TuTuHuss commited on
Commit
7955c6f
·
1 Parent(s): 4ebbdee

update(hus): update data from official server

Browse files
ppof_ch4_code_p1.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pip install minigrid
2
+ from typing import Union, Tuple, Dict, List, Optional
3
+ from multiprocessing import Process
4
+ import multiprocessing as mp
5
+ import random
6
+ import numpy as np
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import torch.optim as optim
11
+ import minigrid
12
+ import gymnasium as gym
13
+ from torch.optim.lr_scheduler import ExponentialLR, MultiStepLR
14
+ from tensorboardX import SummaryWriter
15
+ from minigrid.wrappers import FlatObsWrapper
16
+
17
+ random.seed(0)
18
+ np.random.seed(0)
19
+ torch.manual_seed(0)
20
+ if torch.cuda.is_available():
21
+ device = torch.device("cuda:0")
22
+ else:
23
+ device = torch.device("cpu")
24
+
25
+ train_config = dict(
26
+ train_iter=1024,
27
+ train_data_count=128,
28
+ test_data_count=4096,
29
+ )
30
+
31
+ little_RND_net_config = dict(
32
+ exp_name="little_rnd_network",
33
+ observation_shape=2835,
34
+ hidden_size_list=[32, 16],
35
+ learning_rate=1e-3,
36
+ batch_size=64,
37
+ update_per_collect=100,
38
+ obs_norm=True,
39
+ obs_norm_clamp_min=-1,
40
+ obs_norm_clamp_max=1,
41
+ reward_mse_ratio=1e5,
42
+ )
43
+
44
+ small_RND_net_config = dict(
45
+ exp_name="small_rnd_network",
46
+ observation_shape=2835,
47
+ hidden_size_list=[64, 64],
48
+ learning_rate=1e-3,
49
+ batch_size=64,
50
+ update_per_collect=100,
51
+ obs_norm=True,
52
+ obs_norm_clamp_min=-1,
53
+ obs_norm_clamp_max=1,
54
+ reward_mse_ratio=1e5,
55
+ )
56
+
57
+ standard_RND_net_config = dict(
58
+ exp_name="standard_rnd_network",
59
+ observation_shape=2835,
60
+ hidden_size_list=[128, 64],
61
+ learning_rate=1e-3,
62
+ batch_size=64,
63
+ update_per_collect=100,
64
+ obs_norm=True,
65
+ obs_norm_clamp_min=-1,
66
+ obs_norm_clamp_max=1,
67
+ reward_mse_ratio=1e5,
68
+ )
69
+
70
+ large_RND_net_config = dict(
71
+ exp_name="large_RND_network",
72
+ observation_shape=2835,
73
+ hidden_size_list=[256, 256],
74
+ learning_rate=1e-3,
75
+ batch_size=64,
76
+ update_per_collect=100,
77
+ obs_norm=True,
78
+ obs_norm_clamp_min=-1,
79
+ obs_norm_clamp_max=1,
80
+ reward_mse_ratio=1e5,
81
+ )
82
+
83
+ very_large_RND_net_config = dict(
84
+ exp_name="very_large_RND_network",
85
+ observation_shape=2835,
86
+ hidden_size_list=[512, 512],
87
+ learning_rate=1e-3,
88
+ batch_size=64,
89
+ update_per_collect=100,
90
+ obs_norm=True,
91
+ obs_norm_clamp_min=-1,
92
+ obs_norm_clamp_max=1,
93
+ reward_mse_ratio=1e5,
94
+ )
95
+
96
+ class FCEncoder(nn.Module):
97
+ def __init__(
98
+ self,
99
+ obs_shape: int,
100
+ hidden_size_list,
101
+ activation: Optional[nn.Module] = nn.ReLU(),
102
+ ) -> None:
103
+ super(FCEncoder, self).__init__()
104
+ self.obs_shape = obs_shape
105
+ self.act = activation
106
+ self.init = nn.Linear(obs_shape, hidden_size_list[0])
107
+
108
+ layers = []
109
+ for i in range(len(hidden_size_list) - 1):
110
+ layers.append(nn.Linear(hidden_size_list[i], hidden_size_list[i + 1]))
111
+ layers.append(self.act)
112
+ self.main = nn.Sequential(*layers)
113
+
114
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
115
+ x = self.act(self.init(x))
116
+ x = self.main(x)
117
+ return x
118
+
119
+ class RndNetwork(nn.Module):
120
+ def __init__(self, obs_shape: Union[int, list], hidden_size_list: list) -> None:
121
+ super(RndNetwork, self).__init__()
