@5 96.495 [2025-01-18 09:52:02 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.2% [2025-01-18 09:52:02 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.26% [2025-01-18 09:52:05 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][0/312] eta 0:15:28 lr 0.000295 time 2.9759 (2.9759) model_time 0.9106 (0.9106) loss 3.3441 (3.3441) grad_norm 3.5590 (3.5590/0.0000) mem 16099MB [2025-01-18 09:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][10/312] eta 0:03:36 lr 0.000295 time 0.4443 (0.7159) model_time 0.4441 (0.5276) loss 2.8532 (2.9850) grad_norm 8.3079 (3.7966/1.7671) mem 16099MB [2025-01-18 09:52:14 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][20/312] eta 0:02:55 lr 0.000294 time 0.4690 (0.6002) model_time 0.4688 (0.5015) loss 2.8259 (2.8981) grad_norm 2.5754 (3.8444/1.6964) mem 16099MB [2025-01-18 09:52:19 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][30/312] eta 0:02:35 lr 0.000294 time 0.4460 (0.5531) model_time 0.4458 (0.4860) loss 2.9438 (2.7926) grad_norm 4.4071 (3.6459/1.6674) mem 16099MB [2025-01-18 09:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][40/312] eta 0:02:24 lr 0.000294 time 0.4440 (0.5323) model_time 0.4438 (0.4815) loss 2.2740 (2.7401) grad_norm 2.5543 (3.3852/1.6357) mem 16099MB [2025-01-18 09:52:28 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][50/312] eta 0:02:15 lr 0.000293 time 0.4619 (0.5182) model_time 0.4617 (0.4773) loss 2.0873 (2.7267) grad_norm 2.5938 (3.2551/1.5257) mem 16099MB [2025-01-18 09:52:33 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][60/312] eta 0:02:08 lr 0.000293 time 0.4435 (0.5117) model_time 0.4433 (0.4775) loss 3.0215 (2.7461) grad_norm 3.1708 (3.1733/1.4648) mem 16099MB [2025-01-18 09:52:37 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][70/312] eta 0:02:01 lr 0.000293 time 0.4611 (0.5041) model_time 0.4606 (0.4746) loss 3.1122 (2.7662) grad_norm 2.3235 (3.0830/1.3883) mem 16099MB [2025-01-18 09:52:42 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][80/312] eta 0:01:55 lr 0.000292 time 0.4506 (0.4990) model_time 0.4504 (0.4731) loss 1.8393 (2.7443) grad_norm 0.9154 (2.9944/1.3687) mem 16099MB [2025-01-18 09:52:47 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][90/312] eta 0:01:49 lr 0.000292 time 0.4577 (0.4944) model_time 0.4575 (0.4713) loss 2.6739 (2.7306) grad_norm 4.2612 (3.0744/1.3675) mem 16099MB [2025-01-18 09:52:51 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][100/312] eta 0:01:43 lr 0.000292 time 0.4526 (0.4905) model_time 0.4524 (0.4697) loss 2.9379 (2.7385) grad_norm 2.2511 (3.1038/1.3490) mem 16099MB [2025-01-18 09:52:56 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][110/312] eta 0:01:38 lr 0.000291 time 0.4640 (0.4885) model_time 0.4638 (0.4695) loss 3.0513 (2.7338) grad_norm 4.4977 (3.1131/1.3138) mem 16099MB [2025-01-18 09:53:00 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][120/312] eta 0:01:33 lr 0.000291 time 0.4443 (0.4863) model_time 0.4441 (0.4688) loss 2.0504 (2.6998) grad_norm 1.8880 (3.1070/1.3216) mem 16099MB [2025-01-18 09:53:05 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][130/312] eta 0:01:28 lr 0.000291 time 0.4538 (0.4861) model_time 0.4536 (0.4700) loss 3.0257 (2.7003) grad_norm 2.6001 (3.1631/1.3856) mem 16099MB [2025-01-18 09:53:10 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][140/312] eta 0:01:23 lr 0.000290 time 0.6040 (0.4861) model_time 0.6038 (0.4710) loss 3.6766 (2.7110) grad_norm 2.0960 (3.1079/1.3629) mem 16099MB [2025-01-18 09:53:15 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][150/312] eta 0:01:18 lr 0.000290 time 0.4487 (0.4849) model_time 0.4484 (0.4709) loss 2.4188 (2.7025) grad_norm 2.9227 (3.1078/1.3458) mem 16099MB [2025-01-18 09:53:20 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][160/312] eta 0:01:13 lr 0.000290 time 0.4459 (0.4852) model_time 0.4454 (0.4720) loss 2.6933 (2.7051) grad_norm 1.7760 (3.0815/1.3507) mem 16099MB [2025-01-18 09:53:24 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][170/312] eta 0:01:08 lr 0.000289 time 0.4447 (0.4842) model_time 0.4445 (0.4718) loss 3.0687 (2.7102) grad_norm 2.8468 (3.1122/1.3586) mem 16099MB [2025-01-18 09:53:29 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][180/312] eta 0:01:03 lr 0.000289 time 0.4390 (0.4829) model_time 0.4389 (0.4711) loss 2.5356 (2.7089) grad_norm 4.2332 (3.1391/1.3642) mem 16099MB [2025-01-18 09:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][190/312] eta 0:00:58 lr 0.000289 time 0.4522 (0.4814) model_time 0.4520 (0.4702) loss 2.5914 (2.7028) grad_norm 2.3457 (3.1401/1.3818) mem 16099MB [2025-01-18 09:53:38 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][200/312] eta 0:00:53 lr 0.000289 time 0.4554 (0.4802) model_time 0.4552 (0.4696) loss 3.0903 (2.7145) grad_norm 3.4523 (3.0978/1.3696) mem 16099MB [2025-01-18 09:53:43 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][210/312] eta 0:00:48 lr 0.000288 time 0.4510 (0.4794) model_time 0.4509 (0.4692) loss 2.3535 (2.7131) grad_norm 1.3043 (3.0493/1.3570) mem 16099MB [2025-01-18 09:53:47 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][220/312] eta 0:00:44 lr 0.000288 time 0.4417 (0.4785) model_time 0.4415 (0.4688) loss 2.6073 (2.7199) grad_norm 4.0179 (3.0524/1.3625) mem 16099MB [2025-01-18 09:53:52 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][230/312] eta 0:00:39 lr 0.000288 time 0.4426 (0.4783) model_time 0.4424 (0.4690) loss 2.6751 (2.7223) grad_norm 1.5948 (3.0296/1.3669) mem 16099MB [2025-01-18 09:53:57 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][240/312] eta 0:00:34 lr 0.000287 time 0.4679 (0.4774) model_time 0.4677 (0.4684) loss 3.2661 (2.7271) grad_norm 1.5482 (2.9971/1.3585) mem 16099MB [2025-01-18 09:54:01 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][250/312] eta 0:00:29 lr 0.000287 time 0.4399 (0.4763) model_time 0.4397 (0.4677) loss 2.8263 (2.7243) grad_norm 3.6001 (2.9883/1.3570) mem 16099MB [2025-01-18 09:54:06 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][260/312] eta 0:00:24 lr 0.000287 time 0.4480 (0.4754) model_time 0.4475 (0.4672) loss 3.2414 (2.7270) grad_norm 2.1227 (2.9800/1.3568) mem 16099MB [2025-01-18 09:54:10 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][270/312] eta 0:00:19 lr 0.000286 time 0.4748 (0.4750) model_time 0.4746 (0.4671) loss 2.9751 (2.7348) grad_norm 2.1733 (2.9782/1.3502) mem 16099MB [2025-01-18 09:54:15 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][280/312] eta 0:00:15 lr 0.000286 time 0.4569 (0.4743) model_time 0.4565 (0.4666) loss 3.2458 (2.7437) grad_norm 3.2514 (2.9743/1.3410) mem 16099MB [2025-01-18 09:54:20 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][290/312] eta 0:00:10 lr 0.000286 time 0.4441 (0.4740) model_time 0.4437 (0.4666) loss 3.1749 (2.7430) grad_norm 3.8964 (2.9737/1.3615) mem 16099MB [2025-01-18 09:54:24 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][300/312] eta 0:00:05 lr 0.000285 time 0.5253 (0.4741) model_time 0.5252 (0.4669) loss 3.0176 (2.7389) grad_norm 1.2698 (2.9662/1.3578) mem 16099MB [2025-01-18 09:54:29 internimage_t_1k_224] (main.py 510): INFO Train: [251/300][310/312] eta 0:00:00 lr 0.000285 time 0.4369 (0.4732) model_time 0.4368 (0.4662) loss 2.1287 (2.7425) grad_norm 2.2776 (2.9601/1.3398) mem 16099MB [2025-01-18 09:54:29 internimage_t_1k_224] (main.py 519): INFO EPOCH 251 training takes 0:02:27 [2025-01-18 09:54:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_251.pth saving...... [2025-01-18 09:54:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_251.pth saved !!! [2025-01-18 09:54:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.600 (7.600) Loss 0.7340 (0.7340) Acc@1 85.327 (85.327) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 09:54:42 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.029) Loss 0.9697 (0.8328) Acc@1 79.102 (82.828) Acc@5 94.922 (96.254) Mem 16099MB [2025-01-18 09:54:42 internimage_t_1k_224] (main.py 575): INFO [Epoch:251] * Acc@1 82.670 Acc@5 96.229 [2025-01-18 09:54:42 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 09:54:42 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 09:54:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 09:54:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.67% [2025-01-18 09:54:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.532 (7.532) Loss 0.7340 (0.7340) Acc@1 85.791 (85.791) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:54:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.007) Loss 0.9703 (0.8385) Acc@1 79.517 (83.407) Acc@5 95.557 (96.473) Mem 16099MB [2025-01-18 09:54:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:251] * Acc@1 83.279 Acc@5 96.499 [2025-01-18 09:54:54 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 09:54:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:54:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:54:56 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.28% [2025-01-18 09:54:58 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][0/312] eta 0:11:36 lr 0.000285 time 2.2311 (2.2311) model_time 0.4599 (0.4599) loss 2.1761 (2.1761) grad_norm 1.1557 (1.1557/0.0000) mem 16099MB [2025-01-18 09:55:03 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][10/312] eta 0:03:12 lr 0.000285 time 0.5272 (0.6376) model_time 0.5266 (0.4762) loss 2.9681 (2.7780) grad_norm 2.1494 (2.3046/0.9671) mem 16099MB [2025-01-18 09:55:07 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][20/312] eta 0:02:40 lr 0.000284 time 0.4469 (0.5489) model_time 0.4467 (0.4643) loss 1.8942 (2.7155) grad_norm 1.1999 (2.1074/0.8291) mem 16099MB [2025-01-18 09:55:12 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][30/312] eta 0:02:27 lr 0.000284 time 0.4525 (0.5245) model_time 0.4520 (0.4670) loss 2.9084 (2.8048) grad_norm 1.7322 (2.2541/0.8843) mem 16099MB [2025-01-18 09:55:16 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][40/312] eta 0:02:18 lr 0.000284 time 0.4510 (0.5080) model_time 0.4505 (0.4644) loss 3.2488 (2.8238) grad_norm 2.5458 (2.4824/1.1573) mem 16099MB [2025-01-18 09:55:21 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][50/312] eta 0:02:12 lr 0.000283 time 0.4622 (0.5069) model_time 0.4620 (0.4718) loss 2.7189 (2.7864) grad_norm 3.5032 (2.4111/1.0922) mem 16099MB [2025-01-18 09:55:26 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][60/312] eta 0:02:06 lr 0.000283 time 0.4649 (0.5002) model_time 0.4647 (0.4708) loss 2.5208 (2.8076) grad_norm 1.8073 (2.4592/1.0768) mem 16099MB [2025-01-18 09:55:31 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][70/312] eta 0:01:59 lr 0.000283 time 0.4622 (0.4943) model_time 0.4620 (0.4690) loss 3.0820 (2.7827) grad_norm 4.8272 (2.5639/1.1049) mem 16099MB [2025-01-18 09:55:35 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][80/312] eta 0:01:53 lr 0.000282 time 0.4558 (0.4897) model_time 0.4556 (0.4675) loss 2.7024 (2.7960) grad_norm 1.5886 (2.5240/1.0915) mem 16099MB [2025-01-18 09:55:40 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][90/312] eta 0:01:48 lr 0.000282 time 0.4805 (0.4894) model_time 0.4803 (0.4696) loss 2.2140 (2.7742) grad_norm 3.8346 (2.5407/1.0654) mem 16099MB [2025-01-18 09:55:45 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][100/312] eta 0:01:43 lr 0.000282 time 0.6079 (0.4885) model_time 0.6077 (0.4706) loss 3.4360 (2.7752) grad_norm 2.1725 (2.5151/1.0401) mem 16099MB [2025-01-18 09:55:50 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][110/312] eta 0:01:38 lr 0.000281 time 0.4513 (0.4887) model_time 0.4512 (0.4724) loss 3.2973 (2.7831) grad_norm 1.6809 (2.5315/1.0405) mem 16099MB [2025-01-18 09:55:54 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][120/312] eta 0:01:33 lr 0.000281 time 0.4608 (0.4864) model_time 0.4605 (0.4714) loss 2.6637 (2.7760) grad_norm 3.0127 (2.5342/1.0615) mem 16099MB [2025-01-18 09:55:59 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][130/312] eta 0:01:28 lr 0.000281 time 0.4658 (0.4848) model_time 0.4656 (0.4709) loss 2.1938 (2.7798) grad_norm 1.7300 (2.4937/1.0392) mem 16099MB [2025-01-18 09:56:04 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][140/312] eta 0:01:23 lr 0.000280 time 0.4441 (0.4853) model_time 0.4439 (0.4723) loss 3.2494 (2.7787) grad_norm 3.8159 (2.4945/1.0372) mem 16099MB [2025-01-18 09:56:09 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][150/312] eta 0:01:18 lr 0.000280 time 0.4560 (0.4853) model_time 0.4558 (0.4732) loss 1.5484 (2.7641) grad_norm 2.1245 (2.4969/1.0087) mem 16099MB [2025-01-18 09:56:14 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][160/312] eta 0:01:13 lr 0.000280 time 0.4507 (0.4856) model_time 0.4502 (0.4743) loss 2.2483 (2.7564) grad_norm 3.9192 (2.5363/1.0198) mem 16099MB [2025-01-18 09:56:18 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][170/312] eta 0:01:08 lr 0.000279 time 0.4626 (0.4844) model_time 0.4623 (0.4737) loss 2.8524 (2.7441) grad_norm 3.3011 (2.5442/1.0165) mem 16099MB [2025-01-18 09:56:23 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][180/312] eta 0:01:03 lr 0.000279 time 0.4466 (0.4832) model_time 0.4461 (0.4730) loss 2.9750 (2.7322) grad_norm 2.0584 (2.5505/1.0197) mem 16099MB [2025-01-18 09:56:28 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][190/312] eta 0:00:58 lr 0.000279 time 0.4486 (0.4821) model_time 0.4484 (0.4724) loss 1.8039 (2.7367) grad_norm 3.6560 (2.5478/1.0204) mem 16099MB [2025-01-18 09:56:32 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][200/312] eta 0:00:53 lr 0.000279 time 0.4524 (0.4810) model_time 0.4522 (0.4718) loss 2.9799 (2.7329) grad_norm 1.8479 (2.5620/1.0157) mem 16099MB [2025-01-18 09:56:37 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][210/312] eta 0:00:48 lr 0.000278 time 0.4672 (0.4799) model_time 0.4670 (0.4712) loss 2.8093 (2.7338) grad_norm 3.9235 (2.5783/1.0081) mem 16099MB [2025-01-18 09:56:42 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][220/312] eta 0:00:44 lr 0.000278 time 0.4551 (0.4801) model_time 0.4549 (0.4717) loss 3.1208 (2.7383) grad_norm 1.6525 (2.6113/1.0437) mem 16099MB [2025-01-18 09:56:46 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][230/312] eta 0:00:39 lr 0.000278 time 0.4530 (0.4795) model_time 0.4526 (0.4715) loss 1.9686 (2.7364) grad_norm 2.0050 (2.5958/1.0308) mem 16099MB [2025-01-18 09:56:51 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][240/312] eta 0:00:34 lr 0.000277 time 0.4541 (0.4786) model_time 0.4539 (0.4708) loss 2.7598 (2.7410) grad_norm 2.2253 (2.6069/1.0197) mem 16099MB [2025-01-18 09:56:56 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][250/312] eta 0:00:29 lr 0.000277 time 0.4610 (0.4781) model_time 0.4607 (0.4707) loss 2.0288 (2.7405) grad_norm 3.2644 (2.6104/1.0207) mem 16099MB [2025-01-18 09:57:00 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][260/312] eta 0:00:24 lr 0.000277 time 0.4543 (0.4772) model_time 0.4539 (0.4700) loss 2.6494 (2.7398) grad_norm 4.8528 (2.6101/1.0219) mem 16099MB [2025-01-18 09:57:05 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][270/312] eta 0:00:20 lr 0.000276 time 0.4536 (0.4769) model_time 0.4535 (0.4700) loss 3.0034 (2.7311) grad_norm 2.8867 (2.5973/1.0172) mem 16099MB [2025-01-18 09:57:10 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][280/312] eta 0:00:15 lr 0.000276 time 0.4519 (0.4769) model_time 0.4513 (0.4703) loss 2.8360 (2.7387) grad_norm 3.4929 (2.6165/1.0183) mem 16099MB [2025-01-18 09:57:14 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][290/312] eta 0:00:10 lr 0.000276 time 0.4456 (0.4768) model_time 0.4455 (0.4703) loss 2.3909 (2.7415) grad_norm 3.2407 (2.6282/1.0324) mem 16099MB [2025-01-18 09:57:19 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][300/312] eta 0:00:05 lr 0.000275 time 0.4442 (0.4762) model_time 0.4442 (0.4700) loss 3.1247 (2.7495) grad_norm 2.9319 (2.6340/1.0340) mem 16099MB [2025-01-18 09:57:24 internimage_t_1k_224] (main.py 510): INFO Train: [252/300][310/312] eta 0:00:00 lr 0.000275 time 0.4430 (0.4763) model_time 0.4429 (0.4702) loss 2.9841 (2.7455) grad_norm 1.6097 (2.6424/1.0240) mem 16099MB [2025-01-18 09:57:24 internimage_t_1k_224] (main.py 519): INFO EPOCH 252 training takes 0:02:28 [2025-01-18 09:57:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_252.pth saving...... [2025-01-18 09:57:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_252.pth saved !!! [2025-01-18 09:57:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.345 (7.345) Loss 0.7229 (0.7229) Acc@1 85.205 (85.205) Acc@5 97.314 (97.314) Mem 16099MB [2025-01-18 09:57:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.991) Loss 0.9960 (0.8336) Acc@1 77.856 (82.606) Acc@5 94.971 (96.151) Mem 16099MB [2025-01-18 09:57:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:252] * Acc@1 82.458 Acc@5 96.145 [2025-01-18 09:57:36 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.5% [2025-01-18 09:57:36 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.67% [2025-01-18 09:57:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.118 (8.118) Loss 0.7332 (0.7332) Acc@1 85.791 (85.791) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 09:57:48 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.098) Loss 0.9691 (0.8375) Acc@1 79.492 (83.418) Acc@5 95.581 (96.473) Mem 16099MB [2025-01-18 09:57:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:252] * Acc@1 83.285 Acc@5 96.497 [2025-01-18 09:57:49 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 09:57:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 09:57:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 09:57:50 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.29% [2025-01-18 09:57:52 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][0/312] eta 0:11:52 lr 0.000275 time 2.2833 (2.2833) model_time 0.4674 (0.4674) loss 3.0042 (3.0042) grad_norm 2.3966 (2.3966/0.0000) mem 16099MB [2025-01-18 09:57:57 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][10/312] eta 0:03:10 lr 0.000275 time 0.4494 (0.6322) model_time 0.4492 (0.4668) loss 2.5407 (2.6501) grad_norm 2.7398 (2.8391/1.1478) mem 16099MB [2025-01-18 09:58:02 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][20/312] eta 0:02:48 lr 0.000274 time 0.7691 (0.5771) model_time 0.7686 (0.4903) loss 2.4919 (2.7691) grad_norm 2.3774 (3.1869/1.6193) mem 16099MB [2025-01-18 09:58:07 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][30/312] eta 0:02:33 lr 0.000274 time 0.4492 (0.5434) model_time 0.4490 (0.4845) loss 2.2872 (2.7212) grad_norm 1.4165 (3.4304/1.7102) mem 16099MB [2025-01-18 09:58:11 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][40/312] eta 0:02:23 lr 0.000274 time 0.4607 (0.5267) model_time 0.4605 (0.4821) loss 2.4261 (2.6303) grad_norm 4.6669 (3.4332/1.6056) mem 16099MB [2025-01-18 09:58:16 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][50/312] eta 0:02:15 lr 0.000273 time 0.4715 (0.5166) model_time 0.4713 (0.4806) loss 3.2066 (2.6782) grad_norm 2.9599 (3.4329/1.5646) mem 16099MB [2025-01-18 09:58:21 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][60/312] eta 0:02:07 lr 0.000273 time 0.4671 (0.5067) model_time 0.4665 (0.4765) loss 2.7081 (2.6847) grad_norm 1.2774 (3.3660/1.5617) mem 16099MB [2025-01-18 09:58:25 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][70/312] eta 0:02:01 lr 0.000273 time 0.4595 (0.5003) model_time 0.4593 (0.4744) loss 2.8329 (2.7054) grad_norm 3.7269 (3.2470/1.5116) mem 16099MB [2025-01-18 09:58:30 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][80/312] eta 0:01:54 lr 0.000273 time 0.4405 (0.4951) model_time 0.4401 (0.4724) loss 2.9100 (2.7121) grad_norm 1.5619 (3.1912/1.5094) mem 16099MB [2025-01-18 09:58:35 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][90/312] eta 0:01:49 lr 0.000272 time 0.4644 (0.4914) model_time 0.4642 (0.4711) loss 2.9658 (2.7213) grad_norm 6.0694 (3.1106/1.5068) mem 16099MB [2025-01-18 09:58:39 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][100/312] eta 0:01:44 lr 0.000272 time 0.4522 (0.4910) model_time 0.4520 (0.4727) loss 2.8654 (2.7204) grad_norm 1.6248 (3.1376/1.5341) mem 16099MB [2025-01-18 09:58:44 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][110/312] eta 0:01:38 lr 0.000272 time 0.4547 (0.4884) model_time 0.4545 (0.4717) loss 2.5542 (2.7380) grad_norm 2.3308 (3.2070/1.5442) mem 16099MB [2025-01-18 09:58:49 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][120/312] eta 0:01:33 lr 0.000271 time 0.4510 (0.4858) model_time 0.4508 (0.4705) loss 2.7123 (2.7289) grad_norm 1.8799 (3.1952/1.5068) mem 16099MB [2025-01-18 09:58:54 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][130/312] eta 0:01:28 lr 0.000271 time 0.4574 (0.4861) model_time 0.4572 (0.4719) loss 3.0065 (2.7448) grad_norm 3.9965 (3.1494/1.4694) mem 16099MB [2025-01-18 09:58:58 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][140/312] eta 0:01:23 lr 0.000271 time 0.4665 (0.4840) model_time 0.4658 (0.4708) loss 2.9705 (2.7440) grad_norm 3.1484 (3.1414/1.4519) mem 16099MB [2025-01-18 09:59:03 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][150/312] eta 0:01:18 lr 0.000270 time 0.4421 (0.4819) model_time 0.4419 (0.4695) loss 2.1199 (2.7338) grad_norm 1.9317 (3.0963/1.4211) mem 16099MB [2025-01-18 09:59:08 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][160/312] eta 0:01:13 lr 0.000270 time 0.4633 (0.4821) model_time 0.4628 (0.4704) loss 2.9024 (2.7319) grad_norm 5.6357 (3.0950/1.4182) mem 16099MB [2025-01-18 09:59:12 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][170/312] eta 0:01:08 lr 0.000270 time 0.4583 (0.4807) model_time 0.4577 (0.4697) loss 3.4284 (2.7264) grad_norm 7.0828 (3.1262/1.4465) mem 16099MB [2025-01-18 09:59:17 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][180/312] eta 0:01:03 lr 0.000269 time 0.4541 (0.4804) model_time 0.4539 (0.4700) loss 3.3611 (2.7180) grad_norm 4.2017 (3.1683/1.4474) mem 16099MB [2025-01-18 09:59:22 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][190/312] eta 0:00:58 lr 0.000269 time 0.4491 (0.4796) model_time 0.4487 (0.4698) loss 2.6719 (2.7250) grad_norm 3.7791 (3.2176/1.4791) mem 16099MB [2025-01-18 09:59:27 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][200/312] eta 0:00:53 lr 0.000269 time 0.4442 (0.4813) model_time 0.4440 (0.4719) loss 3.0748 (2.7318) grad_norm 2.7104 (3.2131/1.4666) mem 16099MB [2025-01-18 09:59:31 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][210/312] eta 0:00:49 lr 0.000268 time 0.5429 (0.4807) model_time 0.5427 (0.4718) loss 2.4876 (2.7207) grad_norm 2.0150 (3.1944/1.4508) mem 16099MB [2025-01-18 09:59:36 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][220/312] eta 0:00:44 lr 0.000268 time 0.4432 (0.4808) model_time 0.4427 (0.4722) loss 2.4805 (2.7220) grad_norm 1.4030 (3.1666/1.4401) mem 16099MB [2025-01-18 09:59:41 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][230/312] eta 0:00:39 lr 0.000268 time 0.4536 (0.4796) model_time 0.4531 (0.4714) loss 3.3332 (2.7288) grad_norm 1.4117 (3.1701/1.4273) mem 16099MB [2025-01-18 09:59:45 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][240/312] eta 0:00:34 lr 0.000268 time 0.4366 (0.4785) model_time 0.4363 (0.4706) loss 1.7969 (2.7298) grad_norm 1.8345 (3.1685/1.4070) mem 16099MB [2025-01-18 09:59:50 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][250/312] eta 0:00:29 lr 0.000267 time 0.4558 (0.4775) model_time 0.4552 (0.4699) loss 2.8862 (2.7303) grad_norm 1.5943 (3.1433/1.3969) mem 16099MB [2025-01-18 09:59:54 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][260/312] eta 0:00:24 lr 0.000267 time 0.4531 (0.4769) model_time 0.4530 (0.4695) loss 3.5220 (2.7353) grad_norm 3.9190 (3.1251/1.3892) mem 16099MB [2025-01-18 09:59:59 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][270/312] eta 0:00:19 lr 0.000267 time 0.4352 (0.4762) model_time 0.4350 (0.4689) loss 2.8230 (2.7370) grad_norm 2.5312 (3.1112/1.3818) mem 16099MB [2025-01-18 10:00:04 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][280/312] eta 0:00:15 lr 0.000266 time 0.4625 (0.4755) model_time 0.4624 (0.4685) loss 3.0266 (2.7389) grad_norm 5.4954 (3.1108/1.3853) mem 16099MB [2025-01-18 10:00:08 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][290/312] eta 0:00:10 lr 0.000266 time 0.4374 (0.4747) model_time 0.4372 (0.4679) loss 2.9207 (2.7485) grad_norm 3.5784 (3.1156/1.3804) mem 16099MB [2025-01-18 10:00:13 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][300/312] eta 0:00:05 lr 0.000266 time 0.5260 (0.4742) model_time 0.5259 (0.4676) loss 2.0308 (2.7542) grad_norm 4.6648 (3.1185/1.3818) mem 16099MB [2025-01-18 10:00:17 internimage_t_1k_224] (main.py 510): INFO Train: [253/300][310/312] eta 0:00:00 lr 0.000265 time 0.4388 (0.4735) model_time 0.4388 (0.4671) loss 2.7557 (2.7616) grad_norm 2.8610 (3.1123/1.3703) mem 16099MB [2025-01-18 10:00:18 internimage_t_1k_224] (main.py 519): INFO EPOCH 253 training takes 0:02:27 [2025-01-18 10:00:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_253.pth saving...... [2025-01-18 10:00:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_253.pth saved !!! [2025-01-18 10:00:26 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.128 (7.128) Loss 0.7069 (0.7069) Acc@1 85.181 (85.181) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 10:00:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.970) Loss 0.9555 (0.8240) Acc@1 79.053 (82.852) Acc@5 95.239 (96.287) Mem 16099MB [2025-01-18 10:00:30 internimage_t_1k_224] (main.py 575): INFO [Epoch:253] * Acc@1 82.708 Acc@5 96.293 [2025-01-18 10:00:30 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 10:00:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 10:00:31 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 10:00:31 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.71% [2025-01-18 10:00:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.454 (7.454) Loss 0.7322 (0.7322) Acc@1 85.718 (85.718) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 10:00:42 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.017) Loss 0.9681 (0.8365) Acc@1 79.468 (83.407) Acc@5 95.581 (96.491) Mem 16099MB [2025-01-18 10:00:42 internimage_t_1k_224] (main.py 575): INFO [Epoch:253] * Acc@1 83.279 Acc@5 96.513 [2025-01-18 10:00:42 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:00:42 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.29% [2025-01-18 10:00:45 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][0/312] eta 0:16:02 lr 0.000265 time 3.0835 (3.0835) model_time 1.5525 (1.5525) loss 3.2817 (3.2817) grad_norm 3.7946 (3.7946/0.0000) mem 16099MB [2025-01-18 10:00:50 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][10/312] eta 0:03:35 lr 0.000265 time 0.4502 (0.7122) model_time 0.4500 (0.5727) loss 2.3894 (2.8166) grad_norm 1.2666 (2.2448/0.8916) mem 16099MB [2025-01-18 10:00:55 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][20/312] eta 0:02:53 lr 0.000265 time 0.4519 (0.5931) model_time 0.4517 (0.5199) loss 3.0471 (2.7582) grad_norm 1.2542 (2.1578/0.9704) mem 16099MB [2025-01-18 10:00:59 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][30/312] eta 0:02:36 lr 0.000264 time 0.4553 (0.5544) model_time 0.4549 (0.5047) loss 2.9097 (2.7883) grad_norm 1.5874 (2.1229/0.8858) mem 16099MB [2025-01-18 10:01:04 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][40/312] eta 0:02:25 lr 0.000264 time 0.4670 (0.5342) model_time 0.4668 (0.4965) loss 2.7290 (2.7901) grad_norm 3.6433 (2.2052/0.8280) mem 16099MB [2025-01-18 10:01:09 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][50/312] eta 0:02:18 lr 0.000264 time 0.4505 (0.5294) model_time 0.4503 (0.4990) loss 2.8656 (2.7496) grad_norm 2.1249 (2.5423/1.4295) mem 16099MB [2025-01-18 10:01:14 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][60/312] eta 0:02:10 lr 0.000263 time 0.4591 (0.5187) model_time 0.4586 (0.4932) loss 3.1898 (2.7693) grad_norm 2.0739 (2.5054/1.3314) mem 16099MB [2025-01-18 10:01:18 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][70/312] eta 0:02:03 lr 0.000263 time 0.4496 (0.5090) model_time 0.4494 (0.4871) loss 3.0999 (2.7658) grad_norm 2.1938 (2.5384/1.2876) mem 16099MB [2025-01-18 10:01:23 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][80/312] eta 0:01:57 lr 0.000263 time 0.5427 (0.5044) model_time 0.5425 (0.4852) loss 2.8251 (2.7714) grad_norm 3.4868 (2.5178/1.2277) mem 16099MB [2025-01-18 10:01:28 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][90/312] eta 0:01:51 lr 0.000263 time 0.4520 (0.5008) model_time 0.4518 (0.4836) loss 3.1527 (2.7641) grad_norm 3.5090 (2.6378/1.3785) mem 16099MB [2025-01-18 10:01:32 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][100/312] eta 0:01:45 lr 0.000262 time 0.4473 (0.4961) model_time 0.4472 (0.4806) loss 2.9099 (2.7615) grad_norm 7.9062 (2.7855/1.4803) mem 16099MB [2025-01-18 10:01:37 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][110/312] eta 0:01:39 lr 0.000262 time 0.4639 (0.4928) model_time 0.4637 (0.4786) loss 3.0317 (2.7701) grad_norm 2.0414 (2.7846/1.4256) mem 16099MB [2025-01-18 10:01:41 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][120/312] eta 0:01:34 lr 0.000262 time 0.4698 (0.4898) model_time 0.4696 (0.4767) loss 2.2448 (2.7889) grad_norm 1.3934 (2.7458/1.4112) mem 16099MB [2025-01-18 10:01:46 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][130/312] eta 0:01:28 lr 0.000261 time 0.4430 (0.4879) model_time 0.4428 (0.4759) loss 2.7143 (2.7944) grad_norm 2.2594 (2.7806/1.4091) mem 16099MB [2025-01-18 10:01:51 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][140/312] eta 0:01:23 lr 0.000261 time 0.5341 (0.4872) model_time 0.5339 (0.4760) loss 2.1511 (2.7740) grad_norm 2.4264 (2.7459/1.3913) mem 16099MB [2025-01-18 10:01:55 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][150/312] eta 0:01:18 lr 0.000261 time 0.4592 (0.4851) model_time 0.4590 (0.4746) loss 2.3780 (2.7698) grad_norm 3.2992 (2.7392/1.3647) mem 16099MB [2025-01-18 10:02:00 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][160/312] eta 0:01:13 lr 0.000260 time 0.4880 (0.4834) model_time 0.4875 (0.4736) loss 1.9656 (2.7529) grad_norm 1.7993 (2.7333/1.3590) mem 16099MB [2025-01-18 10:02:04 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][170/312] eta 0:01:08 lr 0.000260 time 0.4557 (0.4815) model_time 0.4556 (0.4722) loss 3.3495 (2.7612) grad_norm 3.2537 (2.7876/1.3800) mem 16099MB [2025-01-18 10:02:09 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][180/312] eta 0:01:03 lr 0.000260 time 0.4524 (0.4801) model_time 0.4521 (0.4713) loss 3.3467 (2.7718) grad_norm 5.3118 (2.8189/1.3770) mem 16099MB [2025-01-18 10:02:14 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][190/312] eta 0:00:58 lr 0.000260 time 0.4478 (0.4795) model_time 0.4476 (0.4711) loss 2.7003 (2.7714) grad_norm 3.4714 (2.9448/1.5304) mem 16099MB [2025-01-18 10:02:18 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][200/312] eta 0:00:53 lr 0.000259 time 0.4595 (0.4787) model_time 0.4593 (0.4707) loss 2.3830 (2.7804) grad_norm 1.7842 (2.9735/1.5196) mem 16099MB [2025-01-18 10:02:23 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][210/312] eta 0:00:48 lr 0.000259 time 0.4538 (0.4784) model_time 0.4536 (0.4708) loss 3.1962 (2.7907) grad_norm 2.3257 (2.9609/1.4953) mem 16099MB [2025-01-18 10:02:28 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][220/312] eta 0:00:43 lr 0.000259 time 0.4466 (0.4778) model_time 0.4461 (0.4705) loss 3.0428 (2.7868) grad_norm 6.0591 (2.9926/1.5133) mem 16099MB [2025-01-18 10:02:32 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][230/312] eta 0:00:39 lr 0.000258 time 0.4444 (0.4773) model_time 0.4442 (0.4703) loss 2.8480 (2.7850) grad_norm 2.0461 (2.9947/1.4943) mem 16099MB [2025-01-18 10:02:37 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][240/312] eta 0:00:34 lr 0.000258 time 0.4577 (0.4771) model_time 0.4576 (0.4704) loss 2.9266 (2.7842) grad_norm 2.6434 (2.9855/1.4721) mem 16099MB [2025-01-18 10:02:42 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][250/312] eta 0:00:29 lr 0.000258 time 0.5890 (0.4770) model_time 0.5888 (0.4705) loss 2.0384 (2.7800) grad_norm 5.5584 (2.9787/1.4619) mem 16099MB [2025-01-18 10:02:46 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][260/312] eta 0:00:24 lr 0.000257 time 0.4766 (0.4765) model_time 0.4765 (0.4703) loss 3.0344 (2.7775) grad_norm 1.5333 (2.9626/1.4415) mem 16099MB [2025-01-18 10:02:51 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][270/312] eta 0:00:19 lr 0.000257 time 0.4475 (0.4761) model_time 0.4473 (0.4701) loss 2.8328 (2.7829) grad_norm 1.3470 (2.9735/1.4367) mem 16099MB [2025-01-18 10:02:56 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][280/312] eta 0:00:15 lr 0.000257 time 0.4430 (0.4766) model_time 0.4428 (0.4707) loss 3.0827 (2.7772) grad_norm 1.5262 (2.9519/1.4225) mem 16099MB [2025-01-18 10:03:01 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][290/312] eta 0:00:10 lr 0.000256 time 0.4554 (0.4764) model_time 0.4552 (0.4707) loss 1.6681 (2.7695) grad_norm 3.1305 (2.9340/1.4046) mem 16099MB [2025-01-18 10:03:05 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][300/312] eta 0:00:05 lr 0.000256 time 0.4414 (0.4756) model_time 0.4413 (0.4701) loss 2.5343 (2.7665) grad_norm 5.2052 (2.9418/1.4066) mem 16099MB [2025-01-18 10:03:10 internimage_t_1k_224] (main.py 510): INFO Train: [254/300][310/312] eta 0:00:00 lr 0.000256 time 0.5273 (0.4754) model_time 0.5272 (0.4701) loss 2.2142 (2.7595) grad_norm 1.6552 (2.9739/1.4015) mem 16099MB [2025-01-18 10:03:10 internimage_t_1k_224] (main.py 519): INFO EPOCH 254 training takes 0:02:28 [2025-01-18 10:03:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_254.pth saving...... [2025-01-18 10:03:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_254.pth saved !!! [2025-01-18 10:03:19 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.545 (7.545) Loss 0.7082 (0.7082) Acc@1 84.888 (84.888) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 10:03:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.035) Loss 0.9618 (0.8181) Acc@1 78.369 (82.830) Acc@5 95.190 (96.262) Mem 16099MB [2025-01-18 10:03:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:254] * Acc@1 82.680 Acc@5 96.265 [2025-01-18 10:03:23 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 10:03:23 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.71% [2025-01-18 10:03:32 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.395 (8.395) Loss 0.7315 (0.7315) Acc@1 85.718 (85.718) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:03:35 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.114) Loss 0.9670 (0.8355) Acc@1 79.541 (83.418) Acc@5 95.630 (96.502) Mem 16099MB [2025-01-18 10:03:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:254] * Acc@1 83.295 Acc@5 96.525 [2025-01-18 10:03:36 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:03:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:03:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:03:37 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.30% [2025-01-18 10:03:39 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][0/312] eta 0:11:38 lr 0.000256 time 2.2401 (2.2401) model_time 0.4841 (0.4841) loss 3.3358 (3.3358) grad_norm 5.6700 (5.6700/0.0000) mem 16099MB [2025-01-18 10:03:44 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][10/312] eta 0:03:08 lr 0.000256 time 0.4491 (0.6258) model_time 0.4489 (0.4658) loss 3.4389 (2.8961) grad_norm 2.0312 (3.9033/1.5269) mem 16099MB [2025-01-18 10:03:48 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][20/312] eta 0:02:39 lr 0.000255 time 0.4546 (0.5451) model_time 0.4545 (0.4611) loss 3.0987 (2.7741) grad_norm 2.4800 (3.6662/1.4086) mem 16099MB [2025-01-18 10:03:53 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][30/312] eta 0:02:25 lr 0.000255 time 0.4695 (0.5168) model_time 0.4693 (0.4598) loss 2.5318 (2.7285) grad_norm 4.3865 (3.6860/1.4037) mem 16099MB [2025-01-18 10:03:57 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][40/312] eta 0:02:17 lr 0.000255 time 0.4435 (0.5038) model_time 0.4433 (0.4606) loss 2.9034 (2.7173) grad_norm 1.4937 (3.3288/1.4245) mem 16099MB [2025-01-18 10:04:02 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][50/312] eta 0:02:09 lr 0.000254 time 0.5347 (0.4959) model_time 0.5345 (0.4611) loss 2.9949 (2.7021) grad_norm 2.4938 (3.0966/1.3956) mem 16099MB [2025-01-18 10:04:07 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][60/312] eta 0:02:03 lr 0.000254 time 0.5419 (0.4901) model_time 0.5416 (0.4609) loss 3.0173 (2.7168) grad_norm 1.8171 (2.9692/1.3329) mem 16099MB [2025-01-18 10:04:11 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][70/312] eta 0:01:57 lr 0.000254 time 0.4608 (0.4865) model_time 0.4604 (0.4613) loss 2.5858 (2.7367) grad_norm 2.0102 (2.9310/1.2675) mem 16099MB [2025-01-18 10:04:16 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][80/312] eta 0:01:53 lr 0.000253 time 0.4992 (0.4876) model_time 0.4990 (0.4655) loss 2.0898 (2.7129) grad_norm 2.6273 (2.8072/1.2438) mem 16099MB [2025-01-18 10:04:21 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][90/312] eta 0:01:47 lr 0.000253 time 0.4511 (0.4841) model_time 0.4508 (0.4644) loss 3.1446 (2.7226) grad_norm 2.0329 (2.7401/1.2185) mem 16099MB [2025-01-18 10:04:26 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][100/312] eta 0:01:42 lr 0.000253 time 0.4464 (0.4835) model_time 0.4458 (0.4657) loss 2.8426 (2.7076) grad_norm 1.9597 (2.7570/1.2370) mem 16099MB [2025-01-18 10:04:30 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][110/312] eta 0:01:37 lr 0.000253 time 0.4378 (0.4807) model_time 0.4376 (0.4645) loss 2.5124 (2.7023) grad_norm 4.0589 (2.7652/1.2180) mem 16099MB [2025-01-18 10:04:35 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][120/312] eta 0:01:31 lr 0.000252 time 0.4510 (0.4784) model_time 0.4509 (0.4635) loss 3.0582 (2.6925) grad_norm 1.6307 (2.8105/1.2420) mem 16099MB [2025-01-18 10:04:39 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][130/312] eta 0:01:26 lr 0.000252 time 0.4490 (0.4777) model_time 0.4489 (0.4639) loss 3.1491 (2.7051) grad_norm 1.4606 (2.8071/1.2537) mem 16099MB [2025-01-18 10:04:44 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][140/312] eta 0:01:21 lr 0.000252 time 0.4694 (0.4765) model_time 0.4693 (0.4637) loss 2.8396 (2.6915) grad_norm 4.6679 (2.8256/1.2699) mem 16099MB [2025-01-18 10:04:49 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][150/312] eta 0:01:17 lr 0.000251 time 0.4547 (0.4762) model_time 0.4545 (0.4642) loss 2.9892 (2.6938) grad_norm 4.6614 (2.8674/1.2697) mem 16099MB [2025-01-18 10:04:54 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][160/312] eta 0:01:12 lr 0.000251 time 0.5705 (0.4775) model_time 0.5703 (0.4662) loss 2.0001 (2.6880) grad_norm 1.6996 (2.9039/1.2875) mem 16099MB [2025-01-18 10:04:58 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][170/312] eta 0:01:07 lr 0.000251 time 0.4510 (0.4772) model_time 0.4505 (0.4666) loss 2.3809 (2.6844) grad_norm 2.6933 (2.8849/1.2635) mem 16099MB [2025-01-18 10:05:03 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][180/312] eta 0:01:02 lr 0.000250 time 0.4666 (0.4762) model_time 0.4662 (0.4661) loss 2.8587 (2.7019) grad_norm 2.0908 (2.8541/1.2641) mem 16099MB [2025-01-18 10:05:07 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][190/312] eta 0:00:57 lr 0.000250 time 0.4559 (0.4749) model_time 0.4557 (0.4653) loss 2.7658 (2.7039) grad_norm 3.7994 (2.8348/1.2421) mem 16099MB [2025-01-18 10:05:12 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][200/312] eta 0:00:53 lr 0.000250 time 0.4483 (0.4743) model_time 0.4481 (0.4651) loss 2.6932 (2.7066) grad_norm 1.7246 (2.8185/1.2313) mem 16099MB [2025-01-18 10:05:17 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][210/312] eta 0:00:48 lr 0.000250 time 0.4500 (0.4732) model_time 0.4495 (0.4645) loss 1.8832 (2.6933) grad_norm 4.9909 (2.8666/1.2320) mem 16099MB [2025-01-18 10:05:21 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][220/312] eta 0:00:43 lr 0.000249 time 0.4408 (0.4723) model_time 0.4406 (0.4640) loss 2.6981 (2.6927) grad_norm 1.7254 (2.8461/1.2229) mem 16099MB [2025-01-18 10:05:26 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][230/312] eta 0:00:38 lr 0.000249 time 0.4511 (0.4722) model_time 0.4509 (0.4642) loss 3.3744 (2.6938) grad_norm 1.4339 (2.8431/1.2288) mem 16099MB [2025-01-18 10:05:30 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][240/312] eta 0:00:33 lr 0.000249 time 0.4589 (0.4719) model_time 0.4587 (0.4642) loss 2.4064 (2.6977) grad_norm 2.7687 (2.8670/1.2279) mem 16099MB [2025-01-18 10:05:35 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][250/312] eta 0:00:29 lr 0.000248 time 0.4453 (0.4710) model_time 0.4450 (0.4637) loss 2.6730 (2.7139) grad_norm 4.5516 (2.8670/1.2123) mem 16099MB [2025-01-18 10:05:40 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][260/312] eta 0:00:24 lr 0.000248 time 0.4507 (0.4708) model_time 0.4505 (0.4637) loss 2.8518 (2.7102) grad_norm 1.4748 (2.8463/1.2000) mem 16099MB [2025-01-18 10:05:44 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][270/312] eta 0:00:19 lr 0.000248 time 0.4556 (0.4707) model_time 0.4553 (0.4638) loss 3.0086 (2.7091) grad_norm 3.5069 (2.8493/1.2021) mem 16099MB [2025-01-18 10:05:49 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][280/312] eta 0:00:15 lr 0.000247 time 0.4536 (0.4709) model_time 0.4534 (0.4642) loss 2.4562 (2.7048) grad_norm 1.0850 (2.8575/1.2085) mem 16099MB [2025-01-18 10:05:54 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][290/312] eta 0:00:10 lr 0.000247 time 0.4523 (0.4706) model_time 0.4521 (0.4642) loss 2.8503 (2.7093) grad_norm 4.0514 (2.8892/1.2518) mem 16099MB [2025-01-18 10:05:58 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][300/312] eta 0:00:05 lr 0.000247 time 0.4454 (0.4702) model_time 0.4453 (0.4640) loss 2.2505 (2.7125) grad_norm 3.4314 (2.9005/1.2577) mem 16099MB [2025-01-18 10:06:03 internimage_t_1k_224] (main.py 510): INFO Train: [255/300][310/312] eta 0:00:00 lr 0.000247 time 0.4389 (0.4696) model_time 0.4387 (0.4636) loss 3.0535 (2.7114) grad_norm 1.8129 (2.8650/1.2287) mem 16099MB [2025-01-18 10:06:03 internimage_t_1k_224] (main.py 519): INFO EPOCH 255 training takes 0:02:26 [2025-01-18 10:06:03 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_255.pth saving...... [2025-01-18 10:06:05 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_255.pth saved !!! [2025-01-18 10:06:12 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.510 (7.510) Loss 0.7127 (0.7127) Acc@1 85.522 (85.522) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 10:06:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.973) Loss 0.9629 (0.8234) Acc@1 78.931 (82.824) Acc@5 94.897 (96.238) Mem 16099MB [2025-01-18 10:06:16 internimage_t_1k_224] (main.py 575): INFO [Epoch:255] * Acc@1 82.672 Acc@5 96.235 [2025-01-18 10:06:16 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 10:06:16 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.71% [2025-01-18 10:06:24 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.232 (8.232) Loss 0.7306 (0.7306) Acc@1 85.718 (85.718) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:06:28 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.099) Loss 0.9658 (0.8345) Acc@1 79.663 (83.436) Acc@5 95.581 (96.511) Mem 16099MB [2025-01-18 10:06:28 internimage_t_1k_224] (main.py 575): INFO [Epoch:255] * Acc@1 83.313 Acc@5 96.531 [2025-01-18 10:06:28 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:06:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:06:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:06:29 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.31% [2025-01-18 10:06:31 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][0/312] eta 0:11:13 lr 0.000246 time 2.1594 (2.1594) model_time 0.4775 (0.4775) loss 2.6480 (2.6480) grad_norm 1.9062 (1.9062/0.0000) mem 16099MB [2025-01-18 10:06:36 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][10/312] eta 0:03:13 lr 0.000246 time 0.4444 (0.6399) model_time 0.4443 (0.4867) loss 3.0742 (2.6885) grad_norm 1.8102 (2.5153/1.1416) mem 16099MB [2025-01-18 10:06:40 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][20/312] eta 0:02:40 lr 0.000246 time 0.4529 (0.5510) model_time 0.4524 (0.4705) loss 2.5121 (2.6872) grad_norm 3.4524 (2.8770/1.3151) mem 16099MB [2025-01-18 10:06:45 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][30/312] eta 0:02:27 lr 0.000246 time 0.4385 (0.5231) model_time 0.4383 (0.4685) loss 2.7670 (2.7338) grad_norm 2.4994 (2.7747/1.1796) mem 16099MB [2025-01-18 10:06:50 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][40/312] eta 0:02:17 lr 0.000245 time 0.4544 (0.5072) model_time 0.4542 (0.4658) loss 1.9135 (2.6863) grad_norm 2.3892 (2.7251/1.1175) mem 16099MB [2025-01-18 10:06:54 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][50/312] eta 0:02:10 lr 0.000245 time 0.4564 (0.4989) model_time 0.4562 (0.4656) loss 1.4494 (2.6839) grad_norm 7.1008 (2.8058/1.2316) mem 16099MB [2025-01-18 10:06:59 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][60/312] eta 0:02:03 lr 0.000245 time 0.4572 (0.4917) model_time 0.4570 (0.4637) loss 2.9994 (2.7068) grad_norm 4.0667 (2.9908/1.5341) mem 16099MB [2025-01-18 10:07:03 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][70/312] eta 0:01:57 lr 0.000244 time 0.4766 (0.4866) model_time 0.4764 (0.4626) loss 2.7343 (2.7201) grad_norm 2.1783 (3.0347/1.4877) mem 16099MB [2025-01-18 10:07:08 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][80/312] eta 0:01:52 lr 0.000244 time 0.4400 (0.4844) model_time 0.4397 (0.4633) loss 3.2410 (2.7481) grad_norm 1.9724 (2.9762/1.4910) mem 16099MB [2025-01-18 10:07:13 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][90/312] eta 0:01:46 lr 0.000244 time 0.4545 (0.4814) model_time 0.4541 (0.4625) loss 2.7767 (2.7441) grad_norm 2.6198 (2.9904/1.4891) mem 16099MB [2025-01-18 10:07:17 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][100/312] eta 0:01:41 lr 0.000244 time 0.4493 (0.4796) model_time 0.4488 (0.4626) loss 2.5518 (2.7672) grad_norm 3.7957 (2.9688/1.4589) mem 16099MB [2025-01-18 10:07:22 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][110/312] eta 0:01:36 lr 0.000243 time 0.4463 (0.4772) model_time 0.4461 (0.4617) loss 2.9333 (2.7640) grad_norm 4.2492 (2.9391/1.4167) mem 16099MB [2025-01-18 10:07:27 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][120/312] eta 0:01:31 lr 0.000243 time 0.4492 (0.4766) model_time 0.4490 (0.4623) loss 3.0526 (2.7632) grad_norm 1.4799 (2.8704/1.3959) mem 16099MB [2025-01-18 10:07:31 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][130/312] eta 0:01:26 lr 0.000243 time 0.4550 (0.4757) model_time 0.4547 (0.4624) loss 2.7293 (2.7663) grad_norm 2.6227 (2.8463/1.3604) mem 16099MB [2025-01-18 10:07:36 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][140/312] eta 0:01:21 lr 0.000242 time 0.4522 (0.4758) model_time 0.4520 (0.4635) loss 2.9462 (2.7618) grad_norm 2.7360 (2.8183/1.3362) mem 16099MB [2025-01-18 10:07:41 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][150/312] eta 0:01:17 lr 0.000242 time 0.5430 (0.4769) model_time 0.5428 (0.4654) loss 2.9802 (2.7711) grad_norm 1.6608 (2.8189/1.3292) mem 16099MB [2025-01-18 10:07:46 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][160/312] eta 0:01:12 lr 0.000242 time 0.4557 (0.4763) model_time 0.4556 (0.4655) loss 2.1933 (2.7574) grad_norm 3.4874 (2.8623/1.3339) mem 16099MB [2025-01-18 10:07:50 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][170/312] eta 0:01:07 lr 0.000241 time 0.4766 (0.4760) model_time 0.4765 (0.4658) loss 3.3194 (2.7530) grad_norm 4.8018 (2.8897/1.3281) mem 16099MB [2025-01-18 10:07:55 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][180/312] eta 0:01:02 lr 0.000241 time 0.4394 (0.4757) model_time 0.4391 (0.4660) loss 3.3325 (2.7570) grad_norm 1.8690 (2.8975/1.3509) mem 16099MB [2025-01-18 10:08:00 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][190/312] eta 0:00:57 lr 0.000241 time 0.5453 (0.4751) model_time 0.5451 (0.4659) loss 2.8678 (2.7435) grad_norm 3.4726 (2.9248/1.3554) mem 16099MB [2025-01-18 10:08:04 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][200/312] eta 0:00:53 lr 0.000241 time 0.4526 (0.4746) model_time 0.4524 (0.4659) loss 3.1683 (2.7444) grad_norm 5.1851 (2.9990/1.4228) mem 16099MB [2025-01-18 10:08:09 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][210/312] eta 0:00:48 lr 0.000240 time 0.4554 (0.4736) model_time 0.4549 (0.4652) loss 2.5186 (2.7412) grad_norm 3.6136 (3.0706/1.4545) mem 16099MB [2025-01-18 10:08:13 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][220/312] eta 0:00:43 lr 0.000240 time 0.4554 (0.4729) model_time 0.4552 (0.4649) loss 2.1296 (2.7473) grad_norm 3.6971 (3.0893/1.4612) mem 16099MB [2025-01-18 10:08:18 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][230/312] eta 0:00:38 lr 0.000240 time 0.5555 (0.4727) model_time 0.5553 (0.4651) loss 3.0178 (2.7294) grad_norm 6.9353 (3.1105/1.4963) mem 16099MB [2025-01-18 10:08:23 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][240/312] eta 0:00:33 lr 0.000239 time 0.4447 (0.4721) model_time 0.4445 (0.4648) loss 2.9183 (2.7414) grad_norm 2.8994 (3.1436/1.5371) mem 16099MB [2025-01-18 10:08:27 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][250/312] eta 0:00:29 lr 0.000239 time 0.4476 (0.4717) model_time 0.4471 (0.4646) loss 2.7261 (2.7399) grad_norm 2.1122 (3.1451/1.5405) mem 16099MB [2025-01-18 10:08:32 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][260/312] eta 0:00:24 lr 0.000239 time 0.4490 (0.4716) model_time 0.4488 (0.4647) loss 2.6691 (2.7406) grad_norm 3.8149 (3.1237/1.5308) mem 16099MB [2025-01-18 10:08:36 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][270/312] eta 0:00:19 lr 0.000239 time 0.4523 (0.4709) model_time 0.4521 (0.4643) loss 2.7743 (2.7364) grad_norm 5.2569 (3.1298/1.5303) mem 16099MB [2025-01-18 10:08:41 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][280/312] eta 0:00:15 lr 0.000238 time 0.4689 (0.4703) model_time 0.4688 (0.4640) loss 1.9455 (2.7314) grad_norm 3.1650 (3.1504/1.5262) mem 16099MB [2025-01-18 10:08:46 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][290/312] eta 0:00:10 lr 0.000238 time 0.4576 (0.4706) model_time 0.4574 (0.4644) loss 2.6358 (2.7378) grad_norm 3.0187 (3.1733/1.5447) mem 16099MB [2025-01-18 10:08:50 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][300/312] eta 0:00:05 lr 0.000238 time 0.4434 (0.4702) model_time 0.4433 (0.4642) loss 2.9723 (2.7292) grad_norm 3.2778 (3.1808/1.5357) mem 16099MB [2025-01-18 10:08:55 internimage_t_1k_224] (main.py 510): INFO Train: [256/300][310/312] eta 0:00:00 lr 0.000237 time 0.5567 (0.4706) model_time 0.5566 (0.4648) loss 2.4475 (2.7173) grad_norm 4.2894 (3.2062/1.5290) mem 16099MB [2025-01-18 10:08:56 internimage_t_1k_224] (main.py 519): INFO EPOCH 256 training takes 0:02:26 [2025-01-18 10:08:56 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_256.pth saving...... [2025-01-18 10:08:57 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_256.pth saved !!! [2025-01-18 10:09:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.621 (7.621) Loss 0.7244 (0.7244) Acc@1 85.181 (85.181) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 10:09:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.014) Loss 0.9636 (0.8273) Acc@1 78.931 (82.884) Acc@5 95.337 (96.280) Mem 16099MB [2025-01-18 10:09:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:256] * Acc@1 82.736 Acc@5 96.285 [2025-01-18 10:09:08 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 10:09:08 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 10:09:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 10:09:09 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.74% [2025-01-18 10:09:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.491 (7.491) Loss 0.7299 (0.7299) Acc@1 85.742 (85.742) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:09:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.002) Loss 0.9647 (0.8335) Acc@1 79.663 (83.452) Acc@5 95.557 (96.504) Mem 16099MB [2025-01-18 10:09:20 internimage_t_1k_224] (main.py 575): INFO [Epoch:256] * Acc@1 83.333 Acc@5 96.527 [2025-01-18 10:09:20 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:09:20 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:09:22 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:09:22 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.33% [2025-01-18 10:09:24 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][0/312] eta 0:11:45 lr 0.000237 time 2.2619 (2.2619) model_time 0.8516 (0.8516) loss 3.1308 (3.1308) grad_norm 1.3014 (1.3014/0.0000) mem 16099MB [2025-01-18 10:09:29 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][10/312] eta 0:03:15 lr 0.000237 time 0.5648 (0.6472) model_time 0.5643 (0.5186) loss 2.3234 (2.6235) grad_norm 4.4439 (2.8254/1.2789) mem 16099MB [2025-01-18 10:09:34 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][20/312] eta 0:02:44 lr 0.000237 time 0.5368 (0.5635) model_time 0.5366 (0.4960) loss 3.0833 (2.7046) grad_norm 3.1622 (2.9798/1.2368) mem 16099MB [2025-01-18 10:09:38 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][30/312] eta 0:02:30 lr 0.000237 time 0.4521 (0.5326) model_time 0.4519 (0.4868) loss 3.1814 (2.7460) grad_norm 1.8530 (2.9071/1.2125) mem 16099MB [2025-01-18 10:09:43 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][40/312] eta 0:02:20 lr 0.000236 time 0.4502 (0.5154) model_time 0.4500 (0.4807) loss 2.6754 (2.7497) grad_norm 5.1130 (3.0148/1.3588) mem 16099MB [2025-01-18 10:09:48 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][50/312] eta 0:02:13 lr 0.000236 time 0.4527 (0.5079) model_time 0.4525 (0.4799) loss 2.8233 (2.7623) grad_norm 2.4292 (3.1340/1.3978) mem 16099MB [2025-01-18 10:09:52 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][60/312] eta 0:02:06 lr 0.000236 time 0.4477 (0.5022) model_time 0.4475 (0.4787) loss 2.9319 (2.7530) grad_norm 1.5842 (3.0592/1.3457) mem 16099MB [2025-01-18 10:09:57 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][70/312] eta 0:01:59 lr 0.000235 time 0.4577 (0.4952) model_time 0.4575 (0.4750) loss 3.0221 (2.7646) grad_norm 4.7012 (3.1778/1.3617) mem 16099MB [2025-01-18 10:10:02 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][80/312] eta 0:01:54 lr 0.000235 time 0.4636 (0.4914) model_time 0.4632 (0.4737) loss 2.5431 (2.7809) grad_norm 1.0936 (3.1659/1.3228) mem 16099MB [2025-01-18 10:10:06 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][90/312] eta 0:01:48 lr 0.000235 time 0.4485 (0.4881) model_time 0.4483 (0.4723) loss 3.2208 (2.7616) grad_norm 1.8414 (3.0664/1.2979) mem 16099MB [2025-01-18 10:10:11 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][100/312] eta 0:01:42 lr 0.000234 time 0.4568 (0.4850) model_time 0.4566 (0.4707) loss 3.1878 (2.7615) grad_norm 2.3449 (2.9856/1.2898) mem 16099MB [2025-01-18 10:10:15 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][110/312] eta 0:01:37 lr 0.000234 time 0.4541 (0.4822) model_time 0.4539 (0.4692) loss 3.0570 (2.7542) grad_norm 1.6049 (2.9976/1.3274) mem 16099MB [2025-01-18 10:10:20 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][120/312] eta 0:01:32 lr 0.000234 time 0.4553 (0.4815) model_time 0.4551 (0.4695) loss 2.6852 (2.7733) grad_norm 4.4911 (2.9678/1.3127) mem 16099MB [2025-01-18 10:10:25 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][130/312] eta 0:01:27 lr 0.000234 time 0.4552 (0.4803) model_time 0.4547 (0.4692) loss 2.5344 (2.7658) grad_norm 1.1049 (2.9000/1.2952) mem 16099MB [2025-01-18 10:10:29 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][140/312] eta 0:01:22 lr 0.000233 time 0.4475 (0.4791) model_time 0.4470 (0.4687) loss 3.0998 (2.7704) grad_norm 2.3042 (2.8587/1.2653) mem 16099MB [2025-01-18 10:10:34 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][150/312] eta 0:01:17 lr 0.000233 time 0.4774 (0.4775) model_time 0.4773 (0.4678) loss 2.6388 (2.7846) grad_norm 2.4753 (2.8362/1.2488) mem 16099MB [2025-01-18 10:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][160/312] eta 0:01:12 lr 0.000233 time 0.4327 (0.4767) model_time 0.4324 (0.4676) loss 3.1674 (2.7806) grad_norm 2.8206 (2.8328/1.2272) mem 16099MB [2025-01-18 10:10:43 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][170/312] eta 0:01:07 lr 0.000232 time 0.4512 (0.4767) model_time 0.4507 (0.4681) loss 2.5933 (2.7711) grad_norm 2.5047 (2.8477/1.2196) mem 16099MB [2025-01-18 10:10:48 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][180/312] eta 0:01:02 lr 0.000232 time 0.4432 (0.4767) model_time 0.4427 (0.4685) loss 2.5116 (2.7576) grad_norm 3.1123 (2.8410/1.2106) mem 16099MB [2025-01-18 10:10:53 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][190/312] eta 0:00:58 lr 0.000232 time 0.4715 (0.4763) model_time 0.4714 (0.4685) loss 3.1048 (2.7523) grad_norm 4.6188 (2.8546/1.2118) mem 16099MB [2025-01-18 10:10:57 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][200/312] eta 0:00:53 lr 0.000232 time 0.4499 (0.4757) model_time 0.4494 (0.4683) loss 2.4182 (2.7522) grad_norm 2.2414 (2.8295/1.1974) mem 16099MB [2025-01-18 10:11:02 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][210/312] eta 0:00:48 lr 0.000231 time 0.4434 (0.4755) model_time 0.4430 (0.4684) loss 2.7138 (2.7600) grad_norm 1.1350 (2.8135/1.1848) mem 16099MB [2025-01-18 10:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][220/312] eta 0:00:43 lr 0.000231 time 0.4544 (0.4745) model_time 0.4542 (0.4678) loss 2.5141 (2.7550) grad_norm 2.3698 (2.7696/1.1762) mem 16099MB [2025-01-18 10:11:11 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][230/312] eta 0:00:38 lr 0.000231 time 0.4501 (0.4738) model_time 0.4499 (0.4673) loss 1.6809 (2.7585) grad_norm 1.8377 (2.7497/1.1656) mem 16099MB [2025-01-18 10:11:16 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][240/312] eta 0:00:34 lr 0.000230 time 0.4451 (0.4732) model_time 0.4446 (0.4670) loss 2.6824 (2.7561) grad_norm 4.3484 (2.7410/1.1591) mem 16099MB [2025-01-18 10:11:20 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][250/312] eta 0:00:29 lr 0.000230 time 0.4481 (0.4728) model_time 0.4476 (0.4668) loss 2.8107 (2.7535) grad_norm 2.3897 (2.7327/1.1424) mem 16099MB [2025-01-18 10:11:25 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][260/312] eta 0:00:24 lr 0.000230 time 0.4502 (0.4721) model_time 0.4501 (0.4663) loss 3.0059 (2.7522) grad_norm 2.7981 (2.7069/1.1326) mem 16099MB [2025-01-18 10:11:30 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][270/312] eta 0:00:19 lr 0.000230 time 0.4472 (0.4714) model_time 0.4470 (0.4658) loss 2.9853 (2.7494) grad_norm 2.9340 (2.7122/1.1366) mem 16099MB [2025-01-18 10:11:34 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][280/312] eta 0:00:15 lr 0.000229 time 0.4642 (0.4708) model_time 0.4640 (0.4654) loss 2.6649 (2.7478) grad_norm 2.1202 (2.7036/1.1367) mem 16099MB [2025-01-18 10:11:39 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][290/312] eta 0:00:10 lr 0.000229 time 0.4414 (0.4711) model_time 0.4413 (0.4658) loss 2.5086 (2.7497) grad_norm 1.7009 (2.6808/1.1283) mem 16099MB [2025-01-18 10:11:43 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][300/312] eta 0:00:05 lr 0.000229 time 0.4394 (0.4708) model_time 0.4393 (0.4657) loss 2.1975 (2.7397) grad_norm 1.8841 (2.7177/1.1616) mem 16099MB [2025-01-18 10:11:48 internimage_t_1k_224] (main.py 510): INFO Train: [257/300][310/312] eta 0:00:00 lr 0.000228 time 0.4386 (0.4700) model_time 0.4385 (0.4651) loss 1.9156 (2.7372) grad_norm 4.5304 (2.7425/1.2302) mem 16099MB [2025-01-18 10:11:48 internimage_t_1k_224] (main.py 519): INFO EPOCH 257 training takes 0:02:26 [2025-01-18 10:11:48 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_257.pth saving...... [2025-01-18 10:11:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_257.pth saved !!! [2025-01-18 10:11:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.025 (8.025) Loss 0.7210 (0.7210) Acc@1 85.205 (85.205) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:12:01 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.080) Loss 0.9734 (0.8276) Acc@1 78.687 (82.808) Acc@5 95.093 (96.236) Mem 16099MB [2025-01-18 10:12:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:257] * Acc@1 82.650 Acc@5 96.257 [2025-01-18 10:12:02 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.6% [2025-01-18 10:12:02 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.74% [2025-01-18 10:12:11 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.907 (8.907) Loss 0.7292 (0.7292) Acc@1 85.718 (85.718) Acc@5 97.754 (97.754) Mem 16099MB [2025-01-18 10:12:15 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.185) Loss 0.9636 (0.8326) Acc@1 79.639 (83.452) Acc@5 95.581 (96.513) Mem 16099MB [2025-01-18 10:12:15 internimage_t_1k_224] (main.py 575): INFO [Epoch:257] * Acc@1 83.331 Acc@5 96.533 [2025-01-18 10:12:15 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:12:15 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.33% [2025-01-18 10:12:18 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][0/312] eta 0:16:23 lr 0.000228 time 3.1514 (3.1514) model_time 1.0881 (1.0881) loss 3.0816 (3.0816) grad_norm 3.2238 (3.2238/0.0000) mem 16099MB [2025-01-18 10:12:23 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][10/312] eta 0:03:36 lr 0.000228 time 0.4543 (0.7155) model_time 0.4541 (0.5276) loss 3.2681 (2.6761) grad_norm 2.7441 (3.7722/1.4683) mem 16099MB [2025-01-18 10:12:28 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][20/312] eta 0:02:57 lr 0.000228 time 0.5420 (0.6065) model_time 0.5415 (0.5079) loss 3.1625 (2.7971) grad_norm 3.5989 (3.3938/1.3624) mem 16099MB [2025-01-18 10:12:32 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][30/312] eta 0:02:38 lr 0.000228 time 0.4514 (0.5635) model_time 0.4512 (0.4966) loss 3.1137 (2.8100) grad_norm 4.4056 (3.0856/1.4341) mem 16099MB [2025-01-18 10:12:37 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][40/312] eta 0:02:28 lr 0.000227 time 0.4815 (0.5446) model_time 0.4813 (0.4939) loss 2.9112 (2.7885) grad_norm 2.5434 (3.1810/1.6943) mem 16099MB [2025-01-18 10:12:42 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][50/312] eta 0:02:19 lr 0.000227 time 0.4538 (0.5308) model_time 0.4534 (0.4900) loss 1.7310 (2.7225) grad_norm 3.4871 (3.2130/1.6245) mem 16099MB [2025-01-18 10:12:47 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][60/312] eta 0:02:11 lr 0.000227 time 0.4570 (0.5213) model_time 0.4565 (0.4871) loss 2.4456 (2.7242) grad_norm 1.9909 (3.2667/1.5295) mem 16099MB [2025-01-18 10:12:51 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][70/312] eta 0:02:03 lr 0.000226 time 0.4526 (0.5119) model_time 0.4524 (0.4825) loss 3.1046 (2.7445) grad_norm 4.8581 (3.3145/1.4882) mem 16099MB [2025-01-18 10:12:56 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][80/312] eta 0:01:57 lr 0.000226 time 0.4654 (0.5071) model_time 0.4650 (0.4812) loss 2.6242 (2.7350) grad_norm 2.7180 (3.2195/1.4563) mem 16099MB [2025-01-18 10:13:00 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][90/312] eta 0:01:51 lr 0.000226 time 0.4574 (0.5012) model_time 0.4569 (0.4782) loss 3.0547 (2.7503) grad_norm 2.3048 (3.1923/1.4389) mem 16099MB [2025-01-18 10:13:05 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][100/312] eta 0:01:45 lr 0.000226 time 0.4434 (0.4972) model_time 0.4429 (0.4764) loss 3.2342 (2.7459) grad_norm 2.5330 (3.1747/1.4295) mem 16099MB [2025-01-18 10:13:10 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][110/312] eta 0:01:39 lr 0.000225 time 0.4544 (0.4950) model_time 0.4542 (0.4761) loss 3.2290 (2.7408) grad_norm 3.0603 (3.1074/1.3985) mem 16099MB [2025-01-18 10:13:14 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][120/312] eta 0:01:34 lr 0.000225 time 0.4550 (0.4916) model_time 0.4549 (0.4742) loss 3.3469 (2.7521) grad_norm 1.7745 (3.0224/1.3862) mem 16099MB [2025-01-18 10:13:19 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][130/312] eta 0:01:29 lr 0.000225 time 0.4532 (0.4895) model_time 0.4531 (0.4734) loss 3.0098 (2.7433) grad_norm 2.0816 (2.9888/1.3489) mem 16099MB [2025-01-18 10:13:23 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][140/312] eta 0:01:23 lr 0.000225 time 0.4500 (0.4868) model_time 0.4498 (0.4718) loss 2.7305 (2.7329) grad_norm 2.7619 (2.9655/1.3291) mem 16099MB [2025-01-18 10:13:28 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][150/312] eta 0:01:18 lr 0.000224 time 0.4494 (0.4846) model_time 0.4492 (0.4706) loss 2.2563 (2.7367) grad_norm 3.2480 (2.9155/1.3142) mem 16099MB [2025-01-18 10:13:33 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][160/312] eta 0:01:13 lr 0.000224 time 0.4466 (0.4834) model_time 0.4461 (0.4702) loss 3.1178 (2.7512) grad_norm 2.6019 (2.8768/1.2895) mem 16099MB [2025-01-18 10:13:37 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][170/312] eta 0:01:08 lr 0.000224 time 0.4624 (0.4818) model_time 0.4622 (0.4694) loss 2.0859 (2.7382) grad_norm 1.9650 (2.8574/1.2647) mem 16099MB [2025-01-18 10:13:42 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][180/312] eta 0:01:03 lr 0.000223 time 0.4439 (0.4817) model_time 0.4438 (0.4699) loss 2.6582 (2.7391) grad_norm 5.1694 (2.8944/1.2665) mem 16099MB [2025-01-18 10:13:47 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][190/312] eta 0:00:58 lr 0.000223 time 0.4678 (0.4802) model_time 0.4676 (0.4690) loss 2.3349 (2.7391) grad_norm 3.0402 (2.9144/1.2870) mem 16099MB [2025-01-18 10:13:51 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][200/312] eta 0:00:53 lr 0.000223 time 0.4450 (0.4789) model_time 0.4448 (0.4683) loss 3.3180 (2.7429) grad_norm 2.1979 (2.8664/1.2758) mem 16099MB [2025-01-18 10:13:56 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][210/312] eta 0:00:48 lr 0.000223 time 0.4486 (0.4788) model_time 0.4484 (0.4686) loss 1.7970 (2.7277) grad_norm 2.0465 (2.8153/1.2700) mem 16099MB [2025-01-18 10:14:00 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][220/312] eta 0:00:43 lr 0.000222 time 0.4405 (0.4780) model_time 0.4400 (0.4683) loss 3.0391 (2.7208) grad_norm 3.7574 (2.7938/1.2582) mem 16099MB [2025-01-18 10:14:05 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][230/312] eta 0:00:39 lr 0.000222 time 0.4444 (0.4773) model_time 0.4442 (0.4680) loss 3.0246 (2.7226) grad_norm 4.2523 (2.7788/1.2465) mem 16099MB [2025-01-18 10:14:10 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][240/312] eta 0:00:34 lr 0.000222 time 0.4631 (0.4766) model_time 0.4626 (0.4677) loss 2.5432 (2.7226) grad_norm 1.4032 (2.7764/1.2585) mem 16099MB [2025-01-18 10:14:14 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][250/312] eta 0:00:29 lr 0.000221 time 0.4554 (0.4767) model_time 0.4553 (0.4681) loss 3.0839 (2.7307) grad_norm 2.5848 (2.7658/1.2468) mem 16099MB [2025-01-18 10:14:19 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][260/312] eta 0:00:24 lr 0.000221 time 0.4531 (0.4762) model_time 0.4526 (0.4679) loss 1.7311 (2.7288) grad_norm 3.0221 (2.7642/1.2366) mem 16099MB [2025-01-18 10:14:24 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][270/312] eta 0:00:20 lr 0.000221 time 0.4473 (0.4765) model_time 0.4471 (0.4685) loss 2.5949 (2.7199) grad_norm 2.4306 (2.7552/1.2305) mem 16099MB [2025-01-18 10:14:28 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][280/312] eta 0:00:15 lr 0.000221 time 0.4528 (0.4757) model_time 0.4527 (0.4679) loss 2.6228 (2.7184) grad_norm 4.8319 (2.8043/1.2938) mem 16099MB [2025-01-18 10:14:33 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][290/312] eta 0:00:10 lr 0.000220 time 0.5426 (0.4758) model_time 0.5424 (0.4683) loss 1.6360 (2.7192) grad_norm 4.6096 (2.8173/1.3089) mem 16099MB [2025-01-18 10:14:38 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][300/312] eta 0:00:05 lr 0.000220 time 0.4395 (0.4753) model_time 0.4394 (0.4680) loss 2.7243 (2.7179) grad_norm 2.9838 (2.8566/1.3499) mem 16099MB [2025-01-18 10:14:42 internimage_t_1k_224] (main.py 510): INFO Train: [258/300][310/312] eta 0:00:00 lr 0.000220 time 0.4391 (0.4742) model_time 0.4389 (0.4672) loss 2.3734 (2.7209) grad_norm 3.1291 (2.8229/1.3284) mem 16099MB [2025-01-18 10:14:43 internimage_t_1k_224] (main.py 519): INFO EPOCH 258 training takes 0:02:27 [2025-01-18 10:14:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_258.pth saving...... [2025-01-18 10:14:44 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_258.pth saved !!! [2025-01-18 10:14:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.377 (7.377) Loss 0.7304 (0.7304) Acc@1 85.498 (85.498) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 10:14:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.020) Loss 0.9910 (0.8430) Acc@1 78.320 (82.819) Acc@5 95.166 (96.265) Mem 16099MB [2025-01-18 10:14:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:258] * Acc@1 82.684 Acc@5 96.267 [2025-01-18 10:14:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 10:14:55 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.74% [2025-01-18 10:15:04 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.589 (8.589) Loss 0.7281 (0.7281) Acc@1 85.742 (85.742) Acc@5 97.778 (97.778) Mem 16099MB [2025-01-18 10:15:08 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.140) Loss 0.9624 (0.8314) Acc@1 79.590 (83.443) Acc@5 95.605 (96.524) Mem 16099MB [2025-01-18 10:15:08 internimage_t_1k_224] (main.py 575): INFO [Epoch:258] * Acc@1 83.319 Acc@5 96.541 [2025-01-18 10:15:08 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:15:08 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.33% [2025-01-18 10:15:11 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][0/312] eta 0:16:26 lr 0.000220 time 3.1604 (3.1604) model_time 1.2216 (1.2216) loss 2.9300 (2.9300) grad_norm 3.0850 (3.0850/0.0000) mem 16099MB [2025-01-18 10:15:16 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][10/312] eta 0:03:35 lr 0.000219 time 0.4518 (0.7132) model_time 0.4517 (0.5364) loss 2.6111 (2.7775) grad_norm 1.5467 (3.5900/1.4845) mem 16099MB [2025-01-18 10:15:20 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][20/312] eta 0:02:52 lr 0.000219 time 0.4631 (0.5905) model_time 0.4627 (0.4978) loss 3.1151 (2.7957) grad_norm 2.7762 (3.0603/1.2836) mem 16099MB [2025-01-18 10:15:25 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][30/312] eta 0:02:35 lr 0.000219 time 0.4627 (0.5498) model_time 0.4625 (0.4868) loss 3.3566 (2.7945) grad_norm 2.5207 (2.5778/1.2719) mem 16099MB [2025-01-18 10:15:30 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][40/312] eta 0:02:23 lr 0.000219 time 0.4408 (0.5275) model_time 0.4406 (0.4798) loss 2.8487 (2.7874) grad_norm 2.8769 (2.7294/1.2569) mem 16099MB [2025-01-18 10:15:34 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][50/312] eta 0:02:15 lr 0.000218 time 0.4428 (0.5191) model_time 0.4426 (0.4806) loss 2.8355 (2.7682) grad_norm 3.1807 (2.9822/1.3690) mem 16099MB [2025-01-18 10:15:39 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][60/312] eta 0:02:09 lr 0.000218 time 0.4600 (0.5138) model_time 0.4595 (0.4816) loss 2.9159 (2.7815) grad_norm 2.6384 (2.9755/1.3478) mem 16099MB [2025-01-18 10:15:44 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][70/312] eta 0:02:02 lr 0.000218 time 0.4625 (0.5059) model_time 0.4624 (0.4782) loss 2.4282 (2.7345) grad_norm 2.2445 (2.9156/1.3182) mem 16099MB [2025-01-18 10:15:48 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][80/312] eta 0:01:56 lr 0.000218 time 0.4499 (0.5004) model_time 0.4494 (0.4761) loss 2.7116 (2.7647) grad_norm 4.4125 (2.9883/1.2984) mem 16099MB [2025-01-18 10:15:53 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][90/312] eta 0:01:50 lr 0.000217 time 0.4483 (0.4958) model_time 0.4479 (0.4741) loss 2.2079 (2.7624) grad_norm 2.6871 (3.0721/1.3321) mem 16099MB [2025-01-18 10:15:58 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][100/312] eta 0:01:44 lr 0.000217 time 0.4427 (0.4917) model_time 0.4426 (0.4721) loss 3.1359 (2.7720) grad_norm 1.6761 (3.1329/1.3435) mem 16099MB [2025-01-18 10:16:02 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][110/312] eta 0:01:38 lr 0.000217 time 0.4514 (0.4890) model_time 0.4512 (0.4711) loss 3.2232 (2.7823) grad_norm 3.6356 (3.0856/1.3246) mem 16099MB [2025-01-18 10:16:07 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][120/312] eta 0:01:33 lr 0.000216 time 0.4504 (0.4865) model_time 0.4500 (0.4700) loss 2.9094 (2.7797) grad_norm 3.8521 (3.0902/1.3170) mem 16099MB [2025-01-18 10:16:11 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][130/312] eta 0:01:28 lr 0.000216 time 0.4543 (0.4844) model_time 0.4538 (0.4692) loss 1.8667 (2.7792) grad_norm 2.1317 (3.0624/1.2999) mem 16099MB [2025-01-18 10:16:16 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][140/312] eta 0:01:23 lr 0.000216 time 0.4850 (0.4830) model_time 0.4848 (0.4688) loss 2.9792 (2.7833) grad_norm 3.3021 (3.0838/1.3045) mem 16099MB [2025-01-18 10:16:21 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][150/312] eta 0:01:18 lr 0.000216 time 0.4347 (0.4826) model_time 0.4343 (0.4693) loss 3.2434 (2.7959) grad_norm 1.8357 (3.0643/1.2914) mem 16099MB [2025-01-18 10:16:25 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][160/312] eta 0:01:13 lr 0.000215 time 0.4434 (0.4818) model_time 0.4432 (0.4694) loss 3.1903 (2.7984) grad_norm 4.2148 (3.0614/1.2793) mem 16099MB [2025-01-18 10:16:30 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][170/312] eta 0:01:08 lr 0.000215 time 0.4456 (0.4805) model_time 0.4455 (0.4688) loss 2.7982 (2.7992) grad_norm 1.9212 (3.0263/1.2682) mem 16099MB [2025-01-18 10:16:35 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][180/312] eta 0:01:03 lr 0.000215 time 0.4500 (0.4797) model_time 0.4495 (0.4686) loss 2.9866 (2.7997) grad_norm 1.1688 (2.9668/1.2664) mem 16099MB [2025-01-18 10:16:39 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][190/312] eta 0:00:58 lr 0.000214 time 0.4490 (0.4785) model_time 0.4485 (0.4679) loss 3.0356 (2.8014) grad_norm 5.7393 (3.0723/1.3764) mem 16099MB [2025-01-18 10:16:44 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][200/312] eta 0:00:53 lr 0.000214 time 0.4966 (0.4776) model_time 0.4965 (0.4675) loss 2.9192 (2.8019) grad_norm 2.7877 (3.0719/1.3631) mem 16099MB [2025-01-18 10:16:48 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][210/312] eta 0:00:48 lr 0.000214 time 0.4441 (0.4764) model_time 0.4437 (0.4668) loss 2.7499 (2.8083) grad_norm 1.5544 (3.0752/1.4048) mem 16099MB [2025-01-18 10:16:53 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][220/312] eta 0:00:43 lr 0.000214 time 0.5480 (0.4763) model_time 0.5479 (0.4671) loss 3.1076 (2.7910) grad_norm 1.5073 (3.0451/1.3954) mem 16099MB [2025-01-18 10:16:58 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][230/312] eta 0:00:39 lr 0.000213 time 0.4546 (0.4763) model_time 0.4541 (0.4674) loss 3.2355 (2.7944) grad_norm 3.8592 (3.0033/1.3901) mem 16099MB [2025-01-18 10:17:03 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][240/312] eta 0:00:34 lr 0.000213 time 0.4486 (0.4757) model_time 0.4482 (0.4672) loss 2.6019 (2.7926) grad_norm 4.0838 (3.0235/1.3923) mem 16099MB [2025-01-18 10:17:07 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][250/312] eta 0:00:29 lr 0.000213 time 0.4326 (0.4751) model_time 0.4325 (0.4669) loss 1.9673 (2.7825) grad_norm 2.6166 (3.0223/1.3762) mem 16099MB [2025-01-18 10:17:12 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][260/312] eta 0:00:24 lr 0.000213 time 0.4521 (0.4748) model_time 0.4519 (0.4669) loss 2.9486 (2.7812) grad_norm 1.5134 (3.0155/1.3718) mem 16099MB [2025-01-18 10:17:16 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][270/312] eta 0:00:19 lr 0.000212 time 0.4722 (0.4742) model_time 0.4720 (0.4666) loss 2.1478 (2.7840) grad_norm 3.4757 (3.0080/1.3600) mem 16099MB [2025-01-18 10:17:21 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][280/312] eta 0:00:15 lr 0.000212 time 0.4519 (0.4735) model_time 0.4514 (0.4661) loss 2.2587 (2.7751) grad_norm 2.3349 (3.0622/1.3974) mem 16099MB [2025-01-18 10:17:26 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][290/312] eta 0:00:10 lr 0.000212 time 0.4493 (0.4735) model_time 0.4488 (0.4664) loss 3.3633 (2.7724) grad_norm 5.5383 (3.0540/1.3942) mem 16099MB [2025-01-18 10:17:30 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][300/312] eta 0:00:05 lr 0.000212 time 0.4385 (0.4729) model_time 0.4384 (0.4661) loss 2.7999 (2.7695) grad_norm 2.0536 (3.0808/1.4061) mem 16099MB [2025-01-18 10:17:35 internimage_t_1k_224] (main.py 510): INFO Train: [259/300][310/312] eta 0:00:00 lr 0.000211 time 0.4426 (0.4732) model_time 0.4425 (0.4666) loss 2.6075 (2.7684) grad_norm 2.6534 (3.0565/1.3890) mem 16099MB [2025-01-18 10:17:36 internimage_t_1k_224] (main.py 519): INFO EPOCH 259 training takes 0:02:27 [2025-01-18 10:17:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_259.pth saving...... [2025-01-18 10:17:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_259.pth saved !!! [2025-01-18 10:17:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.728 (7.728) Loss 0.7134 (0.7134) Acc@1 85.425 (85.425) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 10:17:48 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.029) Loss 0.9729 (0.8303) Acc@1 78.442 (82.826) Acc@5 95.215 (96.234) Mem 16099MB [2025-01-18 10:17:48 internimage_t_1k_224] (main.py 575): INFO [Epoch:259] * Acc@1 82.682 Acc@5 96.247 [2025-01-18 10:17:48 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 10:17:48 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.74% [2025-01-18 10:17:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.174 (8.174) Loss 0.7274 (0.7274) Acc@1 85.742 (85.742) Acc@5 97.754 (97.754) Mem 16099MB [2025-01-18 10:18:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.101) Loss 0.9615 (0.8306) Acc@1 79.590 (83.458) Acc@5 95.605 (96.538) Mem 16099MB [2025-01-18 10:18:00 internimage_t_1k_224] (main.py 575): INFO [Epoch:259] * Acc@1 83.329 Acc@5 96.553 [2025-01-18 10:18:00 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:18:00 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.33% [2025-01-18 10:18:04 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][0/312] eta 0:19:48 lr 0.000211 time 3.8090 (3.8090) model_time 2.4940 (2.4940) loss 2.8427 (2.8427) grad_norm 2.9494 (2.9494/0.0000) mem 16099MB [2025-01-18 10:18:09 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][10/312] eta 0:03:54 lr 0.000211 time 0.4500 (0.7760) model_time 0.4499 (0.6561) loss 1.8130 (2.7946) grad_norm 1.7267 (2.8430/1.2731) mem 16099MB [2025-01-18 10:18:14 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][20/312] eta 0:03:08 lr 0.000211 time 0.5580 (0.6442) model_time 0.5578 (0.5812) loss 2.5075 (2.7686) grad_norm 3.3740 (3.7514/1.8009) mem 16099MB [2025-01-18 10:18:18 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][30/312] eta 0:02:44 lr 0.000210 time 0.4584 (0.5831) model_time 0.4583 (0.5403) loss 2.7094 (2.7817) grad_norm 2.2606 (3.3450/1.6734) mem 16099MB [2025-01-18 10:18:23 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][40/312] eta 0:02:30 lr 0.000210 time 0.4537 (0.5523) model_time 0.4532 (0.5198) loss 2.1518 (2.7890) grad_norm 2.9903 (3.1265/1.5581) mem 16099MB [2025-01-18 10:18:28 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][50/312] eta 0:02:20 lr 0.000210 time 0.4342 (0.5361) model_time 0.4336 (0.5099) loss 3.1113 (2.7510) grad_norm 4.4044 (3.0557/1.4724) mem 16099MB [2025-01-18 10:18:33 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][60/312] eta 0:02:12 lr 0.000210 time 0.5808 (0.5273) model_time 0.5803 (0.5053) loss 1.7344 (2.7620) grad_norm 4.4527 (2.9299/1.4256) mem 16099MB [2025-01-18 10:18:37 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][70/312] eta 0:02:05 lr 0.000209 time 0.4603 (0.5199) model_time 0.4599 (0.5010) loss 3.0088 (2.7770) grad_norm 2.1397 (3.0836/1.4933) mem 16099MB [2025-01-18 10:18:42 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][80/312] eta 0:01:58 lr 0.000209 time 0.4472 (0.5118) model_time 0.4470 (0.4952) loss 2.3063 (2.7362) grad_norm 6.7049 (3.1312/1.5058) mem 16099MB [2025-01-18 10:18:47 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][90/312] eta 0:01:52 lr 0.000209 time 0.4616 (0.5079) model_time 0.4611 (0.4931) loss 3.2080 (2.7356) grad_norm 3.0200 (3.1701/1.4689) mem 16099MB [2025-01-18 10:18:51 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][100/312] eta 0:01:46 lr 0.000208 time 0.4577 (0.5034) model_time 0.4572 (0.4900) loss 2.2280 (2.7289) grad_norm 2.9330 (3.1344/1.4366) mem 16099MB [2025-01-18 10:18:56 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][110/312] eta 0:01:40 lr 0.000208 time 0.4568 (0.4992) model_time 0.4566 (0.4869) loss 2.7071 (2.7155) grad_norm 3.3071 (3.0848/1.3979) mem 16099MB [2025-01-18 10:19:01 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][120/312] eta 0:01:35 lr 0.000208 time 0.5330 (0.4973) model_time 0.5325 (0.4860) loss 3.3802 (2.7300) grad_norm 2.2102 (3.0701/1.3646) mem 16099MB [2025-01-18 10:19:05 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][130/312] eta 0:01:29 lr 0.000208 time 0.4510 (0.4940) model_time 0.4505 (0.4835) loss 2.7056 (2.7199) grad_norm 5.6106 (3.0514/1.3857) mem 16099MB [2025-01-18 10:19:10 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][140/312] eta 0:01:24 lr 0.000207 time 0.4644 (0.4931) model_time 0.4642 (0.4834) loss 2.4446 (2.7295) grad_norm 2.5170 (3.0495/1.3722) mem 16099MB [2025-01-18 10:19:15 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][150/312] eta 0:01:19 lr 0.000207 time 0.4625 (0.4919) model_time 0.4621 (0.4827) loss 2.4546 (2.7289) grad_norm 2.6147 (3.0325/1.3683) mem 16099MB [2025-01-18 10:19:19 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][160/312] eta 0:01:14 lr 0.000207 time 0.4524 (0.4903) model_time 0.4522 (0.4817) loss 2.9197 (2.7213) grad_norm 1.4619 (2.9617/1.3602) mem 16099MB [2025-01-18 10:19:24 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][170/312] eta 0:01:09 lr 0.000207 time 0.4436 (0.4894) model_time 0.4432 (0.4813) loss 2.2240 (2.7230) grad_norm 2.0796 (2.9138/1.3454) mem 16099MB [2025-01-18 10:19:29 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][180/312] eta 0:01:04 lr 0.000206 time 0.4517 (0.4882) model_time 0.4515 (0.4806) loss 2.7805 (2.7182) grad_norm 3.5096 (2.9082/1.3139) mem 16099MB [2025-01-18 10:19:33 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][190/312] eta 0:00:59 lr 0.000206 time 0.4925 (0.4867) model_time 0.4923 (0.4794) loss 3.4210 (2.7187) grad_norm 2.3910 (2.9213/1.3124) mem 16099MB [2025-01-18 10:19:38 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][200/312] eta 0:00:54 lr 0.000206 time 0.4660 (0.4852) model_time 0.4658 (0.4782) loss 1.8740 (2.7103) grad_norm 3.2713 (2.9267/1.2921) mem 16099MB [2025-01-18 10:19:43 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][210/312] eta 0:00:49 lr 0.000206 time 0.4415 (0.4840) model_time 0.4413 (0.4774) loss 2.6020 (2.7055) grad_norm 2.8362 (2.9410/1.2910) mem 16099MB [2025-01-18 10:19:47 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][220/312] eta 0:00:44 lr 0.000205 time 0.4577 (0.4828) model_time 0.4575 (0.4764) loss 3.1237 (2.7141) grad_norm 2.3501 (2.9459/1.2774) mem 16099MB [2025-01-18 10:19:52 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][230/312] eta 0:00:39 lr 0.000205 time 0.4692 (0.4818) model_time 0.4690 (0.4757) loss 3.2004 (2.7129) grad_norm 2.2593 (2.9241/1.2610) mem 16099MB [2025-01-18 10:19:56 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][240/312] eta 0:00:34 lr 0.000205 time 0.4479 (0.4807) model_time 0.4474 (0.4748) loss 2.9832 (2.7128) grad_norm 2.6924 (2.9518/1.2979) mem 16099MB [2025-01-18 10:20:01 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][250/312] eta 0:00:29 lr 0.000204 time 0.4560 (0.4799) model_time 0.4558 (0.4743) loss 2.7763 (2.7134) grad_norm 3.1484 (2.9531/1.2794) mem 16099MB [2025-01-18 10:20:06 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][260/312] eta 0:00:24 lr 0.000204 time 0.4450 (0.4794) model_time 0.4445 (0.4740) loss 2.7974 (2.7117) grad_norm 1.0630 (2.9513/1.2785) mem 16099MB [2025-01-18 10:20:10 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][270/312] eta 0:00:20 lr 0.000204 time 0.4616 (0.4788) model_time 0.4614 (0.4735) loss 1.7254 (2.7056) grad_norm 3.5712 (2.9836/1.3154) mem 16099MB [2025-01-18 10:20:15 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][280/312] eta 0:00:15 lr 0.000204 time 0.4331 (0.4779) model_time 0.4329 (0.4729) loss 2.6842 (2.7042) grad_norm 1.3835 (2.9609/1.3085) mem 16099MB [2025-01-18 10:20:19 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][290/312] eta 0:00:10 lr 0.000203 time 0.4505 (0.4777) model_time 0.4500 (0.4727) loss 2.1765 (2.6959) grad_norm 2.8136 (2.9572/1.3014) mem 16099MB [2025-01-18 10:20:24 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][300/312] eta 0:00:05 lr 0.000203 time 0.4417 (0.4777) model_time 0.4416 (0.4729) loss 2.5466 (2.6954) grad_norm 3.6574 (2.9609/1.3069) mem 16099MB [2025-01-18 10:20:29 internimage_t_1k_224] (main.py 510): INFO Train: [260/300][310/312] eta 0:00:00 lr 0.000203 time 0.5266 (0.4769) model_time 0.5265 (0.4723) loss 2.8091 (2.6968) grad_norm 8.6809 (3.0238/1.3995) mem 16099MB [2025-01-18 10:20:29 internimage_t_1k_224] (main.py 519): INFO EPOCH 260 training takes 0:02:28 [2025-01-18 10:20:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_260.pth saving...... [2025-01-18 10:20:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_260.pth saved !!! [2025-01-18 10:20:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.680 (7.680) Loss 0.7305 (0.7305) Acc@1 85.474 (85.474) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 10:20:42 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.044) Loss 0.9848 (0.8438) Acc@1 78.564 (82.901) Acc@5 94.971 (96.203) Mem 16099MB [2025-01-18 10:20:42 internimage_t_1k_224] (main.py 575): INFO [Epoch:260] * Acc@1 82.774 Acc@5 96.207 [2025-01-18 10:20:42 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.8% [2025-01-18 10:20:42 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 10:20:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 10:20:43 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.77% [2025-01-18 10:20:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.643 (7.643) Loss 0.7266 (0.7266) Acc@1 85.767 (85.767) Acc@5 97.754 (97.754) Mem 16099MB [2025-01-18 10:20:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.032) Loss 0.9604 (0.8297) Acc@1 79.565 (83.481) Acc@5 95.581 (96.538) Mem 16099MB [2025-01-18 10:20:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:260] * Acc@1 83.349 Acc@5 96.553 [2025-01-18 10:20:55 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:20:55 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:20:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:20:56 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.35% [2025-01-18 10:20:58 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][0/312] eta 0:11:40 lr 0.000203 time 2.2467 (2.2467) model_time 0.4690 (0.4690) loss 3.0862 (3.0862) grad_norm 3.5015 (3.5015/0.0000) mem 16099MB [2025-01-18 10:21:03 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][10/312] eta 0:03:12 lr 0.000203 time 0.4489 (0.6389) model_time 0.4484 (0.4769) loss 1.7771 (2.6977) grad_norm 2.7396 (3.4568/1.1859) mem 16099MB [2025-01-18 10:21:08 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][20/312] eta 0:02:42 lr 0.000202 time 0.4536 (0.5557) model_time 0.4534 (0.4706) loss 2.9851 (2.8521) grad_norm 2.8554 (3.1296/1.1022) mem 16099MB [2025-01-18 10:21:13 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][30/312] eta 0:02:28 lr 0.000202 time 0.5912 (0.5275) model_time 0.5910 (0.4697) loss 3.0475 (2.8312) grad_norm 3.6694 (3.4214/1.2788) mem 16099MB [2025-01-18 10:21:17 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][40/312] eta 0:02:20 lr 0.000202 time 0.4456 (0.5182) model_time 0.4451 (0.4745) loss 2.1626 (2.8090) grad_norm 3.2046 (3.3424/1.2183) mem 16099MB [2025-01-18 10:21:22 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][50/312] eta 0:02:13 lr 0.000202 time 0.4478 (0.5095) model_time 0.4474 (0.4743) loss 3.1454 (2.7879) grad_norm 1.5884 (3.1701/1.1856) mem 16099MB [2025-01-18 10:21:27 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][60/312] eta 0:02:06 lr 0.000201 time 0.4569 (0.5032) model_time 0.4567 (0.4737) loss 3.1138 (2.7599) grad_norm 5.8194 (3.1117/1.2049) mem 16099MB [2025-01-18 10:21:31 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][70/312] eta 0:02:00 lr 0.000201 time 0.4492 (0.4966) model_time 0.4490 (0.4712) loss 2.9437 (2.7085) grad_norm 1.8619 (3.0278/1.2144) mem 16099MB [2025-01-18 10:21:36 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][80/312] eta 0:01:54 lr 0.000201 time 0.4570 (0.4915) model_time 0.4565 (0.4691) loss 3.3018 (2.7020) grad_norm 4.9063 (2.9003/1.2375) mem 16099MB [2025-01-18 10:21:41 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][90/312] eta 0:01:48 lr 0.000200 time 0.4435 (0.4883) model_time 0.4433 (0.4683) loss 3.0929 (2.7168) grad_norm 2.9166 (2.8647/1.2011) mem 16099MB [2025-01-18 10:21:45 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][100/312] eta 0:01:43 lr 0.000200 time 0.4550 (0.4864) model_time 0.4548 (0.4684) loss 2.6748 (2.7153) grad_norm 3.0887 (2.7792/1.1949) mem 16099MB [2025-01-18 10:21:50 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][110/312] eta 0:01:37 lr 0.000200 time 0.4500 (0.4843) model_time 0.4494 (0.4679) loss 1.9441 (2.7006) grad_norm 2.3388 (2.7453/1.1873) mem 16099MB [2025-01-18 10:21:55 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][120/312] eta 0:01:32 lr 0.000200 time 0.4476 (0.4822) model_time 0.4474 (0.4671) loss 2.4000 (2.6911) grad_norm 2.2650 (2.7682/1.1809) mem 16099MB [2025-01-18 10:21:59 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][130/312] eta 0:01:27 lr 0.000199 time 0.4535 (0.4805) model_time 0.4530 (0.4665) loss 2.9958 (2.7065) grad_norm 2.7407 (2.7466/1.1692) mem 16099MB [2025-01-18 10:22:04 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][140/312] eta 0:01:22 lr 0.000199 time 0.5696 (0.4801) model_time 0.5692 (0.4671) loss 1.6686 (2.7013) grad_norm 3.7736 (2.7619/1.1716) mem 16099MB [2025-01-18 10:22:09 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][150/312] eta 0:01:17 lr 0.000199 time 0.4622 (0.4791) model_time 0.4620 (0.4669) loss 3.2253 (2.6997) grad_norm 2.2465 (2.8050/1.1736) mem 16099MB [2025-01-18 10:22:13 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][160/312] eta 0:01:12 lr 0.000199 time 0.4520 (0.4777) model_time 0.4518 (0.4662) loss 2.9567 (2.7009) grad_norm 2.8297 (2.7985/1.1467) mem 16099MB [2025-01-18 10:22:18 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][170/312] eta 0:01:07 lr 0.000198 time 0.4427 (0.4778) model_time 0.4425 (0.4670) loss 2.8077 (2.6967) grad_norm 6.3179 (2.7577/1.1798) mem 16099MB [2025-01-18 10:22:23 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][180/312] eta 0:01:03 lr 0.000198 time 0.4408 (0.4781) model_time 0.4406 (0.4679) loss 2.9705 (2.6965) grad_norm 2.3708 (2.7476/1.1919) mem 16099MB [2025-01-18 10:22:27 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][190/312] eta 0:00:58 lr 0.000198 time 0.4507 (0.4774) model_time 0.4505 (0.4677) loss 2.6348 (2.6987) grad_norm 2.5757 (2.7368/1.1736) mem 16099MB [2025-01-18 10:22:32 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][200/312] eta 0:00:53 lr 0.000198 time 0.4519 (0.4762) model_time 0.4517 (0.4670) loss 2.7728 (2.7115) grad_norm 6.1998 (2.7458/1.1945) mem 16099MB [2025-01-18 10:22:37 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][210/312] eta 0:00:48 lr 0.000197 time 0.4598 (0.4756) model_time 0.4593 (0.4668) loss 2.2929 (2.7059) grad_norm 5.3757 (2.7796/1.2303) mem 16099MB [2025-01-18 10:22:41 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][220/312] eta 0:00:43 lr 0.000197 time 0.4524 (0.4747) model_time 0.4520 (0.4662) loss 1.9836 (2.7007) grad_norm 2.3279 (2.8173/1.3005) mem 16099MB [2025-01-18 10:22:46 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][230/312] eta 0:00:38 lr 0.000197 time 0.5549 (0.4751) model_time 0.5548 (0.4670) loss 3.3535 (2.7148) grad_norm 3.6151 (2.8166/1.2816) mem 16099MB [2025-01-18 10:22:51 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][240/312] eta 0:00:34 lr 0.000197 time 0.4470 (0.4745) model_time 0.4466 (0.4667) loss 3.0901 (2.7132) grad_norm 1.9742 (2.8107/1.2687) mem 16099MB [2025-01-18 10:22:55 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][250/312] eta 0:00:29 lr 0.000196 time 0.4643 (0.4742) model_time 0.4638 (0.4667) loss 3.0857 (2.7178) grad_norm 2.6566 (2.8081/1.2643) mem 16099MB [2025-01-18 10:23:00 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][260/312] eta 0:00:24 lr 0.000196 time 0.4520 (0.4737) model_time 0.4518 (0.4665) loss 3.3650 (2.7192) grad_norm 1.7580 (2.8323/1.2592) mem 16099MB [2025-01-18 10:23:05 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][270/312] eta 0:00:19 lr 0.000196 time 0.4431 (0.4736) model_time 0.4429 (0.4666) loss 2.5506 (2.7181) grad_norm 4.7977 (2.8572/1.2781) mem 16099MB [2025-01-18 10:23:09 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][280/312] eta 0:00:15 lr 0.000196 time 0.4412 (0.4738) model_time 0.4410 (0.4671) loss 3.4224 (2.7197) grad_norm 5.9271 (2.9155/1.3547) mem 16099MB [2025-01-18 10:23:14 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][290/312] eta 0:00:10 lr 0.000195 time 0.4455 (0.4739) model_time 0.4453 (0.4673) loss 2.8219 (2.7167) grad_norm 1.4220 (2.8994/1.3432) mem 16099MB [2025-01-18 10:23:19 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][300/312] eta 0:00:05 lr 0.000195 time 0.4398 (0.4733) model_time 0.4397 (0.4670) loss 3.3267 (2.7181) grad_norm 2.2663 (2.8953/1.3413) mem 16099MB [2025-01-18 10:23:23 internimage_t_1k_224] (main.py 510): INFO Train: [261/300][310/312] eta 0:00:00 lr 0.000195 time 0.4385 (0.4726) model_time 0.4384 (0.4664) loss 3.1473 (2.7230) grad_norm 1.8468 (2.8556/1.3317) mem 16099MB [2025-01-18 10:23:24 internimage_t_1k_224] (main.py 519): INFO EPOCH 261 training takes 0:02:27 [2025-01-18 10:23:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_261.pth saving...... [2025-01-18 10:23:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_261.pth saved !!! [2025-01-18 10:23:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.804 (7.804) Loss 0.7544 (0.7544) Acc@1 84.717 (84.717) Acc@5 97.241 (97.241) Mem 16099MB [2025-01-18 10:23:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.048) Loss 0.9888 (0.8515) Acc@1 79.028 (82.857) Acc@5 95.044 (96.158) Mem 16099MB [2025-01-18 10:23:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:261] * Acc@1 82.720 Acc@5 96.157 [2025-01-18 10:23:36 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.7% [2025-01-18 10:23:36 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.77% [2025-01-18 10:23:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.264 (8.264) Loss 0.7260 (0.7260) Acc@1 85.718 (85.718) Acc@5 97.754 (97.754) Mem 16099MB [2025-01-18 10:23:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.110) Loss 0.9593 (0.8288) Acc@1 79.614 (83.478) Acc@5 95.581 (96.540) Mem 16099MB [2025-01-18 10:23:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:261] * Acc@1 83.341 Acc@5 96.555 [2025-01-18 10:23:49 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:23:49 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.35% [2025-01-18 10:23:52 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][0/312] eta 0:16:37 lr 0.000195 time 3.1963 (3.1963) model_time 1.1968 (1.1968) loss 2.5739 (2.5739) grad_norm 1.7023 (1.7023/0.0000) mem 16099MB [2025-01-18 10:23:57 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][10/312] eta 0:03:37 lr 0.000194 time 0.4498 (0.7200) model_time 0.4494 (0.5380) loss 3.1737 (2.6064) grad_norm 2.1605 (2.9008/1.1978) mem 16099MB [2025-01-18 10:24:01 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][20/312] eta 0:02:55 lr 0.000194 time 0.5471 (0.6010) model_time 0.5466 (0.5055) loss 3.3700 (2.6101) grad_norm 3.1385 (3.0400/1.1199) mem 16099MB [2025-01-18 10:24:06 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][30/312] eta 0:02:38 lr 0.000194 time 0.4583 (0.5612) model_time 0.4581 (0.4964) loss 2.9759 (2.6651) grad_norm 3.8731 (2.9884/1.3914) mem 16099MB [2025-01-18 10:24:11 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][40/312] eta 0:02:25 lr 0.000194 time 0.4516 (0.5357) model_time 0.4511 (0.4866) loss 2.6783 (2.6944) grad_norm 1.7494 (2.9930/1.3142) mem 16099MB [2025-01-18 10:24:15 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][50/312] eta 0:02:16 lr 0.000193 time 0.4443 (0.5214) model_time 0.4441 (0.4819) loss 3.1473 (2.6941) grad_norm 1.6558 (2.9908/1.2999) mem 16099MB [2025-01-18 10:24:20 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][60/312] eta 0:02:08 lr 0.000193 time 0.4435 (0.5109) model_time 0.4433 (0.4778) loss 3.1252 (2.7138) grad_norm 1.5369 (3.1019/1.4291) mem 16099MB [2025-01-18 10:24:25 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][70/312] eta 0:02:02 lr 0.000193 time 0.4469 (0.5066) model_time 0.4463 (0.4781) loss 2.8933 (2.7265) grad_norm 2.8047 (3.0406/1.3808) mem 16099MB [2025-01-18 10:24:29 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][80/312] eta 0:01:56 lr 0.000193 time 0.4500 (0.5022) model_time 0.4498 (0.4772) loss 2.8669 (2.7337) grad_norm 1.0830 (2.9141/1.3744) mem 16099MB [2025-01-18 10:24:34 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][90/312] eta 0:01:50 lr 0.000192 time 0.4546 (0.4974) model_time 0.4542 (0.4750) loss 2.5972 (2.7256) grad_norm 2.7273 (2.9129/1.3377) mem 16099MB [2025-01-18 10:24:39 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][100/312] eta 0:01:44 lr 0.000192 time 0.4596 (0.4940) model_time 0.4594 (0.4738) loss 3.0125 (2.7225) grad_norm 2.1990 (2.8550/1.3024) mem 16099MB [2025-01-18 10:24:43 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][110/312] eta 0:01:39 lr 0.000192 time 0.4482 (0.4904) model_time 0.4478 (0.4720) loss 3.5591 (2.7427) grad_norm 5.3433 (2.8762/1.3008) mem 16099MB [2025-01-18 10:24:48 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][120/312] eta 0:01:33 lr 0.000192 time 0.4555 (0.4890) model_time 0.4551 (0.4721) loss 2.8912 (2.7457) grad_norm 2.9790 (2.9418/1.3613) mem 16099MB [2025-01-18 10:24:52 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][130/312] eta 0:01:28 lr 0.000191 time 0.4559 (0.4863) model_time 0.4557 (0.4706) loss 3.3854 (2.7544) grad_norm 2.2701 (2.9061/1.3640) mem 16099MB [2025-01-18 10:24:57 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][140/312] eta 0:01:23 lr 0.000191 time 0.4423 (0.4858) model_time 0.4421 (0.4712) loss 2.1884 (2.7368) grad_norm 4.1305 (2.9111/1.3406) mem 16099MB [2025-01-18 10:25:02 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][150/312] eta 0:01:18 lr 0.000191 time 0.4668 (0.4851) model_time 0.4666 (0.4714) loss 2.9092 (2.7335) grad_norm 2.4276 (2.9189/1.3269) mem 16099MB [2025-01-18 10:25:07 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][160/312] eta 0:01:13 lr 0.000191 time 0.4515 (0.4839) model_time 0.4510 (0.4710) loss 3.1073 (2.7489) grad_norm 1.6559 (2.8852/1.3126) mem 16099MB [2025-01-18 10:25:11 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][170/312] eta 0:01:08 lr 0.000190 time 0.4452 (0.4832) model_time 0.4447 (0.4711) loss 3.1860 (2.7455) grad_norm 1.5114 (2.8662/1.2987) mem 16099MB [2025-01-18 10:25:16 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][180/312] eta 0:01:03 lr 0.000190 time 0.4684 (0.4821) model_time 0.4682 (0.4706) loss 2.6675 (2.7344) grad_norm 2.7820 (2.8574/1.2803) mem 16099MB [2025-01-18 10:25:21 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][190/312] eta 0:00:58 lr 0.000190 time 0.4503 (0.4818) model_time 0.4501 (0.4709) loss 3.2657 (2.7415) grad_norm 3.4324 (2.8730/1.2920) mem 16099MB [2025-01-18 10:25:25 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][200/312] eta 0:00:53 lr 0.000190 time 0.4548 (0.4805) model_time 0.4546 (0.4701) loss 2.0837 (2.7362) grad_norm 2.7873 (2.9026/1.3037) mem 16099MB [2025-01-18 10:25:30 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][210/312] eta 0:00:48 lr 0.000189 time 0.4760 (0.4800) model_time 0.4756 (0.4701) loss 2.8742 (2.7387) grad_norm 3.1231 (2.8883/1.2833) mem 16099MB [2025-01-18 10:25:35 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][220/312] eta 0:00:44 lr 0.000189 time 0.4644 (0.4792) model_time 0.4643 (0.4697) loss 2.3067 (2.7421) grad_norm 2.0161 (2.8927/1.2868) mem 16099MB [2025-01-18 10:25:39 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][230/312] eta 0:00:39 lr 0.000189 time 0.4421 (0.4784) model_time 0.4419 (0.4693) loss 3.1720 (2.7498) grad_norm 1.7271 (2.8537/1.2784) mem 16099MB [2025-01-18 10:25:44 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][240/312] eta 0:00:34 lr 0.000189 time 0.4767 (0.4774) model_time 0.4763 (0.4687) loss 2.2493 (2.7527) grad_norm 4.9688 (2.8512/1.2688) mem 16099MB [2025-01-18 10:25:48 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][250/312] eta 0:00:29 lr 0.000188 time 0.4538 (0.4764) model_time 0.4537 (0.4681) loss 3.0248 (2.7579) grad_norm 2.1919 (2.8406/1.2597) mem 16099MB [2025-01-18 10:25:53 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][260/312] eta 0:00:24 lr 0.000188 time 0.4477 (0.4763) model_time 0.4476 (0.4682) loss 3.0512 (2.7599) grad_norm 3.4014 (2.8292/1.2445) mem 16099MB [2025-01-18 10:25:58 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][270/312] eta 0:00:19 lr 0.000188 time 0.4432 (0.4759) model_time 0.4430 (0.4681) loss 1.8769 (2.7592) grad_norm 3.9471 (2.8860/1.2964) mem 16099MB [2025-01-18 10:26:02 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][280/312] eta 0:00:15 lr 0.000188 time 0.4527 (0.4751) model_time 0.4522 (0.4676) loss 2.7076 (2.7665) grad_norm 3.1546 (2.8797/1.2787) mem 16099MB [2025-01-18 10:26:07 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][290/312] eta 0:00:10 lr 0.000187 time 0.4506 (0.4747) model_time 0.4504 (0.4674) loss 2.6773 (2.7621) grad_norm 3.1370 (2.8629/1.2708) mem 16099MB [2025-01-18 10:26:11 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][300/312] eta 0:00:05 lr 0.000187 time 0.4410 (0.4739) model_time 0.4409 (0.4668) loss 2.9909 (2.7649) grad_norm 2.7698 (2.8664/1.2575) mem 16099MB [2025-01-18 10:26:16 internimage_t_1k_224] (main.py 510): INFO Train: [262/300][310/312] eta 0:00:00 lr 0.000187 time 0.4437 (0.4731) model_time 0.4435 (0.4663) loss 3.2006 (2.7709) grad_norm 4.0088 (2.8539/1.2487) mem 16099MB [2025-01-18 10:26:16 internimage_t_1k_224] (main.py 519): INFO EPOCH 262 training takes 0:02:27 [2025-01-18 10:26:16 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_262.pth saving...... [2025-01-18 10:26:17 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_262.pth saved !!! [2025-01-18 10:26:25 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.536 (7.536) Loss 0.7260 (0.7260) Acc@1 85.229 (85.229) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 10:26:29 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.109 (1.012) Loss 0.9630 (0.8272) Acc@1 79.443 (83.066) Acc@5 95.386 (96.280) Mem 16099MB [2025-01-18 10:26:29 internimage_t_1k_224] (main.py 575): INFO [Epoch:262] * Acc@1 82.893 Acc@5 96.277 [2025-01-18 10:26:29 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.9% [2025-01-18 10:26:29 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 10:26:30 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 10:26:30 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.89% [2025-01-18 10:26:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.568 (7.568) Loss 0.7255 (0.7255) Acc@1 85.718 (85.718) Acc@5 97.754 (97.754) Mem 16099MB [2025-01-18 10:26:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.028) Loss 0.9585 (0.8281) Acc@1 79.541 (83.485) Acc@5 95.557 (96.542) Mem 16099MB [2025-01-18 10:26:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:262] * Acc@1 83.345 Acc@5 96.559 [2025-01-18 10:26:41 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.3% [2025-01-18 10:26:41 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.35% [2025-01-18 10:26:44 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][0/312] eta 0:16:04 lr 0.000187 time 3.0911 (3.0911) model_time 1.6509 (1.6509) loss 2.3844 (2.3844) grad_norm 2.8906 (2.8906/0.0000) mem 16099MB [2025-01-18 10:26:50 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][10/312] eta 0:03:49 lr 0.000187 time 0.4566 (0.7615) model_time 0.4564 (0.6302) loss 3.1920 (2.8174) grad_norm 3.9696 (3.0197/1.0235) mem 16099MB [2025-01-18 10:26:54 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][20/312] eta 0:03:00 lr 0.000186 time 0.4530 (0.6197) model_time 0.4525 (0.5507) loss 2.3986 (2.8373) grad_norm 3.5231 (2.9768/1.4410) mem 16099MB [2025-01-18 10:26:59 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][30/312] eta 0:02:41 lr 0.000186 time 0.5989 (0.5721) model_time 0.5987 (0.5253) loss 2.9270 (2.8921) grad_norm 2.5433 (2.9551/1.2566) mem 16099MB [2025-01-18 10:27:04 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][40/312] eta 0:02:27 lr 0.000186 time 0.4601 (0.5430) model_time 0.4599 (0.5075) loss 2.5781 (2.8300) grad_norm 1.4697 (3.0598/1.4960) mem 16099MB [2025-01-18 10:27:08 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][50/312] eta 0:02:17 lr 0.000186 time 0.4651 (0.5259) model_time 0.4646 (0.4973) loss 2.8514 (2.8421) grad_norm 1.8057 (3.0884/1.4058) mem 16099MB [2025-01-18 10:27:13 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][60/312] eta 0:02:10 lr 0.000185 time 0.5632 (0.5179) model_time 0.5630 (0.4938) loss 2.6150 (2.7926) grad_norm 4.8565 (3.2396/1.3722) mem 16099MB [2025-01-18 10:27:18 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][70/312] eta 0:02:03 lr 0.000185 time 0.4552 (0.5086) model_time 0.4547 (0.4879) loss 2.8880 (2.8168) grad_norm 2.9138 (3.1204/1.3401) mem 16099MB [2025-01-18 10:27:22 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][80/312] eta 0:01:56 lr 0.000185 