122
+ self.target = FCEncoder(obs_shape, hidden_size_list)
123
+ self.predictor = FCEncoder(obs_shape, hidden_size_list)
124
+
125
+ for param in self.target.parameters():
126
+ param.requires_grad = False
127
+
128
+ def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
129
+ predict_feature = self.predictor(obs)
130
+ with torch.no_grad():
131
+ target_feature = self.target(obs)
132
+ return predict_feature, target_feature
133
+
134
+ class RunningMeanStd(object):
135
+ def __init__(self, epsilon=1e-4, shape=(), device=torch.device('cpu')):
136
+ self._epsilon = epsilon
137
+ self._shape = shape
138
+ self._device = device
139
+ self.reset()
140
+
141
+ def update(self, x):
142
+ batch_mean = np.mean(x, axis=0)
143
+ batch_var = np.var(x, axis=0)
144
+ batch_count = x.shape[0]
145
+
146
+ new_count = batch_count + self._count
147
+ mean_delta = batch_mean - self._mean
148
+ new_mean = self._mean + mean_delta * batch_count / new_count
149
+ # this method for calculating new variable might be numerically unstable
150
+ m_a = self._var * self._count
151
+ m_b = batch_var * batch_count
152
+ m2 = m_a + m_b + np.square(mean_delta) * self._count * batch_count / new_count
153
+ new_var = m2 / new_count
154
+ self._mean = new_mean
155
+ self._var = new_var
156
+ self._count = new_count
157
+
158
+ def reset(self):
159
+ if len(self._shape) > 0:
160
+ self._mean = np.zeros(self._shape, 'float32')
161
+ self._var = np.ones(self._shape, 'float32')
162
+ else:
163
+ self._mean, self._var = 0., 1.
164
+ self._count = self._epsilon
165
+
166
+ @property
167
+ def mean(self) -> np.ndarray:
168
+ if np.isscalar(self._mean):
169
+ return self._mean
170
+ else:
171
+ return torch.FloatTensor(self._mean).to(self._device)
172
+
173
+ @property
174
+ def std(self) -> np.ndarray:
175
+ std = np.sqrt(self._var + 1e-8)
176
+ if np.isscalar(std):
177
+ return std
178
+ else:
179
+ return torch.FloatTensor(std).to(self._device)
180
+
181
+ class RndRewardModel():
182
+
183
+ def __init__(self, config) -> None: # noqa
184
+ super(RndRewardModel, self).__init__()
185
+ self.cfg = config
186
+
187
+ self.tb_logger = SummaryWriter(config["exp_name"])
188
+ self.reward_model = RndNetwork(
189
+ obs_shape=config["observation_shape"], hidden_size_list=config["hidden_size_list"]
190
+ ).to(device)
191
+
192
+ self.opt = optim.Adam(self.reward_model.predictor.parameters(), config["learning_rate"])
193
+ self.scheduler = ExponentialLR(self.opt, gamma=0.997)
194
+
195
+ self.estimate_cnt_rnd = 0
196
+ if self.cfg["obs_norm"]:
197
+ self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4, device=device)
198
+
199
+ def __del__(self):
200
+ self.tb_logger.flush()
201
+ self.tb_logger.close()
202
+
203
+ def train(self, data) -> None:
204
+ for _ in range(self.cfg["update_per_collect"]):
205
+ train_data: list = random.sample(data, self.cfg["batch_size"])
206
+ train_data: torch.Tensor = torch.stack(train_data).to(device)
207
+ if self.cfg["obs_norm"]:
208
+ # Note: observation normalization: transform obs to mean 0, std 1
209
+ self._running_mean_std_rnd_obs.update(train_data.cpu().numpy())
210
+ train_data = (train_data - self._running_mean_std_rnd_obs.mean) / self._running_mean_std_rnd_obs.std
211
+ train_data = torch.clamp(
212
+ train_data, min=self.cfg["obs_norm_clamp_min"], max=self.cfg["obs_norm_clamp_max"]
213
+ )
214
+
215
+ predict_feature, target_feature = self.reward_model(train_data)
216