time 0.4539 (0.5022) model_time 0.4534 (0.4840) loss 3.0668 (2.7690) grad_norm 2.6967 (3.0650/1.2899) mem 16099MB [2025-01-18 10:27:27 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][90/312] eta 0:01:50 lr 0.000185 time 0.4487 (0.4966) model_time 0.4482 (0.4804) loss 2.7371 (2.7738) grad_norm 2.9650 (3.0268/1.3387) mem 16099MB [2025-01-18 10:27:31 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][100/312] eta 0:01:44 lr 0.000184 time 0.4495 (0.4927) model_time 0.4493 (0.4780) loss 1.8205 (2.7431) grad_norm 1.6621 (3.0671/1.3588) mem 16099MB [2025-01-18 10:27:36 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][110/312] eta 0:01:39 lr 0.000184 time 0.4642 (0.4918) model_time 0.4640 (0.4784) loss 2.8688 (2.7446) grad_norm 6.8068 (3.1896/1.5265) mem 16099MB [2025-01-18 10:27:41 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][120/312] eta 0:01:34 lr 0.000184 time 0.4536 (0.4903) model_time 0.4532 (0.4780) loss 1.9055 (2.7414) grad_norm 3.9100 (3.3023/1.5901) mem 16099MB [2025-01-18 10:27:46 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][130/312] eta 0:01:29 lr 0.000184 time 0.4638 (0.4912) model_time 0.4635 (0.4798) loss 2.5779 (2.7300) grad_norm 3.8621 (3.4374/1.7204) mem 16099MB [2025-01-18 10:27:51 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][140/312] eta 0:01:24 lr 0.000183 time 0.4717 (0.4918) model_time 0.4715 (0.4811) loss 3.0115 (2.7344) grad_norm 4.6467 (3.4350/1.6866) mem 16099MB [2025-01-18 10:27:56 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][150/312] eta 0:01:19 lr 0.000183 time 0.5430 (0.4918) model_time 0.5428 (0.4818) loss 2.6086 (2.7382) grad_norm 1.1706 (3.3383/1.6794) mem 16099MB [2025-01-18 10:28:00 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][160/312] eta 0:01:14 lr 0.000183 time 0.4453 (0.4893) model_time 0.4448 (0.4799) loss 3.2003 (2.7342) grad_norm 2.4564 (3.2832/1.6491) mem 16099MB [2025-01-18 10:28:05 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][170/312] eta 0:01:09 lr 0.000183 time 0.4549 (0.4882) model_time 0.4548 (0.4793) loss 2.6539 (2.7269) grad_norm 2.4805 (3.2366/1.6224) mem 16099MB [2025-01-18 10:28:10 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][180/312] eta 0:01:04 lr 0.000182 time 0.4474 (0.4870) model_time 0.4473 (0.4786) loss 3.2339 (2.7388) grad_norm 2.0485 (3.2323/1.6268) mem 16099MB [2025-01-18 10:28:14 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][190/312] eta 0:00:59 lr 0.000182 time 0.4489 (0.4852) model_time 0.4487 (0.4772) loss 2.4478 (2.7282) grad_norm 5.0498 (3.2769/1.6252) mem 16099MB [2025-01-18 10:28:19 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][200/312] eta 0:00:54 lr 0.000182 time 0.4523 (0.4836) model_time 0.4519 (0.4760) loss 3.0397 (2.7247) grad_norm 2.8758 (3.3088/1.6405) mem 16099MB [2025-01-18 10:28:23 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][210/312] eta 0:00:49 lr 0.000182 time 0.4525 (0.4821) model_time 0.4520 (0.4749) loss 2.8613 (2.7239) grad_norm 2.0317 (3.2820/1.6113) mem 16099MB [2025-01-18 10:28:28 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][220/312] eta 0:00:44 lr 0.000181 time 0.4563 (0.4809) model_time 0.4558 (0.4739) loss 2.9052 (2.7138) grad_norm 1.6302 (3.2685/1.5998) mem 16099MB [2025-01-18 10:28:32 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][230/312] eta 0:00:39 lr 0.000181 time 0.4561 (0.4803) model_time 0.4559 (0.4736) loss 1.9640 (2.7057) grad_norm 8.1765 (3.3399/1.6505) mem 16099MB [2025-01-18 10:28:37 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][240/312] eta 0:00:34 lr 0.000181 time 0.4553 (0.4795) model_time 0.4552 (0.4731) loss 2.7342 (2.7150) grad_norm 7.0738 (3.3847/1.6716) mem 16099MB [2025-01-18 10:28:42 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][250/312] eta 0:00:29 lr 0.000181 time 0.4691 (0.4796) model_time 0.4686 (0.4734) loss 2.9552 (2.7161) grad_norm 2.0043 (3.3736/1.6669) mem 16099MB [2025-01-18 10:28:46 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][260/312] eta 0:00:24 lr 0.000180 time 0.4388 (0.4785) model_time 0.4387 (0.4725) loss 3.0176 (2.7171) grad_norm 1.6767 (3.3761/1.6736) mem 16099MB [2025-01-18 10:28:51 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][270/312] eta 0:00:20 lr 0.000180 time 0.6083 (0.4783) model_time 0.6078 (0.4726) loss 3.4248 (2.7121) grad_norm 1.3742 (3.3765/1.6633) mem 16099MB [2025-01-18 10:28:56 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][280/312] eta 0:00:15 lr 0.000180 time 0.4444 (0.4793) model_time 0.4443 (0.4738) loss 2.4781 (2.7080) grad_norm 2.8901 (3.3803/1.6515) mem 16099MB [2025-01-18 10:29:01 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][290/312] eta 0:00:10 lr 0.000180 time 0.4610 (0.4793) model_time 0.4608 (0.4739) loss 2.6108 (2.7093) grad_norm 2.1222 (3.3796/1.6389) mem 16099MB [2025-01-18 10:29:05 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][300/312] eta 0:00:05 lr 0.000179 time 0.4362 (0.4786) model_time 0.4360 (0.4734) loss 2.3419 (2.7068) grad_norm 1.8681 (3.3626/1.6294) mem 16099MB [2025-01-18 10:29:10 internimage_t_1k_224] (main.py 510): INFO Train: [263/300][310/312] eta 0:00:00 lr 0.000179 time 0.4402 (0.4776) model_time 0.4401 (0.4726) loss 3.1714 (2.7092) grad_norm 1.6579 (3.3452/1.6353) mem 16099MB [2025-01-18 10:29:10 internimage_t_1k_224] (main.py 519): INFO EPOCH 263 training takes 0:02:28 [2025-01-18 10:29:10 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_263.pth saving...... [2025-01-18 10:29:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_263.pth saved !!! [2025-01-18 10:29:19 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.796 (7.796) Loss 0.7248 (0.7248) Acc@1 85.303 (85.303) Acc@5 97.217 (97.217) Mem 16099MB [2025-01-18 10:29:23 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.046) Loss 0.9790 (0.8302) Acc@1 78.491 (82.895) Acc@5 95.093 (96.265) Mem 16099MB [2025-01-18 10:29:23 internimage_t_1k_224] (main.py 575): INFO [Epoch:263] * Acc@1 82.754 Acc@5 96.257 [2025-01-18 10:29:23 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.8% [2025-01-18 10:29:23 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.89% [2025-01-18 10:29:32 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.611 (8.611) Loss 0.7248 (0.7248) Acc@1 85.693 (85.693) Acc@5 97.778 (97.778) Mem 16099MB [2025-01-18 10:29:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.150) Loss 0.9575 (0.8272) Acc@1 79.639 (83.498) Acc@5 95.557 (96.560) Mem 16099MB [2025-01-18 10:29:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:263] * Acc@1 83.351 Acc@5 96.575 [2025-01-18 10:29:36 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:29:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:29:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:29:37 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.35% [2025-01-18 10:29:40 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][0/312] eta 0:11:44 lr 0.000179 time 2.2582 (2.2582) model_time 0.4649 (0.4649) loss 2.4500 (2.4500) grad_norm 1.3429 (1.3429/0.0000) mem 16099MB [2025-01-18 10:29:45 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][10/312] eta 0:03:16 lr 0.000179 time 0.5166 (0.6522) model_time 0.5164 (0.4890) loss 2.0034 (2.6549) grad_norm 3.1288 (3.0070/1.0068) mem 16099MB [2025-01-18 10:29:49 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][20/312] eta 0:02:44 lr 0.000179 time 0.5403 (0.5625) model_time 0.5399 (0.4768) loss 2.8031 (2.7290) grad_norm 1.9154 (2.7412/0.8944) mem 16099MB [2025-01-18 10:29:54 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][30/312] eta 0:02:29 lr 0.000178 time 0.4741 (0.5314) model_time 0.4740 (0.4732) loss 3.0157 (2.5990) grad_norm 3.2479 (2.7795/0.8040) mem 16099MB [2025-01-18 10:29:59 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][40/312] eta 0:02:21 lr 0.000178 time 0.4643 (0.5197) model_time 0.4642 (0.4757) loss 2.7800 (2.6333) grad_norm 2.5263 (2.9695/1.2393) mem 16099MB [2025-01-18 10:30:04 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][50/312] eta 0:02:14 lr 0.000178 time 0.4443 (0.5153) model_time 0.4442 (0.4798) loss 2.7773 (2.6840) grad_norm 2.2646 (2.9380/1.3621) mem 16099MB [2025-01-18 10:30:08 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][60/312] eta 0:02:07 lr 0.000178 time 0.4614 (0.5075) model_time 0.4612 (0.4778) loss 2.9236 (2.6832) grad_norm 2.5425 (2.9022/1.2777) mem 16099MB [2025-01-18 10:30:13 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][70/312] eta 0:02:01 lr 0.000177 time 0.4587 (0.5003) model_time 0.4585 (0.4747) loss 1.7203 (2.6867) grad_norm 2.8896 (2.9002/1.2644) mem 16099MB [2025-01-18 10:30:18 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][80/312] eta 0:01:54 lr 0.000177 time 0.4539 (0.4948) model_time 0.4537 (0.4724) loss 2.9147 (2.7143) grad_norm 1.9522 (3.0284/1.3951) mem 16099MB [2025-01-18 10:30:22 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][90/312] eta 0:01:49 lr 0.000177 time 0.4421 (0.4942) model_time 0.4420 (0.4742) loss 2.5815 (2.7320) grad_norm 1.6501 (2.9244/1.3582) mem 16099MB [2025-01-18 10:30:27 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][100/312] eta 0:01:44 lr 0.000177 time 0.4513 (0.4911) model_time 0.4509 (0.4730) loss 2.0165 (2.7259) grad_norm 3.0947 (2.8910/1.3207) mem 16099MB [2025-01-18 10:30:32 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][110/312] eta 0:01:39 lr 0.000176 time 0.4443 (0.4907) model_time 0.4439 (0.4742) loss 2.8564 (2.7294) grad_norm 1.4467 (2.8501/1.2879) mem 16099MB [2025-01-18 10:30:36 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][120/312] eta 0:01:33 lr 0.000176 time 0.4515 (0.4876) model_time 0.4511 (0.4725) loss 2.6481 (2.7167) grad_norm 4.0594 (2.9123/1.3094) mem 16099MB [2025-01-18 10:30:41 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][130/312] eta 0:01:28 lr 0.000176 time 0.4523 (0.4858) model_time 0.4518 (0.4718) loss 2.7609 (2.7258) grad_norm 2.3728 (2.9260/1.3031) mem 16099MB [2025-01-18 10:30:46 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][140/312] eta 0:01:23 lr 0.000176 time 0.4603 (0.4850) model_time 0.4601 (0.4719) loss 3.3177 (2.7329) grad_norm 3.1890 (2.9533/1.3183) mem 16099MB [2025-01-18 10:30:50 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][150/312] eta 0:01:18 lr 0.000175 time 0.4546 (0.4835) model_time 0.4542 (0.4713) loss 2.3467 (2.7358) grad_norm 2.0684 (2.9744/1.3210) mem 16099MB [2025-01-18 10:30:55 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][160/312] eta 0:01:13 lr 0.000175 time 0.4400 (0.4828) model_time 0.4396 (0.4713) loss 2.3188 (2.7337) grad_norm 3.6452 (2.9711/1.3589) mem 16099MB [2025-01-18 10:31:00 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][170/312] eta 0:01:08 lr 0.000175 time 0.4519 (0.4811) model_time 0.4515 (0.4703) loss 3.2118 (2.7364) grad_norm 1.3978 (2.9922/1.3873) mem 16099MB [2025-01-18 10:31:05 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][180/312] eta 0:01:03 lr 0.000175 time 0.4425 (0.4814) model_time 0.4421 (0.4711) loss 2.8795 (2.7521) grad_norm 2.4090 (3.0506/1.3991) mem 16099MB [2025-01-18 10:31:09 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][190/312] eta 0:00:58 lr 0.000174 time 0.4397 (0.4815) model_time 0.4393 (0.4718) loss 3.0360 (2.7521) grad_norm 7.8681 (3.1169/1.4492) mem 16099MB [2025-01-18 10:31:14 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][200/312] eta 0:00:53 lr 0.000174 time 0.5919 (0.4808) model_time 0.5915 (0.4715) loss 3.4698 (2.7437) grad_norm 2.3175 (3.0946/1.4260) mem 16099MB [2025-01-18 10:31:19 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][210/312] eta 0:00:48 lr 0.000174 time 0.4487 (0.4794) model_time 0.4483 (0.4706) loss 2.6937 (2.7400) grad_norm 5.4194 (3.0876/1.4356) mem 16099MB [2025-01-18 10:31:23 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][220/312] eta 0:00:44 lr 0.000174 time 0.4522 (0.4784) model_time 0.4518 (0.4699) loss 3.2375 (2.7433) grad_norm 2.6606 (3.0750/1.4203) mem 16099MB [2025-01-18 10:31:28 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][230/312] eta 0:00:39 lr 0.000173 time 0.4424 (0.4788) model_time 0.4420 (0.4707) loss 2.8519 (2.7437) grad_norm 3.5909 (3.0627/1.4124) mem 16099MB [2025-01-18 10:31:33 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][240/312] eta 0:00:34 lr 0.000173 time 0.4551 (0.4777) model_time 0.4549 (0.4699) loss 3.5938 (2.7457) grad_norm 8.3466 (3.1037/1.4701) mem 16099MB [2025-01-18 10:31:37 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][250/312] eta 0:00:29 lr 0.000173 time 0.4543 (0.4779) model_time 0.4539 (0.4704) loss 3.0355 (2.7530) grad_norm 2.2935 (3.1761/1.5070) mem 16099MB [2025-01-18 10:31:42 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][260/312] eta 0:00:24 lr 0.000173 time 0.4577 (0.4769) model_time 0.4573 (0.4697) loss 3.1575 (2.7539) grad_norm 4.9295 (3.1802/1.5002) mem 16099MB [2025-01-18 10:31:47 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][270/312] eta 0:00:20 lr 0.000173 time 0.4505 (0.4762) model_time 0.4504 (0.4692) loss 2.4078 (2.7437) grad_norm 2.4688 (3.1389/1.4900) mem 16099MB [2025-01-18 10:31:51 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][280/312] eta 0:00:15 lr 0.000172 time 0.4526 (0.4767) model_time 0.4522 (0.4699) loss 2.7223 (2.7461) grad_norm 3.2375 (3.1087/1.4795) mem 16099MB [2025-01-18 10:31:56 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][290/312] eta 0:00:10 lr 0.000172 time 0.5471 (0.4768) model_time 0.5469 (0.4703) loss 3.1537 (2.7414) grad_norm 1.8958 (3.0962/1.4626) mem 16099MB [2025-01-18 10:32:01 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][300/312] eta 0:00:05 lr 0.000172 time 0.4397 (0.4760) model_time 0.4396 (0.4697) loss 1.9833 (2.7269) grad_norm 4.2781 (3.0890/1.4456) mem 16099MB [2025-01-18 10:32:05 internimage_t_1k_224] (main.py 510): INFO Train: [264/300][310/312] eta 0:00:00 lr 0.000172 time 0.4438 (0.4753) model_time 0.4437 (0.4691) loss 2.7099 (2.7339) grad_norm 6.3668 (3.0817/1.4543) mem 16099MB [2025-01-18 10:32:06 internimage_t_1k_224] (main.py 519): INFO EPOCH 264 training takes 0:02:28 [2025-01-18 10:32:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_264.pth saving...... [2025-01-18 10:32:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_264.pth saved !!! [2025-01-18 10:32:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.398 (7.398) Loss 0.7237 (0.7237) Acc@1 84.937 (84.937) Acc@5 97.437 (97.437) Mem 16099MB [2025-01-18 10:32:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.010) Loss 0.9929 (0.8357) Acc@1 78.174 (82.781) Acc@5 94.897 (96.258) Mem 16099MB [2025-01-18 10:32:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:264] * Acc@1 82.648 Acc@5 96.263 [2025-01-18 10:32:18 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.6% [2025-01-18 10:32:18 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.89% [2025-01-18 10:32:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.406 (8.406) Loss 0.7245 (0.7245) Acc@1 85.718 (85.718) Acc@5 97.754 (97.754) Mem 16099MB [2025-01-18 10:32:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.119) Loss 0.9565 (0.8265) Acc@1 79.785 (83.527) Acc@5 95.508 (96.573) Mem 16099MB [2025-01-18 10:32:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:264] * Acc@1 83.383 Acc@5 96.581 [2025-01-18 10:32:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:32:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:32:32 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:32:32 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.38% [2025-01-18 10:32:34 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][0/312] eta 0:11:10 lr 0.000172 time 2.1487 (2.1487) model_time 0.4986 (0.4986) loss 3.0724 (3.0724) grad_norm 1.6749 (1.6749/0.0000) mem 16099MB [2025-01-18 10:32:39 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][10/312] eta 0:03:07 lr 0.000171 time 0.4461 (0.6218) model_time 0.4460 (0.4715) loss 3.1898 (2.7196) grad_norm 3.3361 (3.3152/1.3660) mem 16099MB [2025-01-18 10:32:44 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][20/312] eta 0:02:43 lr 0.000171 time 0.4428 (0.5601) model_time 0.4426 (0.4812) loss 1.7838 (2.7258) grad_norm 1.7831 (3.1428/1.5343) mem 16099MB [2025-01-18 10:32:48 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][30/312] eta 0:02:28 lr 0.000171 time 0.4518 (0.5266) model_time 0.4513 (0.4731) loss 2.7702 (2.7163) grad_norm 2.9211 (3.0664/1.4499) mem 16099MB [2025-01-18 10:32:53 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][40/312] eta 0:02:19 lr 0.000171 time 0.4469 (0.5134) model_time 0.4465 (0.4728) loss 2.7037 (2.7235) grad_norm 5.8771 (3.2117/1.4907) mem 16099MB [2025-01-18 10:32:58 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][50/312] eta 0:02:11 lr 0.000170 time 0.4459 (0.5034) model_time 0.4457 (0.4707) loss 2.8308 (2.7065) grad_norm 3.0585 (3.3610/1.5727) mem 16099MB [2025-01-18 10:33:02 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][60/312] eta 0:02:05 lr 0.000170 time 0.4466 (0.4994) model_time 0.4465 (0.4720) loss 3.0834 (2.6838) grad_norm 2.0503 (3.2733/1.5394) mem 16099MB [2025-01-18 10:33:07 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][70/312] eta 0:01:59 lr 0.000170 time 0.4500 (0.4932) model_time 0.4496 (0.4696) loss 2.5284 (2.6717) grad_norm 2.2825 (3.2081/1.4715) mem 16099MB [2025-01-18 10:33:12 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][80/312] eta 0:01:53 lr 0.000170 time 0.4475 (0.4904) model_time 0.4470 (0.4697) loss 3.2977 (2.7136) grad_norm 2.7430 (3.1223/1.4593) mem 16099MB [2025-01-18 10:33:16 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][90/312] eta 0:01:48 lr 0.000169 time 0.4545 (0.4866) model_time 0.4541 (0.4681) loss 2.8601 (2.7142) grad_norm 3.8895 (3.0635/1.4284) mem 16099MB [2025-01-18 10:33:21 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][100/312] eta 0:01:42 lr 0.000169 time 0.4456 (0.4854) model_time 0.4452 (0.4687) loss 2.0850 (2.7007) grad_norm 1.3249 (2.9845/1.4039) mem 16099MB [2025-01-18 10:33:26 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][110/312] eta 0:01:37 lr 0.000169 time 0.5424 (0.4843) model_time 0.5422 (0.4691) loss 3.2410 (2.7057) grad_norm 2.9673 (3.0020/1.3817) mem 16099MB [2025-01-18 10:33:30 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][120/312] eta 0:01:32 lr 0.000169 time 0.4555 (0.4817) model_time 0.4550 (0.4677) loss 2.8296 (2.7010) grad_norm 2.5393 (3.0016/1.3919) mem 16099MB [2025-01-18 10:33:35 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][130/312] eta 0:01:27 lr 0.000168 time 0.4484 (0.4802) model_time 0.4480 (0.4672) loss 1.6484 (2.6961) grad_norm 4.4264 (2.9910/1.3839) mem 16099MB [2025-01-18 10:33:40 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][140/312] eta 0:01:22 lr 0.000168 time 0.4536 (0.4804) model_time 0.4535 (0.4683) loss 2.7369 (2.6754) grad_norm 3.0020 (3.0164/1.4037) mem 16099MB [2025-01-18 10:33:44 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][150/312] eta 0:01:17 lr 0.000168 time 0.5334 (0.4796) model_time 0.5333 (0.4683) loss 3.3840 (2.6939) grad_norm 2.0836 (2.9885/1.3761) mem 16099MB [2025-01-18 10:33:49 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][160/312] eta 0:01:12 lr 0.000168 time 0.4499 (0.4790) model_time 0.4495 (0.4684) loss 3.2426 (2.6902) grad_norm 2.8066 (2.9801/1.3570) mem 16099MB [2025-01-18 10:33:54 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][170/312] eta 0:01:07 lr 0.000167 time 0.4494 (0.4779) model_time 0.4492 (0.4679) loss 2.9143 (2.7019) grad_norm 3.6898 (2.9544/1.3318) mem 16099MB [2025-01-18 10:33:58 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][180/312] eta 0:01:02 lr 0.000167 time 0.4522 (0.4769) model_time 0.4520 (0.4674) loss 2.6141 (2.7112) grad_norm 5.5517 (2.9701/1.3294) mem 16099MB [2025-01-18 10:34:03 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][190/312] eta 0:00:58 lr 0.000167 time 0.4437 (0.4777) model_time 0.4433 (0.4687) loss 1.8375 (2.7077) grad_norm 3.0346 (2.9616/1.3155) mem 16099MB [2025-01-18 10:34:08 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][200/312] eta 0:00:53 lr 0.000167 time 0.4534 (0.4766) model_time 0.4532 (0.4680) loss 2.6446 (2.7128) grad_norm 2.3886 (2.9773/1.3209) mem 16099MB [2025-01-18 10:34:12 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][210/312] eta 0:00:48 lr 0.000167 time 0.5365 (0.4760) model_time 0.5361 (0.4678) loss 1.9202 (2.7045) grad_norm 1.7281 (3.0014/1.3284) mem 16099MB [2025-01-18 10:34:17 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][220/312] eta 0:00:43 lr 0.000166 time 0.4509 (0.4753) model_time 0.4507 (0.4675) loss 2.6581 (2.7095) grad_norm 1.9890 (3.0122/1.3358) mem 16099MB [2025-01-18 10:34:22 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][230/312] eta 0:00:38 lr 0.000166 time 0.4484 (0.4747) model_time 0.4479 (0.4671) loss 2.3329 (2.7138) grad_norm 5.2360 (3.0133/1.3363) mem 16099MB [2025-01-18 10:34:26 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][240/312] eta 0:00:34 lr 0.000166 time 0.4502 (0.4737) model_time 0.4498 (0.4664) loss 3.2025 (2.7012) grad_norm 2.2434 (2.9968/1.3349) mem 16099MB [2025-01-18 10:34:31 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][250/312] eta 0:00:29 lr 0.000166 time 0.4515 (0.4747) model_time 0.4511 (0.4677) loss 3.1431 (2.7109) grad_norm 2.1706 (2.9692/1.3207) mem 16099MB [2025-01-18 10:34:36 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][260/312] eta 0:00:24 lr 0.000165 time 0.4418 (0.4753) model_time 0.4416 (0.4686) loss 3.0647 (2.7162) grad_norm 1.0655 (2.9366/1.3170) mem 16099MB [2025-01-18 10:34:41 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][270/312] eta 0:00:19 lr 0.000165 time 0.4553 (0.4749) model_time 0.4551 (0.4684) loss 2.5007 (2.7125) grad_norm 1.4931 (2.9000/1.3091) mem 16099MB [2025-01-18 10:34:45 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][280/312] eta 0:00:15 lr 0.000165 time 0.4460 (0.4747) model_time 0.4455 (0.4684) loss 2.9394 (2.7080) grad_norm 3.5313 (2.8741/1.2981) mem 16099MB [2025-01-18 10:34:50 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][290/312] eta 0:00:10 lr 0.000165 time 0.4500 (0.4746) model_time 0.4498 (0.4686) loss 1.8289 (2.7092) grad_norm 2.5081 (2.8689/1.2912) mem 16099MB [2025-01-18 10:34:55 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][300/312] eta 0:00:05 lr 0.000164 time 0.4388 (0.4742) model_time 0.4386 (0.4683) loss 2.8613 (2.7081) grad_norm 4.9859 (2.8690/1.2956) mem 16099MB [2025-01-18 10:34:59 internimage_t_1k_224] (main.py 510): INFO Train: [265/300][310/312] eta 0:00:00 lr 0.000164 time 0.4368 (0.4734) model_time 0.4367 (0.4678) loss 2.9660 (2.7085) grad_norm 4.7397 (2.8713/1.2848) mem 16099MB [2025-01-18 10:35:00 internimage_t_1k_224] (main.py 519): INFO EPOCH 265 training takes 0:02:27 [2025-01-18 10:35:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_265.pth saving...... [2025-01-18 10:35:01 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_265.pth saved !!! [2025-01-18 10:35:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.450 (7.450) Loss 0.7151 (0.7151) Acc@1 85.205 (85.205) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 10:35:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.012) Loss 0.9840 (0.8239) Acc@1 78.125 (83.046) Acc@5 95.312 (96.338) Mem 16099MB [2025-01-18 10:35:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:265] * Acc@1 82.889 Acc@5 96.337 [2025-01-18 10:35:12 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.9% [2025-01-18 10:35:12 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.89% [2025-01-18 10:35:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.351 (8.351) Loss 0.7238 (0.7238) Acc@1 85.645 (85.645) Acc@5 97.754 (97.754) Mem 16099MB [2025-01-18 10:35:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.125) Loss 0.9556 (0.8255) Acc@1 79.761 (83.518) Acc@5 95.532 (96.578) Mem 16099MB [2025-01-18 10:35:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:265] * Acc@1 83.381 Acc@5 96.583 [2025-01-18 10:35:25 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:35:25 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.38% [2025-01-18 10:35:28 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][0/312] eta 0:16:02 lr 0.000164 time 3.0853 (3.0853) model_time 1.2556 (1.2556) loss 3.2145 (3.2145) grad_norm 4.1723 (4.1723/0.0000) mem 16099MB [2025-01-18 10:35:32 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][10/312] eta 0:03:34 lr 0.000164 time 0.4553 (0.7104) model_time 0.4549 (0.5436) loss 2.8213 (2.7815) grad_norm 5.4533 (4.0884/0.9791) mem 16099MB [2025-01-18 10:35:37 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][20/312] eta 0:02:52 lr 0.000164 time 0.4504 (0.5891) model_time 0.4503 (0.5017) loss 2.8868 (2.6715) grad_norm 1.7487 (3.5290/1.1775) mem 16099MB [2025-01-18 10:35:42 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][30/312] eta 0:02:34 lr 0.000163 time 0.4398 (0.5482) model_time 0.4394 (0.4888) loss 2.2871 (2.6527) grad_norm 2.2990 (3.1966/1.1501) mem 16099MB [2025-01-18 10:35:46 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][40/312] eta 0:02:23 lr 0.000163 time 0.4496 (0.5258) model_time 0.4494 (0.4808) loss 3.2484 (2.6516) grad_norm 1.7200 (3.2999/1.3972) mem 16099MB [2025-01-18 10:35:51 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][50/312] eta 0:02:15 lr 0.000163 time 0.4577 (0.5158) model_time 0.4573 (0.4795) loss 2.8407 (2.6358) grad_norm 2.5504 (3.1584/1.3335) mem 16099MB [2025-01-18 10:35:56 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][60/312] eta 0:02:08 lr 0.000163 time 0.4548 (0.5084) model_time 0.4544 (0.4781) loss 2.3633 (2.6300) grad_norm 2.3648 (3.0149/1.2849) mem 16099MB [2025-01-18 10:36:00 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][70/312] eta 0:02:01 lr 0.000163 time 0.4732 (0.5016) model_time 0.4730 (0.4754) loss 1.9880 (2.5987) grad_norm 1.3194 (2.8841/1.2826) mem 16099MB [2025-01-18 10:36:05 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][80/312] eta 0:01:55 lr 0.000162 time 0.4555 (0.4969) model_time 0.4551 (0.4740) loss 2.9241 (2.6335) grad_norm 1.4956 (2.8718/1.2781) mem 16099MB [2025-01-18 10:36:09 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][90/312] eta 0:01:49 lr 0.000162 time 0.5045 (0.4937) model_time 0.5041 (0.4732) loss 2.8119 (2.6468) grad_norm 2.2887 (2.9409/1.3148) mem 16099MB [2025-01-18 10:36:14 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][100/312] eta 0:01:44 lr 0.000162 time 0.4630 (0.4910) model_time 0.4628 (0.4725) loss 3.1272 (2.6615) grad_norm 2.9307 (2.9425/1.2898) mem 16099MB [2025-01-18 10:36:19 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][110/312] eta 0:01:38 lr 0.000162 time 0.4551 (0.4876) model_time 0.4550 (0.4707) loss 3.0539 (2.6558) grad_norm 3.3813 (2.9011/1.2781) mem 16099MB [2025-01-18 10:36:23 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][120/312] eta 0:01:33 lr 0.000161 time 0.4507 (0.4847) model_time 0.4506 (0.4692) loss 2.1800 (2.6485) grad_norm 4.2453 (2.9003/1.2560) mem 16099MB [2025-01-18 10:36:28 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][130/312] eta 0:01:27 lr 0.000161 time 0.4575 (0.4827) model_time 0.4570 (0.4684) loss 2.5019 (2.6646) grad_norm 1.4199 (2.8642/1.2327) mem 16099MB [2025-01-18 10:36:33 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][140/312] eta 0:01:23 lr 0.000161 time 0.4647 (0.4837) model_time 0.4642 (0.4703) loss 2.9705 (2.6750) grad_norm 5.8474 (2.8907/1.2446) mem 16099MB [2025-01-18 10:36:38 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][150/312] eta 0:01:18 lr 0.000161 time 0.4420 (0.4847) model_time 0.4419 (0.4722) loss 3.0718 (2.6805) grad_norm 4.1187 (2.8950/1.2275) mem 16099MB [2025-01-18 10:36:43 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][160/312] eta 0:01:13 lr 0.000161 time 0.4438 (0.4845) model_time 0.4434 (0.4728) loss 3.0685 (2.6901) grad_norm 4.5106 (2.9435/1.2438) mem 16099MB [2025-01-18 10:36:47 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][170/312] eta 0:01:08 lr 0.000160 time 0.4574 (0.4838) model_time 0.4569 (0.4727) loss 3.1514 (2.6931) grad_norm 4.7452 (3.0194/1.2906) mem 16099MB [2025-01-18 10:36:52 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][180/312] eta 0:01:03 lr 0.000160 time 0.4535 (0.4820) model_time 0.4531 (0.4715) loss 3.2419 (2.7023) grad_norm 1.6986 (2.9629/1.2853) mem 16099MB [2025-01-18 10:36:56 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][190/312] eta 0:00:58 lr 0.000160 time 0.4458 (0.4806) model_time 0.4453 (0.4706) loss 2.7901 (2.6873) grad_norm 1.6028 (2.9739/1.2937) mem 16099MB [2025-01-18 10:37:01 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][200/312] eta 0:00:53 lr 0.000160 time 0.5447 (0.4802) model_time 0.5445 (0.4707) loss 2.9266 (2.6938) grad_norm 2.5188 (2.9323/1.2899) mem 16099MB [2025-01-18 10:37:06 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][210/312] eta 0:00:48 lr 0.000159 time 0.4446 (0.4790) model_time 0.4444 (0.4699) loss 3.1504 (2.6964) grad_norm 1.8114 (2.9012/1.2717) mem 16099MB [2025-01-18 10:37:10 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][220/312] eta 0:00:43 lr 0.000159 time 0.4525 (0.4779) model_time 0.4521 (0.4693) loss 2.9437 (2.7042) grad_norm 3.6139 (2.8761/1.2667) mem 16099MB [2025-01-18 10:37:15 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][230/312] eta 0:00:39 lr 0.000159 time 0.4672 (0.4773) model_time 0.4667 (0.4690) loss 3.2402 (2.7074) grad_norm 3.1526 (2.8505/1.2495) mem 16099MB [2025-01-18 10:37:19 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][240/312] eta 0:00:34 lr 0.000159 time 0.4534 (0.4763) model_time 0.4533 (0.4683) loss 3.2055 (2.7104) grad_norm 2.7406 (2.8400/1.2418) mem 16099MB [2025-01-18 10:37:24 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][250/312] eta 0:00:29 lr 0.000158 time 0.5532 (0.4759) model_time 0.5527 (0.4682) loss 3.2457 (2.7126) grad_norm 2.4404 (2.8150/1.2287) mem 16099MB [2025-01-18 10:37:29 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][260/312] eta 0:00:24 lr 0.000158 time 0.4585 (0.4755) model_time 0.4583 (0.4681) loss 1.9242 (2.7032) grad_norm 2.6167 (2.7926/1.2156) mem 16099MB [2025-01-18 10:37:33 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][270/312] eta 0:00:19 lr 0.000158 time 0.4409 (0.4749) model_time 0.4404 (0.4678) loss 2.9473 (2.7112) grad_norm 1.7734 (2.7968/1.2165) mem 16099MB [2025-01-18 10:37:38 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][280/312] eta 0:00:15 lr 0.000158 time 0.4439 (0.4743) model_time 0.4434 (0.4674) loss 2.8853 (2.7137) grad_norm 5.4066 (2.7963/1.2243) mem 16099MB [2025-01-18 10:37:43 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][290/312] eta 0:00:10 lr 0.000158 time 0.4527 (0.4742) model_time 0.4523 (0.4675) loss 2.8806 (2.7178) grad_norm 3.2794 (2.7870/1.2196) mem 16099MB [2025-01-18 10:37:47 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][300/312] eta 0:00:05 lr 0.000157 time 0.4385 (0.4736) model_time 0.4384 (0.4672) loss 1.8346 (2.7106) grad_norm 2.4066 (2.7712/1.2113) mem 16099MB [2025-01-18 10:37:52 internimage_t_1k_224] (main.py 510): INFO Train: [266/300][310/312] eta 0:00:00 lr 0.000157 time 0.4396 (0.4732) model_time 0.4395 (0.4669) loss 2.3667 (2.7086) grad_norm 1.9485 (2.7371/1.1967) mem 16099MB [2025-01-18 10:37:52 internimage_t_1k_224] (main.py 519): INFO EPOCH 266 training takes 0:02:27 [2025-01-18 10:37:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_266.pth saving...... [2025-01-18 10:37:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_266.pth saved !!! [2025-01-18 10:38:01 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.514 (7.514) Loss 0.7412 (0.7412) Acc@1 85.229 (85.229) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 10:38:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.004) Loss 1.0046 (0.8469) Acc@1 77.832 (82.963) Acc@5 95.361 (96.327) Mem 16099MB [2025-01-18 10:38:05 internimage_t_1k_224] (main.py 575): INFO [Epoch:266] * Acc@1 82.823 Acc@5 96.301 [2025-01-18 10:38:05 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.8% [2025-01-18 10:38:05 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.89% [2025-01-18 10:38:13 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.299 (8.299) Loss 0.7234 (0.7234) Acc@1 85.645 (85.645) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:38:17 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.122) Loss 0.9553 (0.8250) Acc@1 79.761 (83.525) Acc@5 95.557 (96.575) Mem 16099MB [2025-01-18 10:38:17 internimage_t_1k_224] (main.py 575): INFO [Epoch:266] * Acc@1 83.391 Acc@5 96.575 [2025-01-18 10:38:17 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:38:17 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:38:18 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:38:18 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.39% [2025-01-18 10:38:21 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][0/312] eta 0:13:42 lr 0.000157 time 2.6365 (2.6365) model_time 0.4607 (0.4607) loss 3.1213 (3.1213) grad_norm 2.7391 (2.7391/0.0000) mem 16099MB [2025-01-18 10:38:26 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][10/312] eta 0:03:19 lr 0.000157 time 0.4588 (0.6595) model_time 0.4586 (0.4613) loss 3.1166 (2.7612) grad_norm 2.2028 (2.9389/1.4587) mem 16099MB [2025-01-18 10:38:31 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][20/312] eta 0:02:47 lr 0.000157 time 0.5352 (0.5720) model_time 0.5350 (0.4680) loss 3.2461 (2.7626) grad_norm 3.2019 (2.9376/1.2759) mem 16099MB [2025-01-18 10:38:35 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][30/312] eta 0:02:32 lr 0.000156 time 0.4688 (0.5394) model_time 0.4686 (0.4689) loss 2.3470 (2.6564) grad_norm 5.7884 (3.6222/1.8912) mem 16099MB [2025-01-18 10:38:40 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][40/312] eta 0:02:20 lr 0.000156 time 0.4625 (0.5181) model_time 0.4620 (0.4646) loss 2.8669 (2.6765) grad_norm 2.0887 (3.3045/1.7476) mem 16099MB [2025-01-18 10:38:44 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][50/312] eta 0:02:12 lr 0.000156 time 0.4449 (0.5061) model_time 0.4447 (0.4631) loss 2.2734 (2.6709) grad_norm 4.5621 (3.1936/1.6574) mem 16099MB [2025-01-18 10:38:49 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][60/312] eta 0:02:06 lr 0.000156 time 0.5286 (0.5008) model_time 0.5282 (0.4648) loss 1.9506 (2.6456) grad_norm 3.7122 (3.0984/1.5870) mem 16099MB [2025-01-18 10:38:54 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][70/312] eta 0:01:59 lr 0.000155 time 0.4607 (0.4942) model_time 0.4603 (0.4632) loss 2.9285 (2.6430) grad_norm 3.2870 (3.0872/1.5441) mem 16099MB [2025-01-18 10:38:58 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][80/312] eta 0:01:53 lr 0.000155 time 0.4475 (0.4908) model_time 0.4474 (0.4636) loss 2.6789 (2.6239) grad_norm 5.5245 (3.2396/1.6088) mem 16099MB [2025-01-18 10:39:03 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][90/312] eta 0:01:48 lr 0.000155 time 0.5283 (0.4877) model_time 0.5281 (0.4635) loss 3.1114 (2.6426) grad_norm 2.6139 (3.1436/1.5680) mem 16099MB [2025-01-18 10:39:07 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][100/312] eta 0:01:42 lr 0.000155 time 0.4466 (0.4851) model_time 0.4462 (0.4632) loss 2.5543 (2.6439) grad_norm 1.5407 (3.0911/1.5113) mem 16099MB [2025-01-18 10:39:12 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][110/312] eta 0:01:37 lr 0.000155 time 0.4515 (0.4831) model_time 0.4514 (0.4631) loss 3.1181 (2.6608) grad_norm 3.1328 (3.0308/1.4826) mem 16099MB [2025-01-18 10:39:17 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][120/312] eta 0:01:32 lr 0.000154 time 0.5438 (0.4824) model_time 0.5433 (0.4640) loss 2.7814 (2.6699) grad_norm 2.6488 (2.9995/1.4537) mem 16099MB [2025-01-18 10:39:22 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][130/312] eta 0:01:27 lr 0.000154 time 0.5043 (0.4813) model_time 0.5042 (0.4643) loss 1.8324 (2.6656) grad_norm 1.2470 (2.9322/1.4276) mem 16099MB [2025-01-18 10:39:26 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][140/312] eta 0:01:22 lr 0.000154 time 0.4512 (0.4813) model_time 0.4510 (0.4656) loss 3.0380 (2.6569) grad_norm 3.5683 (2.8878/1.4001) mem 16099MB [2025-01-18 10:39:31 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][150/312] eta 0:01:17 lr 0.000154 time 0.4504 (0.4803) model_time 0.4502 (0.4655) loss 2.6647 (2.6614) grad_norm 1.5319 (2.8323/1.3787) mem 16099MB [2025-01-18 10:39:36 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][160/312] eta 0:01:13 lr 0.000153 time 0.4553 (0.4808) model_time 0.4552 (0.4669) loss 3.0201 (2.6848) grad_norm 2.4695 (2.8736/1.3908) mem 16099MB [2025-01-18 10:39:40 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][170/312] eta 0:01:08 lr 0.000153 time 0.4465 (0.4795) model_time 0.4460 (0.4664) loss 3.1440 (2.6853) grad_norm 2.5720 (2.8532/1.3602) mem 16099MB [2025-01-18 10:39:45 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][180/312] eta 0:01:03 lr 0.000153 time 0.4595 (0.4782) model_time 0.4593 (0.4658) loss 2.5070 (2.6935) grad_norm 1.4194 (2.8342/1.3706) mem 16099MB [2025-01-18 10:39:50 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][190/312] eta 0:00:58 lr 0.000153 time 0.4532 (0.4769) model_time 0.4530 (0.4651) loss 2.5470 (2.6896) grad_norm 1.3708 (2.8570/1.3663) mem 16099MB [2025-01-18 10:39:54 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][200/312] eta 0:00:53 lr 0.000153 time 0.4511 (0.4762) model_time 0.4509 (0.4650) loss 2.6723 (2.7001) grad_norm 2.9538 (2.8351/1.3434) mem 16099MB [2025-01-18 10:39:59 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][210/312] eta 0:00:48 lr 0.000152 time 0.4453 (0.4764) model_time 0.4449 (0.4657) loss 2.6341 (2.6956) grad_norm 2.6217 (2.8143/1.3203) mem 16099MB [2025-01-18 10:40:04 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][220/312] eta 0:00:43 lr 0.000152 time 0.4544 (0.4755) model_time 0.4540 (0.4653) loss 2.9547 (2.6890) grad_norm 4.8646 (2.8503/1.3191) mem 16099MB [2025-01-18 10:40:08 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][230/312] eta 0:00:38 lr 0.000152 time 0.4622 (0.4750) model_time 0.4617 (0.4652) loss 1.8186 (2.6919) grad_norm 2.3125 (2.8514/1.3209) mem 16099MB [2025-01-18 10:40:13 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][240/312] eta 0:00:34 lr 0.000152 time 0.4556 (0.4742) model_time 0.4555 (0.4648) loss 2.2111 (2.6868) grad_norm 5.8768 (2.8637/1.3245) mem 16099MB [2025-01-18 10:40:17 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][250/312] eta 0:00:29 lr 0.000151 time 0.4514 (0.4737) model_time 0.4510 (0.4647) loss 3.4200 (2.6886) grad_norm 3.9040 (2.8886/1.3280) mem 16099MB [2025-01-18 10:40:22 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][260/312] eta 0:00:24 lr 0.000151 time 0.4558 (0.4734) model_time 0.4553 (0.4646) loss 2.7937 (2.6900) grad_norm 2.9384 (2.9263/1.3770) mem 16099MB [2025-01-18 10:40:27 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][270/312] eta 0:00:19 lr 0.000151 time 0.4639 (0.4727) model_time 0.4634 (0.4643) loss 3.0436 (2.6919) grad_norm 2.8027 (2.9136/1.3759) mem 16099MB [2025-01-18 10:40:31 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][280/312] eta 0:00:15 lr 0.000151 time 0.4640 (0.4722) model_time 0.4638 (0.4641) loss 2.6436 (2.6923) grad_norm 3.3365 (2.9243/1.3654) mem 16099MB [2025-01-18 10:40:36 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][290/312] eta 0:00:10 lr 0.000151 time 0.4444 (0.4721) model_time 0.4442 (0.4643) loss 2.5186 (2.6994) grad_norm 3.0182 (2.9209/1.3513) mem 16099MB [2025-01-18 10:40:41 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][300/312] eta 0:00:05 lr 0.000150 time 0.4409 (0.4719) model_time 0.4408 (0.4643) loss 2.8281 (2.6972) grad_norm 6.0650 (2.9463/1.3717) mem 16099MB [2025-01-18 10:40:45 internimage_t_1k_224] (main.py 510): INFO Train: [267/300][310/312] eta 0:00:00 lr 0.000150 time 0.5209 (0.4715) model_time 0.5208 (0.4641) loss 2.6973 (2.7024) grad_norm 1.6975 (2.9479/1.3775) mem 16099MB [2025-01-18 10:40:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 267 training takes 0:02:27 [2025-01-18 10:40:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_267.pth saving...... [2025-01-18 10:40:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_267.pth saved !!! [2025-01-18 10:40:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.369 (7.369) Loss 0.7227 (0.7227) Acc@1 85.376 (85.376) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 10:40:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.012) Loss 0.9617 (0.8220) Acc@1 78.979 (83.094) Acc@5 95.410 (96.302) Mem 16099MB [2025-01-18 10:40:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:267] * Acc@1 82.919 Acc@5 96.303 [2025-01-18 10:40:58 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.9% [2025-01-18 10:40:58 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 10:40:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 10:40:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.92% [2025-01-18 10:41:07 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.486 (7.486) Loss 0.7228 (0.7228) Acc@1 85.693 (85.693) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:41:10 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.018) Loss 0.9542 (0.8240) Acc@1 79.761 (83.540) Acc@5 95.581 (96.580) Mem 16099MB [2025-01-18 10:41:11 internimage_t_1k_224] (main.py 575): INFO [Epoch:267] * Acc@1 83.405 Acc@5 96.579 [2025-01-18 10:41:11 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:41:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:41:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:41:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.41% [2025-01-18 10:41:15 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][0/312] eta 0:14:06 lr 0.000150 time 2.7117 (2.7117) model_time 0.4706 (0.4706) loss 2.3069 (2.3069) grad_norm 5.5917 (5.5917/0.0000) mem 16099MB [2025-01-18 10:41:19 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][10/312] eta 0:03:21 lr 0.000150 time 0.4548 (0.6659) model_time 0.4544 (0.4618) loss 2.7492 (2.8327) grad_norm 1.8702 (2.8039/1.1676) mem 16099MB [2025-01-18 10:41:24 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][20/312] eta 0:02:48 lr 0.000150 time 0.4658 (0.5765) model_time 0.4653 (0.4694) loss 2.7966 (2.6952) grad_norm 3.0856 (2.6067/0.9424) mem 16099MB [2025-01-18 10:41:29 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][30/312] eta 0:02:31 lr 0.000149 time 0.4518 (0.5379) model_time 0.4514 (0.4652) loss 2.8044 (2.6614) grad_norm 3.1555 (2.6572/0.9305) mem 16099MB [2025-01-18 10:41:33 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][40/312] eta 0:02:21 lr 0.000149 time 0.4404 (0.5212) model_time 0.4403 (0.4661) loss 2.9796 (2.6627) grad_norm 3.0476 (2.7053/1.0302) mem 16099MB [2025-01-18 10:41:38 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][50/312] eta 0:02:13 lr 0.000149 time 0.4726 (0.5080) model_time 0.4721 (0.4637) loss 2.9041 (2.7069) grad_norm 2.7337 (2.8261/1.2224) mem 16099MB [2025-01-18 10:41:43 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][60/312] eta 0:02:06 lr 0.000149 time 0.4497 (0.5001) model_time 0.4493 (0.4630) loss 2.8977 (2.7189) grad_norm 4.2846 (2.8402/1.2016) mem 16099MB [2025-01-18 10:41:47 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][70/312] eta 0:01:59 lr 0.000149 time 0.4507 (0.4935) model_time 0.4502 (0.4616) loss 2.6125 (2.7182) grad_norm 1.8653 (2.6922/1.1824) mem 16099MB [2025-01-18 10:41:52 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][80/312] eta 0:01:53 lr 0.000148 time 0.4639 (0.4904) model_time 0.4637 (0.4623) loss 2.8609 (2.7216) grad_norm 3.0476 (2.6966/1.1393) mem 16099MB [2025-01-18 10:41:57 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][90/312] eta 0:01:48 lr 0.000148 time 0.5603 (0.4885) model_time 0.5601 (0.4635) loss 1.5522 (2.6984) grad_norm 4.7407 (2.7939/1.2065) mem 16099MB [2025-01-18 10:42:01 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][100/312] eta 0:01:42 lr 0.000148 time 0.4539 (0.4856) model_time 0.4534 (0.4630) loss 2.8863 (2.6945) grad_norm 7.8187 (2.8544/1.2964) mem 16099MB [2025-01-18 10:42:06 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][110/312] eta 0:01:37 lr 0.000148 time 0.4492 (0.4846) model_time 0.4488 (0.4640) loss 2.5030 (2.6896) grad_norm 1.7620 (2.8861/1.3450) mem 16099MB [2025-01-18 10:42:10 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][120/312] eta 0:01:32 lr 0.000148 time 0.4496 (0.4824) model_time 0.4494 (0.4635) loss 2.6552 (2.6905) grad_norm 2.4945 (2.8951/1.3490) mem 16099MB [2025-01-18 10:42:15 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][130/312] eta 0:01:27 lr 0.000147 time 0.4490 (0.4801) model_time 0.4488 (0.4626) loss 2.6862 (2.6956) grad_norm 3.8589 (2.8660/1.3198) mem 16099MB [2025-01-18 10:42:20 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][140/312] eta 0:01:22 lr 0.000147 time 0.4469 (0.4786) model_time 0.4465 (0.4623) loss 3.2717 (2.6993) grad_norm 2.8617 (2.8077/1.2978) mem 16099MB [2025-01-18 10:42:24 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][150/312] eta 0:01:17 lr 0.000147 time 0.4535 (0.4793) model_time 0.4531 (0.4640) loss 2.9549 (2.6982) grad_norm 3.9068 (2.8133/1.2812) mem 16099MB [2025-01-18 10:42:29 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][160/312] eta 0:01:12 lr 0.000147 time 0.4447 (0.4781) model_time 0.4442 (0.4637) loss 2.8051 (2.7028) grad_norm 2.3394 (2.7852/1.2554) mem 16099MB [2025-01-18 10:42:34 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][170/312] eta 0:01:07 lr 0.000146 time 0.4455 (0.4774) model_time 0.4454 (0.4639) loss 3.1194 (2.7026) grad_norm 7.7186 (2.8609/1.3687) mem 16099MB [2025-01-18 10:42:38 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][180/312] eta 0:01:02 lr 0.000146 time 0.4456 (0.4772) model_time 0.4454 (0.4644) loss 2.9454 (2.6971) grad_norm 2.6626 (2.9330/1.4536) mem 16099MB [2025-01-18 10:42:43 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][190/312] eta 0:00:58 lr 0.000146 time 0.4617 (0.4763) model_time 0.4615 (0.4641) loss 1.9563 (2.7001) grad_norm 1.7829 (2.9478/1.4595) mem 16099MB [2025-01-18 10:42:48 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][200/312] eta 0:00:53 lr 0.000146 time 0.5022 (0.4759) model_time 0.5020 (0.4643) loss 3.0380 (2.7108) grad_norm 1.8844 (2.9126/1.4464) mem 16099MB [2025-01-18 10:42:52 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][210/312] eta 0:00:48 lr 0.000146 time 0.4403 (0.4753) model_time 0.4398 (0.4643) loss 2.2139 (2.7149) grad_norm 2.2288 (2.8799/1.4297) mem 16099MB [2025-01-18 10:42:57 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][220/312] eta 0:00:43 lr 0.000145 time 0.4589 (0.4747) model_time 0.4585 (0.4641) loss 3.2644 (2.7064) grad_norm 1.5622 (2.8971/1.4423) mem 16099MB [2025-01-18 10:43:02 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][230/312] eta 0:00:38 lr 0.000145 time 0.5386 (0.4747) model_time 0.5384 (0.4646) loss 3.0516 (2.7096) grad_norm 5.6418 (2.9011/1.4452) mem 16099MB [2025-01-18 10:43:06 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][240/312] eta 0:00:34 lr 0.000145 time 0.4523 (0.4741) model_time 0.4521 (0.4644) loss 2.1395 (2.7007) grad_norm 3.8039 (2.9419/1.4480) mem 16099MB [2025-01-18 10:43:11 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][250/312] eta 0:00:29 lr 0.000145 time 0.4592 (0.4741) model_time 0.4588 (0.4647) loss 1.8238 (2.6960) grad_norm 1.9054 (2.9218/1.4365) mem 16099MB [2025-01-18 10:43:16 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][260/312] eta 0:00:24 lr 0.000145 time 0.4556 (0.4742) model_time 0.4554 (0.4652) loss 2.9316 (2.7052) grad_norm 2.6084 (2.9284/1.4227) mem 16099MB [2025-01-18 10:43:20 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][270/312] eta 0:00:19 lr 0.000144 time 0.4457 (0.4737) model_time 0.4452 (0.4650) loss 2.7733 (2.7090) grad_norm 2.4435 (2.9056/1.4043) mem 16099MB [2025-01-18 10:43:25 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][280/312] eta 0:00:15 lr 0.000144 time 0.5018 (0.4740) model_time 0.5017 (0.4656) loss 2.9155 (2.7090) grad_norm 3.1333 (2.9004/1.3968) mem 16099MB [2025-01-18 10:43:30 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][290/312] eta 0:00:10 lr 0.000144 time 0.4465 (0.4735) model_time 0.4463 (0.4654) loss 2.0860 (2.6984) grad_norm 4.3494 (2.9035/1.3866) mem 16099MB [2025-01-18 10:43:34 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][300/312] eta 0:00:05 lr 0.000144 time 0.4419 (0.4728) model_time 0.4418 (0.4650) loss 2.0651 (2.6951) grad_norm 2.0266 (2.8864/1.3728) mem 16099MB [2025-01-18 10:43:39 internimage_t_1k_224] (main.py 510): INFO Train: [268/300][310/312] eta 0:00:00 lr 0.000143 time 0.5243 (0.4722) model_time 0.5242 (0.4646) loss 2.4277 (2.6925) grad_norm 2.2119 (2.8714/1.3668) mem 16099MB [2025-01-18 10:43:39 internimage_t_1k_224] (main.py 519): INFO EPOCH 268 training takes 0:02:27 [2025-01-18 10:43:39 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_268.pth saving...... [2025-01-18 10:43:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_268.pth saved !!! [2025-01-18 10:43:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.474 (7.474) Loss 0.7127 (0.7127) Acc@1 85.376 (85.376) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 10:43:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.006) Loss 0.9520 (0.8178) Acc@1 79.370 (83.148) Acc@5 95.264 (96.302) Mem 16099MB [2025-01-18 10:43:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:268] * Acc@1 82.973 Acc@5 96.299 [2025-01-18 10:43:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 10:43:52 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 10:43:53 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 10:43:53 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.97% [2025-01-18 10:44:00 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.354 (7.354) Loss 0.7224 (0.7224) Acc@1 85.669 (85.669) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:44:04 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (0.998) Loss 0.9536 (0.8235) Acc@1 79.761 (83.549) Acc@5 95.557 (96.584) Mem 16099MB [2025-01-18 10:44:04 internimage_t_1k_224] (main.py 575): INFO [Epoch:268] * Acc@1 83.415 Acc@5 96.579 [2025-01-18 10:44:04 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:44:04 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:44:06 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:44:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.42% [2025-01-18 10:44:08 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][0/312] eta 0:11:50 lr 0.000143 time 2.2767 (2.2767) model_time 0.4772 (0.4772) loss 2.8253 (2.8253) grad_norm 3.8859 (3.8859/0.0000) mem 16099MB [2025-01-18 10:44:13 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][10/312] eta 0:03:10 lr 0.000143 time 0.4496 (0.6316) model_time 0.4494 (0.4677) loss 2.8117 (2.8128) grad_norm 1.7108 (3.7739/1.5531) mem 16099MB [2025-01-18 10:44:17 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][20/312] eta 0:02:40 lr 0.000143 time 0.4570 (0.5485) model_time 0.4568 (0.4625) loss 2.5430 (2.6653) grad_norm 3.7434 (3.9867/1.5345) mem 16099MB [2025-01-18 10:44:22 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][30/312] eta 0:02:26 lr 0.000143 time 0.4702 (0.5187) model_time 0.4700 (0.4604) loss 2.7041 (2.6365) grad_norm 3.8516 (3.7026/1.3857) mem 16099MB [2025-01-18 10:44:26 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][40/312] eta 0:02:17 lr 0.000143 time 0.4571 (0.5048) model_time 0.4570 (0.4606) loss 2.7414 (2.6569) grad_norm 4.4051 (3.4650/1.4411) mem 16099MB [2025-01-18 10:44:31 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][50/312] eta 0:02:10 lr 0.000142 time 0.4533 (0.4985) model_time 0.4531 (0.4629) loss 1.7432 (2.6379) grad_norm 3.2653 (3.3096/1.3680) mem 16099MB [2025-01-18 10:44:36 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][60/312] eta 0:02:04 lr 0.000142 time 0.4470 (0.4927) model_time 0.4469 (0.4628) loss 3.1999 (2.6627) grad_norm 3.9724 (3.2845/1.3239) mem 16099MB [2025-01-18 10:44:40 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][70/312] eta 0:01:57 lr 0.000142 time 0.4530 (0.4870) model_time 0.4528 (0.4614) loss 1.8762 (2.6594) grad_norm 1.2788 (3.3620/1.4502) mem 16099MB [2025-01-18 10:44:45 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][80/312] eta 0:01:52 lr 0.000142 time 0.4410 (0.4855) model_time 0.4405 (0.4629) loss 2.3441 (2.6593) grad_norm 4.8697 (3.3261/1.4435) mem 16099MB [2025-01-18 10:44:50 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][90/312] eta 0:01:47 lr 0.000142 time 0.4481 (0.4823) model_time 0.4476 (0.4622) loss 2.2648 (2.6935) grad_norm 3.1456 (3.3004/1.4687) mem 16099MB [2025-01-18 10:44:54 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][100/312] eta 0:01:42 lr 0.000141 time 0.5639 (0.4812) model_time 0.5634 (0.4630) loss 2.2757 (2.6786) grad_norm 2.2005 (3.2647/1.4576) mem 16099MB [2025-01-18 10:44:59 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][110/312] eta 0:01:36 lr 0.000141 time 0.4487 (0.4789) model_time 0.4486 (0.4624) loss 2.9501 (2.6870) grad_norm 2.1277 (3.2608/1.4254) mem 16099MB [2025-01-18 10:45:03 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][120/312] eta 0:01:31 lr 0.000141 time 0.4710 (0.4773) model_time 0.4705 (0.4620) loss 2.6560 (2.6962) grad_norm 2.1051 (3.1626/1.4186) mem 16099MB [2025-01-18 10:45:09 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][130/312] eta 0:01:27 lr 0.000141 time 0.5797 (0.4799) model_time 0.5796 (0.4659) loss 2.5770 (2.6897) grad_norm 3.5421 (3.1233/1.3809) mem 16099MB [2025-01-18 10:45:13 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][140/312] eta 0:01:22 lr 0.000140 time 0.4465 (0.4794) model_time 0.4460 (0.4663) loss 2.2917 (2.6784) grad_norm 2.4343 (3.0473/1.3664) mem 16099MB [2025-01-18 10:45:18 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][150/312] eta 0:01:17 lr 0.000140 time 0.4537 (0.4790) model_time 0.4533 (0.4667) loss 3.3943 (2.6820) grad_norm 1.9319 (3.0166/1.3575) mem 16099MB [2025-01-18 10:45:23 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][160/312] eta 0:01:12 lr 0.000140 time 0.4468 (0.4792) model_time 0.4466 (0.4676) loss 3.4925 (2.6945) grad_norm 3.0407 (3.0096/1.3292) mem 16099MB [2025-01-18 10:45:27 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][170/312] eta 0:01:07 lr 0.000140 time 0.4538 (0.4782) model_time 0.4536 (0.4673) loss 3.0799 (2.7104) grad_norm 1.7070 (3.0122/1.3265) mem 16099MB [2025-01-18 10:45:32 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][180/312] eta 0:01:02 lr 0.000140 time 0.4535 (0.4768) model_time 0.4531 (0.4665) loss 2.5636 (2.7041) grad_norm 2.2824 (3.0990/1.4077) mem 16099MB [2025-01-18 10:45:37 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][190/312] eta 0:00:58 lr 0.000139 time 0.5470 (0.4762) model_time 0.5468 (0.4664) loss 2.9157 (2.6993) grad_norm 1.9383 (3.0862/1.3964) mem 16099MB [2025-01-18 10:45:41 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][200/312] eta 0:00:53 lr 0.000139 time 0.4537 (0.4757) model_time 0.4533 (0.4663) loss 3.3551 (2.7000) grad_norm 3.4882 (3.0541/1.3847) mem 16099MB [2025-01-18 10:45:46 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][210/312] eta 0:00:48 lr 0.000139 time 0.4704 (0.4750) model_time 0.4702 (0.4661) loss 3.1487 (2.6968) grad_norm 2.8177 (3.0264/1.3726) mem 16099MB [2025-01-18 10:45:51 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][220/312] eta 0:00:43 lr 0.000139 time 0.4551 (0.4749) model_time 0.4548 (0.4664) loss 2.7626 (2.6954) grad_norm 4.4744 (3.0393/1.3797) mem 16099MB [2025-01-18 10:45:55 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][230/312] eta 0:00:38 lr 0.000139 time 0.4747 (0.4742) model_time 0.4745 (0.4660) loss 2.9473 (2.6966) grad_norm 1.6357 (3.0231/1.3732) mem 16099MB [2025-01-18 10:46:00 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][240/312] eta 0:00:34 lr 0.000138 time 0.4484 (0.4736) model_time 0.4479 (0.4657) loss 1.9671 (2.6951) grad_norm 2.2225 (3.0038/1.3594) mem 16099MB [2025-01-18 10:46:04 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][250/312] eta 0:00:29 lr 0.000138 time 0.4644 (0.4728) model_time 0.4640 (0.4653) loss 2.8275 (2.7020) grad_norm 3.7125 (2.9992/1.3527) mem 16099MB [2025-01-18 10:46:09 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][260/312] eta 0:00:24 lr 0.000138 time 0.4526 (0.4723) model_time 0.4522 (0.4650) loss 3.4588 (2.7026) grad_norm 2.7305 (2.9969/1.3397) mem 16099MB [2025-01-18 10:46:14 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][270/312] eta 0:00:19 lr 0.000138 time 0.4442 (0.4720) model_time 0.4441 (0.4650) loss 2.6643 (2.7002) grad_norm 4.3680 (2.9832/1.3264) mem 16099MB [2025-01-18 10:46:18 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][280/312] eta 0:00:15 lr 0.000138 time 0.4553 (0.4715) model_time 0.4547 (0.4647) loss 3.5325 (2.7085) grad_norm 2.1297 (2.9846/1.3205) mem 16099MB [2025-01-18 10:46:23 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][290/312] eta 0:00:10 lr 0.000137 time 0.4537 (0.4715) model_time 0.4533 (0.4649) loss 2.7690 (2.6993) grad_norm 2.0875 (2.9771/1.3202) mem 16099MB [2025-01-18 10:46:28 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][300/312] eta 0:00:05 lr 0.000137 time 0.4393 (0.4712) model_time 0.4392 (0.4649) loss 2.9695 (2.7037) grad_norm 1.4561 (2.9485/1.3138) mem 16099MB [2025-01-18 10:46:32 internimage_t_1k_224] (main.py 510): INFO Train: [269/300][310/312] eta 0:00:00 lr 0.000137 time 0.4405 (0.4711) model_time 0.4404 (0.4650) loss 2.3907 (2.7032) grad_norm 1.9371 (2.9065/1.2816) mem 16099MB [2025-01-18 10:46:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 269 training takes 0:02:26 [2025-01-18 10:46:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_269.pth saving...... [2025-01-18 10:46:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_269.pth saved !!! [2025-01-18 10:46:41 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.152 (7.152) Loss 0.7110 (0.7110) Acc@1 85.132 (85.132) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 10:46:45 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (0.978) Loss 0.9729 (0.8198) Acc@1 78.857 (83.068) Acc@5 95.117 (96.267) Mem 16099MB [2025-01-18 10:46:45 internimage_t_1k_224] (main.py 575): INFO [Epoch:269] * Acc@1 82.929 Acc@5 96.281 [2025-01-18 10:46:45 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.9% [2025-01-18 10:46:45 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.97% [2025-01-18 10:46:53 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.180 (8.180) Loss 0.7218 (0.7218) Acc@1 85.693 (85.693) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:46:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.098) Loss 0.9528 (0.8226) Acc@1 79.688 (83.569) Acc@5 95.508 (96.578) Mem 16099MB [2025-01-18 10:46:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:269] * Acc@1 83.431 Acc@5 96.577 [2025-01-18 10:46:57 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:46:57 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:46:59 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:46:59 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.43% [2025-01-18 10:47:02 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][0/312] eta 0:15:12 lr 0.000137 time 2.9249 (2.9249) model_time 0.4645 (0.4645) loss 2.7368 (2.7368) grad_norm 1.7418 (1.7418/0.0000) mem 16099MB [2025-01-18 10:47:06 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][10/312] eta 0:03:27 lr 0.000137 time 0.4539 (0.6879) model_time 0.4534 (0.4639) loss 3.0991 (2.6813) grad_norm 2.4768 (2.1726/0.5759) mem 16099MB [2025-01-18 10:47:11 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][20/312] eta 0:02:50 lr 0.000136 time 0.4421 (0.5846) model_time 0.4417 (0.4671) loss 2.9211 (2.6370) grad_norm 1.9211 (2.7420/1.5459) mem 16099MB [2025-01-18 10:47:15 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][30/312] eta 0:02:33 lr 0.000136 time 0.4578 (0.5435) model_time 0.4576 (0.4638) loss 2.6015 (2.6501) grad_norm 3.6042 (3.1008/1.4678) mem 16099MB [2025-01-18 10:47:20 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][40/312] eta 0:02:22 lr 0.000136 time 0.4512 (0.5243) model_time 0.4508 (0.4639) loss 2.8462 (2.6884) grad_norm 2.6131 (3.1938/1.3352) mem 16099MB [2025-01-18 10:47:25 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][50/312] eta 0:02:15 lr 0.000136 time 0.4437 (0.5188) model_time 0.4435 (0.4702) loss 3.2583 (2.7003) grad_norm 6.0752 (3.5080/1.5223) mem 16099MB [2025-01-18 10:47:30 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][60/312] eta 0:02:08 lr 0.000136 time 0.4399 (0.5080) model_time 0.4397 (0.4673) loss 2.3093 (2.6868) grad_norm 8.2203 (4.0079/2.0200) mem 16099MB [2025-01-18 10:47:34 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][70/312] eta 0:02:01 lr 0.000135 time 0.4419 (0.5026) model_time 0.4415 (0.4676) loss 2.7946 (2.7042) grad_norm 1.4598 (4.0745/2.1133) mem 16099MB [2025-01-18 10:47:39 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][80/312] eta 0:01:55 lr 0.000135 time 0.4693 (0.4967) model_time 0.4691 (0.4660) loss 2.8694 (2.7050) grad_norm 1.8069 (3.9602/2.0280) mem 16099MB [2025-01-18 10:47:44 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][90/312] eta 0:01:49 lr 0.000135 time 0.4592 (0.4948) model_time 0.4590 (0.4674) loss 2.7627 (2.7319) grad_norm 2.9136 (3.8771/1.9817) mem 16099MB [2025-01-18 10:47:48 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][100/312] eta 0:01:44 lr 0.000135 time 0.4856 (0.4913) model_time 0.4851 (0.4666) loss 2.8480 (2.7288) grad_norm 3.0972 (3.7878/1.9332) mem 16099MB [2025-01-18 10:47:53 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][110/312] eta 0:01:39 lr 0.000135 time 0.4475 (0.4906) model_time 0.4473 (0.4681) loss 2.4564 (2.7221) grad_norm 2.2603 (3.6907/1.8977) mem 16099MB [2025-01-18 10:47:58 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][120/312] eta 0:01:34 lr 0.000134 time 0.4560 (0.4901) model_time 0.4556 (0.4693) loss 3.1040 (2.7221) grad_norm 2.1916 (3.5709/1.8687) mem 16099MB [2025-01-18 10:48:03 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][130/312] eta 0:01:29 lr 0.000134 time 0.4486 (0.4896) model_time 0.4484 (0.4704) loss 2.6243 (2.7221) grad_norm 3.9193 (3.4526/1.8556) mem 16099MB [2025-01-18 10:48:08 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][140/312] eta 0:01:24 lr 0.000134 time 0.4796 (0.4907) model_time 0.4792 (0.4728) loss 2.2060 (2.7080) grad_norm 3.1971 (3.4237/1.8231) mem 16099MB [2025-01-18 10:48:12 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][150/312] eta 0:01:19 lr 0.000134 time 0.4840 (0.4882) model_time 0.4838 (0.4716) loss 3.1372 (2.7080) grad_norm 2.3262 (3.5144/1.8959) mem 16099MB [2025-01-18 10:48:17 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][160/312] eta 0:01:14 lr 0.000134 time 0.7286 (0.4883) model_time 0.7285 (0.4726) loss 1.8652 (2.7098) grad_norm 2.7762 (3.4706/1.8729) mem 16099MB [2025-01-18 10:48:22 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][170/312] eta 0:01:09 lr 0.000133 time 0.4505 (0.4869) model_time 0.4501 (0.4721) loss 3.1922 (2.7089) grad_norm 3.6071 (3.4261/1.8365) mem 16099MB [2025-01-18 10:48:27 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][180/312] eta 0:01:04 lr 0.000133 time 0.4667 (0.4870) model_time 0.4663 (0.4730) loss 2.8991 (2.7211) grad_norm 2.5811 (3.4417/1.8181) mem 16099MB [2025-01-18 10:48:32 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][190/312] eta 0:00:59 lr 0.000133 time 0.4655 (0.4868) model_time 0.4654 (0.4736) loss 2.3006 (2.7061) grad_norm 1.2833 (3.4016/1.7936) mem 16099MB [2025-01-18 10:48:36 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][200/312] eta 0:00:54 lr 0.000133 time 0.4532 (0.4854) model_time 0.4531 (0.4728) loss 3.1040 (2.6999) grad_norm 1.4157 (3.3568/1.7684) mem 16099MB [2025-01-18 10:48:41 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][210/312] eta 0:00:49 lr 0.000133 time 0.4551 (0.4860) model_time 0.4550 (0.4739) loss 2.5019 (2.6910) grad_norm 1.4120 (3.3062/1.7532) mem 16099MB [2025-01-18 10:48:46 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][220/312] eta 0:00:44 lr 0.000132 time 0.4577 (0.4849) model_time 0.4575 (0.4734) loss 2.8783 (2.6939) grad_norm 2.6450 (3.2927/1.7287) mem 16099MB [2025-01-18 10:48:50 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][230/312] eta 0:00:39 lr 0.000132 time 0.4586 (0.4836) model_time 0.4585 (0.4726) loss 3.1279 (2.6924) grad_norm 3.2398 (3.2506/1.7066) mem 16099MB [2025-01-18 10:48:55 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][240/312] eta 0:00:34 lr 0.000132 time 0.4593 (0.4827) model_time 0.4591 (0.4721) loss 3.2915 (2.6938) grad_norm 1.6822 (3.2144/1.6903) mem 16099MB [2025-01-18 10:49:00 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][250/312] eta 0:00:29 lr 0.000132 time 0.4553 (0.4819) model_time 0.4549 (0.4717) loss 1.7275 (2.6924) grad_norm 1.4399 (3.2077/1.6729) mem 16099MB [2025-01-18 10:49:04 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][260/312] eta 0:00:25 lr 0.000132 time 0.4408 (0.4822) model_time 0.4404 (0.4724) loss 3.1529 (2.7007) grad_norm 1.5108 (3.1638/1.6606) mem 16099MB [2025-01-18 10:49:09 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][270/312] eta 0:00:20 lr 0.000131 time 0.5200 (0.4815) model_time 0.5198 (0.4720) loss 3.1249 (2.7054) grad_norm 1.9364 (3.1308/1.6407) mem 16099MB [2025-01-18 10:49:14 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][280/312] eta 0:00:15 lr 0.000131 time 0.4550 (0.4815) model_time 0.4548 (0.4723) loss 2.0792 (2.6924) grad_norm 3.2322 (3.1255/1.6226) mem 16099MB [2025-01-18 10:49:18 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][290/312] eta 0:00:10 lr 0.000131 time 0.4408 (0.4805) model_time 0.4403 (0.4716) loss 2.9364 (2.6975) grad_norm 2.8027 (3.0971/1.6077) mem 16099MB [2025-01-18 10:49:23 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][300/312] eta 0:00:05 lr 0.000131 time 0.4462 (0.4800) model_time 0.4462 (0.4714) loss 2.7732 (2.6938) grad_norm 3.5060 (3.0917/1.5891) mem 16099MB [2025-01-18 10:49:28 internimage_t_1k_224] (main.py 510): INFO Train: [270/300][310/312] eta 0:00:00 lr 0.000131 time 0.5274 (0.4791) model_time 0.5273 (0.4708) loss 2.0750 (2.6945) grad_norm 1.7547 (3.1248/1.5987) mem 16099MB [2025-01-18 10:49:28 internimage_t_1k_224] (main.py 519): INFO EPOCH 270 training takes 0:02:29 [2025-01-18 10:49:28 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_270.pth saving...... [2025-01-18 10:49:29 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_270.pth saved !!! [2025-01-18 10:49:37 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.798 (7.798) Loss 0.7140 (0.7140) Acc@1 85.498 (85.498) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 10:49:41 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.046) Loss 0.9692 (0.8254) Acc@1 78.857 (83.114) Acc@5 95.215 (96.294) Mem 16099MB [2025-01-18 10:49:41 internimage_t_1k_224] (main.py 575): INFO [Epoch:270] * Acc@1 82.947 Acc@5 96.315 [2025-01-18 10:49:41 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.9% [2025-01-18 10:49:41 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.97% [2025-01-18 10:49:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.576 (8.576) Loss 0.7212 (0.7212) Acc@1 85.693 (85.693) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:49:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.153) Loss 0.9519 (0.8218) Acc@1 79.688 (83.578) Acc@5 95.508 (96.584) Mem 16099MB [2025-01-18 10:49:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:270] * Acc@1 83.437 Acc@5 96.583 [2025-01-18 10:49:54 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.4% [2025-01-18 10:49:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:49:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:49:55 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.44% [2025-01-18 10:49:58 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][0/312] eta 0:15:06 lr 0.000131 time 2.9053 (2.9053) model_time 0.4877 (0.4877) loss 2.1529 (2.1529) grad_norm 4.6928 (4.6928/0.0000) mem 16099MB [2025-01-18 10:50:03 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][10/312] eta 0:03:25 lr 0.000130 time 0.4521 (0.6803) model_time 0.4519 (0.4603) loss 3.1674 (2.6777) grad_norm 2.3079 (2.9152/1.2263) mem 16099MB [2025-01-18 10:50:07 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][20/312] eta 0:02:47 lr 0.000130 time 0.4511 (0.5731) model_time 0.4506 (0.4577) loss 2.0381 (2.6544) grad_norm 1.7561 (2.4750/1.1360) mem 16099MB [2025-01-18 10:50:12 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][30/312] eta 0:02:33 lr 0.000130 time 0.4531 (0.5447) model_time 0.4526 (0.4664) loss 2.3295 (2.6512) grad_norm 2.0581 (2.5588/1.1585) mem 16099MB [2025-01-18 10:50:17 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][40/312] eta 0:02:23 lr 0.000130 time 0.4732 (0.5270) model_time 0.4731 (0.4677) loss 2.2089 (2.6709) grad_norm 7.6289 (2.7396/1.3828) mem 16099MB [2025-01-18 10:50:21 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][50/312] eta 0:02:14 lr 0.000130 time 0.4406 (0.5130) model_time 0.4404 (0.4652) loss 2.5987 (2.6893) grad_norm 5.2937 (3.1027/1.7287) mem 16099MB [2025-01-18 10:50:26 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][60/312] eta 0:02:07 lr 0.000129 time 0.4561 (0.5050) model_time 0.4559 (0.4650) loss 2.6878 (2.6893) grad_norm 2.4278 (3.0863/1.7191) mem 16099MB [2025-01-18 10:50:31 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][70/312] eta 0:02:01 lr 0.000129 time 0.4434 (0.5007) model_time 0.4430 (0.4663) loss 2.2277 (2.6638) grad_norm 1.5796 (3.1548/1.7359) mem 16099MB [2025-01-18 10:50:35 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][80/312] eta 0:01:55 lr 0.000129 time 0.4469 (0.4963) model_time 0.4467 (0.4661) loss 2.7303 (2.6715) grad_norm 2.4892 (3.2259/1.7189) mem 16099MB [2025-01-18 10:50:40 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][90/312] eta 0:01:49 lr 0.000129 time 0.4437 (0.4917) model_time 0.4435 (0.4648) loss 3.2732 (2.6958) grad_norm 3.9786 (3.1993/1.6641) mem 16099MB [2025-01-18 10:50:45 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][100/312] eta 0:01:44 lr 0.000129 time 0.4514 (0.4916) model_time 0.4509 (0.4673) loss 2.0710 (2.6820) grad_norm 3.3811 (3.2073/1.6320) mem 16099MB [2025-01-18 10:50:49 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][110/312] eta 0:01:38 lr 0.000128 time 0.4618 (0.4891) model_time 0.4613 (0.4669) loss 2.9578 (2.6898) grad_norm 3.8742 (3.1541/1.5907) mem 16099MB [2025-01-18 10:50:54 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][120/312] eta 0:01:33 lr 0.000128 time 0.4595 (0.4879) model_time 0.4591 (0.4675) loss 3.0466 (2.6983) grad_norm 2.4992 (3.0710/1.5597) mem 16099MB [2025-01-18 10:50:59 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][130/312] eta 0:01:28 lr 0.000128 time 0.4440 (0.4878) model_time 0.4438 (0.4689) loss 3.0660 (2.7202) grad_norm 1.1389 (3.0554/1.5423) mem 16099MB [2025-01-18 10:51:04 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][140/312] eta 0:01:24 lr 0.000128 time 0.4561 (0.4896) model_time 0.4560 (0.4721) loss 3.2844 (2.7207) grad_norm 4.1750 (3.0631/1.5155) mem 16099MB [2025-01-18 10:51:09 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][150/312] eta 0:01:18 lr 0.000128 time 0.4569 (0.4873) model_time 0.4567 (0.4709) loss 3.1245 (2.7155) grad_norm 2.2352 (3.0439/1.4877) mem 16099MB [2025-01-18 10:51:13 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][160/312] eta 0:01:13 lr 0.000127 time 0.4801 (0.4861) model_time 0.4797 (0.4707) loss 3.1163 (2.7187) grad_norm 3.3610 (3.0945/1.5659) mem 16099MB [2025-01-18 10:51:18 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][170/312] eta 0:01:08 lr 0.000127 time 0.4529 (0.4850) model_time 0.4528 (0.4704) loss 2.7408 (2.7277) grad_norm 1.7031 (3.0973/1.5758) mem 16099MB [2025-01-18 10:51:23 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][180/312] eta 0:01:03 lr 0.000127 time 0.4542 (0.4833) model_time 0.4538 (0.4695) loss 2.8026 (2.7133) grad_norm 1.7897 (3.0637/1.5528) mem 16099MB [2025-01-18 10:51:27 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][190/312] eta 0:00:58 lr 0.000127 time 0.4492 (0.4817) model_time 0.4490 (0.4687) loss 2.2483 (2.7213) grad_norm 4.0901 (3.0833/1.5428) mem 16099MB [2025-01-18 10:51:32 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][200/312] eta 0:00:53 lr 0.000127 time 0.4647 (0.4813) model_time 0.4645 (0.4689) loss 2.9932 (2.7166) grad_norm 2.8186 (3.0412/1.5213) mem 16099MB [2025-01-18 10:51:37 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][210/312] eta 0:00:49 lr 0.000126 time 0.4551 (0.4810) model_time 0.4547 (0.4691) loss 2.1688 (2.7093) grad_norm 2.0320 (3.0143/1.5074) mem 16099MB [2025-01-18 10:51:41 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][220/312] eta 0:00:44 lr 0.000126 time 0.4581 (0.4804) model_time 0.4577 (0.4690) loss 2.7374 (2.7037) grad_norm 1.5848 (2.9890/1.4850) mem 16099MB [2025-01-18 10:51:46 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][230/312] eta 0:00:39 lr 0.000126 time 0.5281 (0.4797) model_time 0.5279 (0.4688) loss 2.6254 (2.7005) grad_norm 2.2036 (2.9467/1.4704) mem 16099MB [2025-01-18 10:51:50 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][240/312] eta 0:00:34 lr 0.000126 time 0.4645 (0.4786) model_time 0.4641 (0.4681) loss 2.9072 (2.6999) grad_norm 2.7088 (2.9343/1.4596) mem 16099MB [2025-01-18 10:51:55 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][250/312] eta 0:00:29 lr 0.000126 time 0.4585 (0.4775) model_time 0.4584 (0.4675) loss 2.8114 (2.7011) grad_norm 3.8314 (2.9312/1.4424) mem 16099MB [2025-01-18 10:52:00 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][260/312] eta 0:00:24 lr 0.000126 time 0.4805 (0.4770) model_time 0.4800 (0.4674) loss 3.0752 (2.7070) grad_norm 2.0506 (2.9252/1.4250) mem 16099MB [2025-01-18 10:52:04 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][270/312] eta 0:00:20 lr 0.000125 time 0.4639 (0.4773) model_time 0.4635 (0.4680) loss 2.8767 (2.7047) grad_norm 5.9093 (2.9574/1.4382) mem 16099MB [2025-01-18 10:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][280/312] eta 0:00:15 lr 0.000125 time 0.4529 (0.4767) model_time 0.4527 (0.4677) loss 2.4077 (2.7051) grad_norm 3.5490 (2.9747/1.4443) mem 16099MB [2025-01-18 10:52:14 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][290/312] eta 0:00:10 lr 0.000125 time 0.4621 (0.4760) model_time 0.4619 (0.4673) loss 2.9726 (2.7111) grad_norm 3.4818 (2.9682/1.4343) mem 16099MB [2025-01-18 10:52:18 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][300/312] eta 0:00:05 lr 0.000125 time 0.4401 (0.4760) model_time 0.4400 (0.4675) loss 3.0057 (2.7144) grad_norm 3.7392 (2.9775/1.4519) mem 16099MB [2025-01-18 10:52:23 internimage_t_1k_224] (main.py 510): INFO Train: [271/300][310/312] eta 0:00:00 lr 0.000125 time 0.4414 (0.4751) model_time 0.4413 (0.4669) loss 3.0231 (2.7188) grad_norm 2.9398 (2.9916/1.4546) mem 16099MB [2025-01-18 10:52:23 internimage_t_1k_224] (main.py 519): INFO EPOCH 271 training takes 0:02:28 [2025-01-18 10:52:23 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_271.pth saving...... [2025-01-18 10:52:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_271.pth saved !!! [2025-01-18 10:52:32 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.545 (7.545) Loss 0.7297 (0.7297) Acc@1 85.571 (85.571) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 10:52:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.005) Loss 0.9742 (0.8358) Acc@1 79.102 (82.983) Acc@5 95.264 (96.294) Mem 16099MB [2025-01-18 10:52:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:271] * Acc@1 82.831 Acc@5 96.319 [2025-01-18 10:52:36 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.8% [2025-01-18 10:52:36 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.97% [2025-01-18 10:52:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.385 (8.385) Loss 0.7207 (0.7207) Acc@1 85.767 (85.767) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:52:48 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.141) Loss 0.9511 (0.8212) Acc@1 79.712 (83.607) Acc@5 95.483 (96.578) Mem 16099MB [2025-01-18 10:52:48 internimage_t_1k_224] (main.py 575): INFO [Epoch:271] * Acc@1 83.463 Acc@5 96.579 [2025-01-18 10:52:48 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 10:52:48 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:52:50 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:52:50 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.46% [2025-01-18 10:52:52 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][0/312] eta 0:13:17 lr 0.000125 time 2.5574 (2.5574) model_time 0.4802 (0.4802) loss 2.8498 (2.8498) grad_norm 1.7154 (1.7154/0.0000) mem 16099MB [2025-01-18 10:52:57 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][10/312] eta 0:03:17 lr 0.000124 time 0.4591 (0.6542) model_time 0.4587 (0.4651) loss 2.9057 (2.4328) grad_norm 4.8292 (2.6443/1.2439) mem 16099MB [2025-01-18 10:53:02 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][20/312] eta 0:02:45 lr 0.000124 time 0.4677 (0.5660) model_time 0.4675 (0.4668) loss 2.7991 (2.6244) grad_norm 3.0597 (2.6347/1.1069) mem 16099MB [2025-01-18 10:53:06 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][30/312] eta 0:02:30 lr 0.000124 time 0.4557 (0.5325) model_time 0.4553 (0.4652) loss 3.0400 (2.6886) grad_norm 4.0510 (2.9314/1.4576) mem 16099MB [2025-01-18 10:53:11 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][40/312] eta 0:02:21 lr 0.000124 time 0.4578 (0.5187) model_time 0.4574 (0.4677) loss 1.9333 (2.6491) grad_norm 5.8406 (3.2637/1.6491) mem 16099MB [2025-01-18 10:53:16 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][50/312] eta 0:02:13 lr 0.000124 time 0.4606 (0.5091) model_time 0.4604 (0.4680) loss 2.9642 (2.6910) grad_norm 1.6198 (3.3092/1.5545) mem 16099MB [2025-01-18 10:53:20 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][60/312] eta 0:02:06 lr 0.000123 time 0.4526 (0.5011) model_time 0.4525 (0.4667) loss 2.6983 (2.7119) grad_norm 2.2441 (3.2132/1.5851) mem 16099MB [2025-01-18 10:53:25 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][70/312] eta 0:01:59 lr 0.000123 time 0.4544 (0.4945) model_time 0.4539 (0.4648) loss 2.7341 (2.7187) grad_norm 2.6196 (3.0965/1.5226) mem 16099MB [2025-01-18 10:53:30 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][80/312] eta 0:01:53 lr 0.000123 time 0.4850 (0.4904) model_time 0.4848 (0.4644) loss 2.2037 (2.7176) grad_norm 2.8242 (3.0576/1.4633) mem 16099MB [2025-01-18 10:53:34 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][90/312] eta 0:01:47 lr 0.000123 time 0.4555 (0.4862) model_time 0.4554 (0.4631) loss 3.1048 (2.7225) grad_norm 1.4591 (3.0188/1.4461) mem 16099MB [2025-01-18 10:53:39 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][100/312] eta 0:01:42 lr 0.000123 time 0.4571 (0.4855) model_time 0.4569 (0.4646) loss 1.8195 (2.7195) grad_norm 1.8722 (3.0549/1.4833) mem 16099MB [2025-01-18 10:53:44 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][110/312] eta 0:01:37 lr 0.000122 time 0.4601 (0.4841) model_time 0.4599 (0.4650) loss 2.7238 (2.7257) grad_norm 3.1438 (3.0263/1.4373) mem 16099MB [2025-01-18 10:53:48 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][120/312] eta 0:01:32 lr 0.000122 time 0.4512 (0.4824) model_time 0.4507 (0.4649) loss 2.4404 (2.7200) grad_norm 4.0582 (3.0321/1.4401) mem 16099MB [2025-01-18 10:53:53 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][130/312] eta 0:01:27 lr 0.000122 time 0.4526 (0.4833) model_time 0.4525 (0.4671) loss 1.6567 (2.7000) grad_norm 1.4070 (3.0165/1.4172) mem 16099MB [2025-01-18 10:53:58 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][140/312] eta 0:01:23 lr 0.000122 time 0.4760 (0.4851) model_time 0.4758 (0.4700) loss 2.9193 (2.7017) grad_norm 1.9822 (3.0107/1.4065) mem 16099MB [2025-01-18 10:54:03 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][150/312] eta 0:01:18 lr 0.000122 time 0.4463 (0.4837) model_time 0.4459 (0.4696) loss 2.2341 (2.6829) grad_norm 4.3303 (3.0433/1.4110) mem 16099MB [2025-01-18 10:54:08 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][160/312] eta 0:01:13 lr 0.000121 time 0.4503 (0.4829) model_time 0.4499 (0.4696) loss 3.0304 (2.6864) grad_norm 3.0741 (3.1428/1.5460) mem 16099MB [2025-01-18 10:54:12 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][170/312] eta 0:01:08 lr 0.000121 time 0.4936 (0.4815) model_time 0.4935 (0.4690) loss 2.9351 (2.6858) grad_norm 3.7446 (3.1963/1.5569) mem 16099MB [2025-01-18 10:54:17 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][180/312] eta 0:01:03 lr 0.000121 time 0.5302 (0.4814) model_time 0.5301 (0.4695) loss 2.3461 (2.6861) grad_norm 2.5364 (3.1614/1.5323) mem 16099MB [2025-01-18 10:54:22 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][190/312] eta 0:00:58 lr 0.000121 time 0.4487 (0.4810) model_time 0.4482 (0.4697) loss 2.9890 (2.6787) grad_norm 2.4263 (3.1029/1.5190) mem 16099MB [2025-01-18 10:54:26 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][200/312] eta 0:00:53 lr 0.000121 time 0.4427 (0.4797) model_time 0.4422 (0.4690) loss 2.8588 (2.6755) grad_norm 2.2143 (3.0623/1.5020) mem 16099MB [2025-01-18 10:54:31 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][210/312] eta 0:00:48 lr 0.000121 time 0.4431 (0.4785) model_time 0.4429 (0.4683) loss 2.9043 (2.6808) grad_norm 1.8543 (3.0386/1.4848) mem 16099MB [2025-01-18 10:54:36 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][220/312] eta 0:00:43 lr 0.000120 time 0.4691 (0.4782) model_time 0.4690 (0.4685) loss 2.6639 (2.6729) grad_norm 3.5532 (3.0128/1.4661) mem 16099MB [2025-01-18 10:54:40 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][230/312] eta 0:00:39 lr 0.000120 time 0.4537 (0.4776) model_time 0.4533 (0.4683) loss 2.5009 (2.6701) grad_norm 2.3700 (3.0100/1.4485) mem 16099MB [2025-01-18 10:54:45 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][240/312] eta 0:00:34 lr 0.000120 time 0.4587 (0.4777) model_time 0.4585 (0.4687) loss 2.8456 (2.6843) grad_norm 2.6008 (2.9947/1.4383) mem 16099MB [2025-01-18 10:54:50 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][250/312] eta 0:00:29 lr 0.000120 time 0.4603 (0.4770) model_time 0.4602 (0.4684) loss 2.5021 (2.6847) grad_norm 2.8102 (2.9946/1.4341) mem 16099MB [2025-01-18 10:54:54 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][260/312] eta 0:00:24 lr 0.000120 time 0.4541 (0.4761) model_time 0.4536 (0.4678) loss 1.9455 (2.6740) grad_norm 3.5750 (3.0042/1.4235) mem 16099MB [2025-01-18 10:54:59 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][270/312] eta 0:00:20 lr 0.000119 time 0.4420 (0.4764) model_time 0.4418 (0.4684) loss 2.9693 (2.6807) grad_norm 4.5104 (3.0061/1.4220) mem 16099MB [2025-01-18 10:55:04 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][280/312] eta 0:00:15 lr 0.000119 time 0.4501 (0.4765) model_time 0.4496 (0.4687) loss 2.8043 (2.6904) grad_norm 3.6849 (3.0880/1.4932) mem 16099MB [2025-01-18 10:55:08 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][290/312] eta 0:00:10 lr 0.000119 time 0.4443 (0.4761) model_time 0.4439 (0.4685) loss 2.4025 (2.6876) grad_norm 5.6029 (3.1344/1.5477) mem 16099MB [2025-01-18 10:55:13 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][300/312] eta 0:00:05 lr 0.000119 time 0.4399 (0.4757) model_time 0.4398 (0.4684) loss 2.9878 (2.6954) grad_norm 3.2974 (3.1360/1.5561) mem 16099MB [2025-01-18 10:55:18 internimage_t_1k_224] (main.py 510): INFO Train: [272/300][310/312] eta 0:00:00 lr 0.000119 time 0.4393 (0.4748) model_time 0.4392 (0.4678) loss 2.1168 (2.6928) grad_norm 2.3917 (3.1613/1.5726) mem 16099MB [2025-01-18 10:55:18 internimage_t_1k_224] (main.py 519): INFO EPOCH 272 training takes 0:02:28 [2025-01-18 10:55:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_272.pth saving...... [2025-01-18 10:55:19 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_272.pth saved !!! [2025-01-18 10:55:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.595 (7.595) Loss 0.7236 (0.7236) Acc@1 85.278 (85.278) Acc@5 97.290 (97.290) Mem 16099MB [2025-01-18 10:55:30 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.018) Loss 0.9724 (0.8281) Acc@1 78.809 (82.988) Acc@5 95.264 (96.287) Mem 16099MB [2025-01-18 10:55:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:272] * Acc@1 82.851 Acc@5 96.281 [2025-01-18 10:55:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 82.9% [2025-01-18 10:55:31 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 82.97% [2025-01-18 10:55:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.439 (8.439) Loss 0.7201 (0.7201) Acc@1 85.767 (85.767) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:55:43 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.144) Loss 0.9505 (0.8205) Acc@1 79.736 (83.618) Acc@5 95.483 (96.575) Mem 16099MB [2025-01-18 10:55:43 internimage_t_1k_224] (main.py 575): INFO [Epoch:272] * Acc@1 83.477 Acc@5 96.575 [2025-01-18 10:55:43 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 10:55:43 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:55:45 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:55:45 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.48% [2025-01-18 10:55:47 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][0/312] eta 0:13:34 lr 0.000119 time 2.6106 (2.6106) model_time 0.4832 (0.4832) loss 2.9961 (2.9961) grad_norm 1.4227 (1.4227/0.0000) mem 16099MB [2025-01-18 10:55:52 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][10/312] eta 0:03:16 lr 0.000118 time 0.4501 (0.6521) model_time 0.4499 (0.4584) loss 3.1259 (2.6437) grad_norm 1.7327 (2.1652/0.7538) mem 16099MB [2025-01-18 10:55:57 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][20/312] eta 0:02:47 lr 0.000118 time 0.4847 (0.5731) model_time 0.4845 (0.4715) loss 1.8211 (2.5573) grad_norm 4.1380 (2.4627/1.0114) mem 16099MB [2025-01-18 10:56:01 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][30/312] eta 0:02:31 lr 0.000118 time 0.4413 (0.5360) model_time 0.4408 (0.4670) loss 2.5763 (2.5827) grad_norm 2.5545 (2.4563/0.9751) mem 16099MB [2025-01-18 10:56:06 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][40/312] eta 0:02:20 lr 0.000118 time 0.4427 (0.5178) model_time 0.4422 (0.4656) loss 2.9674 (2.6438) grad_norm 2.3192 (2.6080/1.1319) mem 16099MB [2025-01-18 10:56:11 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][50/312] eta 0:02:12 lr 0.000118 time 0.4516 (0.5075) model_time 0.4514 (0.4655) loss 3.2709 (2.6787) grad_norm 3.0712 (2.6513/1.0898) mem 16099MB [2025-01-18 10:56:15 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][60/312] eta 0:02:05 lr 0.000118 time 0.4633 (0.4995) model_time 0.4629 (0.4642) loss 2.6715 (2.6802) grad_norm 3.7237 (2.7474/1.0798) mem 16099MB [2025-01-18 10:56:20 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][70/312] eta 0:01:59 lr 0.000117 time 0.4433 (0.4943) model_time 0.4431 (0.4639) loss 2.3895 (2.6830) grad_norm 2.5989 (2.8241/1.0734) mem 16099MB [2025-01-18 10:56:25 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][80/312] eta 0:01:54 lr 0.000117 time 0.4630 (0.4918) model_time 0.4625 (0.4651) loss 3.2006 (2.6678) grad_norm 4.9962 (2.7876/1.0634) mem 16099MB [2025-01-18 10:56:29 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][90/312] eta 0:01:48 lr 0.000117 time 0.4540 (0.4885) model_time 0.4537 (0.4648) loss 2.9234 (2.6670) grad_norm 3.3954 (2.8211/1.0626) mem 16099MB [2025-01-18 10:56:34 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][100/312] eta 0:01:43 lr 0.000117 time 0.4489 (0.4887) model_time 0.4488 (0.4673) loss 2.7468 (2.6535) grad_norm 3.6795 (2.8789/1.0829) mem 16099MB [2025-01-18 10:56:39 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][110/312] eta 0:01:38 lr 0.000117 time 0.5194 (0.4896) model_time 0.5189 (0.4701) loss 2.8816 (2.6488) grad_norm 3.3240 (2.8406/1.0863) mem 16099MB [2025-01-18 10:56:44 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][120/312] eta 0:01:33 lr 0.000116 time 0.4637 (0.4874) model_time 0.4635 (0.4694) loss 2.7663 (2.6475) grad_norm 2.1190 (2.8157/1.0616) mem 16099MB [2025-01-18 10:56:48 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][130/312] eta 0:01:28 lr 0.000116 time 0.4415 (0.4855) model_time 0.4413 (0.4689) loss 2.8405 (2.6311) grad_norm 5.8295 (2.8637/1.0945) mem 16099MB [2025-01-18 10:56:53 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][140/312] eta 0:01:23 lr 0.000116 time 0.4472 (0.4859) model_time 0.4471 (0.4704) loss 3.3002 (2.6449) grad_norm 3.2698 (2.9233/1.1640) mem 16099MB [2025-01-18 10:56:58 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][150/312] eta 0:01:18 lr 0.000116 time 0.4406 (0.4845) model_time 0.4404 (0.4701) loss 2.1999 (2.6492) grad_norm 1.3936 (2.9341/1.1935) mem 16099MB [2025-01-18 10:57:03 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][160/312] eta 0:01:13 lr 0.000116 time 0.4752 (0.4844) model_time 0.4750 (0.4708) loss 2.9176 (2.6539) grad_norm 4.4307 (2.9399/1.1852) mem 16099MB [2025-01-18 10:57:07 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][170/312] eta 0:01:08 lr 0.000115 time 0.4636 (0.4826) model_time 0.4634 (0.4698) loss 2.0841 (2.6500) grad_norm 1.9972 (2.8985/1.1725) mem 16099MB [2025-01-18 10:57:12 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][180/312] eta 0:01:03 lr 0.000115 time 0.4580 (0.4812) model_time 0.4578 (0.4691) loss 3.0765 (2.6621) grad_norm 3.3563 (2.8820/1.1603) mem 16099MB [2025-01-18 10:57:17 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][190/312] eta 0:00:58 lr 0.000115 time 0.4706 (0.4805) model_time 0.4705 (0.4690) loss 2.6504 (2.6700) grad_norm 5.2504 (2.8709/1.1602) mem 16099MB [2025-01-18 10:57:21 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][200/312] eta 0:00:53 lr 0.000115 time 0.4561 (0.4792) model_time 0.4557 (0.4682) loss 1.6738 (2.6601) grad_norm 7.3140 (2.9991/1.3455) mem 16099MB [2025-01-18 10:57:26 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][210/312] eta 0:00:48 lr 0.000115 time 0.4465 (0.4781) model_time 0.4460 (0.4676) loss 3.0507 (2.6609) grad_norm 2.9196 (3.0288/1.3657) mem 16099MB [2025-01-18 10:57:30 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][220/312] eta 0:00:43 lr 0.000115 time 0.4560 (0.4770) model_time 0.4559 (0.4670) loss 2.0154 (2.6595) grad_norm 2.7369 (3.0133/1.3507) mem 16099MB [2025-01-18 10:57:35 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][230/312] eta 0:00:39 lr 0.000114 time 0.4588 (0.4767) model_time 0.4586 (0.4671) loss 2.5462 (2.6656) grad_norm 1.7568 (2.9961/1.3343) mem 16099MB [2025-01-18 10:57:40 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][240/312] eta 0:00:34 lr 0.000114 time 0.5467 (0.4766) model_time 0.5465 (0.4674) loss 2.2210 (2.6578) grad_norm 3.0042 (2.9850/1.3262) mem 16099MB [2025-01-18 10:57:44 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][250/312] eta 0:00:29 lr 0.000114 time 0.4494 (0.4757) model_time 0.4490 (0.4669) loss 3.2545 (2.6584) grad_norm 1.7618 (3.0040/1.3591) mem 16099MB [2025-01-18 10:57:49 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][260/312] eta 0:00:24 lr 0.000114 time 0.4603 (0.4762) model_time 0.4599 (0.4677) loss 3.2226 (2.6668) grad_norm 4.2961 (3.0129/1.3651) mem 16099MB [2025-01-18 10:57:54 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][270/312] eta 0:00:19 lr 0.000114 time 0.4650 (0.4758) model_time 0.4646 (0.4675) loss 3.1682 (2.6713) grad_norm 1.8501 (2.9977/1.3533) mem 16099MB [2025-01-18 10:57:58 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][280/312] eta 0:00:15 lr 0.000114 time 0.4451 (0.4750) model_time 0.4446 (0.4671) loss 2.8589 (2.6762) grad_norm 2.2575 (2.9982/1.3465) mem 16099MB [2025-01-18 10:58:03 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][290/312] eta 0:00:10 lr 0.000113 time 0.4446 (0.4748) model_time 0.4442 (0.4671) loss 2.9530 (2.6779) grad_norm 4.6239 (3.0672/1.3941) mem 16099MB [2025-01-18 10:58:07 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][300/312] eta 0:00:05 lr 0.000113 time 0.4398 (0.4741) model_time 0.4397 (0.4666) loss 2.7283 (2.6792) grad_norm 1.6031 (3.0403/1.3831) mem 16099MB [2025-01-18 10:58:12 internimage_t_1k_224] (main.py 510): INFO Train: [273/300][310/312] eta 0:00:00 lr 0.000113 time 0.4923 (0.4737) model_time 0.4922 (0.4665) loss 2.8457 (2.6783) grad_norm 2.3291 (3.0421/1.3823) mem 16099MB [2025-01-18 10:58:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 273 training takes 0:02:27 [2025-01-18 10:58:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_273.pth saving...... [2025-01-18 10:58:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_273.pth saved !!! [2025-01-18 10:58:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.611 (7.611) Loss 0.7098 (0.7098) Acc@1 85.425 (85.425) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 10:58:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.020) Loss 0.9687 (0.8231) Acc@1 79.102 (83.145) Acc@5 95.264 (96.327) Mem 16099MB [2025-01-18 10:58:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:273] * Acc@1 82.997 Acc@5 96.347 [2025-01-18 10:58:25 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 10:58:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 10:58:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 10:58:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.00% [2025-01-18 10:58:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.524 (7.524) Loss 0.7197 (0.7197) Acc@1 85.791 (85.791) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 10:58:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.022) Loss 0.9499 (0.8200) Acc@1 79.834 (83.623) Acc@5 95.435 (96.578) Mem 16099MB [2025-01-18 10:58:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:273] * Acc@1 83.481 Acc@5 96.577 [2025-01-18 10:58:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 10:58:38 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 10:58:39 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 10:58:39 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.48% [2025-01-18 10:58:41 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][0/312] eta 0:10:42 lr 0.000113 time 2.0596 (2.0596) model_time 0.5180 (0.5180) loss 3.2158 (3.2158) grad_norm 3.3847 (3.3847/0.0000) mem 16099MB [2025-01-18 10:58:46 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][10/312] eta 0:03:15 lr 0.000113 time 0.5210 (0.6487) model_time 0.5206 (0.4784) loss 3.0092 (2.6926) grad_norm 3.8141 (2.6100/0.9042) mem 16099MB [2025-01-18 10:58:51 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][20/312] eta 0:02:44 lr 0.000113 time 0.4405 (0.5650) model_time 0.4403 (0.4756) loss 2.8230 (2.5300) grad_norm 1.8724 (2.4463/0.8487) mem 16099MB [2025-01-18 10:58:56 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][30/312] eta 0:02:31 lr 0.000112 time 0.5301 (0.5355) model_time 0.5300 (0.4749) loss 3.1842 (2.5424) grad_norm 2.8880 (2.9027/1.4390) mem 16099MB [2025-01-18 10:59:00 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][40/312] eta 0:02:20 lr 0.000112 time 0.4417 (0.5182) model_time 0.4412 (0.4722) loss 3.0774 (2.6130) grad_norm 6.8501 (3.1141/1.4770) mem 16099MB [2025-01-18 10:59:05 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][50/312] eta 0:02:12 lr 0.000112 time 0.4460 (0.5058) model_time 0.4456 (0.4688) loss 2.8960 (2.6099) grad_norm 1.4672 (3.3367/1.8598) mem 16099MB [2025-01-18 10:59:10 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][60/312] eta 0:02:06 lr 0.000112 time 0.5383 (0.5014) model_time 0.5378 (0.4704) loss 2.5264 (2.6377) grad_norm 2.2720 (3.2664/1.7717) mem 16099MB [2025-01-18 10:59:14 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][70/312] eta 0:02:00 lr 0.000112 time 0.4612 (0.4970) model_time 0.4611 (0.4702) loss 3.1566 (2.6607) grad_norm 3.0415 (3.1462/1.7360) mem 16099MB [2025-01-18 10:59:19 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][80/312] eta 0:01:54 lr 0.000112 time 0.4497 (0.4929) model_time 0.4496 (0.4694) loss 2.8741 (2.6915) grad_norm 2.4525 (3.1163/1.6832) mem 16099MB [2025-01-18 10:59:24 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][90/312] eta 0:01:48 lr 0.000111 time 0.4500 (0.4895) model_time 0.4496 (0.4685) loss 2.8293 (2.6904) grad_norm 2.1132 (3.1346/1.6406) mem 16099MB [2025-01-18 10:59:28 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][100/312] eta 0:01:43 lr 0.000111 time 0.4520 (0.4869) model_time 0.4515 (0.4680) loss 2.5218 (2.6939) grad_norm 2.2487 (3.0541/1.6019) mem 16099MB [2025-01-18 10:59:33 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][110/312] eta 0:01:38 lr 0.000111 time 0.4558 (0.4862) model_time 0.4554 (0.4690) loss 2.7208 (2.7089) grad_norm 1.7660 (3.0157/1.5751) mem 16099MB [2025-01-18 10:59:38 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][120/312] eta 0:01:32 lr 0.000111 time 0.4513 (0.4840) model_time 0.4512 (0.4682) loss 2.5369 (2.6998) grad_norm 2.0688 (3.0149/1.5467) mem 16099MB [2025-01-18 10:59:42 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][130/312] eta 0:01:27 lr 0.000111 time 0.4487 (0.4829) model_time 0.4485 (0.4683) loss 1.8212 (2.6829) grad_norm 4.3971 (3.0198/1.5375) mem 16099MB [2025-01-18 10:59:47 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][140/312] eta 0:01:22 lr 0.000110 time 0.5492 (0.4825) model_time 0.5487 (0.4689) loss 2.8946 (2.6918) grad_norm 7.7125 (3.0838/1.5717) mem 16099MB [2025-01-18 10:59:52 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][150/312] eta 0:01:18 lr 0.000110 time 0.4487 (0.4820) model_time 0.4486 (0.4692) loss 2.3672 (2.6920) grad_norm 1.5094 (3.1077/1.5787) mem 16099MB [2025-01-18 10:59:57 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][160/312] eta 0:01:13 lr 0.000110 time 0.4726 (0.4808) model_time 0.4722 (0.4688) loss 2.8870 (2.6947) grad_norm 2.4941 (3.1715/1.6088) mem 16099MB [2025-01-18 11:00:01 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][170/312] eta 0:01:08 lr 0.000110 time 0.4425 (0.4800) model_time 0.4424 (0.4687) loss 2.0201 (2.7000) grad_norm 2.7970 (3.1863/1.5846) mem 16099MB [2025-01-18 11:00:06 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][180/312] eta 0:01:03 lr 0.000110 time 0.4492 (0.4795) model_time 0.4490 (0.4688) loss 2.0775 (2.6927) grad_norm 3.9509 (3.2484/1.6003) mem 16099MB [2025-01-18 11:00:11 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][190/312] eta 0:00:58 lr 0.000110 time 0.4502 (0.4788) model_time 0.4501 (0.4685) loss 2.9347 (2.6868) grad_norm 2.8313 (3.2354/1.6182) mem 16099MB [2025-01-18 11:00:15 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][200/312] eta 0:00:53 lr 0.000109 time 0.4714 (0.4782) model_time 0.4712 (0.4684) loss 2.2377 (2.6866) grad_norm 2.2823 (3.2343/1.6037) mem 16099MB [2025-01-18 11:00:20 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][210/312] eta 0:00:48 lr 0.000109 time 0.4538 (0.4775) model_time 0.4534 (0.4681) loss 2.5238 (2.6921) grad_norm 1.6491 (3.2573/1.6123) mem 16099MB [2025-01-18 11:00:25 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][220/312] eta 0:00:43 lr 0.000109 time 0.4432 (0.4768) model_time 0.4430 (0.4679) loss 2.2434 (2.6898) grad_norm 2.2543 (3.2622/1.6093) mem 16099MB [2025-01-18 11:00:29 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][230/312] eta 0:00:39 lr 0.000109 time 0.5009 (0.4764) model_time 0.5004 (0.4678) loss 3.0761 (2.6984) grad_norm 1.4826 (3.2530/1.5898) mem 16099MB [2025-01-18 11:00:34 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][240/312] eta 0:00:34 lr 0.000109 time 0.4457 (0.4758) model_time 0.4455 (0.4675) loss 3.1230 (2.7002) grad_norm 2.3177 (3.2463/1.5638) mem 16099MB [2025-01-18 11:00:38 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][250/312] eta 0:00:29 lr 0.000109 time 0.4725 (0.4753) model_time 0.4723 (0.4674) loss 2.6072 (2.6934) grad_norm 4.7648 (3.2910/1.6176) mem 16099MB [2025-01-18 11:00:43 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][260/312] eta 0:00:24 lr 0.000108 time 0.4543 (0.4749) model_time 0.4538 (0.4673) loss 2.9132 (2.6949) grad_norm 4.7627 (3.3091/1.6153) mem 16099MB [2025-01-18 11:00:48 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][270/312] eta 0:00:19 lr 0.000108 time 0.4612 (0.4748) model_time 0.4608 (0.4674) loss 2.7579 (2.7010) grad_norm 2.9518 (3.2925/1.5945) mem 16099MB [2025-01-18 11:00:52 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][280/312] eta 0:00:15 lr 0.000108 time 0.4467 (0.4742) model_time 0.4465 (0.4671) loss 3.0136 (2.7026) grad_norm 3.8683 (3.2497/1.5875) mem 16099MB [2025-01-18 11:00:57 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][290/312] eta 0:00:10 lr 0.000108 time 0.4602 (0.4735) model_time 0.4597 (0.4666) loss 2.7516 (2.7027) grad_norm 1.6546 (3.2234/1.5767) mem 16099MB [2025-01-18 11:01:02 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][300/312] eta 0:00:05 lr 0.000108 time 0.4407 (0.4732) model_time 0.4406 (0.4666) loss 3.1340 (2.7004) grad_norm 2.9886 (3.2165/1.5607) mem 16099MB [2025-01-18 11:01:06 internimage_t_1k_224] (main.py 510): INFO Train: [274/300][310/312] eta 0:00:00 lr 0.000108 time 0.4376 (0.4726) model_time 0.4375 (0.4662) loss 1.9099 (2.6965) grad_norm 2.3901 (3.2220/1.5549) mem 16099MB [2025-01-18 11:01:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 274 training takes 0:02:27 [2025-01-18 11:01:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_274.pth saving...... [2025-01-18 11:01:08 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_274.pth saved !!! [2025-01-18 11:01:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.216 (7.216) Loss 0.7097 (0.7097) Acc@1 85.327 (85.327) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 11:01:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.987) Loss 0.9607 (0.8119) Acc@1 79.053 (83.103) Acc@5 95.190 (96.282) Mem 16099MB [2025-01-18 11:01:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:274] * Acc@1 82.975 Acc@5 96.293 [2025-01-18 11:01:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 11:01:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.00% [2025-01-18 11:01:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.222 (8.222) Loss 0.7189 (0.7189) Acc@1 85.840 (85.840) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 11:01:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.110) Loss 0.9491 (0.8192) Acc@1 79.858 (83.631) Acc@5 95.459 (96.580) Mem 16099MB [2025-01-18 11:01:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:274] * Acc@1 83.489 Acc@5 96.579 [2025-01-18 11:01:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:01:31 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:01:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:01:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.49% [2025-01-18 11:01:35 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][0/312] eta 0:10:49 lr 0.000107 time 2.0814 (2.0814) model_time 0.4673 (0.4673) loss 1.8350 (1.8350) grad_norm 5.7835 (5.7835/0.0000) mem 16099MB [2025-01-18 11:01:40 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][10/312] eta 0:03:13 lr 0.000107 time 0.4702 (0.6414) model_time 0.4701 (0.4943) loss 2.3769 (2.4078) grad_norm 1.7335 (3.3953/1.6401) mem 16099MB [2025-01-18 11:01:44 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][20/312] eta 0:02:42 lr 0.000107 time 0.4688 (0.5550) model_time 0.4687 (0.4777) loss 2.2767 (2.6121) grad_norm 1.8440 (2.9778/1.3908) mem 16099MB [2025-01-18 11:01:49 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][30/312] eta 0:02:28 lr 0.000107 time 0.4538 (0.5260) model_time 0.4537 (0.4736) loss 2.9636 (2.6439) grad_norm 2.4528 (2.8850/1.2377) mem 16099MB [2025-01-18 11:01:54 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][40/312] eta 0:02:19 lr 0.000107 time 0.4475 (0.5111) model_time 0.4471 (0.4713) loss 2.6795 (2.6241) grad_norm 1.5873 (2.6338/1.1821) mem 16099MB [2025-01-18 11:01:58 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][50/312] eta 0:02:10 lr 0.000107 time 0.4491 (0.5000) model_time 0.4490 (0.4680) loss 3.1254 (2.6828) grad_norm 2.1994 (2.6413/1.1879) mem 16099MB [2025-01-18 11:02:03 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][60/312] eta 0:02:04 lr 0.000106 time 0.4404 (0.4924) model_time 0.4402 (0.4655) loss 2.6089 (2.7009) grad_norm 1.8608 (2.5787/1.1256) mem 16099MB [2025-01-18 11:02:07 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][70/312] eta 0:01:57 lr 0.000106 time 0.4839 (0.4872) model_time 0.4834 (0.4641) loss 2.9613 (2.6946) grad_norm 4.5674 (2.7571/1.3155) mem 16099MB [2025-01-18 11:02:12 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][80/312] eta 0:01:52 lr 0.000106 time 0.4441 (0.4850) model_time 0.4437 (0.4646) loss 2.8354 (2.6810) grad_norm 7.6547 (3.1308/1.7567) mem 16099MB [2025-01-18 11:02:17 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][90/312] eta 0:01:47 lr 0.000106 time 0.4557 (0.4839) model_time 0.4555 (0.4658) loss 2.6598 (2.6570) grad_norm 2.2053 (3.0520/1.6955) mem 16099MB [2025-01-18 11:02:22 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][100/312] eta 0:01:42 lr 0.000106 time 0.4734 (0.4834) model_time 0.4730 (0.4670) loss 1.6325 (2.6398) grad_norm 4.2306 (3.0518/1.6441) mem 16099MB [2025-01-18 11:02:26 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][110/312] eta 0:01:37 lr 0.000106 time 0.4426 (0.4816) model_time 0.4421 (0.4666) loss 2.5490 (2.6485) grad_norm 4.4242 (3.0634/1.6320) mem 16099MB [2025-01-18 11:02:31 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][120/312] eta 0:01:32 lr 0.000105 time 0.4479 (0.4814) model_time 0.4477 (0.4676) loss 2.9037 (2.6549) grad_norm 2.3257 (3.0955/1.5915) mem 16099MB [2025-01-18 11:02:36 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][130/312] eta 0:01:27 lr 0.000105 time 0.4494 (0.4804) model_time 0.4489 (0.4677) loss 2.6549 (2.6413) grad_norm 2.9955 (3.1017/1.5546) mem 16099MB [2025-01-18 11:02:40 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][140/312] eta 0:01:22 lr 0.000105 time 0.4528 (0.4795) model_time 0.4524 (0.4676) loss 2.6122 (2.6396) grad_norm 2.4490 (3.0621/1.5158) mem 16099MB [2025-01-18 11:02:45 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][150/312] eta 0:01:17 lr 0.000105 time 0.4786 (0.4785) model_time 0.4785 (0.4674) loss 3.0911 (2.6492) grad_norm 2.5797 (3.0107/1.4821) mem 16099MB [2025-01-18 11:02:50 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][160/312] eta 0:01:12 lr 0.000105 time 0.4603 (0.4784) model_time 0.4598 (0.4680) loss 2.4686 (2.6582) grad_norm 3.4567 (2.9797/1.4744) mem 16099MB [2025-01-18 11:02:54 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][170/312] eta 0:01:07 lr 0.000105 time 0.4415 (0.4775) model_time 0.4413 (0.4677) loss 2.8024 (2.6587) grad_norm 3.0328 (2.9557/1.4530) mem 16099MB [2025-01-18 11:02:59 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][180/312] eta 0:01:02 lr 0.000104 time 0.4699 (0.4770) model_time 0.4697 (0.4677) loss 3.1103 (2.6677) grad_norm 1.5774 (2.9184/1.4282) mem 16099MB [2025-01-18 11:03:04 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][190/312] eta 0:00:58 lr 0.000104 time 0.4578 (0.4764) model_time 0.4576 (0.4676) loss 2.7866 (2.6681) grad_norm 2.3235 (2.8857/1.4125) mem 16099MB [2025-01-18 11:03:08 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][200/312] eta 0:00:53 lr 0.000104 time 0.4842 (0.4759) model_time 0.4841 (0.4675) loss 2.7408 (2.6722) grad_norm 2.0940 (2.8559/1.3935) mem 16099MB [2025-01-18 11:03:13 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][210/312] eta 0:00:48 lr 0.000104 time 0.4532 (0.4753) model_time 0.4531 (0.4673) loss 2.2026 (2.6726) grad_norm 2.7693 (2.8271/1.3751) mem 16099MB [2025-01-18 11:03:18 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][220/312] eta 0:00:43 lr 0.000104 time 0.4405 (0.4752) model_time 0.4401 (0.4675) loss 2.8000 (2.6724) grad_norm 4.2739 (2.8574/1.3879) mem 16099MB [2025-01-18 11:03:22 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][230/312] eta 0:00:38 lr 0.000104 time 0.4483 (0.4751) model_time 0.4481 (0.4678) loss 1.6502 (2.6649) grad_norm 2.5675 (2.8708/1.3808) mem 16099MB [2025-01-18 11:03:27 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][240/312] eta 0:00:34 lr 0.000103 time 0.4652 (0.4751) model_time 0.4647 (0.4680) loss 1.8568 (2.6622) grad_norm 1.7839 (2.8661/1.3682) mem 16099MB [2025-01-18 11:03:32 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][250/312] eta 0:00:29 lr 0.000103 time 0.5457 (0.4754) model_time 0.5453 (0.4685) loss 1.7099 (2.6472) grad_norm 2.6506 (2.8433/1.3501) mem 16099MB [2025-01-18 11:03:37 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][260/312] eta 0:00:24 lr 0.000103 time 0.4513 (0.4750) model_time 0.4511 (0.4684) loss 1.6317 (2.6465) grad_norm 3.3720 (2.8613/1.3641) mem 16099MB [2025-01-18 11:03:41 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][270/312] eta 0:00:19 lr 0.000103 time 0.4687 (0.4743) model_time 0.4682 (0.4679) loss 2.9478 (2.6463) grad_norm 3.7677 (2.8802/1.3582) mem 16099MB [2025-01-18 11:03:46 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][280/312] eta 0:00:15 lr 0.000103 time 0.4948 (0.4740) model_time 0.4947 (0.4679) loss 3.0756 (2.6392) grad_norm 4.1246 (2.8913/1.3600) mem 16099MB [2025-01-18 11:03:51 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][290/312] eta 0:00:10 lr 0.000103 time 0.4481 (0.4740) model_time 0.4479 (0.4681) loss 2.8116 (2.6386) grad_norm 3.1617 (2.9313/1.3887) mem 16099MB [2025-01-18 11:03:55 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][300/312] eta 0:00:05 lr 0.000102 time 0.4413 (0.4733) model_time 0.4412 (0.4675) loss 2.0896 (2.6417) grad_norm 4.5099 (2.9767/1.4183) mem 16099MB [2025-01-18 11:04:00 internimage_t_1k_224] (main.py 510): INFO Train: [275/300][310/312] eta 0:00:00 lr 0.000102 time 0.4378 (0.4725) model_time 0.4377 (0.4669) loss 2.1475 (2.6410) grad_norm 1.9096 (2.9683/1.4084) mem 16099MB [2025-01-18 11:04:00 internimage_t_1k_224] (main.py 519): INFO EPOCH 275 training takes 0:02:27 [2025-01-18 11:04:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_275.pth saving...... [2025-01-18 11:04:01 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_275.pth saved !!! [2025-01-18 11:04:09 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.309 (7.309) Loss 0.7156 (0.7156) Acc@1 85.425 (85.425) Acc@5 97.339 (97.339) Mem 16099MB [2025-01-18 11:04:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.995) Loss 0.9587 (0.8209) Acc@1 79.175 (83.205) Acc@5 95.410 (96.320) Mem 16099MB [2025-01-18 11:04:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:275] * Acc@1 83.059 Acc@5 96.319 [2025-01-18 11:04:12 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:04:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 11:04:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 11:04:14 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.06% [2025-01-18 11:04:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.472 (7.472) Loss 0.7185 (0.7185) Acc@1 85.864 (85.864) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 11:04:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.017) Loss 0.9486 (0.8186) Acc@1 79.834 (83.627) Acc@5 95.410 (96.578) Mem 16099MB [2025-01-18 11:04:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:275] * Acc@1 83.485 Acc@5 96.579 [2025-01-18 11:04:25 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:04:25 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.49% [2025-01-18 11:04:28 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][0/312] eta 0:16:29 lr 0.000102 time 3.1708 (3.1708) model_time 1.0783 (1.0783) loss 2.8603 (2.8603) grad_norm 3.1245 (3.1245/0.0000) mem 16099MB [2025-01-18 11:04:33 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][10/312] eta 0:03:38 lr 0.000102 time 0.5492 (0.7251) model_time 0.5491 (0.5344) loss 2.4787 (2.7366) grad_norm 7.2582 (3.7287/1.5799) mem 16099MB [2025-01-18 11:04:38 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][20/312] eta 0:02:55 lr 0.000102 time 0.4506 (0.6003) model_time 0.4502 (0.5002) loss 2.3568 (2.7272) grad_norm 3.8723 (3.9537/1.5478) mem 16099MB [2025-01-18 11:04:42 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][30/312] eta 0:02:37 lr 0.000102 time 0.4666 (0.5593) model_time 0.4665 (0.4914) loss 2.9458 (2.7013) grad_norm 4.7587 (3.7810/1.4270) mem 16099MB [2025-01-18 11:04:47 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][40/312] eta 0:02:26 lr 0.000102 time 0.4439 (0.5388) model_time 0.4437 (0.4874) loss 3.2104 (2.6759) grad_norm 2.6058 (3.5455/1.4209) mem 16099MB [2025-01-18 11:04:52 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][50/312] eta 0:02:17 lr 0.000101 time 0.4485 (0.5250) model_time 0.4478 (0.4836) loss 2.2351 (2.6601) grad_norm 6.1069 (3.5007/1.4453) mem 16099MB [2025-01-18 11:04:56 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][60/312] eta 0:02:09 lr 0.000101 time 0.4451 (0.5142) model_time 0.4449 (0.4795) loss 2.3953 (2.6285) grad_norm 2.6408 (3.4724/1.4130) mem 16099MB [2025-01-18 11:05:01 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][70/312] eta 0:02:02 lr 0.000101 time 0.4495 (0.5060) model_time 0.4491 (0.4761) loss 1.8446 (2.6530) grad_norm 4.2467 (3.4309/1.3740) mem 16099MB [2025-01-18 11:05:05 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][80/312] eta 0:01:56 lr 0.000101 time 0.4802 (0.5003) model_time 0.4798 (0.4741) loss 2.5994 (2.6490) grad_norm 5.3162 (3.5024/1.4038) mem 16099MB [2025-01-18 11:05:10 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][90/312] eta 0:01:50 lr 0.000101 time 0.5338 (0.4960) model_time 0.5337 (0.4726) loss 2.9190 (2.6694) grad_norm 2.7745 (3.4373/1.3672) mem 16099MB [2025-01-18 11:05:15 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][100/312] eta 0:01:44 lr 0.000101 time 0.4606 (0.4929) model_time 0.4601 (0.4718) loss 2.5747 (2.6617) grad_norm 4.3720 (3.4812/1.3455) mem 16099MB [2025-01-18 11:05:19 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][110/312] eta 0:01:39 lr 0.000100 time 0.4536 (0.4903) model_time 0.4534 (0.4711) loss 2.9296 (2.6483) grad_norm 1.3065 (3.4586/1.3870) mem 16099MB [2025-01-18 11:05:24 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][120/312] eta 0:01:34 lr 0.000100 time 0.5489 (0.4898) model_time 0.5484 (0.4721) loss 3.2725 (2.6342) grad_norm 3.9345 (3.3976/1.3827) mem 16099MB [2025-01-18 11:05:29 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][130/312] eta 0:01:28 lr 0.000100 time 0.4426 (0.4880) model_time 0.4419 (0.4716) loss 2.4891 (2.6336) grad_norm 1.7256 (3.3433/1.4118) mem 16099MB [2025-01-18 11:05:34 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][140/312] eta 0:01:23 lr 0.000100 time 0.4547 (0.4880) model_time 0.4543 (0.4728) loss 3.2721 (2.6282) grad_norm 1.8090 (3.2682/1.3986) mem 16099MB [2025-01-18 11:05:39 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][150/312] eta 0:01:18 lr 0.000100 time 0.4564 (0.4872) model_time 0.4559 (0.4729) loss 2.7284 (2.6490) grad_norm 2.7743 (3.2109/1.3746) mem 16099MB [2025-01-18 11:05:43 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][160/312] eta 0:01:13 lr 0.000100 time 0.4482 (0.4853) model_time 0.4478 (0.4719) loss 2.4951 (2.6323) grad_norm 1.7661 (3.2162/1.3789) mem 16099MB [2025-01-18 11:05:48 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][170/312] eta 0:01:08 lr 0.000099 time 0.4495 (0.4835) model_time 0.4491 (0.4708) loss 2.4153 (2.6278) grad_norm 2.8502 (3.2167/1.3718) mem 16099MB [2025-01-18 11:05:52 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][180/312] eta 0:01:03 lr 0.000099 time 0.4451 (0.4818) model_time 0.4447 (0.4698) loss 3.6345 (2.6310) grad_norm 6.3480 (3.2449/1.3699) mem 16099MB [2025-01-18 11:05:57 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][190/312] eta 0:00:58 lr 0.000099 time 0.4737 (0.4807) model_time 0.4733 (0.4694) loss 2.1306 (2.6400) grad_norm 2.6372 (3.1840/1.3650) mem 16099MB [2025-01-18 11:06:02 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][200/312] eta 0:00:53 lr 0.000099 time 0.4496 (0.4808) model_time 0.4495 (0.4700) loss 2.6252 (2.6562) grad_norm 1.9827 (3.1318/1.3534) mem 16099MB [2025-01-18 11:06:06 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][210/312] eta 0:00:48 lr 0.000099 time 0.4612 (0.4795) model_time 0.4610 (0.4691) loss 3.2555 (2.6577) grad_norm 5.1322 (3.1122/1.3424) mem 16099MB [2025-01-18 11:06:11 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][220/312] eta 0:00:44 lr 0.000099 time 0.4529 (0.4783) model_time 0.4524 (0.4684) loss 2.9541 (2.6606) grad_norm 2.3575 (3.1109/1.3412) mem 16099MB [2025-01-18 11:06:15 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][230/312] eta 0:00:39 lr 0.000098 time 0.4509 (0.4776) model_time 0.4507 (0.4681) loss 2.8421 (2.6663) grad_norm 1.6337 (3.0960/1.3351) mem 16099MB [2025-01-18 11:06:20 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][240/312] eta 0:00:34 lr 0.000098 time 0.4546 (0.4771) model_time 0.4545 (0.4680) loss 2.7738 (2.6699) grad_norm 4.1448 (3.1192/1.3282) mem 16099MB [2025-01-18 11:06:25 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][250/312] eta 0:00:29 lr 0.000098 time 0.5553 (0.4776) model_time 0.5549 (0.4688) loss 2.9203 (2.6581) grad_norm 3.4717 (3.0966/1.3150) mem 16099MB [2025-01-18 11:06:29 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][260/312] eta 0:00:24 lr 0.000098 time 0.4619 (0.4771) model_time 0.4617 (0.4687) loss 3.0967 (2.6607) grad_norm 2.8421 (3.0874/1.3037) mem 16099MB [2025-01-18 11:06:34 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][270/312] eta 0:00:20 lr 0.000098 time 0.5346 (0.4769) model_time 0.5342 (0.4688) loss 2.2466 (2.6597) grad_norm 1.8823 (3.0568/1.3017) mem 16099MB [2025-01-18 11:06:39 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][280/312] eta 0:00:15 lr 0.000098 time 0.4547 (0.4773) model_time 0.4545 (0.4694) loss 2.9334 (2.6617) grad_norm 3.5149 (3.0479/1.3003) mem 16099MB [2025-01-18 11:06:44 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][290/312] eta 0:00:10 lr 0.000098 time 0.4485 (0.4774) model_time 0.4480 (0.4698) loss 3.0916 (2.6597) grad_norm 1.5168 (3.0314/1.3064) mem 16099MB [2025-01-18 11:06:49 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][300/312] eta 0:00:05 lr 0.000097 time 0.4853 (0.4770) model_time 0.4852 (0.4696) loss 2.8868 (2.6575) grad_norm 2.4783 (3.0343/1.3134) mem 16099MB [2025-01-18 11:06:53 internimage_t_1k_224] (main.py 510): INFO Train: [276/300][310/312] eta 0:00:00 lr 0.000097 time 0.4441 (0.4761) model_time 0.4440 (0.4689) loss 2.7766 (2.6649) grad_norm 3.5567 (2.9980/1.2887) mem 16099MB [2025-01-18 11:06:53 internimage_t_1k_224] (main.py 519): INFO EPOCH 276 training takes 0:02:28 [2025-01-18 11:06:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_276.pth saving...... [2025-01-18 11:06:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_276.pth saved !!! [2025-01-18 11:07:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.365 (7.365) Loss 0.7197 (0.7197) Acc@1 85.303 (85.303) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 11:07:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (0.994) Loss 0.9654 (0.8278) Acc@1 79.175 (83.137) Acc@5 95.264 (96.413) Mem 16099MB [2025-01-18 11:07:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:276] * Acc@1 82.991 Acc@5 96.409 [2025-01-18 11:07:06 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 11:07:06 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.06% [2025-01-18 11:07:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.414 (8.414) Loss 0.7179 (0.7179) Acc@1 85.864 (85.864) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 11:07:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.136) Loss 0.9478 (0.8179) Acc@1 79.785 (83.625) Acc@5 95.410 (96.589) Mem 16099MB [2025-01-18 11:07:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:276] * Acc@1 83.481 Acc@5 96.589 [2025-01-18 11:07:18 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:07:18 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.49% [2025-01-18 11:07:21 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][0/312] eta 0:16:11 lr 0.000097 time 3.1152 (3.1152) model_time 1.0102 (1.0102) loss 3.0452 (3.0452) grad_norm 1.9973 (1.9973/0.0000) mem 16099MB [2025-01-18 11:07:26 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][10/312] eta 0:03:36 lr 0.000097 time 0.4594 (0.7167) model_time 0.4593 (0.5251) loss 2.7734 (2.5890) grad_norm 2.7404 (2.8100/0.8891) mem 16099MB [2025-01-18 11:07:31 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][20/312] eta 0:02:53 lr 0.000097 time 0.4456 (0.5925) model_time 0.4454 (0.4919) loss 3.2000 (2.7361) grad_norm 7.8752 (3.3579/1.5363) mem 16099MB [2025-01-18 11:07:36 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][30/312] eta 0:02:39 lr 0.000097 time 0.4545 (0.5639) model_time 0.4540 (0.4956) loss 2.9476 (2.6772) grad_norm 2.0383 (3.4309/1.5346) mem 16099MB [2025-01-18 11:07:40 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][40/312] eta 0:02:25 lr 0.000097 time 0.4557 (0.5366) model_time 0.4555 (0.4849) loss 2.9267 (2.6874) grad_norm 1.6611 (3.5339/1.5464) mem 16099MB [2025-01-18 11:07:45 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][50/312] eta 0:02:16 lr 0.000096 time 0.4437 (0.5228) model_time 0.4433 (0.4812) loss 2.3613 (2.6698) grad_norm 1.2492 (3.5591/1.7266) mem 16099MB [2025-01-18 11:07:50 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][60/312] eta 0:02:09 lr 0.000096 time 0.4605 (0.5124) model_time 0.4600 (0.4776) loss 2.8806 (2.6708) grad_norm 2.7912 (3.4712/1.6311) mem 16099MB [2025-01-18 11:07:54 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][70/312] eta 0:02:01 lr 0.000096 time 0.4525 (0.5039) model_time 0.4523 (0.4739) loss 2.7911 (2.6311) grad_norm 1.5127 (3.3367/1.5740) mem 16099MB [2025-01-18 11:07:59 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][80/312] eta 0:01:55 lr 0.000096 time 0.4424 (0.4990) model_time 0.4422 (0.4727) loss 2.8709 (2.5993) grad_norm 2.0248 (3.2781/1.5322) mem 16099MB [2025-01-18 11:08:03 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][90/312] eta 0:01:49 lr 0.000096 time 0.4535 (0.4945) model_time 0.4533 (0.4710) loss 3.1852 (2.6101) grad_norm 1.7757 (3.1564/1.4944) mem 16099MB [2025-01-18 11:08:08 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][100/312] eta 0:01:44 lr 0.000096 time 0.4476 (0.4921) model_time 0.4474 (0.4709) loss 1.8021 (2.6221) grad_norm 2.3498 (3.0710/1.4469) mem 16099MB [2025-01-18 11:08:13 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][110/312] eta 0:01:38 lr 0.000095 time 0.4516 (0.4893) model_time 0.4512 (0.4700) loss 1.7397 (2.6173) grad_norm 6.0507 (3.0662/1.4184) mem 16099MB [2025-01-18 11:08:17 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][120/312] eta 0:01:33 lr 0.000095 time 0.4679 (0.4881) model_time 0.4674 (0.4704) loss 2.8546 (2.6311) grad_norm 2.3844 (3.0802/1.4083) mem 16099MB [2025-01-18 11:08:22 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][130/312] eta 0:01:28 lr 0.000095 time 0.4632 (0.4862) model_time 0.4627 (0.4698) loss 1.8210 (2.6129) grad_norm 2.1058 (3.0345/1.3984) mem 16099MB [2025-01-18 11:08:27 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][140/312] eta 0:01:23 lr 0.000095 time 0.4582 (0.4846) model_time 0.4580 (0.4693) loss 3.1154 (2.6056) grad_norm 1.8770 (2.9908/1.3922) mem 16099MB [2025-01-18 11:08:31 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][150/312] eta 0:01:18 lr 0.000095 time 0.5211 (0.4841) model_time 0.5206 (0.4698) loss 2.9662 (2.6117) grad_norm 3.5511 (2.9744/1.3802) mem 16099MB [2025-01-18 11:08:36 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][160/312] eta 0:01:13 lr 0.000095 time 0.5653 (0.4849) model_time 0.5644 (0.4715) loss 3.1690 (2.6185) grad_norm 1.9209 (2.9462/1.3660) mem 16099MB [2025-01-18 11:08:41 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][170/312] eta 0:01:08 lr 0.000094 time 0.4406 (0.4834) model_time 0.4404 (0.4707) loss 2.6503 (2.6116) grad_norm 1.5630 (2.9741/1.3767) mem 16099MB [2025-01-18 11:08:46 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][180/312] eta 0:01:03 lr 0.000094 time 0.4657 (0.4827) model_time 0.4656 (0.4707) loss 3.2581 (2.6172) grad_norm 5.1568 (2.9890/1.3629) mem 16099MB [2025-01-18 11:08:50 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][190/312] eta 0:00:58 lr 0.000094 time 0.4670 (0.4812) model_time 0.4665 (0.4699) loss 3.0158 (2.6177) grad_norm 3.2290 (2.9885/1.3642) mem 16099MB [2025-01-18 11:08:55 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][200/312] eta 0:00:53 lr 0.000094 time 0.4449 (0.4812) model_time 0.4445 (0.4704) loss 3.4599 (2.6254) grad_norm 4.0717 (2.9786/1.3459) mem 16099MB [2025-01-18 11:09:00 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][210/312] eta 0:00:49 lr 0.000094 time 0.4538 (0.4807) model_time 0.4536 (0.4704) loss 1.9855 (2.6181) grad_norm 3.2998 (2.9793/1.3340) mem 16099MB [2025-01-18 11:09:04 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][220/312] eta 0:00:44 lr 0.000094 time 0.4550 (0.4800) model_time 0.4549 (0.4702) loss 3.5027 (2.6330) grad_norm 1.9613 (2.9914/1.3516) mem 16099MB [2025-01-18 11:09:09 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][230/312] eta 0:00:39 lr 0.000094 time 0.4626 (0.4791) model_time 0.4621 (0.4696) loss 2.5558 (2.6216) grad_norm 2.2809 (3.0014/1.3823) mem 16099MB [2025-01-18 11:09:14 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][240/312] eta 0:00:34 lr 0.000093 time 0.4613 (0.4782) model_time 0.4611 (0.4691) loss 2.6682 (2.6236) grad_norm 1.7824 (3.0088/1.3877) mem 16099MB [2025-01-18 11:09:18 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][250/312] eta 0:00:29 lr 0.000093 time 0.4480 (0.4773) model_time 0.4479 (0.4686) loss 2.7333 (2.6232) grad_norm 2.6081 (3.0284/1.3936) mem 16099MB [2025-01-18 11:09:23 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][260/312] eta 0:00:24 lr 0.000093 time 0.4644 (0.4780) model_time 0.4640 (0.4696) loss 1.9312 (2.6277) grad_norm 4.1233 (3.0451/1.4205) mem 16099MB [2025-01-18 11:09:28 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][270/312] eta 0:00:20 lr 0.000093 time 0.4402 (0.4780) model_time 0.4400 (0.4699) loss 2.2963 (2.6211) grad_norm 4.5628 (3.0701/1.4212) mem 16099MB [2025-01-18 11:09:32 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][280/312] eta 0:00:15 lr 0.000093 time 0.4691 (0.4774) model_time 0.4689 (0.4696) loss 2.7941 (2.6197) grad_norm 1.6869 (3.0908/1.4248) mem 16099MB [2025-01-18 11:09:37 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][290/312] eta 0:00:10 lr 0.000093 time 0.4779 (0.4771) model_time 0.4773 (0.4696) loss 2.9745 (2.6255) grad_norm 5.0936 (3.1029/1.4141) mem 16099MB [2025-01-18 11:09:42 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][300/312] eta 0:00:05 lr 0.000092 time 0.4400 (0.4765) model_time 0.4399 (0.4692) loss 2.2167 (2.6260) grad_norm 3.1816 (3.1053/1.4134) mem 16099MB [2025-01-18 11:09:46 internimage_t_1k_224] (main.py 510): INFO Train: [277/300][310/312] eta 0:00:00 lr 0.000092 time 0.4386 (0.4754) model_time 0.4385 (0.4683) loss 2.4959 (2.6306) grad_norm 2.2210 (3.1068/1.4224) mem 16099MB [2025-01-18 11:09:47 internimage_t_1k_224] (main.py 519): INFO EPOCH 277 training takes 0:02:28 [2025-01-18 11:09:47 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_277.pth saving...... [2025-01-18 11:09:48 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_277.pth saved !!! [2025-01-18 11:09:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.657 (7.657) Loss 0.7278 (0.7278) Acc@1 85.278 (85.278) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 11:09:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.035) Loss 0.9826 (0.8322) Acc@1 79.102 (83.148) Acc@5 95.288 (96.331) Mem 16099MB [2025-01-18 11:09:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:277] * Acc@1 82.957 Acc@5 96.337 [2025-01-18 11:09:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 11:09:59 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.06% [2025-01-18 11:10:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.431 (8.431) Loss 0.7173 (0.7173) Acc@1 85.791 (85.791) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 11:10:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.127) Loss 0.9469 (0.8172) Acc@1 79.834 (83.625) Acc@5 95.386 (96.593) Mem 16099MB [2025-01-18 11:10:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:277] * Acc@1 83.477 Acc@5 96.587 [2025-01-18 11:10:12 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:10:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.49% [2025-01-18 11:10:15 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][0/312] eta 0:17:38 lr 0.000092 time 3.3920 (3.3920) model_time 1.5373 (1.5373) loss 1.6943 (1.6943) grad_norm 3.4086 (3.4086/0.0000) mem 16099MB [2025-01-18 11:10:20 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][10/312] eta 0:03:43 lr 0.000092 time 0.4554 (0.7398) model_time 0.4552 (0.5707) loss 2.5540 (2.6199) grad_norm 2.5968 (2.4038/0.7842) mem 16099MB [2025-01-18 11:10:25 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][20/312] eta 0:03:00 lr 0.000092 time 0.4542 (0.6169) model_time 0.4538 (0.5282) loss 2.6013 (2.5788) grad_norm 1.7765 (2.3728/0.6977) mem 16099MB [2025-01-18 11:10:29 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][30/312] eta 0:02:40 lr 0.000092 time 0.5453 (0.5705) model_time 0.5448 (0.5103) loss 2.7379 (2.5951) grad_norm 3.3883 (2.3901/0.6990) mem 16099MB [2025-01-18 11:10:34 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][40/312] eta 0:02:27 lr 0.000092 time 0.4433 (0.5432) model_time 0.4431 (0.4976) loss 2.4510 (2.5587) grad_norm 5.5492 (2.6247/1.0377) mem 16099MB [2025-01-18 11:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][50/312] eta 0:02:18 lr 0.000092 time 0.4576 (0.5279) model_time 0.4572 (0.4911) loss 2.9906 (2.6012) grad_norm 2.8660 (2.9224/1.3054) mem 16099MB [2025-01-18 11:10:43 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][60/312] eta 0:02:09 lr 0.000091 time 0.4558 (0.5158) model_time 0.4557 (0.4850) loss 2.6778 (2.6365) grad_norm 2.1135 (2.9032/1.2640) mem 16099MB [2025-01-18 11:10:48 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][70/312] eta 0:02:03 lr 0.000091 time 0.5346 (0.5088) model_time 0.5344 (0.4823) loss 2.8300 (2.5929) grad_norm 1.7034 (2.8616/1.2286) mem 16099MB [2025-01-18 11:10:53 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][80/312] eta 0:01:56 lr 0.000091 time 0.4811 (0.5041) model_time 0.4806 (0.4808) loss 2.0514 (2.6176) grad_norm 2.4827 (2.8257/1.1826) mem 16099MB [2025-01-18 11:10:57 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][90/312] eta 0:01:51 lr 0.000091 time 0.4475 (0.5007) model_time 0.4471 (0.4799) loss 2.8896 (2.6234) grad_norm 4.9197 (2.9060/1.1817) mem 16099MB [2025-01-18 11:11:02 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][100/312] eta 0:01:45 lr 0.000091 time 0.4530 (0.4981) model_time 0.4526 (0.4794) loss 2.7222 (2.6349) grad_norm 3.9462 (2.8682/1.1522) mem 16099MB [2025-01-18 11:11:07 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][110/312] eta 0:01:39 lr 0.000091 time 0.4784 (0.4950) model_time 0.4780 (0.4779) loss 2.7802 (2.6508) grad_norm 3.9864 (2.8114/1.1453) mem 16099MB [2025-01-18 11:11:11 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][120/312] eta 0:01:34 lr 0.000091 time 0.5327 (0.4930) model_time 0.5325 (0.4773) loss 2.5842 (2.6345) grad_norm 2.3337 (2.8429/1.1829) mem 16099MB [2025-01-18 11:11:16 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][130/312] eta 0:01:29 lr 0.000090 time 0.4535 (0.4913) model_time 0.4533 (0.4768) loss 3.4754 (2.6363) grad_norm 2.9823 (2.8014/1.1542) mem 16099MB [2025-01-18 11:11:21 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][140/312] eta 0:01:24 lr 0.000090 time 0.5613 (0.4915) model_time 0.5611 (0.4780) loss 3.4980 (2.6427) grad_norm 2.7607 (2.8109/1.1282) mem 16099MB [2025-01-18 11:11:26 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][150/312] eta 0:01:19 lr 0.000090 time 0.4575 (0.4907) model_time 0.4574 (0.4780) loss 3.2829 (2.6440) grad_norm 3.6252 (2.7891/1.1120) mem 16099MB [2025-01-18 11:11:31 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][160/312] eta 0:01:14 lr 0.000090 time 0.4541 (0.4891) model_time 0.4537 (0.4773) loss 2.9389 (2.6533) grad_norm 3.2649 (2.7692/1.0988) mem 16099MB [2025-01-18 11:11:35 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][170/312] eta 0:01:09 lr 0.000090 time 0.4773 (0.4872) model_time 0.4769 (0.4760) loss 3.1071 (2.6664) grad_norm 2.1004 (2.7858/1.1254) mem 16099MB [2025-01-18 11:11:40 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][180/312] eta 0:01:04 lr 0.000090 time 0.4455 (0.4865) model_time 0.4450 (0.4759) loss 2.4778 (2.6694) grad_norm 2.6674 (2.7960/1.1277) mem 16099MB [2025-01-18 11:11:44 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][190/312] eta 0:00:59 lr 0.000089 time 0.4498 (0.4849) model_time 0.4494 (0.4749) loss 3.4526 (2.6790) grad_norm 3.6450 (2.7883/1.1244) mem 16099MB [2025-01-18 11:11:49 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][200/312] eta 0:00:54 lr 0.000089 time 0.4530 (0.4836) model_time 0.4525 (0.4740) loss 3.3330 (2.6844) grad_norm 2.2069 (2.7754/1.1087) mem 16099MB [2025-01-18 11:11:54 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][210/312] eta 0:00:49 lr 0.000089 time 0.4443 (0.4835) model_time 0.4441 (0.4743) loss 1.9497 (2.6816) grad_norm 1.3364 (2.7726/1.1222) mem 16099MB [2025-01-18 11:11:58 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][220/312] eta 0:00:44 lr 0.000089 time 0.4726 (0.4821) model_time 0.4722 (0.4734) loss 2.7730 (2.6706) grad_norm 1.5642 (2.7392/1.1212) mem 16099MB [2025-01-18 11:12:03 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][230/312] eta 0:00:39 lr 0.000089 time 0.4412 (0.4809) model_time 0.4407 (0.4725) loss 1.6431 (2.6644) grad_norm 1.9179 (2.7449/1.1183) mem 16099MB [2025-01-18 11:12:07 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][240/312] eta 0:00:34 lr 0.000089 time 0.4448 (0.4798) model_time 0.4443 (0.4717) loss 2.7432 (2.6725) grad_norm 2.9954 (2.7855/1.1377) mem 16099MB [2025-01-18 11:12:12 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][250/312] eta 0:00:29 lr 0.000089 time 0.4513 (0.4795) model_time 0.4508 (0.4717) loss 2.3599 (2.6760) grad_norm 3.4840 (2.7685/1.1292) mem 16099MB [2025-01-18 11:12:17 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][260/312] eta 0:00:24 lr 0.000088 time 0.4450 (0.4794) model_time 0.4447 (0.4719) loss 2.8410 (2.6766) grad_norm 4.1082 (2.7870/1.1396) mem 16099MB [2025-01-18 11:12:22 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][270/312] eta 0:00:20 lr 0.000088 time 0.4439 (0.4789) model_time 0.4434 (0.4717) loss 3.0662 (2.6745) grad_norm 3.3747 (2.8151/1.1398) mem 16099MB [2025-01-18 11:12:26 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][280/312] eta 0:00:15 lr 0.000088 time 0.4897 (0.4783) model_time 0.4895 (0.4713) loss 2.3830 (2.6624) grad_norm 1.7829 (2.8115/1.1597) mem 16099MB [2025-01-18 11:12:31 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][290/312] eta 0:00:10 lr 0.000088 time 0.4616 (0.4784) model_time 0.4614 (0.4716) loss 3.0454 (2.6606) grad_norm 2.0909 (2.7909/1.1669) mem 16099MB [2025-01-18 11:12:36 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][300/312] eta 0:00:05 lr 0.000088 time 0.4404 (0.4777) model_time 0.4403 (0.4712) loss 3.1889 (2.6673) grad_norm 1.6392 (2.7734/1.1574) mem 16099MB [2025-01-18 11:12:40 internimage_t_1k_224] (main.py 510): INFO Train: [278/300][310/312] eta 0:00:00 lr 0.000088 time 0.4415 (0.4774) model_time 0.4414 (0.4711) loss 2.4996 (2.6699) grad_norm 1.9561 (2.7809/1.1602) mem 16099MB [2025-01-18 11:12:41 internimage_t_1k_224] (main.py 519): INFO EPOCH 278 training takes 0:02:28 [2025-01-18 11:12:41 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_278.pth saving...... [2025-01-18 11:12:42 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_278.pth saved !!! [2025-01-18 11:12:49 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.414 (7.414) Loss 0.7335 (0.7335) Acc@1 85.327 (85.327) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 11:12:53 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.032) Loss 0.9700 (0.8282) Acc@1 78.809 (83.183) Acc@5 95.239 (96.322) Mem 16099MB [2025-01-18 11:12:53 internimage_t_1k_224] (main.py 575): INFO [Epoch:278] * Acc@1 83.051 Acc@5 96.315 [2025-01-18 11:12:53 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:12:53 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.06% [2025-01-18 11:13:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.382 (8.382) Loss 0.7168 (0.7168) Acc@1 85.840 (85.840) Acc@5 97.729 (97.729) Mem 16099MB [2025-01-18 11:13:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.132) Loss 0.9464 (0.8166) Acc@1 79.858 (83.638) Acc@5 95.386 (96.584) Mem 16099MB [2025-01-18 11:13:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:278] * Acc@1 83.487 Acc@5 96.579 [2025-01-18 11:13:06 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:13:06 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.49% [2025-01-18 11:13:09 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][0/312] eta 0:18:31 lr 0.000088 time 3.5625 (3.5625) model_time 0.5430 (0.5430) loss 2.5892 (2.5892) grad_norm 3.1057 (3.1057/0.0000) mem 16099MB [2025-01-18 11:13:14 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][10/312] eta 0:03:51 lr 0.000088 time 0.5738 (0.7675) model_time 0.5734 (0.4925) loss 2.1612 (2.4614) grad_norm 2.8682 (3.0805/1.1628) mem 16099MB [2025-01-18 11:13:19 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][20/312] eta 0:03:02 lr 0.000087 time 0.4501 (0.6266) model_time 0.4500 (0.4824) loss 2.7515 (2.6003) grad_norm 2.5973 (3.5122/1.3348) mem 16099MB [2025-01-18 11:13:24 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][30/312] eta 0:02:42 lr 0.000087 time 0.5869 (0.5763) model_time 0.5868 (0.4785) loss 3.0623 (2.5932) grad_norm 3.8447 (3.2605/1.3294) mem 16099MB [2025-01-18 11:13:28 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][40/312] eta 0:02:29 lr 0.000087 time 0.4598 (0.5502) model_time 0.4595 (0.4762) loss 3.1805 (2.5805) grad_norm 1.4561 (3.1650/1.4185) mem 16099MB [2025-01-18 11:13:33 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][50/312] eta 0:02:20 lr 0.000087 time 0.4462 (0.5349) model_time 0.4460 (0.4754) loss 3.1290 (2.5830) grad_norm 1.9616 (3.1933/1.3319) mem 16099MB [2025-01-18 11:13:38 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][60/312] eta 0:02:11 lr 0.000087 time 0.4436 (0.5231) model_time 0.4435 (0.4732) loss 1.8842 (2.5863) grad_norm 6.8708 (3.1879/1.3517) mem 16099MB [2025-01-18 11:13:42 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][70/312] eta 0:02:04 lr 0.000087 time 0.4608 (0.5140) model_time 0.4603 (0.4711) loss 3.1755 (2.6263) grad_norm 6.0277 (3.3020/1.4049) mem 16099MB [2025-01-18 11:13:47 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][80/312] eta 0:01:57 lr 0.000087 time 0.4720 (0.5076) model_time 0.4715 (0.4700) loss 3.2903 (2.6324) grad_norm 4.0552 (3.2509/1.3790) mem 16099MB [2025-01-18 11:13:52 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][90/312] eta 0:01:51 lr 0.000086 time 0.5623 (0.5037) model_time 0.5622 (0.4701) loss 2.9430 (2.6073) grad_norm 2.7609 (3.1766/1.3544) mem 16099MB [2025-01-18 11:13:56 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][100/312] eta 0:01:46 lr 0.000086 time 0.4521 (0.5001) model_time 0.4519 (0.4698) loss 3.5908 (2.6051) grad_norm 3.2688 (3.1192/1.3422) mem 16099MB [2025-01-18 11:14:01 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][110/312] eta 0:01:40 lr 0.000086 time 0.4510 (0.4960) model_time 0.4508 (0.4684) loss 2.8717 (2.6104) grad_norm 2.4990 (3.1385/1.3051) mem 16099MB [2025-01-18 11:14:06 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][120/312] eta 0:01:34 lr 0.000086 time 0.5385 (0.4941) model_time 0.5380 (0.4688) loss 1.9260 (2.6077) grad_norm 1.9147 (3.1968/1.3453) mem 16099MB [2025-01-18 11:14:10 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][130/312] eta 0:01:29 lr 0.000086 time 0.4675 (0.4920) model_time 0.4674 (0.4686) loss 2.9011 (2.6216) grad_norm 2.9681 (3.2244/1.4197) mem 16099MB [2025-01-18 11:14:15 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][140/312] eta 0:01:24 lr 0.000086 time 0.4469 (0.4907) model_time 0.4468 (0.4689) loss 2.4235 (2.6406) grad_norm 2.3207 (3.2261/1.4109) mem 16099MB [2025-01-18 11:14:20 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][150/312] eta 0:01:19 lr 0.000086 time 0.4407 (0.4904) model_time 0.4406 (0.4701) loss 3.2637 (2.6468) grad_norm 4.1568 (3.2180/1.4310) mem 16099MB [2025-01-18 11:14:25 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][160/312] eta 0:01:14 lr 0.000085 time 0.5313 (0.4898) model_time 0.5308 (0.4707) loss 2.5358 (2.6381) grad_norm 1.9075 (3.1939/1.4088) mem 16099MB [2025-01-18 11:14:30 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][170/312] eta 0:01:09 lr 0.000085 time 0.4542 (0.4887) model_time 0.4540 (0.4707) loss 1.7367 (2.6385) grad_norm 2.1216 (3.1279/1.4006) mem 16099MB [2025-01-18 11:14:34 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][180/312] eta 0:01:04 lr 0.000085 time 0.5496 (0.4882) model_time 0.5492 (0.4712) loss 2.7403 (2.6384) grad_norm 1.5619 (3.0897/1.3944) mem 16099MB [2025-01-18 11:14:39 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][190/312] eta 0:00:59 lr 0.000085 time 0.4412 (0.4871) model_time 0.4407 (0.4709) loss 3.0896 (2.6444) grad_norm 2.3615 (3.0645/1.3872) mem 16099MB [2025-01-18 11:14:44 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][200/312] eta 0:00:54 lr 0.000085 time 0.4520 (0.4857) model_time 0.4516 (0.4703) loss 3.2728 (2.6565) grad_norm 1.3549 (3.0739/1.4046) mem 16099MB [2025-01-18 11:14:48 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][210/312] eta 0:00:49 lr 0.000085 time 0.4639 (0.4847) model_time 0.4635 (0.4700) loss 2.8422 (2.6650) grad_norm 6.0486 (3.0940/1.4172) mem 16099MB [2025-01-18 11:14:53 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][220/312] eta 0:00:44 lr 0.000085 time 0.4696 (0.4835) model_time 0.4691 (0.4694) loss 2.5764 (2.6766) grad_norm 3.8907 (3.1023/1.4048) mem 16099MB [2025-01-18 11:14:57 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][230/312] eta 0:00:39 lr 0.000084 time 0.4811 (0.4824) model_time 0.4807 (0.4689) loss 1.7696 (2.6688) grad_norm 1.4100 (3.0727/1.3948) mem 16099MB [2025-01-18 11:15:02 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][240/312] eta 0:00:34 lr 0.000084 time 0.4609 (0.4820) model_time 0.4608 (0.4691) loss 3.0766 (2.6684) grad_norm 2.4634 (3.0428/1.3790) mem 16099MB [2025-01-18 11:15:07 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][250/312] eta 0:00:29 lr 0.000084 time 0.4612 (0.4814) model_time 0.4608 (0.4690) loss 3.2136 (2.6655) grad_norm 4.0045 (3.0158/1.3663) mem 16099MB [2025-01-18 11:15:11 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][260/312] eta 0:00:24 lr 0.000084 time 0.4488 (0.4803) model_time 0.4487 (0.4684) loss 2.8588 (2.6701) grad_norm 2.6825 (3.0048/1.3564) mem 16099MB [2025-01-18 11:15:16 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][270/312] eta 0:00:20 lr 0.000084 time 0.4528 (0.4797) model_time 0.4526 (0.4682) loss 3.0666 (2.6721) grad_norm 2.7704 (2.9950/1.3510) mem 16099MB [2025-01-18 11:15:20 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][280/312] eta 0:00:15 lr 0.000084 time 0.4533 (0.4789) model_time 0.4531 (0.4677) loss 2.8099 (2.6727) grad_norm 2.1606 (2.9951/1.3425) mem 16099MB [2025-01-18 11:15:25 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][290/312] eta 0:00:10 lr 0.000084 time 0.4430 (0.4784) model_time 0.4429 (0.4676) loss 2.5951 (2.6738) grad_norm 2.7364 (2.9973/1.3362) mem 16099MB [2025-01-18 11:15:30 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][300/312] eta 0:00:05 lr 0.000083 time 0.4454 (0.4783) model_time 0.4453 (0.4679) loss 2.7694 (2.6701) grad_norm 2.0467 (2.9689/1.3337) mem 16099MB [2025-01-18 11:15:34 internimage_t_1k_224] (main.py 510): INFO Train: [279/300][310/312] eta 0:00:00 lr 0.000083 time 0.4385 (0.4774) model_time 0.4384 (0.4673) loss 3.1038 (2.6767) grad_norm 1.8894 (2.9517/1.3244) mem 16099MB [2025-01-18 11:15:35 internimage_t_1k_224] (main.py 519): INFO EPOCH 279 training takes 0:02:28 [2025-01-18 11:15:35 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_279.pth saving...... [2025-01-18 11:15:36 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_279.pth saved !!! [2025-01-18 11:15:44 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.767 (7.767) Loss 0.7286 (0.7286) Acc@1 85.278 (85.278) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 11:15:47 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.035) Loss 0.9672 (0.8239) Acc@1 78.955 (83.152) Acc@5 95.239 (96.305) Mem 16099MB [2025-01-18 11:15:47 internimage_t_1k_224] (main.py 575): INFO [Epoch:279] * Acc@1 82.983 Acc@5 96.303 [2025-01-18 11:15:47 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 11:15:47 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.06% [2025-01-18 11:15:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.514 (8.514) Loss 0.7165 (0.7165) Acc@1 85.791 (85.791) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:16:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.146) Loss 0.9463 (0.8162) Acc@1 79.810 (83.647) Acc@5 95.386 (96.589) Mem 16099MB [2025-01-18 11:16:00 internimage_t_1k_224] (main.py 575): INFO [Epoch:279] * Acc@1 83.495 Acc@5 96.581 [2025-01-18 11:16:00 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:16:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:16:02 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:16:02 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.50% [2025-01-18 11:16:04 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][0/312] eta 0:12:05 lr 0.000083 time 2.3252 (2.3252) model_time 0.4702 (0.4702) loss 3.2347 (3.2347) grad_norm 2.5480 (2.5480/0.0000) mem 16099MB [2025-01-18 11:16:09 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][10/312] eta 0:03:16 lr 0.000083 time 0.4493 (0.6494) model_time 0.4492 (0.4805) loss 2.4029 (2.8730) grad_norm 2.5779 (3.2281/1.3376) mem 16099MB [2025-01-18 11:16:13 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][20/312] eta 0:02:44 lr 0.000083 time 0.5549 (0.5622) model_time 0.5544 (0.4735) loss 2.7966 (2.7240) grad_norm 5.0168 (3.0192/1.3285) mem 16099MB [2025-01-18 11:16:18 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][30/312] eta 0:02:30 lr 0.000083 time 0.4507 (0.5347) model_time 0.4505 (0.4745) loss 3.1556 (2.7233) grad_norm 1.9619 (2.8593/1.3794) mem 16099MB [2025-01-18 11:16:23 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][40/312] eta 0:02:21 lr 0.000083 time 0.4525 (0.5194) model_time 0.4521 (0.4738) loss 3.2321 (2.6924) grad_norm 2.6856 (2.7173/1.2813) mem 16099MB [2025-01-18 11:16:28 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][50/312] eta 0:02:13 lr 0.000083 time 0.4619 (0.5104) model_time 0.4615 (0.4736) loss 2.8528 (2.6674) grad_norm 3.3694 (2.7249/1.2575) mem 16099MB [2025-01-18 11:16:32 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][60/312] eta 0:02:07 lr 0.000082 time 0.4530 (0.5045) model_time 0.4529 (0.4737) loss 2.7592 (2.6812) grad_norm 6.0816 (2.7834/1.2813) mem 16099MB [2025-01-18 11:16:37 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][70/312] eta 0:02:00 lr 0.000082 time 0.4540 (0.4992) model_time 0.4538 (0.4727) loss 1.7536 (2.6818) grad_norm 4.3526 (2.8249/1.2804) mem 16099MB [2025-01-18 11:16:42 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][80/312] eta 0:01:55 lr 0.000082 time 0.4506 (0.4974) model_time 0.4501 (0.4741) loss 3.0371 (2.6554) grad_norm 1.9591 (2.7626/1.2449) mem 16099MB [2025-01-18 11:16:47 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][90/312] eta 0:01:49 lr 0.000082 time 0.4589 (0.4941) model_time 0.4588 (0.4734) loss 2.3085 (2.6764) grad_norm 1.7648 (2.7257/1.2313) mem 16099MB [2025-01-18 11:16:51 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][100/312] eta 0:01:43 lr 0.000082 time 0.4421 (0.4905) model_time 0.4417 (0.4718) loss 3.1988 (2.6856) grad_norm 1.3325 (2.6484/1.2087) mem 16099MB [2025-01-18 11:16:56 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][110/312] eta 0:01:38 lr 0.000082 time 0.4533 (0.4877) model_time 0.4528 (0.4705) loss 2.5496 (2.6707) grad_norm 3.1180 (2.7050/1.2041) mem 16099MB [2025-01-18 11:17:00 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][120/312] eta 0:01:33 lr 0.000082 time 0.4623 (0.4853) model_time 0.4622 (0.4696) loss 2.9286 (2.6594) grad_norm 1.3671 (2.7383/1.2476) mem 16099MB [2025-01-18 11:17:05 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][130/312] eta 0:01:28 lr 0.000081 time 0.4403 (0.4837) model_time 0.4398 (0.4692) loss 3.3056 (2.6676) grad_norm 2.8660 (2.8407/1.3128) mem 16099MB [2025-01-18 11:17:10 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][140/312] eta 0:01:22 lr 0.000081 time 0.4551 (0.4822) model_time 0.4546 (0.4687) loss 2.6175 (2.6737) grad_norm 2.3165 (2.8648/1.3091) mem 16099MB [2025-01-18 11:17:14 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][150/312] eta 0:01:17 lr 0.000081 time 0.4602 (0.4810) model_time 0.4597 (0.4683) loss 2.8621 (2.6520) grad_norm 2.9909 (2.8335/1.2799) mem 16099MB [2025-01-18 11:17:19 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][160/312] eta 0:01:13 lr 0.000081 time 0.5326 (0.4810) model_time 0.5322 (0.4691) loss 2.8133 (2.6552) grad_norm 1.8503 (2.8033/1.2554) mem 16099MB [2025-01-18 11:17:24 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][170/312] eta 0:01:08 lr 0.000081 time 0.4572 (0.4797) model_time 0.4567 (0.4684) loss 2.8738 (2.6636) grad_norm 2.3658 (2.7914/1.2281) mem 16099MB [2025-01-18 11:17:28 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][180/312] eta 0:01:03 lr 0.000081 time 0.4533 (0.4789) model_time 0.4529 (0.4682) loss 2.8850 (2.6617) grad_norm 3.8632 (2.7695/1.2234) mem 16099MB [2025-01-18 11:17:33 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][190/312] eta 0:00:58 lr 0.000081 time 0.4543 (0.4779) model_time 0.4541 (0.4678) loss 2.8592 (2.6672) grad_norm 1.7380 (2.7758/1.2025) mem 16099MB [2025-01-18 11:17:38 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][200/312] eta 0:00:53 lr 0.000081 time 0.4461 (0.4779) model_time 0.4457 (0.4682) loss 2.8123 (2.6718) grad_norm 5.6222 (2.7821/1.2196) mem 16099MB [2025-01-18 11:17:42 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][210/312] eta 0:00:48 lr 0.000080 time 0.4406 (0.4773) model_time 0.4404 (0.4681) loss 2.9753 (2.6751) grad_norm 1.6544 (2.7896/1.2184) mem 16099MB [2025-01-18 11:17:47 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][220/312] eta 0:00:43 lr 0.000080 time 0.4707 (0.4764) model_time 0.4705 (0.4676) loss 2.5142 (2.6842) grad_norm 4.1609 (2.8191/1.2159) mem 16099MB [2025-01-18 11:17:52 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][230/312] eta 0:00:39 lr 0.000080 time 0.5617 (0.4763) model_time 0.5613 (0.4679) loss 2.9391 (2.6835) grad_norm 2.5826 (2.8330/1.2044) mem 16099MB [2025-01-18 11:17:56 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][240/312] eta 0:00:34 lr 0.000080 time 0.5600 (0.4764) model_time 0.5598 (0.4683) loss 2.6753 (2.6816) grad_norm 3.9695 (2.8122/1.1960) mem 16099MB [2025-01-18 11:18:01 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][250/312] eta 0:00:29 lr 0.000080 time 0.4589 (0.4757) model_time 0.4587 (0.4679) loss 2.9089 (2.6859) grad_norm 4.8740 (2.8179/1.2111) mem 16099MB [2025-01-18 11:18:06 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][260/312] eta 0:00:24 lr 0.000080 time 0.4522 (0.4757) model_time 0.4520 (0.4682) loss 2.4066 (2.6760) grad_norm 4.6319 (2.8391/1.2042) mem 16099MB [2025-01-18 11:18:11 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][270/312] eta 0:00:19 lr 0.000080 time 0.4749 (0.4755) model_time 0.4747 (0.4683) loss 2.7573 (2.6831) grad_norm 2.2458 (2.8842/1.2344) mem 16099MB [2025-01-18 11:18:15 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][280/312] eta 0:00:15 lr 0.000079 time 0.4530 (0.4753) model_time 0.4526 (0.4683) loss 1.7575 (2.6770) grad_norm 7.4575 (2.9028/1.2574) mem 16099MB [2025-01-18 11:18:20 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][290/312] eta 0:00:10 lr 0.000079 time 0.5449 (0.4753) model_time 0.5445 (0.4685) loss 1.8462 (2.6737) grad_norm 4.1534 (2.9470/1.3013) mem 16099MB [2025-01-18 11:18:25 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][300/312] eta 0:00:05 lr 0.000079 time 0.4398 (0.4750) model_time 0.4397 (0.4684) loss 3.0892 (2.6744) grad_norm 7.2890 (2.9547/1.3270) mem 16099MB [2025-01-18 11:18:29 internimage_t_1k_224] (main.py 510): INFO Train: [280/300][310/312] eta 0:00:00 lr 0.000079 time 0.4413 (0.4745) model_time 0.4412 (0.4681) loss 2.2180 (2.6710) grad_norm 1.7318 (2.9193/1.3154) mem 16099MB [2025-01-18 11:18:30 internimage_t_1k_224] (main.py 519): INFO EPOCH 280 training takes 0:02:28 [2025-01-18 11:18:30 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_280.pth saving...... [2025-01-18 11:18:31 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_280.pth saved !!! [2025-01-18 11:18:38 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.250 (7.250) Loss 0.7234 (0.7234) Acc@1 85.229 (85.229) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 11:18:42 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.108 (0.987) Loss 0.9669 (0.8248) Acc@1 79.053 (83.141) Acc@5 95.239 (96.333) Mem 16099MB [2025-01-18 11:18:42 internimage_t_1k_224] (main.py 575): INFO [Epoch:280] * Acc@1 82.979 Acc@5 96.333 [2025-01-18 11:18:42 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 11:18:42 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.06% [2025-01-18 11:18:50 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.490 (8.490) Loss 0.7162 (0.7162) Acc@1 85.791 (85.791) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:18:54 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.126) Loss 0.9459 (0.8158) Acc@1 79.858 (83.663) Acc@5 95.361 (96.575) Mem 16099MB [2025-01-18 11:18:54 internimage_t_1k_224] (main.py 575): INFO [Epoch:280] * Acc@1 83.507 Acc@5 96.567 [2025-01-18 11:18:54 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:18:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:18:56 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:18:56 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.51% [2025-01-18 11:18:59 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][0/312] eta 0:15:48 lr 0.000079 time 3.0399 (3.0399) model_time 0.4670 (0.4670) loss 2.6786 (2.6786) grad_norm 1.6426 (1.6426/0.0000) mem 16099MB [2025-01-18 11:19:04 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][10/312] eta 0:03:33 lr 0.000079 time 0.4750 (0.7085) model_time 0.4748 (0.4743) loss 1.6623 (2.5390) grad_norm 3.7573 (2.8568/0.8975) mem 16099MB [2025-01-18 11:19:08 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][20/312] eta 0:02:52 lr 0.000079 time 0.4453 (0.5919) model_time 0.4452 (0.4691) loss 2.5385 (2.5663) grad_norm 2.7371 (2.7517/0.8860) mem 16099MB [2025-01-18 11:19:13 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][30/312] eta 0:02:35 lr 0.000079 time 0.4497 (0.5526) model_time 0.4495 (0.4693) loss 3.0248 (2.6441) grad_norm 1.5552 (2.6241/0.8662) mem 16099MB [2025-01-18 11:19:18 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][40/312] eta 0:02:23 lr 0.000079 time 0.4549 (0.5290) model_time 0.4545 (0.4659) loss 2.8555 (2.6286) grad_norm 3.0915 (2.7220/0.9114) mem 16099MB [2025-01-18 11:19:22 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][50/312] eta 0:02:15 lr 0.000078 time 0.4427 (0.5172) model_time 0.4423 (0.4664) loss 2.0296 (2.6465) grad_norm 3.5282 (2.7744/0.9608) mem 16099MB [2025-01-18 11:19:27 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][60/312] eta 0:02:08 lr 0.000078 time 0.4561 (0.5082) model_time 0.4560 (0.4657) loss 2.7079 (2.6536) grad_norm 4.3632 (2.8878/1.0624) mem 16099MB [2025-01-18 11:19:31 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][70/312] eta 0:02:01 lr 0.000078 time 0.4525 (0.5016) model_time 0.4520 (0.4650) loss 2.6583 (2.6440) grad_norm 2.5148 (2.9047/1.1696) mem 16099MB [2025-01-18 11:19:36 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][80/312] eta 0:01:55 lr 0.000078 time 0.4529 (0.4976) model_time 0.4525 (0.4655) loss 3.1242 (2.6668) grad_norm 3.7217 (2.8427/1.1737) mem 16099MB [2025-01-18 11:19:41 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][90/312] eta 0:01:49 lr 0.000078 time 0.4791 (0.4935) model_time 0.4789 (0.4649) loss 2.7743 (2.6892) grad_norm 2.5053 (2.8437/1.1515) mem 16099MB [2025-01-18 11:19:45 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][100/312] eta 0:01:44 lr 0.000078 time 0.4512 (0.4914) model_time 0.4511 (0.4656) loss 2.8028 (2.6860) grad_norm 1.7499 (2.8097/1.1324) mem 16099MB [2025-01-18 11:19:50 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][110/312] eta 0:01:38 lr 0.000078 time 0.4646 (0.4891) model_time 0.4642 (0.4655) loss 3.0660 (2.6777) grad_norm 2.3743 (2.8372/1.1289) mem 16099MB [2025-01-18 11:19:55 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][120/312] eta 0:01:33 lr 0.000078 time 0.6682 (0.4878) model_time 0.6677 (0.4662) loss 2.1152 (2.6813) grad_norm 3.3979 (2.8149/1.0981) mem 16099MB [2025-01-18 11:19:59 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][130/312] eta 0:01:28 lr 0.000077 time 0.4472 (0.4857) model_time 0.4468 (0.4657) loss 2.8418 (2.6881) grad_norm 1.7030 (2.8057/1.0905) mem 16099MB [2025-01-18 11:20:04 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][140/312] eta 0:01:23 lr 0.000077 time 0.5460 (0.4853) model_time 0.5455 (0.4667) loss 2.3272 (2.6821) grad_norm 3.1860 (2.8053/1.0606) mem 16099MB [2025-01-18 11:20:09 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][150/312] eta 0:01:18 lr 0.000077 time 0.4568 (0.4847) model_time 0.4566 (0.4672) loss 2.6044 (2.6707) grad_norm 4.5309 (2.8493/1.0729) mem 16099MB [2025-01-18 11:20:14 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][160/312] eta 0:01:13 lr 0.000077 time 0.5399 (0.4846) model_time 0.5394 (0.4682) loss 3.2118 (2.6739) grad_norm 2.3211 (2.8389/1.0680) mem 16099MB [2025-01-18 11:20:18 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][170/312] eta 0:01:08 lr 0.000077 time 0.4560 (0.4831) model_time 0.4555 (0.4677) loss 2.1754 (2.6631) grad_norm 1.7269 (2.8553/1.1032) mem 16099MB [2025-01-18 11:20:23 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][180/312] eta 0:01:03 lr 0.000077 time 0.4515 (0.4828) model_time 0.4513 (0.4682) loss 2.9250 (2.6675) grad_norm 4.9068 (2.8779/1.1233) mem 16099MB [2025-01-18 11:20:28 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][190/312] eta 0:00:58 lr 0.000077 time 0.4656 (0.4815) model_time 0.4652 (0.4677) loss 3.1950 (2.6633) grad_norm 1.7214 (2.8712/1.1199) mem 16099MB [2025-01-18 11:20:32 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][200/312] eta 0:00:53 lr 0.000076 time 0.4794 (0.4807) model_time 0.4790 (0.4676) loss 2.7024 (2.6670) grad_norm 4.2714 (2.8888/1.1388) mem 16099MB [2025-01-18 11:20:37 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][210/312] eta 0:00:48 lr 0.000076 time 0.4615 (0.4800) model_time 0.4611 (0.4675) loss 3.0022 (2.6743) grad_norm 2.3718 (2.9138/1.1329) mem 16099MB [2025-01-18 11:20:42 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][220/312] eta 0:00:44 lr 0.000076 time 0.4530 (0.4795) model_time 0.4528 (0.4674) loss 3.0409 (2.6796) grad_norm 2.4505 (2.9245/1.1488) mem 16099MB [2025-01-18 11:20:46 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][230/312] eta 0:00:39 lr 0.000076 time 0.4533 (0.4788) model_time 0.4529 (0.4673) loss 3.0202 (2.6738) grad_norm 3.0280 (2.9568/1.1860) mem 16099MB [2025-01-18 11:20:51 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][240/312] eta 0:00:34 lr 0.000076 time 0.4433 (0.4782) model_time 0.4432 (0.4671) loss 2.5634 (2.6600) grad_norm 4.9421 (2.9810/1.2195) mem 16099MB [2025-01-18 11:20:56 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][250/312] eta 0:00:29 lr 0.000076 time 0.4497 (0.4772) model_time 0.4493 (0.4666) loss 2.6630 (2.6596) grad_norm 2.4132 (2.9884/1.2117) mem 16099MB [2025-01-18 11:21:00 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][260/312] eta 0:00:24 lr 0.000076 time 0.4467 (0.4767) model_time 0.4465 (0.4665) loss 1.9891 (2.6601) grad_norm 2.0266 (3.0286/1.2941) mem 16099MB [2025-01-18 11:21:05 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][270/312] eta 0:00:19 lr 0.000076 time 0.4509 (0.4762) model_time 0.4504 (0.4663) loss 2.7740 (2.6567) grad_norm 2.9047 (3.0069/1.2814) mem 16099MB [2025-01-18 11:21:10 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][280/312] eta 0:00:15 lr 0.000075 time 0.4502 (0.4757) model_time 0.4501 (0.4662) loss 3.2742 (2.6584) grad_norm 2.1184 (3.0008/1.2747) mem 16099MB [2025-01-18 11:21:14 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][290/312] eta 0:00:10 lr 0.000075 time 0.4756 (0.4750) model_time 0.4751 (0.4658) loss 2.9978 (2.6639) grad_norm 2.6101 (2.9814/1.2750) mem 16099MB [2025-01-18 11:21:19 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][300/312] eta 0:00:05 lr 0.000075 time 0.4430 (0.4741) model_time 0.4429 (0.4652) loss 2.6171 (2.6541) grad_norm 1.7361 (2.9632/1.2619) mem 16099MB [2025-01-18 11:21:23 internimage_t_1k_224] (main.py 510): INFO Train: [281/300][310/312] eta 0:00:00 lr 0.000075 time 0.4407 (0.4733) model_time 0.4406 (0.4646) loss 3.0190 (2.6647) grad_norm 6.4147 (2.9750/1.2878) mem 16099MB [2025-01-18 11:21:23 internimage_t_1k_224] (main.py 519): INFO EPOCH 281 training takes 0:02:27 [2025-01-18 11:21:24 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_281.pth saving...... [2025-01-18 11:21:25 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_281.pth saved !!! [2025-01-18 11:21:32 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.714 (7.714) Loss 0.7110 (0.7110) Acc@1 85.303 (85.303) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 11:21:36 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.023) Loss 0.9664 (0.8146) Acc@1 78.638 (83.279) Acc@5 95.239 (96.365) Mem 16099MB [2025-01-18 11:21:36 internimage_t_1k_224] (main.py 575): INFO [Epoch:281] * Acc@1 83.119 Acc@5 96.369 [2025-01-18 11:21:36 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:21:36 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 11:21:37 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 11:21:37 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.12% [2025-01-18 11:21:45 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.777 (7.777) Loss 0.7156 (0.7156) Acc@1 85.889 (85.889) Acc@5 97.681 (97.681) Mem 16099MB [2025-01-18 11:21:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.056) Loss 0.9454 (0.8151) Acc@1 79.883 (83.676) Acc@5 95.386 (96.584) Mem 16099MB [2025-01-18 11:21:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:281] * Acc@1 83.521 Acc@5 96.577 [2025-01-18 11:21:49 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:21:49 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:21:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:21:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.52% [2025-01-18 11:21:53 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][0/312] eta 0:12:44 lr 0.000075 time 2.4516 (2.4516) model_time 0.4835 (0.4835) loss 3.0005 (3.0005) grad_norm 3.9153 (3.9153/0.0000) mem 16099MB [2025-01-18 11:21:58 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][10/312] eta 0:03:17 lr 0.000075 time 0.5526 (0.6556) model_time 0.5522 (0.4763) loss 2.8620 (2.7097) grad_norm 3.8227 (3.3682/1.3032) mem 16099MB [2025-01-18 11:22:03 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][20/312] eta 0:02:46 lr 0.000075 time 0.4595 (0.5707) model_time 0.4591 (0.4766) loss 2.8792 (2.6305) grad_norm 2.4401 (3.4388/1.5390) mem 16099MB [2025-01-18 11:22:07 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][30/312] eta 0:02:30 lr 0.000075 time 0.4467 (0.5322) model_time 0.4462 (0.4683) loss 3.2296 (2.6337) grad_norm 2.5459 (3.2819/1.5775) mem 16099MB [2025-01-18 11:22:12 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][40/312] eta 0:02:20 lr 0.000075 time 0.4566 (0.5168) model_time 0.4562 (0.4685) loss 2.8843 (2.5847) grad_norm 2.0904 (2.9566/1.5192) mem 16099MB [2025-01-18 11:22:17 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][50/312] eta 0:02:14 lr 0.000074 time 0.5558 (0.5126) model_time 0.5556 (0.4737) loss 2.8324 (2.5654) grad_norm 2.3554 (2.8978/1.4353) mem 16099MB [2025-01-18 11:22:22 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][60/312] eta 0:02:07 lr 0.000074 time 0.4511 (0.5079) model_time 0.4506 (0.4753) loss 3.1573 (2.5881) grad_norm 4.3886 (2.9091/1.3400) mem 16099MB [2025-01-18 11:22:26 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][70/312] eta 0:02:01 lr 0.000074 time 0.4404 (0.5007) model_time 0.4402 (0.4726) loss 2.5201 (2.5874) grad_norm 2.4282 (2.8929/1.2906) mem 16099MB [2025-01-18 11:22:31 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][80/312] eta 0:01:56 lr 0.000074 time 0.7555 (0.5004) model_time 0.7553 (0.4757) loss 2.9114 (2.5906) grad_norm 1.5729 (2.8524/1.2680) mem 16099MB [2025-01-18 11:22:36 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][90/312] eta 0:01:49 lr 0.000074 time 0.4516 (0.4952) model_time 0.4512 (0.4732) loss 3.0334 (2.6097) grad_norm 1.3220 (2.8874/1.2843) mem 16099MB [2025-01-18 11:22:40 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][100/312] eta 0:01:44 lr 0.000074 time 0.4412 (0.4923) model_time 0.4407 (0.4725) loss 1.7677 (2.5991) grad_norm 1.5290 (2.9099/1.2960) mem 16099MB [2025-01-18 11:22:45 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][110/312] eta 0:01:38 lr 0.000074 time 0.4512 (0.4894) model_time 0.4510 (0.4713) loss 2.9436 (2.6033) grad_norm 3.4638 (2.9928/1.3261) mem 16099MB [2025-01-18 11:22:50 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][120/312] eta 0:01:33 lr 0.000074 time 0.4534 (0.4876) model_time 0.4532 (0.4710) loss 3.1396 (2.5955) grad_norm 3.4418 (3.0288/1.3057) mem 16099MB [2025-01-18 11:22:54 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][130/312] eta 0:01:28 lr 0.000073 time 0.5612 (0.4871) model_time 0.5611 (0.4717) loss 2.8977 (2.6028) grad_norm 2.5561 (3.1518/1.3774) mem 16099MB [2025-01-18 11:22:59 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][140/312] eta 0:01:23 lr 0.000073 time 0.4712 (0.4862) model_time 0.4707 (0.4718) loss 3.1132 (2.6048) grad_norm 4.5528 (3.1180/1.3548) mem 16099MB [2025-01-18 11:23:04 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][150/312] eta 0:01:18 lr 0.000073 time 0.4446 (0.4841) model_time 0.4444 (0.4707) loss 2.1923 (2.5945) grad_norm 4.5529 (3.0921/1.3333) mem 16099MB [2025-01-18 11:23:08 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][160/312] eta 0:01:13 lr 0.000073 time 0.4552 (0.4831) model_time 0.4550 (0.4705) loss 2.7989 (2.5914) grad_norm 2.5970 (3.1193/1.3267) mem 16099MB [2025-01-18 11:23:13 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][170/312] eta 0:01:08 lr 0.000073 time 0.4691 (0.4816) model_time 0.4687 (0.4697) loss 2.5802 (2.6036) grad_norm 1.8405 (3.1401/1.3082) mem 16099MB [2025-01-18 11:23:18 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][180/312] eta 0:01:03 lr 0.000073 time 0.4658 (0.4827) model_time 0.4653 (0.4715) loss 2.8989 (2.6008) grad_norm 3.2357 (3.1378/1.2863) mem 16099MB [2025-01-18 11:23:23 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][190/312] eta 0:00:58 lr 0.000073 time 0.4631 (0.4814) model_time 0.4627 (0.4707) loss 1.9949 (2.6139) grad_norm 2.4831 (3.1149/1.2838) mem 16099MB [2025-01-18 11:23:27 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][200/312] eta 0:00:53 lr 0.000073 time 0.4468 (0.4804) model_time 0.4463 (0.4702) loss 2.3940 (2.6169) grad_norm 1.5155 (3.0957/1.2735) mem 16099MB [2025-01-18 11:23:32 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][210/312] eta 0:00:48 lr 0.000073 time 0.4549 (0.4796) model_time 0.4547 (0.4699) loss 2.9396 (2.6250) grad_norm 1.8541 (3.0633/1.2584) mem 16099MB [2025-01-18 11:23:36 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][220/312] eta 0:00:44 lr 0.000072 time 0.4525 (0.4787) model_time 0.4520 (0.4694) loss 2.5816 (2.6267) grad_norm 1.6003 (3.0451/1.2762) mem 16099MB [2025-01-18 11:23:41 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][230/312] eta 0:00:39 lr 0.000072 time 0.4548 (0.4776) model_time 0.4544 (0.4687) loss 2.9886 (2.6240) grad_norm 4.1329 (3.0366/1.2726) mem 16099MB [2025-01-18 11:23:46 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][240/312] eta 0:00:34 lr 0.000072 time 0.4460 (0.4776) model_time 0.4455 (0.4691) loss 1.7853 (2.6210) grad_norm 2.3945 (3.0095/1.2642) mem 16099MB [2025-01-18 11:23:50 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][250/312] eta 0:00:29 lr 0.000072 time 0.4499 (0.4774) model_time 0.4494 (0.4692) loss 2.4915 (2.6147) grad_norm 2.5393 (3.0044/1.2520) mem 16099MB [2025-01-18 11:23:55 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][260/312] eta 0:00:24 lr 0.000072 time 0.4644 (0.4772) model_time 0.4640 (0.4693) loss 3.4918 (2.6207) grad_norm 1.9153 (2.9836/1.2520) mem 16099MB [2025-01-18 11:24:00 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][270/312] eta 0:00:20 lr 0.000072 time 0.4954 (0.4773) model_time 0.4950 (0.4696) loss 2.1755 (2.6183) grad_norm 2.0367 (3.0055/1.2875) mem 16099MB [2025-01-18 11:24:05 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][280/312] eta 0:00:15 lr 0.000072 time 0.4706 (0.4765) model_time 0.4701 (0.4691) loss 2.3820 (2.6210) grad_norm 3.5118 (3.0058/1.2925) mem 16099MB [2025-01-18 11:24:09 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][290/312] eta 0:00:10 lr 0.000072 time 0.4604 (0.4772) model_time 0.4603 (0.4700) loss 3.0649 (2.6279) grad_norm 2.4620 (3.0292/1.3082) mem 16099MB [2025-01-18 11:24:14 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][300/312] eta 0:00:05 lr 0.000071 time 0.4390 (0.4770) model_time 0.4389 (0.4701) loss 2.9348 (2.6340) grad_norm 1.6369 (3.0459/1.3858) mem 16099MB [2025-01-18 11:24:19 internimage_t_1k_224] (main.py 510): INFO Train: [282/300][310/312] eta 0:00:00 lr 0.000071 time 0.4454 (0.4760) model_time 0.4454 (0.4693) loss 3.0431 (2.6332) grad_norm 2.6115 (3.0065/1.3815) mem 16099MB [2025-01-18 11:24:19 internimage_t_1k_224] (main.py 519): INFO EPOCH 282 training takes 0:02:28 [2025-01-18 11:24:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_282.pth saving...... [2025-01-18 11:24:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_282.pth saved !!! [2025-01-18 11:24:28 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.380 (7.380) Loss 0.7159 (0.7159) Acc@1 85.205 (85.205) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 11:24:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.009) Loss 0.9566 (0.8197) Acc@1 79.126 (83.196) Acc@5 95.190 (96.347) Mem 16099MB [2025-01-18 11:24:32 internimage_t_1k_224] (main.py 575): INFO [Epoch:282] * Acc@1 83.055 Acc@5 96.363 [2025-01-18 11:24:32 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:24:32 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.12% [2025-01-18 11:24:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.503 (8.503) Loss 0.7152 (0.7152) Acc@1 85.889 (85.889) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:24:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.146) Loss 0.9450 (0.8146) Acc@1 79.858 (83.669) Acc@5 95.386 (96.584) Mem 16099MB [2025-01-18 11:24:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:282] * Acc@1 83.517 Acc@5 96.579 [2025-01-18 11:24:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:24:44 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.52% [2025-01-18 11:24:48 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][0/312] eta 0:17:03 lr 0.000071 time 3.2789 (3.2789) model_time 0.8757 (0.8757) loss 1.7485 (1.7485) grad_norm 1.8620 (1.8620/0.0000) mem 16099MB [2025-01-18 11:24:52 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][10/312] eta 0:03:41 lr 0.000071 time 0.4459 (0.7347) model_time 0.4457 (0.5157) loss 2.8109 (2.5940) grad_norm 1.8163 (3.6439/2.1721) mem 16099MB [2025-01-18 11:24:57 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][20/312] eta 0:02:56 lr 0.000071 time 0.4557 (0.6039) model_time 0.4555 (0.4891) loss 1.9760 (2.5569) grad_norm 5.1485 (3.5770/2.0939) mem 16099MB [2025-01-18 11:25:02 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][30/312] eta 0:02:36 lr 0.000071 time 0.4576 (0.5558) model_time 0.4571 (0.4779) loss 2.3222 (2.6363) grad_norm 3.3252 (3.2809/1.8219) mem 16099MB [2025-01-18 11:25:06 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][40/312] eta 0:02:26 lr 0.000071 time 0.4578 (0.5373) model_time 0.4577 (0.4783) loss 2.0692 (2.5652) grad_norm 1.3033 (2.9984/1.6801) mem 16099MB [2025-01-18 11:25:11 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][50/312] eta 0:02:17 lr 0.000071 time 0.4477 (0.5245) model_time 0.4474 (0.4771) loss 2.5204 (2.5563) grad_norm 3.6282 (3.0567/1.6191) mem 16099MB [2025-01-18 11:25:16 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][60/312] eta 0:02:09 lr 0.000071 time 0.4576 (0.5132) model_time 0.4572 (0.4735) loss 1.7558 (2.5917) grad_norm 3.0078 (3.0590/1.5724) mem 16099MB [2025-01-18 11:25:20 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][70/312] eta 0:02:02 lr 0.000070 time 0.4974 (0.5082) model_time 0.4970 (0.4740) loss 2.5995 (2.6312) grad_norm 4.1231 (3.0860/1.5051) mem 16099MB [2025-01-18 11:25:25 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][80/312] eta 0:01:56 lr 0.000070 time 0.4576 (0.5016) model_time 0.4572 (0.4715) loss 2.8801 (2.6447) grad_norm 6.4754 (3.1125/1.6138) mem 16099MB [2025-01-18 11:25:30 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][90/312] eta 0:01:50 lr 0.000070 time 0.4692 (0.4978) model_time 0.4687 (0.4710) loss 2.8668 (2.6727) grad_norm 2.2718 (3.1061/1.5660) mem 16099MB [2025-01-18 11:25:34 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][100/312] eta 0:01:44 lr 0.000070 time 0.4707 (0.4936) model_time 0.4702 (0.4695) loss 2.2154 (2.6657) grad_norm 2.4050 (3.0492/1.5151) mem 16099MB [2025-01-18 11:25:39 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][110/312] eta 0:01:39 lr 0.000070 time 0.4455 (0.4914) model_time 0.4450 (0.4693) loss 2.8630 (2.6757) grad_norm 1.5765 (2.9533/1.4847) mem 16099MB [2025-01-18 11:25:44 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][120/312] eta 0:01:34 lr 0.000070 time 0.4569 (0.4904) model_time 0.4564 (0.4701) loss 3.0559 (2.6648) grad_norm 2.7853 (2.9084/1.4439) mem 16099MB [2025-01-18 11:25:48 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][130/312] eta 0:01:29 lr 0.000070 time 0.4654 (0.4892) model_time 0.4649 (0.4705) loss 1.5087 (2.6615) grad_norm 1.1618 (2.8702/1.4166) mem 16099MB [2025-01-18 11:25:53 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][140/312] eta 0:01:24 lr 0.000070 time 0.4548 (0.4884) model_time 0.4546 (0.4710) loss 3.0297 (2.6843) grad_norm 3.8425 (2.9026/1.4041) mem 16099MB [2025-01-18 11:25:58 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][150/312] eta 0:01:19 lr 0.000070 time 0.4440 (0.4878) model_time 0.4439 (0.4715) loss 2.5892 (2.6786) grad_norm 2.0540 (2.9189/1.3815) mem 16099MB [2025-01-18 11:26:03 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][160/312] eta 0:01:14 lr 0.000069 time 0.4552 (0.4872) model_time 0.4547 (0.4719) loss 2.9618 (2.6914) grad_norm 1.6424 (2.8676/1.3586) mem 16099MB [2025-01-18 11:26:08 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][170/312] eta 0:01:09 lr 0.000069 time 0.4434 (0.4876) model_time 0.4432 (0.4732) loss 2.8842 (2.6901) grad_norm 1.4061 (2.8804/1.3509) mem 16099MB [2025-01-18 11:26:12 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][180/312] eta 0:01:04 lr 0.000069 time 0.4700 (0.4863) model_time 0.4695 (0.4727) loss 3.3593 (2.7001) grad_norm 5.5567 (2.8779/1.3345) mem 16099MB [2025-01-18 11:26:17 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][190/312] eta 0:00:59 lr 0.000069 time 0.4492 (0.4851) model_time 0.4490 (0.4721) loss 2.5054 (2.7003) grad_norm 7.0528 (2.9080/1.3472) mem 16099MB [2025-01-18 11:26:22 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][200/312] eta 0:00:54 lr 0.000069 time 0.4448 (0.4841) model_time 0.4446 (0.4718) loss 1.9329 (2.6916) grad_norm 3.3065 (2.9076/1.3244) mem 16099MB [2025-01-18 11:26:26 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][210/312] eta 0:00:49 lr 0.000069 time 0.4715 (0.4830) model_time 0.4708 (0.4712) loss 2.1534 (2.6975) grad_norm 2.1976 (2.9134/1.3130) mem 16099MB [2025-01-18 11:26:31 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][220/312] eta 0:00:44 lr 0.000069 time 0.4599 (0.4824) model_time 0.4595 (0.4710) loss 2.2498 (2.6964) grad_norm 2.5718 (2.9013/1.3003) mem 16099MB [2025-01-18 11:26:36 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][230/312] eta 0:00:39 lr 0.000069 time 0.4665 (0.4821) model_time 0.4661 (0.4713) loss 2.4644 (2.6964) grad_norm 4.4199 (2.8756/1.2937) mem 16099MB [2025-01-18 11:26:40 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][240/312] eta 0:00:34 lr 0.000069 time 0.4769 (0.4815) model_time 0.4768 (0.4711) loss 2.8092 (2.6923) grad_norm 3.3277 (2.8696/1.2768) mem 16099MB [2025-01-18 11:26:45 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][250/312] eta 0:00:29 lr 0.000068 time 0.4537 (0.4809) model_time 0.4535 (0.4709) loss 1.9118 (2.6969) grad_norm 4.0993 (2.9295/1.3384) mem 16099MB [2025-01-18 11:26:50 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][260/312] eta 0:00:24 lr 0.000068 time 0.4397 (0.4803) model_time 0.4395 (0.4707) loss 3.0173 (2.6977) grad_norm 1.4239 (2.9484/1.3433) mem 16099MB [2025-01-18 11:26:54 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][270/312] eta 0:00:20 lr 0.000068 time 0.4458 (0.4793) model_time 0.4456 (0.4700) loss 2.1921 (2.6912) grad_norm 2.0107 (2.9356/1.3297) mem 16099MB [2025-01-18 11:26:59 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][280/312] eta 0:00:15 lr 0.000068 time 0.4442 (0.4798) model_time 0.4438 (0.4708) loss 2.8444 (2.6972) grad_norm 4.2049 (2.9888/1.4029) mem 16099MB [2025-01-18 11:27:04 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][290/312] eta 0:00:10 lr 0.000068 time 0.4568 (0.4790) model_time 0.4563 (0.4703) loss 2.9739 (2.6933) grad_norm 3.5907 (2.9840/1.4008) mem 16099MB [2025-01-18 11:27:08 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][300/312] eta 0:00:05 lr 0.000068 time 0.4436 (0.4786) model_time 0.4435 (0.4701) loss 1.6931 (2.6983) grad_norm 1.5367 (2.9693/1.3874) mem 16099MB [2025-01-18 11:27:13 internimage_t_1k_224] (main.py 510): INFO Train: [283/300][310/312] eta 0:00:00 lr 0.000068 time 0.4382 (0.4775) model_time 0.4381 (0.4693) loss 2.9856 (2.6976) grad_norm 1.7895 (2.9296/1.3355) mem 16099MB [2025-01-18 11:27:13 internimage_t_1k_224] (main.py 519): INFO EPOCH 283 training takes 0:02:28 [2025-01-18 11:27:13 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_283.pth saving...... [2025-01-18 11:27:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_283.pth saved !!! [2025-01-18 11:27:22 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.618 (7.618) Loss 0.7206 (0.7206) Acc@1 85.327 (85.327) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 11:27:26 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.020) Loss 0.9625 (0.8188) Acc@1 78.467 (83.250) Acc@5 94.946 (96.349) Mem 16099MB [2025-01-18 11:27:26 internimage_t_1k_224] (main.py 575): INFO [Epoch:283] * Acc@1 83.081 Acc@5 96.355 [2025-01-18 11:27:26 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:27:26 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.12% [2025-01-18 11:27:34 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.185 (8.185) Loss 0.7149 (0.7149) Acc@1 85.840 (85.840) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:27:38 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.105 (1.102) Loss 0.9447 (0.8142) Acc@1 79.883 (83.667) Acc@5 95.386 (96.582) Mem 16099MB [2025-01-18 11:27:38 internimage_t_1k_224] (main.py 575): INFO [Epoch:283] * Acc@1 83.511 Acc@5 96.583 [2025-01-18 11:27:38 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:27:38 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.52% [2025-01-18 11:27:41 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][0/312] eta 0:15:27 lr 0.000068 time 2.9712 (2.9712) model_time 0.5287 (0.5287) loss 2.3997 (2.3997) grad_norm 2.5338 (2.5338/0.0000) mem 16099MB [2025-01-18 11:27:46 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][10/312] eta 0:03:31 lr 0.000068 time 0.4547 (0.6990) model_time 0.4543 (0.4766) loss 2.8660 (2.7407) grad_norm 1.5540 (2.3584/0.6590) mem 16099MB [2025-01-18 11:27:50 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][20/312] eta 0:02:52 lr 0.000068 time 0.4471 (0.5899) model_time 0.4467 (0.4732) loss 2.5692 (2.7474) grad_norm 1.9553 (2.7483/1.7633) mem 16099MB [2025-01-18 11:27:55 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][30/312] eta 0:02:36 lr 0.000067 time 0.4929 (0.5564) model_time 0.4928 (0.4772) loss 2.7360 (2.7237) grad_norm 3.7645 (2.9554/1.5593) mem 16099MB [2025-01-18 11:28:00 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][40/312] eta 0:02:25 lr 0.000067 time 0.4505 (0.5349) model_time 0.4501 (0.4750) loss 2.8570 (2.6980) grad_norm 3.2903 (3.2288/1.7742) mem 16099MB [2025-01-18 11:28:05 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][50/312] eta 0:02:16 lr 0.000067 time 0.4531 (0.5212) model_time 0.4529 (0.4730) loss 2.7270 (2.7101) grad_norm 5.9284 (3.3898/1.8417) mem 16099MB [2025-01-18 11:28:09 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][60/312] eta 0:02:09 lr 0.000067 time 0.4609 (0.5122) model_time 0.4608 (0.4718) loss 2.4665 (2.6933) grad_norm 1.9215 (3.3828/1.7794) mem 16099MB [2025-01-18 11:28:14 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][70/312] eta 0:02:02 lr 0.000067 time 0.5527 (0.5062) model_time 0.5525 (0.4715) loss 1.9198 (2.6953) grad_norm 1.9100 (3.4460/1.7731) mem 16099MB [2025-01-18 11:28:19 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][80/312] eta 0:01:56 lr 0.000067 time 0.4593 (0.5009) model_time 0.4592 (0.4704) loss 2.8505 (2.6896) grad_norm 2.2017 (3.3461/1.7073) mem 16099MB [2025-01-18 11:28:23 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][90/312] eta 0:01:50 lr 0.000067 time 0.4585 (0.4969) model_time 0.4583 (0.4697) loss 3.1262 (2.7088) grad_norm 2.4327 (3.2518/1.6559) mem 16099MB [2025-01-18 11:28:28 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][100/312] eta 0:01:44 lr 0.000067 time 0.4810 (0.4929) model_time 0.4808 (0.4683) loss 3.0830 (2.6852) grad_norm 1.4742 (3.2089/1.6336) mem 16099MB [2025-01-18 11:28:33 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][110/312] eta 0:01:39 lr 0.000067 time 0.5424 (0.4939) model_time 0.5422 (0.4715) loss 3.3857 (2.6837) grad_norm 2.4379 (3.2113/1.5826) mem 16099MB [2025-01-18 11:28:38 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][120/312] eta 0:01:34 lr 0.000066 time 0.5286 (0.4922) model_time 0.5284 (0.4717) loss 3.2247 (2.6931) grad_norm 1.3884 (3.2218/1.5519) mem 16099MB [2025-01-18 11:28:42 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][130/312] eta 0:01:29 lr 0.000066 time 0.5003 (0.4907) model_time 0.4998 (0.4717) loss 3.1034 (2.6742) grad_norm 1.9677 (3.1635/1.5182) mem 16099MB [2025-01-18 11:28:47 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][140/312] eta 0:01:24 lr 0.000066 time 0.5338 (0.4908) model_time 0.5333 (0.4731) loss 1.8060 (2.6693) grad_norm 2.2704 (3.1573/1.4897) mem 16099MB [2025-01-18 11:28:52 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][150/312] eta 0:01:19 lr 0.000066 time 0.4747 (0.4891) model_time 0.4742 (0.4725) loss 2.6878 (2.6737) grad_norm 1.5398 (3.1043/1.4624) mem 16099MB [2025-01-18 11:28:57 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][160/312] eta 0:01:14 lr 0.000066 time 0.4424 (0.4878) model_time 0.4419 (0.4723) loss 2.7712 (2.6736) grad_norm 1.6763 (3.1075/1.4403) mem 16099MB [2025-01-18 11:29:01 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][170/312] eta 0:01:09 lr 0.000066 time 0.4440 (0.4859) model_time 0.4438 (0.4713) loss 2.7765 (2.6553) grad_norm 1.3821 (3.0854/1.4295) mem 16099MB [2025-01-18 11:29:06 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][180/312] eta 0:01:03 lr 0.000066 time 0.4477 (0.4841) model_time 0.4475 (0.4702) loss 2.3056 (2.6529) grad_norm 5.1380 (3.1081/1.4741) mem 16099MB [2025-01-18 11:29:10 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][190/312] eta 0:00:58 lr 0.000066 time 0.4409 (0.4829) model_time 0.4404 (0.4698) loss 2.6085 (2.6562) grad_norm 3.4769 (3.1203/1.4584) mem 16099MB [2025-01-18 11:29:15 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][200/312] eta 0:00:53 lr 0.000066 time 0.4639 (0.4818) model_time 0.4634 (0.4693) loss 1.6994 (2.6524) grad_norm 2.1925 (3.0854/1.4456) mem 16099MB [2025-01-18 11:29:19 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][210/312] eta 0:00:49 lr 0.000065 time 0.4496 (0.4804) model_time 0.4494 (0.4685) loss 1.7337 (2.6493) grad_norm 2.1345 (3.0330/1.4347) mem 16099MB [2025-01-18 11:29:24 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][220/312] eta 0:00:44 lr 0.000065 time 0.4475 (0.4797) model_time 0.4473 (0.4682) loss 2.9406 (2.6511) grad_norm 1.7197 (3.0345/1.4204) mem 16099MB [2025-01-18 11:29:29 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][230/312] eta 0:00:39 lr 0.000065 time 0.4595 (0.4795) model_time 0.4590 (0.4685) loss 2.9519 (2.6568) grad_norm 5.3028 (3.0225/1.4083) mem 16099MB [2025-01-18 11:29:34 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][240/312] eta 0:00:34 lr 0.000065 time 0.4681 (0.4794) model_time 0.4676 (0.4689) loss 2.0315 (2.6462) grad_norm 1.6742 (3.0265/1.3971) mem 16099MB [2025-01-18 11:29:38 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][250/312] eta 0:00:29 lr 0.000065 time 0.4639 (0.4792) model_time 0.4635 (0.4691) loss 2.2068 (2.6481) grad_norm 2.9024 (3.0264/1.3950) mem 16099MB [2025-01-18 11:29:43 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][260/312] eta 0:00:24 lr 0.000065 time 0.4503 (0.4793) model_time 0.4501 (0.4695) loss 3.0758 (2.6488) grad_norm 4.4955 (3.0338/1.3975) mem 16099MB [2025-01-18 11:29:48 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][270/312] eta 0:00:20 lr 0.000065 time 0.4606 (0.4791) model_time 0.4604 (0.4697) loss 2.9000 (2.6506) grad_norm 5.1406 (3.0424/1.4132) mem 16099MB [2025-01-18 11:29:53 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][280/312] eta 0:00:15 lr 0.000065 time 0.4424 (0.4789) model_time 0.4420 (0.4698) loss 3.1652 (2.6505) grad_norm 2.2437 (3.0236/1.4043) mem 16099MB [2025-01-18 11:29:57 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][290/312] eta 0:00:10 lr 0.000065 time 0.4497 (0.4790) model_time 0.4496 (0.4702) loss 2.9110 (2.6470) grad_norm 1.9166 (2.9918/1.3966) mem 16099MB [2025-01-18 11:30:02 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][300/312] eta 0:00:05 lr 0.000065 time 0.4513 (0.4784) model_time 0.4512 (0.4699) loss 2.8107 (2.6509) grad_norm 1.9165 (2.9804/1.3862) mem 16099MB [2025-01-18 11:30:07 internimage_t_1k_224] (main.py 510): INFO Train: [284/300][310/312] eta 0:00:00 lr 0.000064 time 0.4398 (0.4787) model_time 0.4397 (0.4704) loss 2.8164 (2.6514) grad_norm 3.6299 (3.0131/1.3884) mem 16099MB [2025-01-18 11:30:07 internimage_t_1k_224] (main.py 519): INFO EPOCH 284 training takes 0:02:29 [2025-01-18 11:30:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_284.pth saving...... [2025-01-18 11:30:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_284.pth saved !!! [2025-01-18 11:30:17 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.931 (7.931) Loss 0.7212 (0.7212) Acc@1 85.132 (85.132) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 11:30:20 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.078) Loss 0.9588 (0.8192) Acc@1 79.175 (83.148) Acc@5 94.995 (96.378) Mem 16099MB [2025-01-18 11:30:21 internimage_t_1k_224] (main.py 575): INFO [Epoch:284] * Acc@1 82.997 Acc@5 96.393 [2025-01-18 11:30:21 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 11:30:21 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.12% [2025-01-18 11:30:29 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.267 (8.267) Loss 0.7145 (0.7145) Acc@1 85.840 (85.840) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:30:33 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.106) Loss 0.9442 (0.8136) Acc@1 79.883 (83.676) Acc@5 95.386 (96.573) Mem 16099MB [2025-01-18 11:30:33 internimage_t_1k_224] (main.py 575): INFO [Epoch:284] * Acc@1 83.517 Acc@5 96.575 [2025-01-18 11:30:33 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:30:33 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.52% [2025-01-18 11:30:36 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][0/312] eta 0:15:11 lr 0.000064 time 2.9217 (2.9217) model_time 0.5176 (0.5176) loss 2.3702 (2.3702) grad_norm 3.9244 (3.9244/0.0000) mem 16099MB [2025-01-18 11:30:41 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][10/312] eta 0:03:29 lr 0.000064 time 0.4627 (0.6935) model_time 0.4621 (0.4745) loss 2.4926 (2.7338) grad_norm 1.6123 (2.5287/0.8628) mem 16099MB [2025-01-18 11:30:45 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][20/312] eta 0:02:53 lr 0.000064 time 0.4519 (0.5932) model_time 0.4515 (0.4783) loss 2.6048 (2.7049) grad_norm 1.6474 (2.6339/0.8543) mem 16099MB [2025-01-18 11:30:50 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][30/312] eta 0:02:34 lr 0.000064 time 0.4607 (0.5495) model_time 0.4602 (0.4716) loss 2.5994 (2.6419) grad_norm 2.4165 (2.7110/0.8545) mem 16099MB [2025-01-18 11:30:55 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][40/312] eta 0:02:23 lr 0.000064 time 0.4469 (0.5278) model_time 0.4467 (0.4688) loss 2.1652 (2.6343) grad_norm 3.3086 (2.8919/0.9980) mem 16099MB [2025-01-18 11:30:59 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][50/312] eta 0:02:14 lr 0.000064 time 0.4686 (0.5135) model_time 0.4684 (0.4660) loss 2.5422 (2.6406) grad_norm 6.3513 (2.9393/1.0843) mem 16099MB [2025-01-18 11:31:04 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][60/312] eta 0:02:08 lr 0.000064 time 0.5920 (0.5090) model_time 0.5915 (0.4692) loss 2.5452 (2.6438) grad_norm 2.6631 (2.9077/1.0656) mem 16099MB [2025-01-18 11:31:09 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][70/312] eta 0:02:01 lr 0.000064 time 0.4522 (0.5014) model_time 0.4517 (0.4672) loss 2.8318 (2.6369) grad_norm 2.1295 (2.8770/1.0721) mem 16099MB [2025-01-18 11:31:13 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][80/312] eta 0:01:54 lr 0.000064 time 0.4685 (0.4956) model_time 0.4684 (0.4655) loss 3.0852 (2.6570) grad_norm 1.2204 (2.8670/1.1039) mem 16099MB [2025-01-18 11:31:18 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][90/312] eta 0:01:49 lr 0.000063 time 0.4517 (0.4927) model_time 0.4515 (0.4659) loss 1.5978 (2.6417) grad_norm 1.9153 (2.8103/1.0884) mem 16099MB [2025-01-18 11:31:23 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][100/312] eta 0:01:44 lr 0.000063 time 0.4569 (0.4919) model_time 0.4568 (0.4677) loss 1.9469 (2.6086) grad_norm 2.7200 (2.8162/1.0947) mem 16099MB [2025-01-18 11:31:27 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][110/312] eta 0:01:39 lr 0.000063 time 0.4542 (0.4902) model_time 0.4541 (0.4681) loss 2.8510 (2.6106) grad_norm 3.5256 (2.8173/1.0777) mem 16099MB [2025-01-18 11:31:32 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][120/312] eta 0:01:33 lr 0.000063 time 0.4447 (0.4873) model_time 0.4446 (0.4671) loss 2.5596 (2.6162) grad_norm 4.3042 (2.8028/1.0629) mem 16099MB [2025-01-18 11:31:37 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][130/312] eta 0:01:28 lr 0.000063 time 0.4403 (0.4856) model_time 0.4401 (0.4669) loss 2.2697 (2.6091) grad_norm 2.8641 (2.8265/1.0525) mem 16099MB [2025-01-18 11:31:41 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][140/312] eta 0:01:23 lr 0.000063 time 0.4617 (0.4841) model_time 0.4612 (0.4666) loss 2.6483 (2.6241) grad_norm 2.4011 (2.8459/1.1580) mem 16099MB [2025-01-18 11:31:46 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][150/312] eta 0:01:18 lr 0.000063 time 0.4489 (0.4832) model_time 0.4485 (0.4668) loss 1.5433 (2.6072) grad_norm 3.3951 (2.8570/1.1853) mem 16099MB [2025-01-18 11:31:51 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][160/312] eta 0:01:13 lr 0.000063 time 0.4742 (0.4821) model_time 0.4738 (0.4668) loss 1.5690 (2.6137) grad_norm 3.5369 (2.8656/1.1597) mem 16099MB [2025-01-18 11:31:55 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][170/312] eta 0:01:08 lr 0.000063 time 0.4574 (0.4805) model_time 0.4569 (0.4661) loss 2.6707 (2.6061) grad_norm 3.0206 (2.8707/1.2029) mem 16099MB [2025-01-18 11:32:00 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][180/312] eta 0:01:03 lr 0.000063 time 0.4658 (0.4792) model_time 0.4656 (0.4655) loss 1.8877 (2.5954) grad_norm 2.0678 (2.8782/1.1879) mem 16099MB [2025-01-18 11:32:04 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][190/312] eta 0:00:58 lr 0.000062 time 0.4673 (0.4781) model_time 0.4672 (0.4651) loss 3.0493 (2.6014) grad_norm 5.8460 (2.9853/1.2865) mem 16099MB [2025-01-18 11:32:09 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][200/312] eta 0:00:53 lr 0.000062 time 0.4502 (0.4774) model_time 0.4500 (0.4650) loss 2.8536 (2.6007) grad_norm 1.7769 (2.9765/1.2714) mem 16099MB [2025-01-18 11:32:13 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][210/312] eta 0:00:48 lr 0.000062 time 0.4420 (0.4763) model_time 0.4418 (0.4645) loss 1.8433 (2.6074) grad_norm 2.2101 (2.9569/1.2570) mem 16099MB [2025-01-18 11:32:18 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][220/312] eta 0:00:43 lr 0.000062 time 0.4518 (0.4753) model_time 0.4513 (0.4640) loss 2.9426 (2.6092) grad_norm 2.7950 (2.9821/1.2712) mem 16099MB [2025-01-18 11:32:22 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][230/312] eta 0:00:38 lr 0.000062 time 0.4554 (0.4744) model_time 0.4553 (0.4636) loss 2.4201 (2.6082) grad_norm 3.0823 (2.9847/1.2534) mem 16099MB [2025-01-18 11:32:27 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][240/312] eta 0:00:34 lr 0.000062 time 0.4426 (0.4739) model_time 0.4425 (0.4635) loss 2.6544 (2.6090) grad_norm 1.5403 (3.0084/1.2862) mem 16099MB [2025-01-18 11:32:32 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][250/312] eta 0:00:29 lr 0.000062 time 0.4413 (0.4735) model_time 0.4408 (0.4635) loss 2.1603 (2.5963) grad_norm 4.9546 (3.0107/1.2932) mem 16099MB [2025-01-18 11:32:37 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][260/312] eta 0:00:24 lr 0.000062 time 0.4516 (0.4738) model_time 0.4512 (0.4642) loss 2.3780 (2.5961) grad_norm 2.0011 (3.0034/1.2860) mem 16099MB [2025-01-18 11:32:41 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][270/312] eta 0:00:19 lr 0.000062 time 0.4497 (0.4732) model_time 0.4492 (0.4639) loss 2.9213 (2.5982) grad_norm 4.5435 (2.9931/1.2755) mem 16099MB [2025-01-18 11:32:46 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][280/312] eta 0:00:15 lr 0.000062 time 0.4870 (0.4727) model_time 0.4865 (0.4637) loss 2.6176 (2.5982) grad_norm 3.3265 (2.9688/1.2617) mem 16099MB [2025-01-18 11:32:51 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][290/312] eta 0:00:10 lr 0.000061 time 0.4451 (0.4729) model_time 0.4446 (0.4643) loss 3.4230 (2.6008) grad_norm 5.5905 (2.9979/1.2950) mem 16099MB [2025-01-18 11:32:55 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][300/312] eta 0:00:05 lr 0.000061 time 0.4430 (0.4728) model_time 0.4429 (0.4644) loss 2.1780 (2.5984) grad_norm 2.9669 (3.0530/1.3811) mem 16099MB [2025-01-18 11:33:00 internimage_t_1k_224] (main.py 510): INFO Train: [285/300][310/312] eta 0:00:00 lr 0.000061 time 0.4401 (0.4723) model_time 0.4400 (0.4642) loss 2.4710 (2.5961) grad_norm 5.1229 (3.1265/1.4183) mem 16099MB [2025-01-18 11:33:00 internimage_t_1k_224] (main.py 519): INFO EPOCH 285 training takes 0:02:27 [2025-01-18 11:33:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_285.pth saving...... [2025-01-18 11:33:01 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_285.pth saved !!! [2025-01-18 11:33:09 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.435 (7.435) Loss 0.7154 (0.7154) Acc@1 85.205 (85.205) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 11:33:13 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.012) Loss 0.9643 (0.8203) Acc@1 78.931 (83.250) Acc@5 95.190 (96.382) Mem 16099MB [2025-01-18 11:33:13 internimage_t_1k_224] (main.py 575): INFO [Epoch:285] * Acc@1 83.119 Acc@5 96.397 [2025-01-18 11:33:13 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:33:13 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.12% [2025-01-18 11:33:21 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.298 (8.298) Loss 0.7140 (0.7140) Acc@1 85.840 (85.840) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:33:25 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.130) Loss 0.9438 (0.8130) Acc@1 79.858 (83.674) Acc@5 95.386 (96.569) Mem 16099MB [2025-01-18 11:33:25 internimage_t_1k_224] (main.py 575): INFO [Epoch:285] * Acc@1 83.519 Acc@5 96.571 [2025-01-18 11:33:25 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:33:25 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.52% [2025-01-18 11:33:28 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][0/312] eta 0:15:24 lr 0.000061 time 2.9619 (2.9619) model_time 0.5637 (0.5637) loss 2.1333 (2.1333) grad_norm 2.1283 (2.1283/0.0000) mem 16099MB [2025-01-18 11:33:33 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][10/312] eta 0:03:33 lr 0.000061 time 0.4592 (0.7060) model_time 0.4590 (0.4875) loss 2.5964 (2.5276) grad_norm 4.0852 (2.8896/1.1047) mem 16099MB [2025-01-18 11:33:38 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][20/312] eta 0:02:55 lr 0.000061 time 0.4442 (0.6023) model_time 0.4440 (0.4878) loss 2.8103 (2.5119) grad_norm 1.6889 (2.9435/1.3171) mem 16099MB [2025-01-18 11:33:43 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][30/312] eta 0:02:39 lr 0.000061 time 0.5552 (0.5650) model_time 0.5547 (0.4873) loss 2.6782 (2.5464) grad_norm 3.3874 (2.9761/1.2660) mem 16099MB [2025-01-18 11:33:48 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][40/312] eta 0:02:28 lr 0.000061 time 0.4492 (0.5445) model_time 0.4490 (0.4857) loss 2.8532 (2.5846) grad_norm 3.7128 (2.8786/1.2581) mem 16099MB [2025-01-18 11:33:52 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][50/312] eta 0:02:18 lr 0.000061 time 0.4731 (0.5288) model_time 0.4729 (0.4814) loss 2.4055 (2.6345) grad_norm 1.5408 (2.9554/1.5155) mem 16099MB [2025-01-18 11:33:57 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][60/312] eta 0:02:10 lr 0.000061 time 0.4503 (0.5181) model_time 0.4498 (0.4784) loss 2.5798 (2.6505) grad_norm 2.4310 (2.9407/1.4053) mem 16099MB [2025-01-18 11:34:02 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][70/312] eta 0:02:03 lr 0.000061 time 0.4458 (0.5096) model_time 0.4456 (0.4754) loss 2.7342 (2.6716) grad_norm 3.8781 (2.8903/1.3524) mem 16099MB [2025-01-18 11:34:06 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][80/312] eta 0:01:56 lr 0.000060 time 0.4608 (0.5037) model_time 0.4607 (0.4738) loss 2.3867 (2.6680) grad_norm 2.1209 (2.9122/1.3562) mem 16099MB [2025-01-18 11:34:11 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][90/312] eta 0:01:50 lr 0.000060 time 0.5027 (0.4997) model_time 0.5025 (0.4730) loss 2.7680 (2.6490) grad_norm 5.7523 (2.9557/1.4098) mem 16099MB [2025-01-18 11:34:15 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][100/312] eta 0:01:45 lr 0.000060 time 0.4627 (0.4960) model_time 0.4623 (0.4719) loss 2.5347 (2.6449) grad_norm 2.4141 (2.9258/1.3691) mem 16099MB [2025-01-18 11:34:20 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][110/312] eta 0:01:39 lr 0.000060 time 0.4494 (0.4929) model_time 0.4489 (0.4709) loss 3.0510 (2.6634) grad_norm 2.2472 (2.8487/1.3374) mem 16099MB [2025-01-18 11:34:25 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][120/312] eta 0:01:34 lr 0.000060 time 0.4630 (0.4906) model_time 0.4629 (0.4704) loss 2.6357 (2.6401) grad_norm 2.3982 (2.8897/1.3550) mem 16099MB [2025-01-18 11:34:29 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][130/312] eta 0:01:28 lr 0.000060 time 0.4631 (0.4886) model_time 0.4629 (0.4700) loss 1.6345 (2.6329) grad_norm 3.3842 (2.8496/1.3380) mem 16099MB [2025-01-18 11:34:34 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][140/312] eta 0:01:23 lr 0.000060 time 0.5719 (0.4869) model_time 0.5718 (0.4695) loss 1.6420 (2.6277) grad_norm 3.2163 (2.8505/1.3315) mem 16099MB [2025-01-18 11:34:39 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][150/312] eta 0:01:18 lr 0.000060 time 0.4505 (0.4852) model_time 0.4500 (0.4689) loss 3.0752 (2.6352) grad_norm 3.7927 (2.8470/1.3103) mem 16099MB [2025-01-18 11:34:43 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][160/312] eta 0:01:13 lr 0.000060 time 0.4569 (0.4852) model_time 0.4567 (0.4699) loss 3.0197 (2.6385) grad_norm 2.2803 (2.8815/1.3227) mem 16099MB [2025-01-18 11:34:48 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][170/312] eta 0:01:08 lr 0.000060 time 0.4571 (0.4839) model_time 0.4569 (0.4696) loss 2.6508 (2.6262) grad_norm 2.1559 (2.9277/1.4334) mem 16099MB [2025-01-18 11:34:53 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][180/312] eta 0:01:03 lr 0.000060 time 0.4789 (0.4825) model_time 0.4788 (0.4689) loss 2.8584 (2.6375) grad_norm 2.7486 (2.9289/1.4251) mem 16099MB [2025-01-18 11:34:57 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][190/312] eta 0:00:58 lr 0.000059 time 0.4531 (0.4820) model_time 0.4527 (0.4691) loss 2.9851 (2.6387) grad_norm 3.6026 (2.9279/1.4108) mem 16099MB [2025-01-18 11:35:02 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][200/312] eta 0:00:53 lr 0.000059 time 0.4482 (0.4805) model_time 0.4480 (0.4683) loss 3.2471 (2.6524) grad_norm 1.6519 (2.9491/1.4214) mem 16099MB [2025-01-18 11:35:07 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][210/312] eta 0:00:48 lr 0.000059 time 0.4547 (0.4797) model_time 0.4543 (0.4680) loss 2.6447 (2.6530) grad_norm 1.2606 (2.9194/1.4011) mem 16099MB [2025-01-18 11:35:11 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][220/312] eta 0:00:44 lr 0.000059 time 0.4467 (0.4787) model_time 0.4463 (0.4675) loss 2.6693 (2.6547) grad_norm 2.2484 (2.8963/1.3861) mem 16099MB [2025-01-18 11:35:16 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][230/312] eta 0:00:39 lr 0.000059 time 0.5346 (0.4784) model_time 0.5342 (0.4676) loss 2.9422 (2.6554) grad_norm 1.3465 (2.8791/1.3702) mem 16099MB [2025-01-18 11:35:21 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][240/312] eta 0:00:34 lr 0.000059 time 0.4462 (0.4779) model_time 0.4461 (0.4676) loss 3.0255 (2.6605) grad_norm 2.8370 (2.8847/1.3604) mem 16099MB [2025-01-18 11:35:25 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][250/312] eta 0:00:29 lr 0.000059 time 0.4544 (0.4777) model_time 0.4543 (0.4678) loss 2.8216 (2.6585) grad_norm 2.0918 (2.8994/1.3582) mem 16099MB [2025-01-18 11:35:30 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][260/312] eta 0:00:24 lr 0.000059 time 0.4816 (0.4779) model_time 0.4811 (0.4684) loss 2.4964 (2.6575) grad_norm 4.6577 (2.8943/1.3432) mem 16099MB [2025-01-18 11:35:35 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][270/312] eta 0:00:20 lr 0.000059 time 0.5314 (0.4782) model_time 0.5309 (0.4690) loss 2.8858 (2.6632) grad_norm 2.2269 (2.8912/1.3337) mem 16099MB [2025-01-18 11:35:40 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][280/312] eta 0:00:15 lr 0.000059 time 0.4614 (0.4778) model_time 0.4613 (0.4689) loss 2.9219 (2.6708) grad_norm 3.3376 (2.8781/1.3168) mem 16099MB [2025-01-18 11:35:44 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][290/312] eta 0:00:10 lr 0.000059 time 0.4451 (0.4772) model_time 0.4449 (0.4686) loss 2.3087 (2.6654) grad_norm 4.8719 (2.8710/1.3093) mem 16099MB [2025-01-18 11:35:49 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][300/312] eta 0:00:05 lr 0.000058 time 0.4400 (0.4766) model_time 0.4398 (0.4683) loss 1.7208 (2.6581) grad_norm 1.8495 (2.8782/1.2989) mem 16099MB [2025-01-18 11:35:53 internimage_t_1k_224] (main.py 510): INFO Train: [286/300][310/312] eta 0:00:00 lr 0.000058 time 0.4374 (0.4760) model_time 0.4373 (0.4680) loss 2.6779 (2.6583) grad_norm 5.0601 (2.8978/1.3163) mem 16099MB [2025-01-18 11:35:54 internimage_t_1k_224] (main.py 519): INFO EPOCH 286 training takes 0:02:28 [2025-01-18 11:35:54 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_286.pth saving...... [2025-01-18 11:35:55 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_286.pth saved !!! [2025-01-18 11:36:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.440 (7.440) Loss 0.7210 (0.7210) Acc@1 85.205 (85.205) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 11:36:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.005) Loss 0.9647 (0.8222) Acc@1 79.175 (83.281) Acc@5 95.288 (96.382) Mem 16099MB [2025-01-18 11:36:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:286] * Acc@1 83.133 Acc@5 96.389 [2025-01-18 11:36:06 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:36:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 11:36:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 11:36:07 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:36:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.575 (7.575) Loss 0.7138 (0.7138) Acc@1 85.840 (85.840) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:36:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.019) Loss 0.9437 (0.8128) Acc@1 79.883 (83.689) Acc@5 95.386 (96.573) Mem 16099MB [2025-01-18 11:36:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:286] * Acc@1 83.537 Acc@5 96.575 [2025-01-18 11:36:19 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:36:19 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:36:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:36:20 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.54% [2025-01-18 11:36:23 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][0/312] eta 0:14:53 lr 0.000058 time 2.8637 (2.8637) model_time 0.4650 (0.4650) loss 2.5958 (2.5958) grad_norm 2.7876 (2.7876/0.0000) mem 16099MB [2025-01-18 11:36:28 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][10/312] eta 0:03:23 lr 0.000058 time 0.4531 (0.6744) model_time 0.4529 (0.4560) loss 2.7118 (2.6793) grad_norm 6.4381 (3.8520/1.7376) mem 16099MB [2025-01-18 11:36:32 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][20/312] eta 0:02:47 lr 0.000058 time 0.4538 (0.5727) model_time 0.4536 (0.4580) loss 3.0359 (2.6708) grad_norm 2.4592 (3.6902/1.5332) mem 16099MB [2025-01-18 11:36:37 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][30/312] eta 0:02:30 lr 0.000058 time 0.4532 (0.5351) model_time 0.4528 (0.4573) loss 2.7656 (2.6354) grad_norm 3.1273 (3.6265/1.4701) mem 16099MB [2025-01-18 11:36:41 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][40/312] eta 0:02:21 lr 0.000058 time 0.4657 (0.5184) model_time 0.4652 (0.4595) loss 3.0450 (2.6489) grad_norm 5.4854 (3.4897/1.4124) mem 16099MB [2025-01-18 11:36:46 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][50/312] eta 0:02:13 lr 0.000058 time 0.4560 (0.5081) model_time 0.4555 (0.4607) loss 3.0454 (2.7044) grad_norm 2.7018 (3.3753/1.3702) mem 16099MB [2025-01-18 11:36:51 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][60/312] eta 0:02:06 lr 0.000058 time 0.4416 (0.5017) model_time 0.4411 (0.4620) loss 2.8037 (2.7135) grad_norm 2.3491 (3.2873/1.3403) mem 16099MB [2025-01-18 11:36:55 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][70/312] eta 0:02:00 lr 0.000058 time 0.4566 (0.4965) model_time 0.4565 (0.4623) loss 2.6588 (2.7221) grad_norm 2.8003 (3.1212/1.3210) mem 16099MB [2025-01-18 11:37:00 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][80/312] eta 0:01:53 lr 0.000058 time 0.4636 (0.4912) model_time 0.4634 (0.4610) loss 1.7929 (2.7334) grad_norm 2.0978 (3.0330/1.3049) mem 16099MB [2025-01-18 11:37:05 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][90/312] eta 0:01:48 lr 0.000058 time 0.4523 (0.4878) model_time 0.4519 (0.4609) loss 2.3900 (2.6912) grad_norm 3.0565 (2.9704/1.2963) mem 16099MB [2025-01-18 11:37:09 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][100/312] eta 0:01:43 lr 0.000057 time 0.4505 (0.4864) model_time 0.4500 (0.4621) loss 2.7715 (2.6906) grad_norm 2.9300 (2.9898/1.2765) mem 16099MB [2025-01-18 11:37:14 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][110/312] eta 0:01:37 lr 0.000057 time 0.4663 (0.4841) model_time 0.4658 (0.4620) loss 2.3461 (2.7039) grad_norm 2.5481 (2.9874/1.2592) mem 16099MB [2025-01-18 11:37:19 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][120/312] eta 0:01:32 lr 0.000057 time 0.4450 (0.4826) model_time 0.4449 (0.4623) loss 3.2572 (2.7054) grad_norm 5.3194 (2.9687/1.2556) mem 16099MB [2025-01-18 11:37:23 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][130/312] eta 0:01:27 lr 0.000057 time 0.4452 (0.4806) model_time 0.4447 (0.4618) loss 3.4054 (2.7069) grad_norm 2.4896 (2.9883/1.2726) mem 16099MB [2025-01-18 11:37:28 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][140/312] eta 0:01:22 lr 0.000057 time 0.4937 (0.4803) model_time 0.4933 (0.4628) loss 3.2210 (2.6981) grad_norm 5.5815 (3.0815/1.4233) mem 16099MB [2025-01-18 11:37:33 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][150/312] eta 0:01:17 lr 0.000057 time 0.5452 (0.4805) model_time 0.5448 (0.4641) loss 2.8813 (2.6840) grad_norm 2.8756 (3.0997/1.4650) mem 16099MB [2025-01-18 11:37:37 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][160/312] eta 0:01:12 lr 0.000057 time 0.4403 (0.4789) model_time 0.4398 (0.4636) loss 2.9554 (2.6928) grad_norm 2.2842 (3.0830/1.4513) mem 16099MB [2025-01-18 11:37:42 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][170/312] eta 0:01:07 lr 0.000057 time 0.4506 (0.4780) model_time 0.4501 (0.4636) loss 2.8340 (2.6740) grad_norm 3.4866 (3.0664/1.4466) mem 16099MB [2025-01-18 11:37:46 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][180/312] eta 0:01:02 lr 0.000057 time 0.4425 (0.4769) model_time 0.4420 (0.4632) loss 3.1016 (2.6812) grad_norm 3.6379 (3.0895/1.4295) mem 16099MB [2025-01-18 11:37:51 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][190/312] eta 0:00:58 lr 0.000057 time 0.4494 (0.4764) model_time 0.4490 (0.4634) loss 1.7781 (2.6589) grad_norm 2.0679 (3.1103/1.4425) mem 16099MB [2025-01-18 11:37:56 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][200/312] eta 0:00:53 lr 0.000057 time 0.4593 (0.4771) model_time 0.4591 (0.4647) loss 2.7138 (2.6659) grad_norm 2.5081 (3.0847/1.4307) mem 16099MB [2025-01-18 11:38:01 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][210/312] eta 0:00:48 lr 0.000056 time 0.4946 (0.4779) model_time 0.4944 (0.4660) loss 2.3266 (2.6616) grad_norm 2.6020 (3.0555/1.4087) mem 16099MB [2025-01-18 11:38:06 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][220/312] eta 0:00:43 lr 0.000056 time 0.4549 (0.4774) model_time 0.4547 (0.4661) loss 2.8455 (2.6651) grad_norm 2.5908 (3.0099/1.3949) mem 16099MB [2025-01-18 11:38:10 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][230/312] eta 0:00:39 lr 0.000056 time 0.4430 (0.4769) model_time 0.4425 (0.4660) loss 1.6077 (2.6642) grad_norm 1.6505 (3.0013/1.3777) mem 16099MB [2025-01-18 11:38:15 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][240/312] eta 0:00:34 lr 0.000056 time 0.4503 (0.4759) model_time 0.4498 (0.4655) loss 2.8653 (2.6684) grad_norm 2.7877 (3.0139/1.3912) mem 16099MB [2025-01-18 11:38:19 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][250/312] eta 0:00:29 lr 0.000056 time 0.4630 (0.4750) model_time 0.4625 (0.4650) loss 3.1334 (2.6704) grad_norm 3.6617 (3.0142/1.3831) mem 16099MB [2025-01-18 11:38:24 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][260/312] eta 0:00:24 lr 0.000056 time 0.4648 (0.4743) model_time 0.4643 (0.4646) loss 2.9375 (2.6721) grad_norm 2.7412 (3.0136/1.3664) mem 16099MB [2025-01-18 11:38:29 