+ loss = F.mse_loss(predict_feature, target_feature.detach())
217
+ self.opt.zero_grad()
218
+ loss.backward()
219
+ self.opt.step()
220
+ self.scheduler.step()
221
+
222
+ def estimate(self, data: list) -> List[Dict]:
223
+ """
224
+ estimate the rnd intrinsic reward
225
+ """
226
+
227
+ obs = torch.stack(data).to(device)
228
+ if self.cfg["obs_norm"]:
229
+ # Note: observation normalization: transform obs to mean 0, std 1
230
+ obs = (obs - self._running_mean_std_rnd_obs.mean) / self._running_mean_std_rnd_obs.std
231
+ obs = torch.clamp(obs, min=self.cfg["obs_norm_clamp_min"], max=self.cfg["obs_norm_clamp_max"])
232
+
233
+ with torch.no_grad():
234
+ self.estimate_cnt_rnd += 1
235
+ predict_feature, target_feature = self.reward_model(obs)
236
+ mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1)
237
+ self.tb_logger.add_scalar('rnd_reward/mse', mse.cpu().numpy().mean(), self.estimate_cnt_rnd)
238
+
239
+ # Note: according to the min-max normalization, transform rnd reward to [0,1]
240
+ rnd_reward = mse * self.cfg["reward_mse_ratio"] #(mse - mse.min()) / (mse.max() - mse.min() + 1e-11)
241
+
242
+ self.tb_logger.add_scalar('rnd_reward/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd)
243
+ self.tb_logger.add_scalar('rnd_reward/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd)
244
+ self.tb_logger.add_scalar('rnd_reward/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd)
245
+
246
+ rnd_reward = torch.chunk(rnd_reward, rnd_reward.shape[0], dim=0)
247
+
248
+ def training(config, train_data, test_data):
249
+ rnd_reward_model = RndRewardModel(config=config)
250
+ for i in range(train_config["train_iter"]):
251
+ rnd_reward_model.train([torch.Tensor(item["last_observation"]) for item in train_data[i]])
252
+ rnd_reward_model.estimate([torch.Tensor(item["last_observation"]) for item in test_data])
253
+
254
+ def main():
255
+ env = gym.make("MiniGrid-Empty-8x8-v0")
256
+ env_obs = FlatObsWrapper(env)
257
+
258
+ train_data = []
259
+ test_data = []
260
+
261
+ for i in range(train_config["train_iter"]):
262
+
263
+ train_data_per_iter = []
264
+
265
+ while len(train_data_per_iter) < train_config["train_data_count"]:
266
+ last_observation, _ = env_obs.reset()
267
+ terminated = False
268
+ while terminated != True and len(train_data_per_iter) < train_config["train_data_count"]:
269
+ action = env_obs.action_space.sample()
270
+ observation, reward, terminated, truncated, info = env_obs.step(action)
271
+ train_data_per_iter.append(
272
+ {
273
+ "last_observation": last_observation,
274
+ "action": action,
275
+ "reward": reward,
276
+ "observation": observation
277
+ }
278
+ )
279
+ last_observation = observation
280
+ env_obs.close()
281
+
282
+ train_data.append(train_data_per_iter)
283
+
284
+ while len(test_data) < train_config["test_data_count"]:
285
+ last_observation, _ = env_obs.reset()
286
+ terminated = False
287
+ while terminated != True and len(train_data_per_iter) < train_config["test_data_count"]:
288
+ action = env_obs.action_space.sample()
289
+ observation, reward, terminated, truncated, info = env_obs.step(action)
290
+ test_data.append(
291
+ {
292
+ "last_observation": last_observation,
293
+ "action": action,
294
+ "reward": reward,
295
+ "observation": observation
296
+ }
297
+ )
298
+ last_observation = observation
299
+ env_obs.close()
300
+
301
+ p0 = Process(target=training, args=(little_RND_net_config, train_data, test_data))
302
+ p0.start()