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][270/312] eta 0:00:19 lr 0.000056 time 0.4622 (0.4745) model_time 0.4620 (0.4653) loss 2.9556 (2.6793) grad_norm 1.6332 (2.9951/1.3740) mem 16099MB [2025-01-18 11:38:33 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][280/312] eta 0:00:15 lr 0.000056 time 0.4546 (0.4739) model_time 0.4540 (0.4649) loss 2.8392 (2.6791) grad_norm 3.5532 (3.0149/1.3776) mem 16099MB [2025-01-18 11:38:38 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][290/312] eta 0:00:10 lr 0.000056 time 0.4646 (0.4742) model_time 0.4642 (0.4655) loss 2.0900 (2.6778) grad_norm 2.7795 (3.0254/1.3663) mem 16099MB [2025-01-18 11:38:43 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][300/312] eta 0:00:05 lr 0.000056 time 0.5234 (0.4740) model_time 0.5233 (0.4656) loss 3.1746 (2.6780) grad_norm 4.2546 (3.0385/1.3721) mem 16099MB [2025-01-18 11:38:47 internimage_t_1k_224] (main.py 510): INFO Train: [287/300][310/312] eta 0:00:00 lr 0.000056 time 0.4400 (0.4730) model_time 0.4399 (0.4649) loss 2.9173 (2.6740) grad_norm 1.8585 (2.9807/1.3336) mem 16099MB [2025-01-18 11:38:48 internimage_t_1k_224] (main.py 519): INFO EPOCH 287 training takes 0:02:27 [2025-01-18 11:38:48 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_287.pth saving...... [2025-01-18 11:38:49 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_287.pth saved !!! [2025-01-18 11:38:56 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.235 (7.235) Loss 0.7243 (0.7243) Acc@1 85.205 (85.205) Acc@5 97.314 (97.314) Mem 16099MB [2025-01-18 11:39:00 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.010) Loss 0.9555 (0.8177) Acc@1 79.102 (83.274) Acc@5 95.215 (96.300) Mem 16099MB [2025-01-18 11:39:00 internimage_t_1k_224] (main.py 575): INFO [Epoch:287] * Acc@1 83.105 Acc@5 96.311 [2025-01-18 11:39:00 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:39:00 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:39:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.267 (8.267) Loss 0.7135 (0.7135) Acc@1 85.913 (85.913) Acc@5 97.705 (97.705) Mem 16099MB [2025-01-18 11:39:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.107) Loss 0.9433 (0.8123) Acc@1 79.907 (83.691) Acc@5 95.386 (96.564) Mem 16099MB [2025-01-18 11:39:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:287] * Acc@1 83.539 Acc@5 96.567 [2025-01-18 11:39:12 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:39:12 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:39:14 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:39:14 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.54% [2025-01-18 11:39:17 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][0/312] eta 0:14:46 lr 0.000056 time 2.8407 (2.8407) model_time 0.5144 (0.5144) loss 1.5856 (1.5856) grad_norm 2.6566 (2.6566/0.0000) mem 16099MB [2025-01-18 11:39:21 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][10/312] eta 0:03:22 lr 0.000056 time 0.4539 (0.6692) model_time 0.4537 (0.4574) loss 2.6708 (2.3931) grad_norm 1.6193 (3.6761/1.1772) mem 16099MB [2025-01-18 11:39:26 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][20/312] eta 0:02:47 lr 0.000055 time 0.4539 (0.5739) model_time 0.4537 (0.4628) loss 2.8688 (2.5030) grad_norm 1.9189 (3.6758/1.2770) mem 16099MB [2025-01-18 11:39:31 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][30/312] eta 0:02:32 lr 0.000055 time 0.4444 (0.5418) model_time 0.4440 (0.4664) loss 2.5009 (2.5147) grad_norm 2.8151 (3.1898/1.2819) mem 16099MB [2025-01-18 11:39:35 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][40/312] eta 0:02:22 lr 0.000055 time 0.5454 (0.5256) model_time 0.5453 (0.4685) loss 3.4076 (2.5880) grad_norm 1.4015 (3.1652/1.4020) mem 16099MB [2025-01-18 11:39:40 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][50/312] eta 0:02:14 lr 0.000055 time 0.4473 (0.5136) model_time 0.4472 (0.4677) loss 3.1947 (2.6046) grad_norm 3.1636 (3.1525/1.3183) mem 16099MB [2025-01-18 11:39:45 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][60/312] eta 0:02:07 lr 0.000055 time 0.4514 (0.5059) model_time 0.4513 (0.4674) loss 2.6723 (2.6217) grad_norm 1.6897 (3.1215/1.3093) mem 16099MB [2025-01-18 11:39:49 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][70/312] eta 0:02:00 lr 0.000055 time 0.4539 (0.4985) model_time 0.4538 (0.4654) loss 2.6130 (2.6219) grad_norm 3.8045 (3.0940/1.2904) mem 16099MB [2025-01-18 11:39:54 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][80/312] eta 0:01:54 lr 0.000055 time 0.4558 (0.4932) model_time 0.4554 (0.4642) loss 3.3087 (2.5914) grad_norm 2.8158 (3.1005/1.2412) mem 16099MB [2025-01-18 11:39:58 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][90/312] eta 0:01:48 lr 0.000055 time 0.4877 (0.4908) model_time 0.4876 (0.4649) loss 2.9999 (2.6137) grad_norm 1.1221 (3.0663/1.2267) mem 16099MB [2025-01-18 11:40:03 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][100/312] eta 0:01:43 lr 0.000055 time 0.4408 (0.4874) model_time 0.4406 (0.4640) loss 2.3630 (2.6202) grad_norm 6.3681 (3.0809/1.2329) mem 16099MB [2025-01-18 11:40:08 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][110/312] eta 0:01:38 lr 0.000055 time 0.4620 (0.4871) model_time 0.4618 (0.4658) loss 2.7105 (2.6403) grad_norm 4.2955 (3.1144/1.2206) mem 16099MB [2025-01-18 11:40:13 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][120/312] eta 0:01:33 lr 0.000055 time 0.4638 (0.4852) model_time 0.4634 (0.4656) loss 2.9447 (2.6561) grad_norm 1.9829 (3.1284/1.3208) mem 16099MB [2025-01-18 11:40:18 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][130/312] eta 0:01:28 lr 0.000055 time 0.4472 (0.4870) model_time 0.4468 (0.4689) loss 2.5581 (2.6329) grad_norm 3.1576 (3.1637/1.3715) mem 16099MB [2025-01-18 11:40:22 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][140/312] eta 0:01:23 lr 0.000054 time 0.4613 (0.4853) model_time 0.4607 (0.4684) loss 2.2268 (2.6257) grad_norm 3.8871 (3.1458/1.3937) mem 16099MB [2025-01-18 11:40:27 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][150/312] eta 0:01:18 lr 0.000054 time 0.5815 (0.4840) model_time 0.5813 (0.4682) loss 2.7175 (2.6218) grad_norm 2.3154 (3.0814/1.3741) mem 16099MB [2025-01-18 11:40:32 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][160/312] eta 0:01:13 lr 0.000054 time 0.4597 (0.4838) model_time 0.4591 (0.4690) loss 3.0226 (2.6053) grad_norm 2.4749 (3.1216/1.3855) mem 16099MB [2025-01-18 11:40:36 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][170/312] eta 0:01:08 lr 0.000054 time 0.4469 (0.4825) model_time 0.4464 (0.4686) loss 3.2291 (2.6085) grad_norm 4.9550 (3.1214/1.3773) mem 16099MB [2025-01-18 11:40:41 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][180/312] eta 0:01:03 lr 0.000054 time 0.4470 (0.4818) model_time 0.4468 (0.4686) loss 2.4301 (2.6021) grad_norm 8.6678 (3.1717/1.4501) mem 16099MB [2025-01-18 11:40:46 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][190/312] eta 0:00:58 lr 0.000054 time 0.4493 (0.4805) model_time 0.4489 (0.4680) loss 2.8687 (2.5997) grad_norm 3.2695 (3.1603/1.4321) mem 16099MB [2025-01-18 11:40:50 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][200/312] eta 0:00:53 lr 0.000054 time 0.4544 (0.4798) model_time 0.4540 (0.4679) loss 2.8310 (2.5978) grad_norm 5.5003 (3.1535/1.4202) mem 16099MB [2025-01-18 11:40:55 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][210/312] eta 0:00:48 lr 0.000054 time 0.4471 (0.4787) model_time 0.4469 (0.4673) loss 2.7345 (2.6025) grad_norm 4.4860 (3.1889/1.4787) mem 16099MB [2025-01-18 11:40:59 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][220/312] eta 0:00:43 lr 0.000054 time 0.4676 (0.4780) model_time 0.4674 (0.4671) loss 2.8508 (2.6025) grad_norm 2.1876 (3.2182/1.4978) mem 16099MB [2025-01-18 11:41:04 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][230/312] eta 0:00:39 lr 0.000054 time 0.4445 (0.4770) model_time 0.4443 (0.4666) loss 2.6692 (2.6057) grad_norm 2.8351 (3.2170/1.4825) mem 16099MB [2025-01-18 11:41:09 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][240/312] eta 0:00:34 lr 0.000054 time 0.4481 (0.4761) model_time 0.4479 (0.4661) loss 2.3309 (2.6008) grad_norm 3.5697 (3.2269/1.4805) mem 16099MB [2025-01-18 11:41:13 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][250/312] eta 0:00:29 lr 0.000054 time 0.4603 (0.4753) model_time 0.4601 (0.4656) loss 2.8328 (2.6126) grad_norm 3.0343 (3.2102/1.4690) mem 16099MB [2025-01-18 11:41:18 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][260/312] eta 0:00:24 lr 0.000054 time 0.4447 (0.4749) model_time 0.4446 (0.4656) loss 3.1218 (2.6147) grad_norm 3.1218 (3.1928/1.4546) mem 16099MB [2025-01-18 11:41:23 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][270/312] eta 0:00:19 lr 0.000053 time 0.4554 (0.4749) model_time 0.4553 (0.4660) loss 1.7572 (2.6165) grad_norm 3.0484 (3.1880/1.4405) mem 16099MB [2025-01-18 11:41:27 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][280/312] eta 0:00:15 lr 0.000053 time 0.4435 (0.4754) model_time 0.4430 (0.4667) loss 2.6829 (2.6223) grad_norm 1.6530 (3.1776/1.4251) mem 16099MB [2025-01-18 11:41:32 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][290/312] eta 0:00:10 lr 0.000053 time 0.4558 (0.4758) model_time 0.4557 (0.4675) loss 1.5389 (2.6175) grad_norm 2.3309 (3.1526/1.4174) mem 16099MB [2025-01-18 11:41:37 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][300/312] eta 0:00:05 lr 0.000053 time 0.4416 (0.4758) model_time 0.4415 (0.4677) loss 2.1751 (2.6134) grad_norm 1.2906 (3.1224/1.4213) mem 16099MB [2025-01-18 11:41:42 internimage_t_1k_224] (main.py 510): INFO Train: [288/300][310/312] eta 0:00:00 lr 0.000053 time 0.4437 (0.4751) model_time 0.4436 (0.4673) loss 3.1244 (2.6053) grad_norm 5.4494 (3.0955/1.4134) mem 16099MB [2025-01-18 11:41:42 internimage_t_1k_224] (main.py 519): INFO EPOCH 288 training takes 0:02:28 [2025-01-18 11:41:42 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_288.pth saving...... [2025-01-18 11:41:43 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_288.pth saved !!! [2025-01-18 11:41:51 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.688 (7.688) Loss 0.7114 (0.7114) Acc@1 85.376 (85.376) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 11:41:55 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.107 (1.029) Loss 0.9619 (0.8150) Acc@1 79.053 (83.216) Acc@5 95.410 (96.384) Mem 16099MB [2025-01-18 11:41:55 internimage_t_1k_224] (main.py 575): INFO [Epoch:288] * Acc@1 83.079 Acc@5 96.385 [2025-01-18 11:41:55 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:41:55 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:42:03 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.408 (8.408) Loss 0.7132 (0.7132) Acc@1 85.889 (85.889) Acc@5 97.681 (97.681) Mem 16099MB [2025-01-18 11:42:07 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.129) Loss 0.9429 (0.8119) Acc@1 79.932 (83.707) Acc@5 95.361 (96.562) Mem 16099MB [2025-01-18 11:42:07 internimage_t_1k_224] (main.py 575): INFO [Epoch:288] * Acc@1 83.553 Acc@5 96.563 [2025-01-18 11:42:07 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.6% [2025-01-18 11:42:07 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:42:09 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:42:09 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.55% [2025-01-18 11:42:11 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][0/312] eta 0:12:12 lr 0.000053 time 2.3476 (2.3476) model_time 0.5207 (0.5207) loss 2.9276 (2.9276) grad_norm 1.4989 (1.4989/0.0000) mem 16099MB [2025-01-18 11:42:16 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][10/312] eta 0:03:13 lr 0.000053 time 0.4586 (0.6393) model_time 0.4585 (0.4729) loss 2.9059 (2.8415) grad_norm 3.9026 (3.0747/1.2034) mem 16099MB [2025-01-18 11:42:21 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][20/312] eta 0:02:44 lr 0.000053 time 0.5501 (0.5636) model_time 0.5500 (0.4764) loss 2.0623 (2.7363) grad_norm 8.6386 (3.6434/2.0920) mem 16099MB [2025-01-18 11:42:25 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][30/312] eta 0:02:30 lr 0.000053 time 0.4659 (0.5323) model_time 0.4657 (0.4731) loss 2.1068 (2.7234) grad_norm 1.4697 (4.2176/2.6235) mem 16099MB [2025-01-18 11:42:30 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][40/312] eta 0:02:22 lr 0.000053 time 0.4571 (0.5248) model_time 0.4567 (0.4799) loss 2.5824 (2.7005) grad_norm 5.8913 (4.1287/2.4668) mem 16099MB [2025-01-18 11:42:35 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][50/312] eta 0:02:14 lr 0.000053 time 0.4530 (0.5116) model_time 0.4529 (0.4754) loss 1.8209 (2.6580) grad_norm 2.3730 (3.9581/2.3106) mem 16099MB [2025-01-18 11:42:39 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][60/312] eta 0:02:06 lr 0.000053 time 0.4408 (0.5037) model_time 0.4406 (0.4735) loss 2.6139 (2.6362) grad_norm 1.7976 (3.7577/2.1869) mem 16099MB [2025-01-18 11:42:44 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][70/312] eta 0:02:00 lr 0.000053 time 0.4508 (0.4971) model_time 0.4506 (0.4710) loss 2.6405 (2.6511) grad_norm 1.4616 (3.7240/2.0788) mem 16099MB [2025-01-18 11:42:49 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][80/312] eta 0:01:54 lr 0.000053 time 0.4563 (0.4954) model_time 0.4558 (0.4725) loss 3.0508 (2.6525) grad_norm 5.1042 (3.6417/2.0074) mem 16099MB [2025-01-18 11:42:54 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][90/312] eta 0:01:49 lr 0.000052 time 0.4538 (0.4930) model_time 0.4536 (0.4726) loss 2.8781 (2.6499) grad_norm 1.4341 (3.5831/1.9471) mem 16099MB [2025-01-18 11:42:58 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][100/312] eta 0:01:43 lr 0.000052 time 0.4474 (0.4899) model_time 0.4472 (0.4714) loss 2.6890 (2.6392) grad_norm 2.5111 (3.5373/1.8833) mem 16099MB [2025-01-18 11:43:03 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][110/312] eta 0:01:38 lr 0.000052 time 0.4612 (0.4874) model_time 0.4610 (0.4706) loss 2.9270 (2.6558) grad_norm 2.5001 (3.5235/1.8455) mem 16099MB [2025-01-18 11:43:07 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][120/312] eta 0:01:33 lr 0.000052 time 0.4549 (0.4850) model_time 0.4545 (0.4695) loss 2.1508 (2.6576) grad_norm 4.0582 (3.5673/1.8130) mem 16099MB [2025-01-18 11:43:12 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][130/312] eta 0:01:28 lr 0.000052 time 0.4466 (0.4841) model_time 0.4465 (0.4699) loss 2.1058 (2.6391) grad_norm 3.3924 (3.5547/1.7615) mem 16099MB [2025-01-18 11:43:17 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][140/312] eta 0:01:23 lr 0.000052 time 0.4482 (0.4833) model_time 0.4481 (0.4700) loss 1.7624 (2.6171) grad_norm 2.7257 (3.4953/1.7274) mem 16099MB [2025-01-18 11:43:21 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][150/312] eta 0:01:18 lr 0.000052 time 0.4487 (0.4820) model_time 0.4485 (0.4695) loss 2.7842 (2.6265) grad_norm 4.1644 (3.4833/1.7096) mem 16099MB [2025-01-18 11:43:26 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][160/312] eta 0:01:13 lr 0.000052 time 0.4411 (0.4809) model_time 0.4409 (0.4693) loss 1.9988 (2.6125) grad_norm 1.2931 (3.4398/1.6941) mem 16099MB [2025-01-18 11:43:31 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][170/312] eta 0:01:08 lr 0.000052 time 0.4524 (0.4798) model_time 0.4522 (0.4687) loss 2.2007 (2.6020) grad_norm 2.0197 (3.4145/1.6636) mem 16099MB [2025-01-18 11:43:36 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][180/312] eta 0:01:03 lr 0.000052 time 0.4600 (0.4798) model_time 0.4598 (0.4694) loss 2.9607 (2.6176) grad_norm 1.6175 (3.3635/1.6490) mem 16099MB [2025-01-18 11:43:40 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][190/312] eta 0:00:58 lr 0.000052 time 0.4449 (0.4789) model_time 0.4448 (0.4690) loss 1.7637 (2.6089) grad_norm 1.5341 (3.3505/1.6240) mem 16099MB [2025-01-18 11:43:45 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][200/312] eta 0:00:53 lr 0.000052 time 0.4647 (0.4778) model_time 0.4645 (0.4684) loss 2.7925 (2.6114) grad_norm 2.0364 (3.3434/1.5983) mem 16099MB [2025-01-18 11:43:49 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][210/312] eta 0:00:48 lr 0.000052 time 0.4619 (0.4771) model_time 0.4617 (0.4681) loss 2.1930 (2.6150) grad_norm 1.6869 (3.2930/1.5875) mem 16099MB [2025-01-18 11:43:54 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][220/312] eta 0:00:43 lr 0.000051 time 0.4511 (0.4780) model_time 0.4509 (0.4694) loss 2.8880 (2.6131) grad_norm 1.9505 (3.2708/1.5666) mem 16099MB [2025-01-18 11:43:59 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][230/312] eta 0:00:39 lr 0.000051 time 0.4559 (0.4769) model_time 0.4557 (0.4687) loss 2.6515 (2.6055) grad_norm 4.7443 (3.2756/1.5459) mem 16099MB [2025-01-18 11:44:03 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][240/312] eta 0:00:34 lr 0.000051 time 0.4535 (0.4760) model_time 0.4533 (0.4681) loss 2.7189 (2.6192) grad_norm 1.7492 (3.2382/1.5303) mem 16099MB [2025-01-18 11:44:08 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][250/312] eta 0:00:29 lr 0.000051 time 0.4643 (0.4772) model_time 0.4641 (0.4696) loss 2.7856 (2.6265) grad_norm 1.8902 (3.2137/1.5154) mem 16099MB [2025-01-18 11:44:13 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][260/312] eta 0:00:24 lr 0.000051 time 0.4930 (0.4767) model_time 0.4928 (0.4694) loss 2.2068 (2.6310) grad_norm 2.2930 (3.1809/1.5046) mem 16099MB [2025-01-18 11:44:18 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][270/312] eta 0:00:20 lr 0.000051 time 0.5047 (0.4768) model_time 0.5045 (0.4696) loss 2.2405 (2.6342) grad_norm 1.8506 (3.1604/1.4885) mem 16099MB [2025-01-18 11:44:23 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][280/312] eta 0:00:15 lr 0.000051 time 0.4789 (0.4765) model_time 0.4787 (0.4696) loss 3.1478 (2.6383) grad_norm 2.0761 (3.1297/1.4721) mem 16099MB [2025-01-18 11:44:27 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][290/312] eta 0:00:10 lr 0.000051 time 0.4568 (0.4757) model_time 0.4567 (0.4691) loss 2.2525 (2.6290) grad_norm 1.5099 (3.1168/1.4673) mem 16099MB [2025-01-18 11:44:32 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][300/312] eta 0:00:05 lr 0.000051 time 0.4397 (0.4760) model_time 0.4396 (0.4695) loss 3.0837 (2.6296) grad_norm 1.7025 (3.1140/1.4538) mem 16099MB [2025-01-18 11:44:37 internimage_t_1k_224] (main.py 510): INFO Train: [289/300][310/312] eta 0:00:00 lr 0.000051 time 0.5528 (0.4758) model_time 0.5527 (0.4695) loss 2.7176 (2.6311) grad_norm 1.5129 (3.0897/1.4497) mem 16099MB [2025-01-18 11:44:37 internimage_t_1k_224] (main.py 519): INFO EPOCH 289 training takes 0:02:28 [2025-01-18 11:44:37 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_289.pth saving...... [2025-01-18 11:44:38 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_289.pth saved !!! [2025-01-18 11:44:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.575 (7.575) Loss 0.7215 (0.7215) Acc@1 85.474 (85.474) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 11:44:49 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.015) Loss 0.9654 (0.8243) Acc@1 79.004 (83.234) Acc@5 95.337 (96.387) Mem 16099MB [2025-01-18 11:44:49 internimage_t_1k_224] (main.py 575): INFO [Epoch:289] * Acc@1 83.105 Acc@5 96.395 [2025-01-18 11:44:50 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:44:50 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:44:58 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.636 (8.636) Loss 0.7131 (0.7131) Acc@1 85.938 (85.938) Acc@5 97.681 (97.681) Mem 16099MB [2025-01-18 11:45:02 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.164) Loss 0.9428 (0.8117) Acc@1 79.907 (83.718) Acc@5 95.361 (96.564) Mem 16099MB [2025-01-18 11:45:02 internimage_t_1k_224] (main.py 575): INFO [Epoch:289] * Acc@1 83.561 Acc@5 96.567 [2025-01-18 11:45:02 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.6% [2025-01-18 11:45:02 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:45:04 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:45:04 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.56% [2025-01-18 11:45:06 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][0/312] eta 0:12:59 lr 0.000051 time 2.4979 (2.4979) model_time 0.4601 (0.4601) loss 2.7266 (2.7266) grad_norm 3.4810 (3.4810/0.0000) mem 16099MB [2025-01-18 11:45:11 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][10/312] eta 0:03:20 lr 0.000051 time 0.4568 (0.6644) model_time 0.4563 (0.4789) loss 3.2832 (2.6134) grad_norm 2.9837 (2.8458/0.8147) mem 16099MB [2025-01-18 11:45:16 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][20/312] eta 0:02:47 lr 0.000051 time 0.4647 (0.5724) model_time 0.4646 (0.4751) loss 2.9574 (2.6227) grad_norm 3.0077 (2.8246/0.8094) mem 16099MB [2025-01-18 11:45:21 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][30/312] eta 0:02:30 lr 0.000051 time 0.4466 (0.5347) model_time 0.4464 (0.4686) loss 2.1892 (2.6040) grad_norm 2.8075 (2.8929/0.9834) mem 16099MB [2025-01-18 11:45:25 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][40/312] eta 0:02:20 lr 0.000051 time 0.4526 (0.5176) model_time 0.4524 (0.4676) loss 2.8338 (2.5857) grad_norm 3.3047 (2.8472/0.9669) mem 16099MB [2025-01-18 11:45:30 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][50/312] eta 0:02:13 lr 0.000051 time 0.4441 (0.5092) model_time 0.4439 (0.4690) loss 2.2298 (2.6210) grad_norm 6.8167 (2.9604/1.1773) mem 16099MB [2025-01-18 11:45:34 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][60/312] eta 0:02:05 lr 0.000050 time 0.4513 (0.4997) model_time 0.4511 (0.4660) loss 2.3782 (2.6311) grad_norm 1.2325 (2.9270/1.2026) mem 16099MB [2025-01-18 11:45:39 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][70/312] eta 0:01:59 lr 0.000050 time 0.4656 (0.4939) model_time 0.4654 (0.4649) loss 3.0494 (2.6556) grad_norm 3.3086 (2.9229/1.1976) mem 16099MB [2025-01-18 11:45:44 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][80/312] eta 0:01:53 lr 0.000050 time 0.4559 (0.4907) model_time 0.4558 (0.4652) loss 3.0067 (2.6624) grad_norm 4.3142 (2.9258/1.1653) mem 16099MB [2025-01-18 11:45:48 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][90/312] eta 0:01:48 lr 0.000050 time 0.4559 (0.4868) model_time 0.4556 (0.4641) loss 3.4647 (2.6391) grad_norm 2.7912 (2.9673/1.2116) mem 16099MB [2025-01-18 11:45:53 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][100/312] eta 0:01:42 lr 0.000050 time 0.4570 (0.4841) model_time 0.4568 (0.4635) loss 2.3459 (2.6074) grad_norm 3.3001 (2.9957/1.2209) mem 16099MB [2025-01-18 11:45:57 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][110/312] eta 0:01:37 lr 0.000050 time 0.4482 (0.4811) model_time 0.4480 (0.4624) loss 2.8169 (2.6047) grad_norm 1.7726 (2.9947/1.1985) mem 16099MB [2025-01-18 11:46:02 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][120/312] eta 0:01:32 lr 0.000050 time 0.4358 (0.4798) model_time 0.4356 (0.4626) loss 3.2118 (2.6056) grad_norm 4.0810 (2.9862/1.1732) mem 16099MB [2025-01-18 11:46:07 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][130/312] eta 0:01:27 lr 0.000050 time 0.5479 (0.4823) model_time 0.5477 (0.4664) loss 3.0748 (2.6085) grad_norm 2.3799 (2.9296/1.1533) mem 16099MB [2025-01-18 11:46:12 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][140/312] eta 0:01:22 lr 0.000050 time 0.5514 (0.4807) model_time 0.5509 (0.4659) loss 3.1088 (2.5996) grad_norm 2.0202 (2.9089/1.1339) mem 16099MB [2025-01-18 11:46:16 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][150/312] eta 0:01:17 lr 0.000050 time 0.4552 (0.4790) model_time 0.4550 (0.4651) loss 2.6659 (2.6046) grad_norm 3.6044 (2.9680/1.2178) mem 16099MB [2025-01-18 11:46:21 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][160/312] eta 0:01:12 lr 0.000050 time 0.5340 (0.4785) model_time 0.5335 (0.4655) loss 1.9203 (2.5951) grad_norm 3.0232 (2.9836/1.2013) mem 16099MB [2025-01-18 11:46:26 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][170/312] eta 0:01:07 lr 0.000050 time 0.4490 (0.4787) model_time 0.4488 (0.4664) loss 2.5888 (2.6003) grad_norm 1.9467 (3.0224/1.2360) mem 16099MB [2025-01-18 11:46:31 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][180/312] eta 0:01:03 lr 0.000050 time 0.6315 (0.4784) model_time 0.6310 (0.4668) loss 1.8242 (2.5980) grad_norm 2.9094 (3.0263/1.2547) mem 16099MB [2025-01-18 11:46:35 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][190/312] eta 0:00:58 lr 0.000050 time 0.4511 (0.4779) model_time 0.4509 (0.4668) loss 2.1912 (2.5885) grad_norm 4.2230 (2.9906/1.2484) mem 16099MB [2025-01-18 11:46:40 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][200/312] eta 0:00:53 lr 0.000050 time 0.4600 (0.4771) model_time 0.4598 (0.4666) loss 2.9938 (2.5922) grad_norm 1.7035 (2.9571/1.2361) mem 16099MB [2025-01-18 11:46:45 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][210/312] eta 0:00:48 lr 0.000049 time 0.4475 (0.4767) model_time 0.4473 (0.4667) loss 2.6645 (2.5919) grad_norm 1.9150 (2.9351/1.2184) mem 16099MB [2025-01-18 11:46:49 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][220/312] eta 0:00:43 lr 0.000049 time 0.4438 (0.4769) model_time 0.4433 (0.4673) loss 3.0722 (2.6078) grad_norm 3.5195 (2.9090/1.2048) mem 16099MB [2025-01-18 11:46:54 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][230/312] eta 0:00:39 lr 0.000049 time 0.4485 (0.4760) model_time 0.4480 (0.4668) loss 2.9727 (2.6172) grad_norm 1.5298 (2.8858/1.1943) mem 16099MB [2025-01-18 11:46:59 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][240/312] eta 0:00:34 lr 0.000049 time 0.5663 (0.4762) model_time 0.5662 (0.4674) loss 2.4016 (2.6244) grad_norm 2.4449 (2.8804/1.1810) mem 16099MB [2025-01-18 11:47:04 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][250/312] eta 0:00:29 lr 0.000049 time 0.4539 (0.4763) model_time 0.4534 (0.4678) loss 2.9733 (2.6296) grad_norm 3.7796 (2.8718/1.1710) mem 16099MB [2025-01-18 11:47:08 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][260/312] eta 0:00:24 lr 0.000049 time 0.4587 (0.4757) model_time 0.4585 (0.4675) loss 2.7584 (2.6201) grad_norm 5.2519 (2.9017/1.1870) mem 16099MB [2025-01-18 11:47:13 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][270/312] eta 0:00:19 lr 0.000049 time 0.4423 (0.4751) model_time 0.4421 (0.4672) loss 2.9121 (2.6202) grad_norm 4.0615 (2.9472/1.2153) mem 16099MB [2025-01-18 11:47:17 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][280/312] eta 0:00:15 lr 0.000049 time 0.4571 (0.4744) model_time 0.4569 (0.4667) loss 2.0161 (2.6202) grad_norm 3.1461 (2.9787/1.2426) mem 16099MB [2025-01-18 11:47:22 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][290/312] eta 0:00:10 lr 0.000049 time 0.4425 (0.4750) model_time 0.4424 (0.4676) loss 2.8403 (2.6201) grad_norm 2.8643 (2.9748/1.2298) mem 16099MB [2025-01-18 11:47:27 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][300/312] eta 0:00:05 lr 0.000049 time 0.4387 (0.4748) model_time 0.4385 (0.4677) loss 2.8055 (2.6254) grad_norm 3.3195 (2.9747/1.2405) mem 16099MB [2025-01-18 11:47:31 internimage_t_1k_224] (main.py 510): INFO Train: [290/300][310/312] eta 0:00:00 lr 0.000049 time 0.4422 (0.4738) model_time 0.4421 (0.4669) loss 2.0466 (2.6321) grad_norm 1.7789 (3.0120/1.2882) mem 16099MB [2025-01-18 11:47:32 internimage_t_1k_224] (main.py 519): INFO EPOCH 290 training takes 0:02:27 [2025-01-18 11:47:32 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_290.pth saving...... [2025-01-18 11:47:33 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_290.pth saved !!! [2025-01-18 11:47:40 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.483 (7.483) Loss 0.7172 (0.7172) Acc@1 85.278 (85.278) Acc@5 97.583 (97.583) Mem 16099MB [2025-01-18 11:47:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.004) Loss 0.9621 (0.8167) Acc@1 79.346 (83.243) Acc@5 95.312 (96.416) Mem 16099MB [2025-01-18 11:47:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:290] * Acc@1 83.107 Acc@5 96.429 [2025-01-18 11:47:44 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:47:44 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:47:52 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.317 (8.317) Loss 0.7129 (0.7129) Acc@1 85.938 (85.938) Acc@5 97.632 (97.632) Mem 16099MB [2025-01-18 11:47:57 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.130) Loss 0.9428 (0.8114) Acc@1 79.956 (83.718) Acc@5 95.410 (96.566) Mem 16099MB [2025-01-18 11:47:57 internimage_t_1k_224] (main.py 575): INFO [Epoch:290] * Acc@1 83.561 Acc@5 96.571 [2025-01-18 11:47:57 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.6% [2025-01-18 11:47:57 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.56% [2025-01-18 11:48:00 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][0/312] eta 0:16:20 lr 0.000049 time 3.1422 (3.1422) model_time 1.4249 (1.4249) loss 2.3420 (2.3420) grad_norm 3.2240 (3.2240/0.0000) mem 16099MB [2025-01-18 11:48:05 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][10/312] eta 0:03:40 lr 0.000049 time 0.5353 (0.7305) model_time 0.5352 (0.5740) loss 2.7401 (2.4255) grad_norm 3.7352 (3.4570/1.3820) mem 16099MB [2025-01-18 11:48:09 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][20/312] eta 0:02:54 lr 0.000049 time 0.4538 (0.5991) model_time 0.4536 (0.5170) loss 1.8131 (2.5232) grad_norm 5.8237 (3.6486/1.3595) mem 16099MB [2025-01-18 11:48:14 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][30/312] eta 0:02:35 lr 0.000049 time 0.4577 (0.5516) model_time 0.4575 (0.4958) loss 2.9945 (2.5711) grad_norm 2.5083 (3.7751/1.4308) mem 16099MB [2025-01-18 11:48:18 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][40/312] eta 0:02:23 lr 0.000049 time 0.4531 (0.5283) model_time 0.4529 (0.4861) loss 3.2317 (2.6219) grad_norm 5.8717 (3.8180/1.3924) mem 16099MB [2025-01-18 11:48:23 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][50/312] eta 0:02:15 lr 0.000048 time 0.4515 (0.5159) model_time 0.4509 (0.4819) loss 1.9538 (2.6104) grad_norm 1.4711 (3.6516/1.4209) mem 16099MB [2025-01-18 11:48:28 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][60/312] eta 0:02:07 lr 0.000048 time 0.4535 (0.5059) model_time 0.4533 (0.4774) loss 1.9332 (2.6012) grad_norm 2.3868 (3.5395/1.3663) mem 16099MB [2025-01-18 11:48:32 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][70/312] eta 0:02:00 lr 0.000048 time 0.4647 (0.4996) model_time 0.4645 (0.4751) loss 2.7619 (2.6463) grad_norm 3.3307 (3.3152/1.4031) mem 16099MB [2025-01-18 11:48:37 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][80/312] eta 0:01:54 lr 0.000048 time 0.4336 (0.4937) model_time 0.4334 (0.4721) loss 3.2304 (2.6590) grad_norm 3.3521 (3.2324/1.3551) mem 16099MB [2025-01-18 11:48:41 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][90/312] eta 0:01:49 lr 0.000048 time 0.5274 (0.4926) model_time 0.5272 (0.4733) loss 2.8544 (2.6713) grad_norm 6.3194 (3.2529/1.3701) mem 16099MB [2025-01-18 11:48:46 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][100/312] eta 0:01:43 lr 0.000048 time 0.4417 (0.4894) model_time 0.4415 (0.4720) loss 1.6345 (2.6696) grad_norm 3.4133 (3.2172/1.3207) mem 16099MB [2025-01-18 11:48:51 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][110/312] eta 0:01:38 lr 0.000048 time 0.4571 (0.4869) model_time 0.4566 (0.4710) loss 2.8466 (2.6701) grad_norm 7.2795 (3.2755/1.3367) mem 16099MB [2025-01-18 11:48:55 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][120/312] eta 0:01:33 lr 0.000048 time 0.4560 (0.4860) model_time 0.4558 (0.4714) loss 3.0116 (2.6547) grad_norm 3.3637 (3.2201/1.3303) mem 16099MB [2025-01-18 11:49:00 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][130/312] eta 0:01:28 lr 0.000048 time 0.4540 (0.4870) model_time 0.4538 (0.4736) loss 1.8944 (2.6599) grad_norm 2.1111 (3.1880/1.3204) mem 16099MB [2025-01-18 11:49:06 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][140/312] eta 0:01:24 lr 0.000048 time 0.7302 (0.4887) model_time 0.7300 (0.4761) loss 3.0549 (2.6654) grad_norm 2.9292 (3.1465/1.2993) mem 16099MB [2025-01-18 11:49:10 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][150/312] eta 0:01:18 lr 0.000048 time 0.4559 (0.4866) model_time 0.4558 (0.4748) loss 2.8251 (2.6616) grad_norm 2.4232 (3.1441/1.2972) mem 16099MB [2025-01-18 11:49:15 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][160/312] eta 0:01:13 lr 0.000048 time 0.4505 (0.4867) model_time 0.4503 (0.4756) loss 2.7696 (2.6557) grad_norm 3.6688 (3.1603/1.2919) mem 16099MB [2025-01-18 11:49:20 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][170/312] eta 0:01:08 lr 0.000048 time 0.4501 (0.4849) model_time 0.4499 (0.4744) loss 2.4824 (2.6544) grad_norm 5.1437 (3.2317/1.3657) mem 16099MB [2025-01-18 11:49:24 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][180/312] eta 0:01:03 lr 0.000048 time 0.4761 (0.4838) model_time 0.4756 (0.4740) loss 3.0054 (2.6535) grad_norm 3.3295 (3.2745/1.3866) mem 16099MB [2025-01-18 11:49:29 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][190/312] eta 0:00:58 lr 0.000048 time 0.4582 (0.4822) model_time 0.4580 (0.4729) loss 3.1215 (2.6523) grad_norm 2.9423 (3.3333/1.4404) mem 16099MB [2025-01-18 11:49:34 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][200/312] eta 0:00:53 lr 0.000048 time 0.4690 (0.4819) model_time 0.4688 (0.4730) loss 3.0493 (2.6520) grad_norm 5.7813 (3.3512/1.4861) mem 16099MB [2025-01-18 11:49:38 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][210/312] eta 0:00:49 lr 0.000048 time 0.4572 (0.4806) model_time 0.4570 (0.4721) loss 1.8563 (2.6482) grad_norm 2.0408 (3.3507/1.4910) mem 16099MB [2025-01-18 11:49:43 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][220/312] eta 0:00:44 lr 0.000047 time 0.4514 (0.4793) model_time 0.4509 (0.4712) loss 2.4397 (2.6414) grad_norm 4.0539 (3.3164/1.4862) mem 16099MB [2025-01-18 11:49:47 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][230/312] eta 0:00:39 lr 0.000047 time 0.4558 (0.4788) model_time 0.4553 (0.4710) loss 2.4857 (2.6339) grad_norm 2.9468 (3.3058/1.4924) mem 16099MB [2025-01-18 11:49:52 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][240/312] eta 0:00:34 lr 0.000047 time 0.4554 (0.4778) model_time 0.4549 (0.4703) loss 1.5336 (2.6316) grad_norm 2.2466 (3.2890/1.4755) mem 16099MB [2025-01-18 11:49:56 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][250/312] eta 0:00:29 lr 0.000047 time 0.4468 (0.4768) model_time 0.4467 (0.4695) loss 3.1300 (2.6337) grad_norm 4.7565 (3.2703/1.4689) mem 16099MB [2025-01-18 11:50:01 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][260/312] eta 0:00:24 lr 0.000047 time 0.4671 (0.4768) model_time 0.4666 (0.4698) loss 2.6710 (2.6388) grad_norm 1.7679 (3.2618/1.4593) mem 16099MB [2025-01-18 11:50:06 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][270/312] eta 0:00:20 lr 0.000047 time 0.4486 (0.4763) model_time 0.4482 (0.4695) loss 3.1095 (2.6389) grad_norm 3.6556 (3.2453/1.4426) mem 16099MB [2025-01-18 11:50:10 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][280/312] eta 0:00:15 lr 0.000047 time 0.4575 (0.4755) model_time 0.4571 (0.4690) loss 2.3929 (2.6386) grad_norm 2.8835 (3.2390/1.4279) mem 16099MB [2025-01-18 11:50:15 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][290/312] eta 0:00:10 lr 0.000047 time 0.4457 (0.4754) model_time 0.4455 (0.4691) loss 2.7906 (2.6432) grad_norm 1.8507 (3.2298/1.4138) mem 16099MB [2025-01-18 11:50:20 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][300/312] eta 0:00:05 lr 0.000047 time 0.4376 (0.4747) model_time 0.4374 (0.4686) loss 2.9314 (2.6448) grad_norm 2.0550 (3.2297/1.4159) mem 16099MB [2025-01-18 11:50:24 internimage_t_1k_224] (main.py 510): INFO Train: [291/300][310/312] eta 0:00:00 lr 0.000047 time 0.5465 (0.4740) model_time 0.5464 (0.4681) loss 2.3001 (2.6380) grad_norm 1.7213 (3.2111/1.4092) mem 16099MB [2025-01-18 11:50:25 internimage_t_1k_224] (main.py 519): INFO EPOCH 291 training takes 0:02:27 [2025-01-18 11:50:25 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_291.pth saving...... [2025-01-18 11:50:26 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_291.pth saved !!! [2025-01-18 11:50:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.673 (7.673) Loss 0.7243 (0.7243) Acc@1 85.327 (85.327) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 11:50:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.106 (1.025) Loss 0.9703 (0.8193) Acc@1 78.882 (83.179) Acc@5 95.142 (96.342) Mem 16099MB [2025-01-18 11:50:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:291] * Acc@1 83.057 Acc@5 96.345 [2025-01-18 11:50:37 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:50:37 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:50:46 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.519 (8.519) Loss 0.7127 (0.7127) Acc@1 85.962 (85.962) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 11:50:50 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.104 (1.140) Loss 0.9426 (0.8111) Acc@1 79.932 (83.725) Acc@5 95.435 (96.566) Mem 16099MB [2025-01-18 11:50:50 internimage_t_1k_224] (main.py 575): INFO [Epoch:291] * Acc@1 83.565 Acc@5 96.573 [2025-01-18 11:50:50 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.6% [2025-01-18 11:50:50 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saving...... [2025-01-18 11:50:51 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_ema_best.pth saved !!! [2025-01-18 11:50:51 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 11:50:53 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][0/312] eta 0:11:41 lr 0.000047 time 2.2474 (2.2474) model_time 0.4812 (0.4812) loss 3.2075 (3.2075) grad_norm 4.4715 (4.4715/0.0000) mem 16099MB [2025-01-18 11:50:58 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][10/312] eta 0:03:07 lr 0.000047 time 0.4468 (0.6217) model_time 0.4467 (0.4609) loss 2.0704 (2.6448) grad_norm 2.6178 (3.6563/1.0574) mem 16099MB [2025-01-18 11:51:03 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][20/312] eta 0:02:40 lr 0.000047 time 0.4656 (0.5505) model_time 0.4655 (0.4661) loss 2.8406 (2.5981) grad_norm 3.0010 (3.4894/0.9969) mem 16099MB [2025-01-18 11:51:08 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][30/312] eta 0:02:29 lr 0.000047 time 0.4491 (0.5288) model_time 0.4490 (0.4715) loss 2.2909 (2.6545) grad_norm 1.8697 (3.5336/1.0873) mem 16099MB [2025-01-18 11:51:12 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][40/312] eta 0:02:19 lr 0.000047 time 0.4441 (0.5111) model_time 0.4439 (0.4677) loss 2.6212 (2.7145) grad_norm 1.6605 (3.2916/1.1154) mem 16099MB [2025-01-18 11:51:17 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][50/312] eta 0:02:11 lr 0.000047 time 0.4642 (0.5024) model_time 0.4640 (0.4674) loss 2.8384 (2.7374) grad_norm 6.0545 (3.2595/1.2379) mem 16099MB [2025-01-18 11:51:21 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][60/312] eta 0:02:04 lr 0.000047 time 0.4588 (0.4949) model_time 0.4582 (0.4655) loss 1.9280 (2.7250) grad_norm 2.1564 (3.1815/1.1808) mem 16099MB [2025-01-18 11:51:26 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][70/312] eta 0:01:58 lr 0.000047 time 0.5438 (0.4901) model_time 0.5436 (0.4649) loss 2.7437 (2.7419) grad_norm 1.3331 (3.1118/1.1942) mem 16099MB [2025-01-18 11:51:31 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][80/312] eta 0:01:53 lr 0.000047 time 0.4408 (0.4874) model_time 0.4406 (0.4652) loss 1.9098 (2.6975) grad_norm 2.1945 (3.0293/1.1754) mem 16099MB [2025-01-18 11:51:35 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][90/312] eta 0:01:47 lr 0.000046 time 0.5297 (0.4853) model_time 0.5295 (0.4655) loss 3.1135 (2.6687) grad_norm 2.7541 (2.9939/1.1815) mem 16099MB [2025-01-18 11:51:40 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][100/312] eta 0:01:42 lr 0.000046 time 0.4330 (0.4835) model_time 0.4329 (0.4657) loss 2.4150 (2.6740) grad_norm 6.4400 (2.9818/1.2212) mem 16099MB [2025-01-18 11:51:45 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][110/312] eta 0:01:37 lr 0.000046 time 0.4327 (0.4832) model_time 0.4323 (0.4669) loss 2.9755 (2.6568) grad_norm 2.5168 (2.9907/1.2751) mem 16099MB [2025-01-18 11:51:50 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][120/312] eta 0:01:32 lr 0.000046 time 0.4470 (0.4823) model_time 0.4465 (0.4673) loss 2.8748 (2.6380) grad_norm 3.8151 (3.0597/1.2770) mem 16099MB [2025-01-18 11:51:54 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][130/312] eta 0:01:27 lr 0.000046 time 0.4480 (0.4804) model_time 0.4478 (0.4665) loss 2.7985 (2.6351) grad_norm 4.0590 (3.1946/1.3957) mem 16099MB [2025-01-18 11:51:59 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][140/312] eta 0:01:22 lr 0.000046 time 0.4588 (0.4823) model_time 0.4586 (0.4694) loss 2.9520 (2.6307) grad_norm 1.8534 (3.1719/1.3945) mem 16099MB [2025-01-18 11:52:04 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][150/312] eta 0:01:17 lr 0.000046 time 0.4524 (0.4812) model_time 0.4522 (0.4691) loss 2.7244 (2.6337) grad_norm 2.0402 (3.1484/1.4005) mem 16099MB [2025-01-18 11:52:09 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][160/312] eta 0:01:12 lr 0.000046 time 0.4516 (0.4801) model_time 0.4511 (0.4687) loss 3.2886 (2.6357) grad_norm 2.2608 (3.1062/1.3756) mem 16099MB [2025-01-18 11:52:13 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][170/312] eta 0:01:07 lr 0.000046 time 0.4583 (0.4785) model_time 0.4581 (0.4677) loss 2.8858 (2.6407) grad_norm 2.9817 (3.0761/1.3541) mem 16099MB [2025-01-18 11:52:18 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][180/312] eta 0:01:03 lr 0.000046 time 0.4415 (0.4780) model_time 0.4411 (0.4678) loss 2.9524 (2.6356) grad_norm 2.0107 (3.0735/1.3296) mem 16099MB [2025-01-18 11:52:22 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][190/312] eta 0:00:58 lr 0.000046 time 0.4467 (0.4767) model_time 0.4463 (0.4670) loss 2.9219 (2.6341) grad_norm 3.9244 (3.0711/1.3093) mem 16099MB [2025-01-18 11:52:27 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][200/312] eta 0:00:53 lr 0.000046 time 0.4468 (0.4754) model_time 0.4466 (0.4662) loss 2.9096 (2.6486) grad_norm 4.9450 (3.0888/1.3165) mem 16099MB [2025-01-18 11:52:32 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][210/312] eta 0:00:48 lr 0.000046 time 0.4584 (0.4759) model_time 0.4579 (0.4672) loss 2.5442 (2.6464) grad_norm 2.2079 (3.0740/1.3035) mem 16099MB [2025-01-18 11:52:36 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][220/312] eta 0:00:43 lr 0.000046 time 0.4497 (0.4752) model_time 0.4492 (0.4668) loss 3.0633 (2.6444) grad_norm 5.6002 (3.0783/1.2986) mem 16099MB [2025-01-18 11:52:41 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][230/312] eta 0:00:38 lr 0.000046 time 0.4545 (0.4745) model_time 0.4540 (0.4664) loss 1.9404 (2.6300) grad_norm 1.9021 (3.0863/1.2919) mem 16099MB [2025-01-18 11:52:45 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][240/312] eta 0:00:34 lr 0.000046 time 0.4494 (0.4739) model_time 0.4490 (0.4662) loss 2.9072 (2.6320) grad_norm 2.8485 (3.0606/1.2839) mem 16099MB [2025-01-18 11:52:50 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][250/312] eta 0:00:29 lr 0.000046 time 0.4450 (0.4731) model_time 0.4445 (0.4657) loss 2.5126 (2.6174) grad_norm 5.6086 (3.0689/1.2866) mem 16099MB [2025-01-18 11:52:55 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][260/312] eta 0:00:24 lr 0.000046 time 0.4622 (0.4733) model_time 0.4620 (0.4662) loss 2.3277 (2.6110) grad_norm 1.5453 (3.0729/1.2913) mem 16099MB [2025-01-18 11:52:59 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][270/312] eta 0:00:19 lr 0.000046 time 0.4495 (0.4731) model_time 0.4494 (0.4661) loss 3.5460 (2.6152) grad_norm 2.2441 (3.0843/1.2920) mem 16099MB [2025-01-18 11:53:04 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][280/312] eta 0:00:15 lr 0.000045 time 0.4467 (0.4732) model_time 0.4463 (0.4666) loss 2.9346 (2.6130) grad_norm 3.7573 (3.0974/1.3015) mem 16099MB [2025-01-18 11:53:09 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][290/312] eta 0:00:10 lr 0.000045 time 0.4640 (0.4732) model_time 0.4635 (0.4668) loss 2.4992 (2.6099) grad_norm 2.7524 (3.0752/1.2946) mem 16099MB [2025-01-18 11:53:13 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][300/312] eta 0:00:05 lr 0.000045 time 0.4408 (0.4725) model_time 0.4406 (0.4662) loss 2.6969 (2.6151) grad_norm 2.5705 (3.0912/1.3093) mem 16099MB [2025-01-18 11:53:18 internimage_t_1k_224] (main.py 510): INFO Train: [292/300][310/312] eta 0:00:00 lr 0.000045 time 0.5568 (0.4718) model_time 0.5567 (0.4657) loss 2.8051 (2.6136) grad_norm 2.4165 (3.0830/1.3133) mem 16099MB [2025-01-18 11:53:18 internimage_t_1k_224] (main.py 519): INFO EPOCH 292 training takes 0:02:27 [2025-01-18 11:53:18 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_292.pth saving...... [2025-01-18 11:53:20 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_292.pth saved !!! [2025-01-18 11:53:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.546 (7.546) Loss 0.7218 (0.7218) Acc@1 85.400 (85.400) Acc@5 97.485 (97.485) Mem 16099MB [2025-01-18 11:53:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.017) Loss 0.9723 (0.8212) Acc@1 78.833 (83.265) Acc@5 95.093 (96.329) Mem 16099MB [2025-01-18 11:53:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:292] * Acc@1 83.111 Acc@5 96.335 [2025-01-18 11:53:31 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:53:31 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:53:39 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.457 (8.457) Loss 0.7123 (0.7123) Acc@1 85.938 (85.938) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 11:53:44 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.148) Loss 0.9423 (0.8107) Acc@1 79.858 (83.720) Acc@5 95.435 (96.566) Mem 16099MB [2025-01-18 11:53:44 internimage_t_1k_224] (main.py 575): INFO [Epoch:292] * Acc@1 83.557 Acc@5 96.575 [2025-01-18 11:53:44 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.6% [2025-01-18 11:53:44 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 11:53:47 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][0/312] eta 0:14:04 lr 0.000045 time 2.7075 (2.7075) model_time 1.2961 (1.2961) loss 2.1388 (2.1388) grad_norm 2.4724 (2.4724/0.0000) mem 16099MB [2025-01-18 11:53:51 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][10/312] eta 0:03:27 lr 0.000045 time 0.4577 (0.6859) model_time 0.4567 (0.5572) loss 2.9588 (2.4907) grad_norm 1.7963 (2.7368/0.8062) mem 16099MB [2025-01-18 11:53:56 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][20/312] eta 0:02:49 lr 0.000045 time 0.4553 (0.5803) model_time 0.4548 (0.5126) loss 2.6072 (2.5660) grad_norm 4.6944 (2.8035/1.1177) mem 16099MB [2025-01-18 11:54:01 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][30/312] eta 0:02:32 lr 0.000045 time 0.4391 (0.5418) model_time 0.4390 (0.4959) loss 2.6533 (2.5858) grad_norm 1.7352 (2.7771/1.0241) mem 16099MB [2025-01-18 11:54:05 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][40/312] eta 0:02:21 lr 0.000045 time 0.4486 (0.5199) model_time 0.4483 (0.4851) loss 2.7019 (2.6369) grad_norm 2.6231 (2.9379/1.1164) mem 16099MB [2025-01-18 11:54:10 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][50/312] eta 0:02:14 lr 0.000045 time 0.4421 (0.5150) model_time 0.4420 (0.4869) loss 3.1762 (2.6583) grad_norm 2.7000 (2.9235/1.0773) mem 16099MB [2025-01-18 11:54:15 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][60/312] eta 0:02:07 lr 0.000045 time 0.4552 (0.5045) model_time 0.4549 (0.4810) loss 2.2752 (2.6511) grad_norm 4.0063 (2.8728/1.0439) mem 16099MB [2025-01-18 11:54:19 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][70/312] eta 0:02:00 lr 0.000045 time 0.4514 (0.4981) model_time 0.4509 (0.4777) loss 2.6781 (2.6584) grad_norm 2.1130 (2.7928/1.0350) mem 16099MB [2025-01-18 11:54:24 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][80/312] eta 0:01:54 lr 0.000045 time 0.4549 (0.4948) model_time 0.4548 (0.4769) loss 3.1258 (2.6516) grad_norm 2.0098 (2.8098/1.0922) mem 16099MB [2025-01-18 11:54:29 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][90/312] eta 0:01:49 lr 0.000045 time 0.7054 (0.4936) model_time 0.7049 (0.4777) loss 1.5822 (2.6212) grad_norm 1.7586 (2.7560/1.0813) mem 16099MB [2025-01-18 11:54:33 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][100/312] eta 0:01:43 lr 0.000045 time 0.4552 (0.4901) model_time 0.4547 (0.4757) loss 3.2150 (2.6192) grad_norm 1.8139 (2.7126/1.0484) mem 16099MB [2025-01-18 11:54:38 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][110/312] eta 0:01:38 lr 0.000045 time 0.4614 (0.4881) model_time 0.4612 (0.4750) loss 2.8993 (2.6179) grad_norm 2.4402 (2.7616/1.0738) mem 16099MB [2025-01-18 11:54:43 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][120/312] eta 0:01:33 lr 0.000045 time 0.4512 (0.4853) model_time 0.4507 (0.4732) loss 2.7845 (2.6289) grad_norm 4.1449 (2.7911/1.1055) mem 16099MB [2025-01-18 11:54:47 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][130/312] eta 0:01:28 lr 0.000045 time 0.4679 (0.4839) model_time 0.4675 (0.4727) loss 2.6333 (2.6358) grad_norm 2.1360 (2.7784/1.1049) mem 16099MB [2025-01-18 11:54:52 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][140/312] eta 0:01:22 lr 0.000045 time 0.5328 (0.4824) model_time 0.5326 (0.4720) loss 2.7229 (2.6322) grad_norm 2.5247 (2.7733/1.0903) mem 16099MB [2025-01-18 11:54:56 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][150/312] eta 0:01:17 lr 0.000045 time 0.4604 (0.4811) model_time 0.4602 (0.4713) loss 3.1709 (2.6371) grad_norm 3.4752 (2.7811/1.1164) mem 16099MB [2025-01-18 11:55:01 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][160/312] eta 0:01:12 lr 0.000045 time 0.4329 (0.4795) model_time 0.4327 (0.4703) loss 2.7671 (2.6487) grad_norm 2.6118 (2.7830/1.1004) mem 16099MB [2025-01-18 11:55:06 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][170/312] eta 0:01:07 lr 0.000045 time 0.4518 (0.4787) model_time 0.4514 (0.4701) loss 2.9599 (2.6456) grad_norm 1.9106 (2.7834/1.1083) mem 16099MB [2025-01-18 11:55:10 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][180/312] eta 0:01:03 lr 0.000044 time 0.4433 (0.4778) model_time 0.4428 (0.4696) loss 3.1075 (2.6559) grad_norm 2.7860 (2.7796/1.1112) mem 16099MB [2025-01-18 11:55:15 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][190/312] eta 0:00:58 lr 0.000044 time 0.5436 (0.4778) model_time 0.5431 (0.4699) loss 2.6297 (2.6417) grad_norm 2.5143 (2.8031/1.1604) mem 16099MB [2025-01-18 11:55:20 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][200/312] eta 0:00:53 lr 0.000044 time 0.4455 (0.4765) model_time 0.4454 (0.4690) loss 2.6382 (2.6492) grad_norm 2.0431 (2.8150/1.1545) mem 16099MB [2025-01-18 11:55:24 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][210/312] eta 0:00:48 lr 0.000044 time 0.4478 (0.4759) model_time 0.4473 (0.4687) loss 3.3337 (2.6428) grad_norm 2.9315 (2.8230/1.1417) mem 16099MB [2025-01-18 11:55:29 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][220/312] eta 0:00:43 lr 0.000044 time 0.4510 (0.4748) model_time 0.4505 (0.4680) loss 2.6825 (2.6482) grad_norm 3.1147 (2.8548/1.1629) mem 16099MB [2025-01-18 11:55:33 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][230/312] eta 0:00:38 lr 0.000044 time 0.4555 (0.4740) model_time 0.4553 (0.4674) loss 3.2222 (2.6423) grad_norm 3.5321 (2.8536/1.1589) mem 16099MB [2025-01-18 11:55:38 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][240/312] eta 0:00:34 lr 0.000044 time 0.4523 (0.4739) model_time 0.4521 (0.4676) loss 2.1422 (2.6456) grad_norm 7.0733 (2.8695/1.1767) mem 16099MB [2025-01-18 11:55:43 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][250/312] eta 0:00:29 lr 0.000044 time 0.4434 (0.4738) model_time 0.4429 (0.4677) loss 1.7707 (2.6447) grad_norm 1.8154 (2.8466/1.1613) mem 16099MB [2025-01-18 11:55:47 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][260/312] eta 0:00:24 lr 0.000044 time 0.4563 (0.4734) model_time 0.4558 (0.4675) loss 2.9062 (2.6442) grad_norm 2.8906 (2.8410/1.1645) mem 16099MB [2025-01-18 11:55:52 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][270/312] eta 0:00:19 lr 0.000044 time 0.4494 (0.4725) model_time 0.4489 (0.4669) loss 2.9013 (2.6465) grad_norm 2.1991 (2.8086/1.1611) mem 16099MB [2025-01-18 11:55:56 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][280/312] eta 0:00:15 lr 0.000044 time 0.4686 (0.4722) model_time 0.4682 (0.4668) loss 2.5780 (2.6420) grad_norm 3.4161 (2.8138/1.1527) mem 16099MB [2025-01-18 11:56:01 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][290/312] eta 0:00:10 lr 0.000044 time 0.4497 (0.4732) model_time 0.4495 (0.4679) loss 2.5302 (2.6444) grad_norm 3.7789 (2.8471/1.1616) mem 16099MB [2025-01-18 11:56:06 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][300/312] eta 0:00:05 lr 0.000044 time 0.4499 (0.4724) model_time 0.4498 (0.4673) loss 2.2326 (2.6465) grad_norm 5.2207 (2.8991/1.2048) mem 16099MB [2025-01-18 11:56:11 internimage_t_1k_224] (main.py 510): INFO Train: [293/300][310/312] eta 0:00:00 lr 0.000044 time 0.4376 (0.4719) model_time 0.4376 (0.4669) loss 2.5447 (2.6395) grad_norm 5.1181 (2.9221/1.2181) mem 16099MB [2025-01-18 11:56:11 internimage_t_1k_224] (main.py 519): INFO EPOCH 293 training takes 0:02:27 [2025-01-18 11:56:11 