303
+
304
+ p1 = Process(target=training, args=(small_RND_net_config, train_data, test_data))
305
+ p1.start()
306
+
307
+ p2 = Process(target=training, args=(standard_RND_net_config, train_data, test_data))
308
+ p2.start()
309
+
310
+ p3 = Process(target=training, args=(large_RND_net_config, train_data, test_data))
311
+ p3.start()
312
+
313
+ p4 = Process(target=training, args=(very_large_RND_net_config, train_data, test_data))
314
+ p4.start()
315
+
316
+ p0.join()
317
+ p1.join()
318
+ p2.join()
319
+ p3.join()
320
+ p4.join()
321
+
322
+ if __name__ == "__main__":
323
+ mp.set_start_method('spawn')
324
+ main()
ppof_ch4_data_lunarlander.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff98aa71827552cd72afc108edddac8e1d77df3499c624dc6f16e256b2a79d61
3
+ size 99443
ppof_ch4_data_p1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c993afb3adb533830ae271f86ba9fb587e70216385f6f20e88dab7fa8f583d8
3
+ size 4035833
ppof_ch5_code_p1.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Long Short Term Memory (LSTM) <link https://ieeexplore.ieee.org/abstract/document/6795963 link> is a kind of recurrent neural network that can capture long-short term information.
3
+ This document mainly includes:
4
+ - Pytorch implementation for LSTM.
5
+ - An example to test LSTM.
6
+ For beginners, you can refer to <link https://zhuanlan.zhihu.com/p/32085405 link> to learn the basics about how LSTM works.
7
+ """
8
+ from typing import Optional, Union, Tuple, List, Dict
9
+ import math
10
+ import torch
11
+ import torch.nn as nn
12
+ from ding.torch_utils import build_normalization
13
+
14
+
15
+ class LSTM(nn.Module):
16
+ """
17
+ **Overview:**
18
+ Implementation of LSTM cell with layer norm.
19
+ """
20
+
21
+ def __init__(
22
+ self,
23
+ input_size: int,
24
+ hidden_size: int,
25
+ num_layers: int,
26
+ norm_type: Optional[str] = 'LN',
27
+ dropout: float = 0.
28
+ ) -> None:
29
+ # Initialize arguments.
30
+ super(LSTM, self).__init__()
31
+ self.input_size = input_size
32
+ self.hidden_size = hidden_size
33
+ self.num_layers = num_layers
34
+ # Initialize normalization functions.
35
+ norm_func = build_normalization(norm_type)
36
+ self.norm = nn.ModuleList([norm_func(hidden_size * 4) for _ in range(2 * num_layers)])
37
+ # Initialize LSTM parameters.
38
+ self.wx = nn.ParameterList()
39
+ self.wh = nn.ParameterList()
40
+ dims = [input_size] + [hidden_size] * num_layers
41
+ for l in range(num_layers):
42
+ self.wx.append(nn.Parameter(torch.zeros(dims[l], dims[l + 1] * 4)))
43
+ self.wh.append(nn.Parameter(torch.zeros(hidden_size, hidden_size * 4)))
44
+ self.bias = nn.Parameter(torch.zeros(num_layers, hidden_size * 4))
45
+ # Initialize the Dropout Layer.
46
+ self.use_dropout = dropout > 0.
47
+ if self.use_dropout:
48
+ self.dropout = nn.Dropout(dropout)
49
+ self._init()
50
+
51
+ # Dealing with different types of input and return preprocessed prev_state.
52
+ def _before_forward(self, inputs: torch.Tensor, prev_state: Union[None, List[Dict]]) -> torch.Tensor:
53
+ seq_len, batch_size = inputs.shape[:2]
54
+ # If prev_state is None, it indicates that this is the beginning of a sequence. In this case, prev_state will be initialized as zero.
55
+ if prev_state is None:
56
+ zeros = torch.zeros(self.num_layers, batch_size, self.hidden_size, dtype=inputs.dtype, device=inputs.device)
57
+ prev_state = (zeros, zeros)
58
+ # If prev_state is not None, then preprocess it into one batch.