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_293.pth saving...... [2025-01-18 11:56:12 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_293.pth saved !!! [2025-01-18 11:56:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.534 (7.534) Loss 0.7231 (0.7231) Acc@1 85.425 (85.425) Acc@5 97.461 (97.461) Mem 16099MB [2025-01-18 11:56:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.037) Loss 0.9674 (0.8203) Acc@1 79.126 (83.256) Acc@5 95.093 (96.384) Mem 16099MB [2025-01-18 11:56:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:293] * Acc@1 83.101 Acc@5 96.393 [2025-01-18 11:56:24 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:56:24 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:56:33 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.665 (8.665) Loss 0.7120 (0.7120) Acc@1 85.913 (85.913) Acc@5 97.656 (97.656) Mem 16099MB [2025-01-18 11:56:37 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.162) Loss 0.9421 (0.8102) Acc@1 79.810 (83.722) Acc@5 95.435 (96.560) Mem 16099MB [2025-01-18 11:56:37 internimage_t_1k_224] (main.py 575): INFO [Epoch:293] * Acc@1 83.563 Acc@5 96.569 [2025-01-18 11:56:37 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.6% [2025-01-18 11:56:37 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 11:56:40 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][0/312] eta 0:16:45 lr 0.000044 time 3.2242 (3.2242) model_time 1.7669 (1.7669) loss 2.7735 (2.7735) grad_norm 1.7880 (1.7880/0.0000) mem 16099MB [2025-01-18 11:56:45 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][10/312] eta 0:03:41 lr 0.000044 time 0.4479 (0.7327) model_time 0.4477 (0.5999) loss 2.4510 (2.6264) grad_norm 2.2265 (2.8864/1.0782) mem 16099MB [2025-01-18 11:56:49 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][20/312] eta 0:02:55 lr 0.000044 time 0.4615 (0.6019) model_time 0.4613 (0.5322) loss 2.8634 (2.5114) grad_norm 1.7759 (2.7772/0.9790) mem 16099MB [2025-01-18 11:56:54 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][30/312] eta 0:02:38 lr 0.000044 time 0.4414 (0.5616) model_time 0.4412 (0.5142) loss 3.2087 (2.5638) grad_norm 4.3464 (2.8689/1.0630) mem 16099MB [2025-01-18 11:56:59 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][40/312] eta 0:02:26 lr 0.000044 time 0.4547 (0.5368) model_time 0.4542 (0.5009) loss 2.4065 (2.5401) grad_norm 2.4147 (2.9275/1.0474) mem 16099MB [2025-01-18 11:57:03 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][50/312] eta 0:02:16 lr 0.000044 time 0.4651 (0.5226) model_time 0.4649 (0.4936) loss 2.7732 (2.5355) grad_norm 2.0324 (2.8306/1.0166) mem 16099MB [2025-01-18 11:57:08 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][60/312] eta 0:02:09 lr 0.000044 time 0.5371 (0.5157) model_time 0.5366 (0.4915) loss 2.8350 (2.5450) grad_norm 1.5951 (2.7930/1.0220) mem 16099MB [2025-01-18 11:57:13 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][70/312] eta 0:02:02 lr 0.000044 time 0.4628 (0.5081) model_time 0.4626 (0.4872) loss 1.7295 (2.5475) grad_norm 3.9334 (2.7440/0.9856) mem 16099MB [2025-01-18 11:57:18 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][80/312] eta 0:01:56 lr 0.000044 time 0.4471 (0.5041) model_time 0.4469 (0.4858) loss 3.0125 (2.5430) grad_norm 2.6445 (2.7581/0.9706) mem 16099MB [2025-01-18 11:57:22 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][90/312] eta 0:01:50 lr 0.000044 time 0.4494 (0.4985) model_time 0.4492 (0.4822) loss 2.2479 (2.5459) grad_norm 1.7895 (2.7317/0.9801) mem 16099MB [2025-01-18 11:57:27 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][100/312] eta 0:01:44 lr 0.000044 time 0.4474 (0.4944) model_time 0.4469 (0.4796) loss 2.5742 (2.5452) grad_norm 2.3998 (2.7387/0.9896) mem 16099MB [2025-01-18 11:57:31 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][110/312] eta 0:01:39 lr 0.000043 time 0.4500 (0.4910) model_time 0.4498 (0.4775) loss 2.6400 (2.5510) grad_norm 1.8435 (2.7036/0.9681) mem 16099MB [2025-01-18 11:57:36 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][120/312] eta 0:01:33 lr 0.000043 time 0.4525 (0.4891) model_time 0.4524 (0.4767) loss 2.5145 (2.5398) grad_norm 1.5300 (2.6614/0.9642) mem 16099MB [2025-01-18 11:57:41 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][130/312] eta 0:01:29 lr 0.000043 time 0.4637 (0.4892) model_time 0.4634 (0.4777) loss 1.7739 (2.5270) grad_norm 3.7195 (2.6764/0.9875) mem 16099MB [2025-01-18 11:57:46 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][140/312] eta 0:01:24 lr 0.000043 time 0.4410 (0.4895) model_time 0.4406 (0.4788) loss 2.3459 (2.5247) grad_norm 2.0372 (2.6626/0.9725) mem 16099MB [2025-01-18 11:57:50 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][150/312] eta 0:01:19 lr 0.000043 time 0.4655 (0.4877) model_time 0.4653 (0.4777) loss 2.9069 (2.5231) grad_norm 4.1153 (2.6396/0.9645) mem 16099MB [2025-01-18 11:57:55 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][160/312] eta 0:01:13 lr 0.000043 time 0.4655 (0.4861) model_time 0.4650 (0.4767) loss 2.4612 (2.5277) grad_norm 1.9188 (2.7100/1.1176) mem 16099MB [2025-01-18 11:58:00 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][170/312] eta 0:01:08 lr 0.000043 time 0.4491 (0.4857) model_time 0.4487 (0.4769) loss 2.8299 (2.5342) grad_norm 1.4906 (2.7083/1.1388) mem 16099MB [2025-01-18 11:58:04 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][180/312] eta 0:01:03 lr 0.000043 time 0.4570 (0.4843) model_time 0.4565 (0.4759) loss 2.0845 (2.5329) grad_norm 2.2478 (2.7616/1.1844) mem 16099MB [2025-01-18 11:58:09 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][190/312] eta 0:00:59 lr 0.000043 time 0.4385 (0.4838) model_time 0.4383 (0.4758) loss 2.8667 (2.5339) grad_norm 4.5323 (2.7522/1.1753) mem 16099MB [2025-01-18 11:58:14 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][200/312] eta 0:00:54 lr 0.000043 time 0.4542 (0.4824) model_time 0.4541 (0.4748) loss 1.9502 (2.5324) grad_norm 2.6031 (2.7533/1.1607) mem 16099MB [2025-01-18 11:58:19 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][210/312] eta 0:00:49 lr 0.000043 time 0.4394 (0.4819) model_time 0.4391 (0.4747) loss 2.4309 (2.5413) grad_norm 2.7199 (2.7447/1.1457) mem 16099MB [2025-01-18 11:58:23 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][220/312] eta 0:00:44 lr 0.000043 time 0.4497 (0.4806) model_time 0.4495 (0.4737) loss 2.6308 (2.5474) grad_norm 1.6739 (2.7405/1.1361) mem 16099MB [2025-01-18 11:58:28 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][230/312] eta 0:00:39 lr 0.000043 time 0.4439 (0.4807) model_time 0.4437 (0.4740) loss 3.2037 (2.5525) grad_norm 2.3949 (2.7712/1.1776) mem 16099MB [2025-01-18 11:58:33 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][240/312] eta 0:00:34 lr 0.000043 time 0.4482 (0.4815) model_time 0.4479 (0.4751) loss 2.2965 (2.5580) grad_norm 4.5154 (2.7878/1.1949) mem 16099MB [2025-01-18 11:58:38 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][250/312] eta 0:00:29 lr 0.000043 time 0.4424 (0.4814) model_time 0.4422 (0.4752) loss 2.9184 (2.5576) grad_norm 2.7599 (2.7835/1.1797) mem 16099MB [2025-01-18 11:58:42 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][260/312] eta 0:00:24 lr 0.000043 time 0.4553 (0.4807) model_time 0.4549 (0.4747) loss 2.5560 (2.5647) grad_norm 2.6314 (2.7808/1.1639) mem 16099MB [2025-01-18 11:58:47 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][270/312] eta 0:00:20 lr 0.000043 time 0.4624 (0.4797) model_time 0.4622 (0.4740) loss 2.8529 (2.5659) grad_norm 1.8151 (2.7818/1.1599) mem 16099MB [2025-01-18 11:58:51 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][280/312] eta 0:00:15 lr 0.000043 time 0.4429 (0.4787) model_time 0.4424 (0.4732) loss 3.0138 (2.5720) grad_norm 3.3124 (2.7659/1.1582) mem 16099MB [2025-01-18 11:58:56 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][290/312] eta 0:00:10 lr 0.000043 time 0.4435 (0.4781) model_time 0.4430 (0.4727) loss 2.3846 (2.5772) grad_norm 2.0264 (2.7706/1.1557) mem 16099MB [2025-01-18 11:59:01 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][300/312] eta 0:00:05 lr 0.000043 time 0.4398 (0.4780) model_time 0.4397 (0.4728) loss 2.0240 (2.5679) grad_norm 1.5715 (2.7739/1.1486) mem 16099MB [2025-01-18 11:59:05 internimage_t_1k_224] (main.py 510): INFO Train: [294/300][310/312] eta 0:00:00 lr 0.000043 time 0.4387 (0.4772) model_time 0.4386 (0.4721) loss 2.7782 (2.5663) grad_norm 2.5696 (2.7550/1.1395) mem 16099MB [2025-01-18 11:59:06 internimage_t_1k_224] (main.py 519): INFO EPOCH 294 training takes 0:02:28 [2025-01-18 11:59:06 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_294.pth saving...... [2025-01-18 11:59:07 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_294.pth saved !!! [2025-01-18 11:59:15 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.890 (7.890) Loss 0.7193 (0.7193) Acc@1 85.498 (85.498) Acc@5 97.559 (97.559) Mem 16099MB [2025-01-18 11:59:19 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.066) Loss 0.9556 (0.8153) Acc@1 79.468 (83.279) Acc@5 95.312 (96.338) Mem 16099MB [2025-01-18 11:59:19 internimage_t_1k_224] (main.py 575): INFO [Epoch:294] * Acc@1 83.107 Acc@5 96.339 [2025-01-18 11:59:19 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 11:59:19 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 11:59:27 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.401 (8.401) Loss 0.7120 (0.7120) Acc@1 85.913 (85.913) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 11:59:31 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.138) Loss 0.9422 (0.8102) Acc@1 79.810 (83.700) Acc@5 95.410 (96.551) Mem 16099MB [2025-01-18 11:59:31 internimage_t_1k_224] (main.py 575): INFO [Epoch:294] * Acc@1 83.539 Acc@5 96.559 [2025-01-18 11:59:31 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 11:59:31 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 11:59:34 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][0/312] eta 0:14:59 lr 0.000043 time 2.8834 (2.8834) model_time 1.4526 (1.4526) loss 2.9194 (2.9194) grad_norm 2.1253 (2.1253/0.0000) mem 16099MB [2025-01-18 11:59:39 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][10/312] eta 0:03:36 lr 0.000043 time 0.4670 (0.7180) model_time 0.4666 (0.5876) loss 2.2769 (2.5944) grad_norm 2.6429 (2.3780/1.0368) mem 16099MB [2025-01-18 11:59:44 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][20/312] eta 0:02:53 lr 0.000043 time 0.4600 (0.5949) model_time 0.4596 (0.5265) loss 2.7776 (2.5793) grad_norm 2.0817 (2.4830/0.9848) mem 16099MB [2025-01-18 11:59:48 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][30/312] eta 0:02:35 lr 0.000043 time 0.4749 (0.5512) model_time 0.4747 (0.5048) loss 2.8343 (2.5997) grad_norm 1.3161 (2.4694/1.0176) mem 16099MB [2025-01-18 11:59:53 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][40/312] eta 0:02:23 lr 0.000043 time 0.4549 (0.5290) model_time 0.4545 (0.4938) loss 2.3522 (2.5960) grad_norm 3.8224 (2.5861/1.0315) mem 16099MB [2025-01-18 11:59:58 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][50/312] eta 0:02:14 lr 0.000043 time 0.4506 (0.5147) model_time 0.4502 (0.4863) loss 2.0812 (2.6031) grad_norm 3.0017 (2.5682/0.9962) mem 16099MB [2025-01-18 12:00:02 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][60/312] eta 0:02:07 lr 0.000043 time 0.4483 (0.5050) model_time 0.4482 (0.4812) loss 2.8745 (2.5873) grad_norm 4.2235 (2.6488/0.9744) mem 16099MB [2025-01-18 12:00:07 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][70/312] eta 0:02:01 lr 0.000042 time 0.4544 (0.5034) model_time 0.4542 (0.4829) loss 1.7388 (2.5720) grad_norm 2.4835 (2.6562/0.9872) mem 16099MB [2025-01-18 12:00:12 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][80/312] eta 0:01:55 lr 0.000042 time 0.4670 (0.4984) model_time 0.4665 (0.4804) loss 2.9000 (2.5746) grad_norm 3.9763 (2.7503/1.0980) mem 16099MB [2025-01-18 12:00:16 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][90/312] eta 0:01:49 lr 0.000042 time 0.4639 (0.4947) model_time 0.4637 (0.4787) loss 3.1562 (2.5846) grad_norm 3.6612 (2.7910/1.1426) mem 16099MB [2025-01-18 12:00:21 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][100/312] eta 0:01:44 lr 0.000042 time 0.4532 (0.4915) model_time 0.4531 (0.4770) loss 2.4739 (2.5950) grad_norm 3.6332 (2.8372/1.1908) mem 16099MB [2025-01-18 12:00:26 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][110/312] eta 0:01:38 lr 0.000042 time 0.4480 (0.4894) model_time 0.4476 (0.4762) loss 3.1297 (2.5999) grad_norm 3.5310 (2.8891/1.1867) mem 16099MB [2025-01-18 12:00:30 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][120/312] eta 0:01:33 lr 0.000042 time 0.4526 (0.4871) model_time 0.4524 (0.4750) loss 1.9363 (2.6082) grad_norm 2.5976 (2.9172/1.1974) mem 16099MB [2025-01-18 12:00:35 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][130/312] eta 0:01:28 lr 0.000042 time 0.4569 (0.4869) model_time 0.4565 (0.4756) loss 2.4928 (2.6248) grad_norm 3.7609 (2.8934/1.1812) mem 16099MB [2025-01-18 12:00:40 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][140/312] eta 0:01:23 lr 0.000042 time 0.5503 (0.4871) model_time 0.5502 (0.4766) loss 2.4650 (2.6219) grad_norm 2.6663 (2.9499/1.2178) mem 16099MB [2025-01-18 12:00:45 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][150/312] eta 0:01:18 lr 0.000042 time 0.5596 (0.4858) model_time 0.5595 (0.4760) loss 2.5337 (2.6208) grad_norm 3.1915 (2.9609/1.2072) mem 16099MB [2025-01-18 12:00:49 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][160/312] eta 0:01:13 lr 0.000042 time 0.4897 (0.4840) model_time 0.4895 (0.4748) loss 2.5806 (2.6280) grad_norm 1.8887 (2.9673/1.1948) mem 16099MB [2025-01-18 12:00:54 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][170/312] eta 0:01:08 lr 0.000042 time 0.4494 (0.4831) model_time 0.4493 (0.4744) loss 2.5894 (2.6354) grad_norm 3.9430 (3.0150/1.2447) mem 16099MB [2025-01-18 12:00:59 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][180/312] eta 0:01:03 lr 0.000042 time 0.4476 (0.4821) model_time 0.4472 (0.4738) loss 3.0036 (2.6397) grad_norm 3.9588 (3.0158/1.2428) mem 16099MB [2025-01-18 12:01:03 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][190/312] eta 0:00:58 lr 0.000042 time 0.4586 (0.4805) model_time 0.4580 (0.4727) loss 2.1360 (2.6423) grad_norm 3.6383 (3.0399/1.2587) mem 16099MB [2025-01-18 12:01:08 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][200/312] eta 0:00:53 lr 0.000042 time 0.5447 (0.4796) model_time 0.5442 (0.4722) loss 2.3189 (2.6478) grad_norm 3.1303 (3.0832/1.2730) mem 16099MB [2025-01-18 12:01:12 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][210/312] eta 0:00:48 lr 0.000042 time 0.4521 (0.4788) model_time 0.4520 (0.4716) loss 1.7891 (2.6448) grad_norm 1.7756 (3.0719/1.2831) mem 16099MB [2025-01-18 12:01:17 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][220/312] eta 0:00:43 lr 0.000042 time 0.4522 (0.4777) model_time 0.4520 (0.4709) loss 3.1463 (2.6453) grad_norm 2.3438 (3.0580/1.2730) mem 16099MB [2025-01-18 12:01:22 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][230/312] eta 0:00:39 lr 0.000042 time 0.7477 (0.4781) model_time 0.7473 (0.4716) loss 2.9833 (2.6520) grad_norm 3.0507 (3.0509/1.2667) mem 16099MB [2025-01-18 12:01:27 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][240/312] eta 0:00:34 lr 0.000042 time 0.4608 (0.4779) model_time 0.4606 (0.4717) loss 2.1909 (2.6500) grad_norm 2.8150 (3.0466/1.2644) mem 16099MB [2025-01-18 12:01:31 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][250/312] eta 0:00:29 lr 0.000042 time 0.4548 (0.4770) model_time 0.4546 (0.4710) loss 2.9942 (2.6379) grad_norm 3.7118 (3.0502/1.2535) mem 16099MB [2025-01-18 12:01:36 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][260/312] eta 0:00:24 lr 0.000042 time 0.4451 (0.4768) model_time 0.4450 (0.4710) loss 2.7242 (2.6305) grad_norm 5.9441 (3.0988/1.3418) mem 16099MB [2025-01-18 12:01:40 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][270/312] eta 0:00:20 lr 0.000042 time 0.4512 (0.4763) model_time 0.4511 (0.4707) loss 2.8779 (2.6325) grad_norm 2.2551 (3.1023/1.3379) mem 16099MB [2025-01-18 12:01:45 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][280/312] eta 0:00:15 lr 0.000042 time 0.4568 (0.4760) model_time 0.4566 (0.4706) loss 3.3580 (2.6400) grad_norm 2.8071 (3.0998/1.3273) mem 16099MB [2025-01-18 12:01:50 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][290/312] eta 0:00:10 lr 0.000042 time 0.4502 (0.4756) model_time 0.4500 (0.4704) loss 2.6260 (2.6357) grad_norm 3.5698 (3.1032/1.3116) mem 16099MB [2025-01-18 12:01:54 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][300/312] eta 0:00:05 lr 0.000042 time 0.4369 (0.4751) model_time 0.4367 (0.4700) loss 2.6954 (2.6377) grad_norm 2.7747 (3.1028/1.2963) mem 16099MB [2025-01-18 12:01:59 internimage_t_1k_224] (main.py 510): INFO Train: [295/300][310/312] eta 0:00:00 lr 0.000042 time 0.4398 (0.4749) model_time 0.4397 (0.4700) loss 3.0611 (2.6405) grad_norm 1.6449 (3.1055/1.2859) mem 16099MB [2025-01-18 12:02:00 internimage_t_1k_224] (main.py 519): INFO EPOCH 295 training takes 0:02:28 [2025-01-18 12:02:00 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_295.pth saving...... [2025-01-18 12:02:01 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_295.pth saved !!! [2025-01-18 12:02:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.399 (7.399) Loss 0.7274 (0.7274) Acc@1 85.132 (85.132) Acc@5 97.363 (97.363) Mem 16099MB [2025-01-18 12:02:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.006) Loss 0.9693 (0.8236) Acc@1 79.004 (83.210) Acc@5 95.142 (96.325) Mem 16099MB [2025-01-18 12:02:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:295] * Acc@1 83.041 Acc@5 96.317 [2025-01-18 12:02:12 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 12:02:12 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 12:02:20 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.423 (8.423) Loss 0.7118 (0.7118) Acc@1 85.864 (85.864) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 12:02:24 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.122) Loss 0.9420 (0.8099) Acc@1 79.810 (83.698) Acc@5 95.361 (96.547) Mem 16099MB [2025-01-18 12:02:24 internimage_t_1k_224] (main.py 575): INFO [Epoch:295] * Acc@1 83.541 Acc@5 96.555 [2025-01-18 12:02:24 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 12:02:24 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 12:02:28 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][0/312] eta 0:18:02 lr 0.000042 time 3.4689 (3.4689) model_time 1.5842 (1.5842) loss 2.0333 (2.0333) grad_norm 4.4011 (4.4011/0.0000) mem 16099MB [2025-01-18 12:02:33 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][10/312] eta 0:03:49 lr 0.000042 time 0.4538 (0.7586) model_time 0.4537 (0.5870) loss 2.3498 (2.6414) grad_norm 6.3050 (3.2877/1.4102) mem 16099MB [2025-01-18 12:02:37 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][20/312] eta 0:03:00 lr 0.000042 time 0.5233 (0.6171) model_time 0.5232 (0.5270) loss 1.6764 (2.4821) grad_norm 2.1820 (3.0536/1.2366) mem 16099MB [2025-01-18 12:02:42 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][30/312] eta 0:02:39 lr 0.000042 time 0.4515 (0.5668) model_time 0.4514 (0.5057) loss 1.9360 (2.5452) grad_norm 3.3754 (2.9317/1.0646) mem 16099MB [2025-01-18 12:02:47 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][40/312] eta 0:02:27 lr 0.000042 time 0.4569 (0.5413) model_time 0.4567 (0.4950) loss 2.9184 (2.5668) grad_norm 2.3312 (3.2152/1.2988) mem 16099MB [2025-01-18 12:02:51 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][50/312] eta 0:02:18 lr 0.000042 time 0.4608 (0.5284) model_time 0.4604 (0.4911) loss 2.9103 (2.5761) grad_norm 2.8803 (3.4238/1.4097) mem 16099MB [2025-01-18 12:02:56 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][60/312] eta 0:02:10 lr 0.000042 time 0.4553 (0.5173) model_time 0.4551 (0.4860) loss 1.8685 (2.5865) grad_norm 2.4279 (3.4191/1.3484) mem 16099MB [2025-01-18 12:03:01 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][70/312] eta 0:02:03 lr 0.000042 time 0.4403 (0.5087) model_time 0.4401 (0.4818) loss 2.7445 (2.5408) grad_norm 2.8348 (3.4167/1.4241) mem 16099MB [2025-01-18 12:03:05 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][80/312] eta 0:01:56 lr 0.000042 time 0.4488 (0.5040) model_time 0.4484 (0.4803) loss 1.9299 (2.5385) grad_norm 2.0164 (3.2550/1.4163) mem 16099MB [2025-01-18 12:03:10 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][90/312] eta 0:01:51 lr 0.000041 time 0.4398 (0.5007) model_time 0.4396 (0.4796) loss 3.2645 (2.5492) grad_norm 2.5635 (3.2460/1.4108) mem 16099MB [2025-01-18 12:03:14 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][100/312] eta 0:01:45 lr 0.000041 time 0.4565 (0.4958) model_time 0.4563 (0.4768) loss 3.2378 (2.5640) grad_norm 2.5742 (3.2363/1.3803) mem 16099MB [2025-01-18 12:03:19 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][110/312] eta 0:01:39 lr 0.000041 time 0.4487 (0.4950) model_time 0.4485 (0.4777) loss 3.0134 (2.6005) grad_norm 3.6038 (3.2324/1.3333) mem 16099MB [2025-01-18 12:03:24 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][120/312] eta 0:01:34 lr 0.000041 time 0.5584 (0.4926) model_time 0.5579 (0.4767) loss 3.2467 (2.5921) grad_norm 3.7188 (3.2305/1.3855) mem 16099MB [2025-01-18 12:03:29 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][130/312] eta 0:01:29 lr 0.000041 time 0.4568 (0.4908) model_time 0.4566 (0.4760) loss 2.8248 (2.5817) grad_norm 1.8412 (3.1787/1.3770) mem 16099MB [2025-01-18 12:03:33 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][140/312] eta 0:01:24 lr 0.000041 time 0.4462 (0.4898) model_time 0.4461 (0.4761) loss 2.7082 (2.5768) grad_norm 4.8307 (3.2062/1.3852) mem 16099MB [2025-01-18 12:03:38 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][150/312] eta 0:01:19 lr 0.000041 time 0.4594 (0.4893) model_time 0.4590 (0.4764) loss 2.3256 (2.5793) grad_norm 2.4342 (3.1553/1.3657) mem 16099MB [2025-01-18 12:03:43 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][160/312] eta 0:01:14 lr 0.000041 time 0.4452 (0.4876) model_time 0.4451 (0.4755) loss 2.7753 (2.5838) grad_norm 5.2731 (3.1466/1.3474) mem 16099MB [2025-01-18 12:03:48 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][170/312] eta 0:01:09 lr 0.000041 time 0.4403 (0.4865) model_time 0.4402 (0.4751) loss 1.9499 (2.5822) grad_norm 4.3705 (3.1070/1.3420) mem 16099MB [2025-01-18 12:03:52 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][180/312] eta 0:01:03 lr 0.000041 time 0.4507 (0.4847) model_time 0.4503 (0.4740) loss 2.5285 (2.5838) grad_norm 2.2865 (3.0763/1.3264) mem 16099MB [2025-01-18 12:03:57 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][190/312] eta 0:00:58 lr 0.000041 time 0.4507 (0.4832) model_time 0.4502 (0.4730) loss 2.5989 (2.5767) grad_norm 3.8769 (3.0599/1.3032) mem 16099MB [2025-01-18 12:04:01 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][200/312] eta 0:00:53 lr 0.000041 time 0.4460 (0.4818) model_time 0.4456 (0.4720) loss 2.6432 (2.5835) grad_norm 5.0763 (3.0952/1.3100) mem 16099MB [2025-01-18 12:04:06 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][210/312] eta 0:00:49 lr 0.000041 time 0.4588 (0.4805) model_time 0.4587 (0.4712) loss 2.8066 (2.5898) grad_norm 4.2041 (3.0986/1.3009) mem 16099MB [2025-01-18 12:04:11 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][220/312] eta 0:00:44 lr 0.000041 time 0.4502 (0.4808) model_time 0.4498 (0.4719) loss 1.8148 (2.5896) grad_norm 5.0331 (3.1253/1.3003) mem 16099MB [2025-01-18 12:04:16 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][230/312] eta 0:00:39 lr 0.000041 time 0.4569 (0.4810) model_time 0.4565 (0.4725) loss 2.3961 (2.5925) grad_norm 2.7285 (3.1095/1.2825) mem 16099MB [2025-01-18 12:04:20 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][240/312] eta 0:00:34 lr 0.000041 time 0.4536 (0.4797) model_time 0.4532 (0.4716) loss 3.0481 (2.5888) grad_norm 3.1728 (3.0977/1.2790) mem 16099MB [2025-01-18 12:04:25 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][250/312] eta 0:00:29 lr 0.000041 time 0.4927 (0.4793) model_time 0.4926 (0.4715) loss 2.2791 (2.5748) grad_norm 1.6351 (3.1405/1.3191) mem 16099MB [2025-01-18 12:04:29 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][260/312] eta 0:00:24 lr 0.000041 time 0.4556 (0.4787) model_time 0.4552 (0.4711) loss 2.3326 (2.5756) grad_norm 2.8833 (3.1317/1.3110) mem 16099MB [2025-01-18 12:04:34 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][270/312] eta 0:00:20 lr 0.000041 time 0.4555 (0.4782) model_time 0.4554 (0.4709) loss 2.6191 (2.5832) grad_norm 4.9001 (3.1512/1.3193) mem 16099MB [2025-01-18 12:04:39 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][280/312] eta 0:00:15 lr 0.000041 time 0.4480 (0.4802) model_time 0.4479 (0.4731) loss 2.7806 (2.5844) grad_norm 1.7175 (3.1490/1.3133) mem 16099MB [2025-01-18 12:04:44 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][290/312] eta 0:00:10 lr 0.000041 time 0.4529 (0.4796) model_time 0.4525 (0.4727) loss 2.8986 (2.5929) grad_norm 3.1556 (3.1768/1.3547) mem 16099MB [2025-01-18 12:04:48 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][300/312] eta 0:00:05 lr 0.000041 time 0.4381 (0.4786) model_time 0.4380 (0.4719) loss 2.3662 (2.5917) grad_norm 2.0730 (3.1799/1.3503) mem 16099MB [2025-01-18 12:04:53 internimage_t_1k_224] (main.py 510): INFO Train: [296/300][310/312] eta 0:00:00 lr 0.000041 time 0.4416 (0.4777) model_time 0.4415 (0.4713) loss 3.1588 (2.5947) grad_norm 2.0756 (3.1545/1.3383) mem 16099MB [2025-01-18 12:04:53 internimage_t_1k_224] (main.py 519): INFO EPOCH 296 training takes 0:02:29 [2025-01-18 12:04:53 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_296.pth saving...... [2025-01-18 12:04:54 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_296.pth saved !!! [2025-01-18 12:05:02 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.460 (7.460) Loss 0.7184 (0.7184) Acc@1 85.132 (85.132) Acc@5 97.412 (97.412) Mem 16099MB [2025-01-18 12:05:06 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.013) Loss 0.9614 (0.8154) Acc@1 78.955 (83.259) Acc@5 95.117 (96.347) Mem 16099MB [2025-01-18 12:05:06 internimage_t_1k_224] (main.py 575): INFO [Epoch:296] * Acc@1 83.127 Acc@5 96.361 [2025-01-18 12:05:06 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 12:05:06 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.13% [2025-01-18 12:05:14 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.242 (8.242) Loss 0.7115 (0.7115) Acc@1 85.815 (85.815) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 12:05:18 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.109) Loss 0.9419 (0.8095) Acc@1 79.810 (83.683) Acc@5 95.386 (96.551) Mem 16099MB [2025-01-18 12:05:18 internimage_t_1k_224] (main.py 575): INFO [Epoch:296] * Acc@1 83.527 Acc@5 96.559 [2025-01-18 12:05:18 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 12:05:18 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 12:05:21 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][0/312] eta 0:15:45 lr 0.000041 time 3.0303 (3.0303) model_time 1.4995 (1.4995) loss 3.0215 (3.0215) grad_norm 2.7696 (2.7696/0.0000) mem 16099MB [2025-01-18 12:05:26 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][10/312] eta 0:03:31 lr 0.000041 time 0.4530 (0.6989) model_time 0.4526 (0.5593) loss 2.6768 (2.8764) grad_norm 4.2083 (2.7690/0.6025) mem 16099MB [2025-01-18 12:05:31 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][20/312] eta 0:02:52 lr 0.000041 time 0.4528 (0.5899) model_time 0.4526 (0.5166) loss 2.0749 (2.6442) grad_norm 4.2848 (2.9753/0.9132) mem 16099MB [2025-01-18 12:05:35 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][30/312] eta 0:02:35 lr 0.000041 time 0.5551 (0.5524) model_time 0.5547 (0.5027) loss 2.4859 (2.6588) grad_norm 2.9009 (3.3873/1.1611) mem 16099MB [2025-01-18 12:05:40 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][40/312] eta 0:02:24 lr 0.000041 time 0.4517 (0.5319) model_time 0.4515 (0.4942) loss 2.6196 (2.6654) grad_norm 8.6625 (3.6573/1.4715) mem 16099MB [2025-01-18 12:05:45 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][50/312] eta 0:02:16 lr 0.000041 time 0.4542 (0.5201) model_time 0.4538 (0.4897) loss 2.7389 (2.6804) grad_norm 8.2744 (3.7662/1.6211) mem 16099MB [2025-01-18 12:05:49 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][60/312] eta 0:02:08 lr 0.000041 time 0.4552 (0.5107) model_time 0.4550 (0.4853) loss 2.8634 (2.6900) grad_norm 2.1484 (3.6973/1.5562) mem 16099MB [2025-01-18 12:05:54 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][70/312] eta 0:02:01 lr 0.000041 time 0.4401 (0.5034) model_time 0.4397 (0.4815) loss 2.9952 (2.6762) grad_norm 3.1070 (3.6610/1.5240) mem 16099MB [2025-01-18 12:05:59 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][80/312] eta 0:01:55 lr 0.000041 time 0.4577 (0.4991) model_time 0.4575 (0.4798) loss 2.9288 (2.6646) grad_norm 2.3660 (3.5427/1.5337) mem 16099MB [2025-01-18 12:06:03 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][90/312] eta 0:01:50 lr 0.000041 time 0.4571 (0.4971) model_time 0.4566 (0.4799) loss 3.2022 (2.6651) grad_norm 2.1877 (3.5255/1.5199) mem 16099MB [2025-01-18 12:06:08 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][100/312] eta 0:01:44 lr 0.000041 time 0.4444 (0.4941) model_time 0.4439 (0.4786) loss 2.7724 (2.6644) grad_norm 1.6686 (3.4415/1.5206) mem 16099MB [2025-01-18 12:06:13 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][110/312] eta 0:01:39 lr 0.000041 time 0.4471 (0.4921) model_time 0.4466 (0.4779) loss 1.7823 (2.6578) grad_norm 4.5590 (3.4063/1.5073) mem 16099MB [2025-01-18 12:06:17 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][120/312] eta 0:01:34 lr 0.000041 time 0.4420 (0.4901) model_time 0.4415 (0.4771) loss 1.8137 (2.6399) grad_norm 1.9525 (3.3552/1.4858) mem 16099MB [2025-01-18 12:06:22 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][130/312] eta 0:01:28 lr 0.000041 time 0.4772 (0.4883) model_time 0.4770 (0.4762) loss 1.6924 (2.6252) grad_norm 1.2144 (3.3222/1.4660) mem 16099MB [2025-01-18 12:06:27 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][140/312] eta 0:01:23 lr 0.000041 time 0.4525 (0.4861) model_time 0.4524 (0.4749) loss 2.6495 (2.6321) grad_norm 3.6586 (3.2940/1.4338) mem 16099MB [2025-01-18 12:06:31 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][150/312] eta 0:01:18 lr 0.000041 time 0.4501 (0.4851) model_time 0.4497 (0.4746) loss 2.2414 (2.6195) grad_norm 2.3761 (3.2509/1.4248) mem 16099MB [2025-01-18 12:06:36 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][160/312] eta 0:01:13 lr 0.000041 time 0.4932 (0.4840) model_time 0.4928 (0.4742) loss 1.9498 (2.6069) grad_norm 3.6803 (3.2689/1.4110) mem 16099MB [2025-01-18 12:06:41 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][170/312] eta 0:01:08 lr 0.000041 time 0.4842 (0.4824) model_time 0.4838 (0.4731) loss 2.7406 (2.6138) grad_norm 2.5019 (3.2622/1.4061) mem 16099MB [2025-01-18 12:06:45 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][180/312] eta 0:01:03 lr 0.000041 time 0.4470 (0.4814) model_time 0.4468 (0.4726) loss 3.3818 (2.6121) grad_norm 2.5352 (3.2654/1.4013) mem 16099MB [2025-01-18 12:06:50 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][190/312] eta 0:00:58 lr 0.000041 time 0.4563 (0.4802) model_time 0.4559 (0.4718) loss 2.9749 (2.6108) grad_norm 1.6466 (3.2719/1.3985) mem 16099MB [2025-01-18 12:06:55 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][200/312] eta 0:00:53 lr 0.000041 time 0.4731 (0.4795) model_time 0.4726 (0.4715) loss 2.6527 (2.6073) grad_norm 3.4531 (3.2876/1.3974) mem 16099MB [2025-01-18 12:06:59 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][210/312] eta 0:00:48 lr 0.000041 time 0.4661 (0.4788) model_time 0.4657 (0.4712) loss 3.3859 (2.6029) grad_norm 4.5170 (3.2703/1.3874) mem 16099MB [2025-01-18 12:07:04 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][220/312] eta 0:00:43 lr 0.000041 time 0.4508 (0.4775) model_time 0.4507 (0.4702) loss 2.7918 (2.5997) grad_norm 1.7026 (3.2672/1.3721) mem 16099MB [2025-01-18 12:07:08 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][230/312] eta 0:00:39 lr 0.000041 time 0.4474 (0.4768) model_time 0.4473 (0.4698) loss 2.7814 (2.6055) grad_norm 4.4189 (3.2751/1.3456) mem 16099MB [2025-01-18 12:07:13 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][240/312] eta 0:00:34 lr 0.000041 time 0.4595 (0.4764) model_time 0.4591 (0.4697) loss 2.9557 (2.6062) grad_norm 5.1446 (3.2647/1.3408) mem 16099MB [2025-01-18 12:07:18 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][250/312] eta 0:00:29 lr 0.000041 time 0.4609 (0.4759) model_time 0.4608 (0.4695) loss 2.8452 (2.6041) grad_norm 6.4406 (3.2599/1.3491) mem 16099MB [2025-01-18 12:07:22 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][260/312] eta 0:00:24 lr 0.000041 time 0.4565 (0.4756) model_time 0.4563 (0.4693) loss 2.6569 (2.6127) grad_norm 3.0299 (3.2396/1.3560) mem 16099MB [2025-01-18 12:07:27 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][270/312] eta 0:00:19 lr 0.000040 time 0.5749 (0.4757) model_time 0.5745 (0.4697) loss 2.8950 (2.6104) grad_norm 5.3045 (3.2163/1.3579) mem 16099MB [2025-01-18 12:07:32 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][280/312] eta 0:00:15 lr 0.000040 time 0.4531 (0.4755) model_time 0.4527 (0.4697) loss 2.9841 (2.6212) grad_norm 1.7215 (3.1847/1.3490) mem 16099MB [2025-01-18 12:07:37 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][290/312] eta 0:00:10 lr 0.000040 time 0.4406 (0.4762) model_time 0.4401 (0.4705) loss 2.9652 (2.6282) grad_norm 2.3853 (3.1764/1.3367) mem 16099MB [2025-01-18 12:07:41 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][300/312] eta 0:00:05 lr 0.000040 time 0.4400 (0.4755) model_time 0.4399 (0.4701) loss 3.0755 (2.6387) grad_norm 2.1180 (3.1610/1.3297) mem 16099MB [2025-01-18 12:07:46 internimage_t_1k_224] (main.py 510): INFO Train: [297/300][310/312] eta 0:00:00 lr 0.000040 time 0.4388 (0.4746) model_time 0.4387 (0.4693) loss 2.8102 (2.6358) grad_norm 6.0195 (3.1828/1.3380) mem 16099MB [2025-01-18 12:07:46 internimage_t_1k_224] (main.py 519): INFO EPOCH 297 training takes 0:02:28 [2025-01-18 12:07:46 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_297.pth saving...... [2025-01-18 12:07:47 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_297.pth saved !!! [2025-01-18 12:07:55 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.827 (7.827) Loss 0.7183 (0.7183) Acc@1 85.254 (85.254) Acc@5 97.388 (97.388) Mem 16099MB [2025-01-18 12:07:59 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.055) Loss 0.9609 (0.8165) Acc@1 79.199 (83.290) Acc@5 94.971 (96.311) Mem 16099MB [2025-01-18 12:07:59 internimage_t_1k_224] (main.py 575): INFO [Epoch:297] * Acc@1 83.147 Acc@5 96.319 [2025-01-18 12:07:59 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 12:07:59 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saving...... [2025-01-18 12:08:00 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_best.pth saved !!! [2025-01-18 12:08:00 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.15% [2025-01-18 12:08:08 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.670 (7.670) Loss 0.7115 (0.7115) Acc@1 85.791 (85.791) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 12:08:12 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.047) Loss 0.9419 (0.8094) Acc@1 79.785 (83.658) Acc@5 95.435 (96.544) Mem 16099MB [2025-01-18 12:08:12 internimage_t_1k_224] (main.py 575): INFO [Epoch:297] * Acc@1 83.503 Acc@5 96.557 [2025-01-18 12:08:12 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 12:08:12 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 12:08:15 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][0/312] eta 0:15:29 lr 0.000040 time 2.9806 (2.9806) model_time 0.4747 (0.4747) loss 2.8249 (2.8249) grad_norm 5.9569 (5.9569/0.0000) mem 16099MB [2025-01-18 12:08:20 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][10/312] eta 0:03:29 lr 0.000040 time 0.4550 (0.6953) model_time 0.4549 (0.4673) loss 2.6544 (2.7154) grad_norm 2.5010 (3.5785/1.5818) mem 16099MB [2025-01-18 12:08:24 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][20/312] eta 0:02:53 lr 0.000040 time 0.4512 (0.5956) model_time 0.4511 (0.4760) loss 2.1452 (2.6565) grad_norm 2.2505 (3.0936/1.3713) mem 16099MB [2025-01-18 12:08:29 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][30/312] eta 0:02:35 lr 0.000040 time 0.4524 (0.5516) model_time 0.4519 (0.4704) loss 2.5152 (2.6615) grad_norm 3.9572 (3.1224/1.3841) mem 16099MB [2025-01-18 12:08:34 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][40/312] eta 0:02:24 lr 0.000040 time 0.4523 (0.5316) model_time 0.4521 (0.4701) loss 3.1514 (2.7065) grad_norm 2.9050 (2.9373/1.3153) mem 16099MB [2025-01-18 12:08:38 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][50/312] eta 0:02:15 lr 0.000040 time 0.4498 (0.5183) model_time 0.4493 (0.4689) loss 1.8025 (2.7206) grad_norm 3.0833 (3.0073/1.3312) mem 16099MB [2025-01-18 12:08:43 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][60/312] eta 0:02:08 lr 0.000040 time 0.4434 (0.5113) model_time 0.4432 (0.4699) loss 2.5199 (2.6892) grad_norm 3.3196 (2.9701/1.2897) mem 16099MB [2025-01-18 12:08:48 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][70/312] eta 0:02:01 lr 0.000040 time 0.4478 (0.5033) model_time 0.4477 (0.4677) loss 3.0989 (2.6762) grad_norm 2.4525 (2.9373/1.2314) mem 16099MB [2025-01-18 12:08:52 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][80/312] eta 0:01:55 lr 0.000040 time 0.4531 (0.4979) model_time 0.4529 (0.4667) loss 2.6036 (2.6652) grad_norm 2.0876 (2.9012/1.2227) mem 16099MB [2025-01-18 12:08:57 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][90/312] eta 0:01:49 lr 0.000040 time 0.4630 (0.4944) model_time 0.4626 (0.4665) loss 1.5463 (2.6467) grad_norm 4.0658 (2.8940/1.2034) mem 16099MB [2025-01-18 12:09:01 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][100/312] eta 0:01:43 lr 0.000040 time 0.4557 (0.4905) model_time 0.4555 (0.4654) loss 2.0409 (2.6301) grad_norm 1.7404 (2.9074/1.2258) mem 16099MB [2025-01-18 12:09:06 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][110/312] eta 0:01:38 lr 0.000040 time 0.4544 (0.4879) model_time 0.4540 (0.4650) loss 3.0077 (2.6264) grad_norm 2.0068 (2.8459/1.1994) mem 16099MB [2025-01-18 12:09:11 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][120/312] eta 0:01:33 lr 0.000040 time 0.4540 (0.4852) model_time 0.4538 (0.4642) loss 3.0100 (2.6394) grad_norm 2.0263 (2.8416/1.2043) mem 16099MB [2025-01-18 12:09:15 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][130/312] eta 0:01:28 lr 0.000040 time 0.4809 (0.4837) model_time 0.4805 (0.4642) loss 2.8764 (2.6434) grad_norm 2.7905 (2.8582/1.1903) mem 16099MB [2025-01-18 12:09:20 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][140/312] eta 0:01:23 lr 0.000040 time 0.4626 (0.4832) model_time 0.4621 (0.4651) loss 1.8013 (2.6512) grad_norm 1.8890 (2.7953/1.1735) mem 16099MB [2025-01-18 12:09:25 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][150/312] eta 0:01:18 lr 0.000040 time 0.5371 (0.4817) model_time 0.5366 (0.4648) loss 2.7712 (2.6625) grad_norm 3.5257 (2.8111/1.2178) mem 16099MB [2025-01-18 12:09:29 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][160/312] eta 0:01:13 lr 0.000040 time 0.4669 (0.4814) model_time 0.4668 (0.4654) loss 2.8003 (2.6663) grad_norm 4.3518 (2.8229/1.2214) mem 16099MB [2025-01-18 12:09:34 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][170/312] eta 0:01:08 lr 0.000040 time 0.4433 (0.4799) model_time 0.4432 (0.4649) loss 2.8853 (2.6631) grad_norm 3.0769 (2.8021/1.2033) mem 16099MB [2025-01-18 12:09:39 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][180/312] eta 0:01:03 lr 0.000040 time 0.4438 (0.4791) model_time 0.4434 (0.4648) loss 2.5529 (2.6671) grad_norm 1.9503 (2.8235/1.2060) mem 16099MB [2025-01-18 12:09:43 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][190/312] eta 0:00:58 lr 0.000040 time 0.4410 (0.4780) model_time 0.4408 (0.4645) loss 2.2201 (2.6574) grad_norm 2.5478 (2.8297/1.2075) mem 16099MB [2025-01-18 12:09:48 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][200/312] eta 0:00:53 lr 0.000040 time 0.4522 (0.4771) model_time 0.4517 (0.4643) loss 3.0198 (2.6556) grad_norm 3.0362 (2.8430/1.2256) mem 16099MB [2025-01-18 12:09:52 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][210/312] eta 0:00:48 lr 0.000040 time 0.4605 (0.4764) model_time 0.4600 (0.4641) loss 2.4961 (2.6583) grad_norm 3.7208 (2.8540/1.2170) mem 16099MB [2025-01-18 12:09:57 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][220/312] eta 0:00:43 lr 0.000040 time 0.4507 (0.4757) model_time 0.4505 (0.4640) loss 3.2828 (2.6466) grad_norm 3.6606 (2.8585/1.2122) mem 16099MB [2025-01-18 12:10:02 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][230/312] eta 0:00:38 lr 0.000040 time 0.5311 (0.4755) model_time 0.5307 (0.4642) loss 2.8431 (2.6463) grad_norm 1.2350 (2.8648/1.2094) mem 16099MB [2025-01-18 12:10:06 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][240/312] eta 0:00:34 lr 0.000040 time 0.4560 (0.4751) model_time 0.4558 (0.4643) loss 2.8258 (2.6393) grad_norm 1.6325 (2.8642/1.1974) mem 16099MB [2025-01-18 12:10:11 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][250/312] eta 0:00:29 lr 0.000040 time 0.4421 (0.4746) model_time 0.4419 (0.4643) loss 1.6597 (2.6273) grad_norm 4.1354 (2.8855/1.1991) mem 16099MB [2025-01-18 12:10:16 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][260/312] eta 0:00:24 lr 0.000040 time 0.4585 (0.4752) model_time 0.4584 (0.4652) loss 1.7445 (2.6267) grad_norm 1.7606 (2.8791/1.1902) mem 16099MB [2025-01-18 12:10:21 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][270/312] eta 0:00:19 lr 0.000040 time 0.4455 (0.4749) model_time 0.4451 (0.4653) loss 1.8601 (2.6174) grad_norm 3.9151 (2.8923/1.1960) mem 16099MB [2025-01-18 12:10:25 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][280/312] eta 0:00:15 lr 0.000040 time 0.4506 (0.4746) model_time 0.4502 (0.4653) loss 3.2279 (2.6232) grad_norm 2.4465 (2.9153/1.1970) mem 16099MB [2025-01-18 12:10:30 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][290/312] eta 0:00:10 lr 0.000040 time 0.4558 (0.4747) model_time 0.4554 (0.4657) loss 1.8754 (2.6262) grad_norm 4.0025 (2.9532/1.2743) mem 16099MB [2025-01-18 12:10:35 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][300/312] eta 0:00:05 lr 0.000040 time 0.4386 (0.4742) model_time 0.4385 (0.4655) loss 3.0052 (2.6278) grad_norm 2.3897 (2.9656/1.2787) mem 16099MB [2025-01-18 12:10:39 internimage_t_1k_224] (main.py 510): INFO Train: [298/300][310/312] eta 0:00:00 lr 0.000040 time 0.4406 (0.4734) model_time 0.4405 (0.4650) loss 2.5185 (2.6251) grad_norm 3.9987 (2.9705/1.2733) mem 16099MB [2025-01-18 12:10:40 internimage_t_1k_224] (main.py 519): INFO EPOCH 298 training takes 0:02:27 [2025-01-18 12:10:40 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_298.pth saving...... [2025-01-18 12:10:41 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_298.pth saved !!! [2025-01-18 12:10:48 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.612 (7.612) Loss 0.7176 (0.7176) Acc@1 85.278 (85.278) Acc@5 97.534 (97.534) Mem 16099MB [2025-01-18 12:10:52 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.035) Loss 0.9581 (0.8166) Acc@1 79.541 (83.243) Acc@5 95.166 (96.358) Mem 16099MB [2025-01-18 12:10:52 internimage_t_1k_224] (main.py 575): INFO [Epoch:298] * Acc@1 83.089 Acc@5 96.369 [2025-01-18 12:10:52 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.1% [2025-01-18 12:10:52 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.15% [2025-01-18 12:11:01 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.705 (8.705) Loss 0.7112 (0.7112) Acc@1 85.791 (85.791) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 12:11:05 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.103 (1.147) Loss 0.9418 (0.8090) Acc@1 79.810 (83.658) Acc@5 95.435 (96.547) Mem 16099MB [2025-01-18 12:11:05 internimage_t_1k_224] (main.py 575): INFO [Epoch:298] * Acc@1 83.501 Acc@5 96.559 [2025-01-18 12:11:05 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 12:11:05 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 12:11:08 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][0/312] eta 0:16:44 lr 0.000040 time 3.2201 (3.2201) model_time 1.5231 (1.5231) loss 3.2144 (3.2144) grad_norm 5.1118 (5.1118/0.0000) mem 16099MB [2025-01-18 12:11:13 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][10/312] eta 0:03:41 lr 0.000040 time 0.4880 (0.7324) model_time 0.4878 (0.5777) loss 1.8079 (2.4137) grad_norm 3.0341 (3.0029/0.9439) mem 16099MB [2025-01-18 12:11:18 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][20/312] eta 0:02:59 lr 0.000040 time 0.4641 (0.6152) model_time 0.4636 (0.5340) loss 2.1865 (2.4894) grad_norm 1.8615 (2.9610/1.2366) mem 16099MB [2025-01-18 12:11:23 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][30/312] eta 0:02:39 lr 0.000040 time 0.4629 (0.5668) model_time 0.4627 (0.5116) loss 1.7945 (2.5175) grad_norm 2.7439 (2.9664/1.1719) mem 16099MB [2025-01-18 12:11:27 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][40/312] eta 0:02:26 lr 0.000040 time 0.4583 (0.5395) model_time 0.4581 (0.4977) loss 3.3051 (2.5604) grad_norm 1.3345 (2.8169/1.1554) mem 16099MB [2025-01-18 12:11:32 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][50/312] eta 0:02:16 lr 0.000040 time 0.4611 (0.5226) model_time 0.4610 (0.4890) loss 3.0165 (2.5993) grad_norm 4.4371 (2.7729/1.1117) mem 16099MB [2025-01-18 12:11:36 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][60/312] eta 0:02:09 lr 0.000040 time 0.4865 (0.5123) model_time 0.4863 (0.4841) loss 2.1489 (2.5978) grad_norm 2.5760 (2.8115/1.0986) mem 16099MB [2025-01-18 12:11:41 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][70/312] eta 0:02:02 lr 0.000040 time 0.4520 (0.5042) model_time 0.4518 (0.4799) loss 2.6764 (2.6158) grad_norm 3.3407 (2.7994/1.1173) mem 16099MB [2025-01-18 12:11:45 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][80/312] eta 0:01:55 lr 0.000040 time 0.4475 (0.4979) model_time 0.4471 (0.4766) loss 3.3137 (2.6027) grad_norm 2.6050 (2.8570/1.1555) mem 16099MB [2025-01-18 12:11:50 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][90/312] eta 0:01:49 lr 0.000040 time 0.4660 (0.4933) model_time 0.4658 (0.4742) loss 2.7615 (2.5938) grad_norm 1.2396 (2.7886/1.1278) mem 16099MB [2025-01-18 12:11:55 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][100/312] eta 0:01:44 lr 0.000040 time 0.4479 (0.4912) model_time 0.4478 (0.4741) loss 2.2780 (2.5906) grad_norm 3.4906 (2.7911/1.0867) mem 16099MB [2025-01-18 12:11:59 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][110/312] eta 0:01:38 lr 0.000040 time 0.4623 (0.4881) model_time 0.4622 (0.4724) loss 2.8267 (2.5762) grad_norm 1.9603 (2.7585/1.0901) mem 16099MB [2025-01-18 12:12:04 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][120/312] eta 0:01:33 lr 0.000040 time 0.4547 (0.4862) model_time 0.4542 (0.4718) loss 2.2246 (2.5650) grad_norm 6.1414 (2.8326/1.1894) mem 16099MB [2025-01-18 12:12:09 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][130/312] eta 0:01:28 lr 0.000040 time 0.4536 (0.4853) model_time 0.4534 (0.4720) loss 2.3044 (2.5783) grad_norm 1.8762 (2.8657/1.2330) mem 16099MB [2025-01-18 12:12:14 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][140/312] eta 0:01:23 lr 0.000040 time 0.4811 (0.4859) model_time 0.4809 (0.4735) loss 2.2882 (2.5704) grad_norm 3.4956 (2.8872/1.2108) mem 16099MB [2025-01-18 12:12:18 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][150/312] eta 0:01:18 lr 0.000040 time 0.4503 (0.4850) model_time 0.4502 (0.4734) loss 2.8854 (2.5944) grad_norm 3.2429 (2.8711/1.1899) mem 16099MB [2025-01-18 12:12:23 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][160/312] eta 0:01:13 lr 0.000040 time 0.5394 (0.4844) model_time 0.5389 (0.4735) loss 2.9794 (2.6049) grad_norm 2.3352 (2.8725/1.1964) mem 16099MB [2025-01-18 12:12:28 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][170/312] eta 0:01:08 lr 0.000040 time 0.4523 (0.4830) model_time 0.4519 (0.4727) loss 3.0623 (2.6189) grad_norm 3.1747 (2.9060/1.2006) mem 16099MB [2025-01-18 12:12:32 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][180/312] eta 0:01:03 lr 0.000040 time 0.4518 (0.4816) model_time 0.4517 (0.4718) loss 2.6182 (2.6198) grad_norm 1.9746 (2.9106/1.1892) mem 16099MB [2025-01-18 12:12:37 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][190/312] eta 0:00:58 lr 0.000040 time 0.4749 (0.4821) model_time 0.4748 (0.4729) loss 3.1314 (2.6266) grad_norm 4.7955 (2.9188/1.1921) mem 16099MB [2025-01-18 12:12:42 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][200/312] eta 0:00:53 lr 0.000040 time 0.4467 (0.4805) model_time 0.4466 (0.4717) loss 2.8965 (2.6340) grad_norm 1.2719 (2.9035/1.2110) mem 16099MB [2025-01-18 12:12:46 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][210/312] eta 0:00:48 lr 0.000040 time 0.4572 (0.4797) model_time 0.4568 (0.4713) loss 2.0757 (2.6349) grad_norm 5.0114 (2.9088/1.1971) mem 16099MB [2025-01-18 12:12:51 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][220/312] eta 0:00:44 lr 0.000040 time 0.4517 (0.4785) model_time 0.4516 (0.4704) loss 1.9353 (2.6340) grad_norm 2.1899 (2.9113/1.1981) mem 16099MB [2025-01-18 12:12:55 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][230/312] eta 0:00:39 lr 0.000040 time 0.4543 (0.4777) model_time 0.4541 (0.4700) loss 2.8819 (2.6337) grad_norm 3.7933 (2.9482/1.2033) mem 16099MB [2025-01-18 12:13:00 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][240/312] eta 0:00:34 lr 0.000040 time 0.4526 (0.4777) model_time 0.4522 (0.4703) loss 2.2369 (2.6361) grad_norm 1.3727 (2.9313/1.1974) mem 16099MB [2025-01-18 12:13:05 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][250/312] eta 0:00:29 lr 0.000040 time 0.4480 (0.4777) model_time 0.4479 (0.4706) loss 3.0205 (2.6356) grad_norm 3.9436 (2.9310/1.1916) mem 16099MB [2025-01-18 12:13:09 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][260/312] eta 0:00:24 lr 0.000040 time 0.4517 (0.4767) model_time 0.4513 (0.4699) loss 2.7918 (2.6327) grad_norm 2.1362 (2.9257/1.1802) mem 16099MB [2025-01-18 12:13:14 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][270/312] eta 0:00:20 lr 0.000040 time 0.4554 (0.4762) model_time 0.4549 (0.4696) loss 2.2269 (2.6299) grad_norm 2.1107 (2.9128/1.1684) mem 16099MB [2025-01-18 12:13:19 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][280/312] eta 0:00:15 lr 0.000040 time 0.4540 (0.4754) model_time 0.4538 (0.4690) loss 2.6215 (2.6307) grad_norm 3.5724 (2.8883/1.1649) mem 16099MB [2025-01-18 12:13:23 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][290/312] eta 0:00:10 lr 0.000040 time 0.4522 (0.4747) model_time 0.4521 (0.4685) loss 2.4204 (2.6313) grad_norm 1.4760 (2.8703/1.1639) mem 16099MB [2025-01-18 12:13:28 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][300/312] eta 0:00:05 lr 0.000040 time 0.4430 (0.4739) model_time 0.4429 (0.4679) loss 2.1811 (2.6290) grad_norm 3.2646 (2.8796/1.1567) mem 16099MB [2025-01-18 12:13:32 internimage_t_1k_224] (main.py 510): INFO Train: [299/300][310/312] eta 0:00:00 lr 0.000040 time 0.5224 (0.4740) model_time 0.5223 (0.4682) loss 1.7683 (2.6249) grad_norm 3.5410 (2.8899/1.1632) mem 16099MB [2025-01-18 12:13:33 internimage_t_1k_224] (main.py 519): INFO EPOCH 299 training takes 0:02:27 [2025-01-18 12:13:33 internimage_t_1k_224] (utils.py 359): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_299.pth saving...... [2025-01-18 12:13:34 internimage_t_1k_224] (utils.py 361): INFO work_dirs/internimage_t_1k_224/ckpt_epoch_299.pth saved !!! [2025-01-18 12:13:42 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 7.749 (7.749) Loss 0.7153 (0.7153) Acc@1 85.278 (85.278) Acc@5 97.510 (97.510) Mem 16099MB [2025-01-18 12:13:46 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.048) Loss 0.9663 (0.8186) Acc@1 79.102 (83.176) Acc@5 95.239 (96.349) Mem 16099MB [2025-01-18 12:13:46 internimage_t_1k_224] (main.py 575): INFO [Epoch:299] * Acc@1 83.017 Acc@5 96.361 [2025-01-18 12:13:46 internimage_t_1k_224] (main.py 340): INFO Accuracy of the network on the 50000 test images: 83.0% [2025-01-18 12:13:46 internimage_t_1k_224] (main.py 355): INFO Max accuracy: 83.15% [2025-01-18 12:13:54 internimage_t_1k_224] (main.py 568): INFO Test: [0/13] Time 8.611 (8.611) Loss 0.7112 (0.7112) Acc@1 85.815 (85.815) Acc@5 97.607 (97.607) Mem 16099MB [2025-01-18 12:13:58 internimage_t_1k_224] (main.py 568): INFO Test: [10/13] Time 0.102 (1.147) Loss 0.9421 (0.8091) Acc@1 79.810 (83.649) Acc@5 95.435 (96.544) Mem 16099MB [2025-01-18 12:13:58 internimage_t_1k_224] (main.py 575): INFO [Epoch:299] * Acc@1 83.491 Acc@5 96.561 [2025-01-18 12:13:58 internimage_t_1k_224] (main.py 360): INFO Accuracy of the ema network on the 50000 test images: 83.5% [2025-01-18 12:13:58 internimage_t_1k_224] (main.py 375): INFO Max ema accuracy: 83.57% [2025-01-18 12:13:58 internimage_t_1k_224] (main.py 379): INFO Training time 14:26:41