59
+ else:
60
+ assert len(prev_state) == batch_size
61
+ state = [[v for v in prev.values()] for prev in prev_state]
62
+ state = list(zip(*state))
63
+ prev_state = [torch.cat(t, dim=1) for t in state]
64
+
65
+ return prev_state
66
+
67
+ def _init(self):
68
+ # Initialize parameters. Each parameter is initialized using a uniform distribution of: $$U(-\sqrt {\frac 1 {HiddenSize}}, -\sqrt {\frac 1 {HiddenSize}})$$
69
+ gain = math.sqrt(1. / self.hidden_size)
70
+ for l in range(self.num_layers):
71
+ torch.nn.init.uniform_(self.wx[l], -gain, gain)
72
+ torch.nn.init.uniform_(self.wh[l], -gain, gain)
73
+ if self.bias is not None:
74
+ torch.nn.init.uniform_(self.bias[l], -gain, gain)
75
+
76
+ def forward(
77
+ self,
78
+ inputs: torch.Tensor,
79
+ prev_state: torch.Tensor,
80
+ ) -> Tuple[torch.Tensor, Union[torch.Tensor, list]]:
81
+ # The shape of input is: [sequence length, batch size, input size]
82
+ seq_len, batch_size = inputs.shape[:2]
83
+ prev_state = self._before_forward(inputs, prev_state)
84
+
85
+ H, C = prev_state
86
+ x = inputs
87
+ next_state = []
88
+ for l in range(self.num_layers):
89
+ h, c = H[l], C[l]
90
+ new_x = []
91
+ for s in range(seq_len):
92
+ # Calculate $$z, z^i, z^f, z^o$$ simultaneously.
93
+ gate = self.norm[l * 2](torch.matmul(x[s], self.wx[l])
94
+ ) + self.norm[l * 2 + 1](torch.matmul(h, self.wh[l]))
95
+ if self.bias is not None:
96
+ gate += self.bias[l]
97
+ gate = list(torch.chunk(gate, 4, dim=1))
98
+ i, f, o, z = gate
99
+ # $$z^i = \sigma (Wx^ix^t + Wh^ih^{t-1})$$
100
+ i = torch.sigmoid(i)
101
+ # $$z^f = \sigma (Wx^fx^t + Wh^fh^{t-1})$$
102
+ f = torch.sigmoid(f)
103
+ # $$z^o = \sigma (Wx^ox^t + Wh^oh^{t-1})$$
104
+ o = torch.sigmoid(o)
105
+ # $$z = tanh(Wxx^t + Whh^{t-1})$$
106
+ z = torch.tanh(z)
107
+ # $$c^t = z^f \odot c^{t-1}+z^i \odot z$$
108
+ c = f * c + i * z
109
+ # $$h^t = z^o \odot tanh(c^t)$$
110
+ h = o * torch.tanh(c)
111
+ new_x.append(h)
112
+ next_state.append((h, c))
113
+ x = torch.stack(new_x, dim=0)
114
+ # Dropout layer.
115
+ if self.use_dropout and l != self.num_layers - 1:
116
+ x = self.dropout(x)
117
+ next_state = [torch.stack(t, dim=0) for t in zip(*next_state)]
118
+ # Return list type, split the next_state .
119
+ h, c = next_state
120
+ batch_size = h.shape[1]
121
+ # Split h with shape [num_layers, batch_size, hidden_size] to a list with length batch_size and each element is a tensor with shape [num_layers, 1, hidden_size]. The same operation is performed on c.
122
+ next_state = [torch.chunk(h, batch_size, dim=1), torch.chunk(c, batch_size, dim=1)]
123
+ next_state = list(zip(*next_state))
124
+ next_state = [{k: v for k, v in zip(['h', 'c'], item)} for item in next_state]
125
+ return x, next_state
126
+
127
+
128
+ def pack_data(data: List[torch.Tensor], traj_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
129
+ """
130
+ Overview:
131
+ You need to pack variable-length data to regular tensor, return tensor and corresponding mask.
132
+ If len(data_i) < traj_len, use `null_padding`,
133
+ else split the whole sequences info different trajectories.
134
+ Returns:
135
+ - tensor (:obj:`torch.Tensor`): dtype (torch.float32), shape (traj_len, B, N)
136
+ - mask (:obj:`torch.Tensor`): dtype (torch.float32), shape (traj_len, B)
137
+ """
138
+ new_data = []
139
+ mask = []
140
+ for item in data:
141
+ D, N = item.shape
142
+ if D < traj_len:
143
+ null_padding = torch.zeros(traj_len - D, N)
144
+ new_item = torch.cat([item, null_padding])
145
+ new_data.append(new_item)
146
+ item_mask = torch.ones(traj_len)
147
+ item_mask[D:].zero_()
148
+ mask.append(item_mask)
149
+ else:
150
+ for i in range(0, D, traj_len):
151
+ item_mask = torch.ones(traj_len)
152
+ new_item = item[i:i + traj_len]
153
+ if new_item.shape[0] < traj_len:
154
+ new_item = item[-traj_len:]
155
+ new_data.append(new_item)
156
+ mask.append(torch.ones(traj_len))
157
+ new_data = torch.stack(new_data, dim=1)
158
+ mask = torch.stack(mask, dim=1)
159
+
160
+ return new_data, mask
161
+
162
+
163
+ def test_lstm():
164
+ seq_len_list = [32, 49, 24, 78, 45]
165
+ traj_len = 32
166
+ N = 10
167
+ hidden_size = 32
168
+ num_layers = 2
169
+
170
+ variable_len_data = [torch.rand(s, N) for s in seq_len_list]
171
+ input_, mask = pack_data(variable_len_data, traj_len)
172
+ assert isinstance(input_, torch.Tensor), type(input_)
173
+ batch_size = input_.shape[1]
174
+ assert batch_size == 9, "packed data must have 9 trajectories"
175
+ lstm = LSTM(N, hidden_size=hidden_size, num_layers=num_layers, norm_type='LN', dropout=0.1)
176
+
177
+ prev_state = None
178
+ for s in range(traj_len):
179
+ input_step = input_[s:s + 1]
180
+ output, prev_state = lstm(input_step, prev_state)
181
+
182
+ assert output.shape == (1, batch_size, hidden_size)
183
+ assert len(prev_state) == batch_size
184
+ assert prev_state[0]['h'].shape == (num_layers, 1, hidden_size)
185
+ loss = (output * mask.unsqueeze(-1)).mean()
186
+ loss.backward()
187
+ for _, m in lstm.named_parameters():
188
+ assert isinstance(m.grad, torch.Tensor)
189
+ print('finished')
190
+
191
+
192
+ if __name__ == '__main__':
193
+ test_lstm()
ppof_ch6_code_p1.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+
4
+
5
+ def get_agent_id_feature(agent_id, agent_num):
6
+ agent_id_feature = torch.zeros(agent_num)
7
+ agent_id_feature[agent_id] = 1
8
+ return agent_id_feature
9
+
10
+
11
+ def get_movement_feature():
12
+ # for simplicity, we use random movement feature here
13
+ movement_feature = torch.randint(0, 2, (8, ))
14
+ return movement_feature
15
+
16
+
17
+ def get_own_feature():
18
+ # for simplicity, we use random own feature here
19
+ return torch.randn(10)
20
+
21
+
22
+ def get_ally_visible_feature():
23
+ # this function only return the visible feature of one ally
24
+ # for simplicity, we use random tensor as ally visible feature while zero tensor as ally invisible feature
25
+ if np.random.random() > 0.5:
26
+ ally_visible_feature = torch.randn(4)
27
+ else:
28
+ ally_visible_feature = torch.zeros(4)
29
+ return ally_visible_feature
30
+
31
+
32
+ def get_enemy_visible_feature():
33
+ # this function only return the visible feature of one enemy
34
+ # for simplicity, we use random tensor as enemy visible feature while zero tensor as enemy invisible feature
35
+ if np.random.random() > 0.8:
36
+ enemy_visible_feature = torch.randn(4)
37
+ else:
38
+ enemy_visible_feature = torch.zeros(4)
39
+ return enemy_visible_feature
40
+
41
+
42
+ def get_ind_global_state(agent_id, ally_agent_num, enemy_agent_num):
43
+ # You need to implement this function
44
+ raise NotImplementedError
45
+
46
+
47
+ def get_ep_global_state(agent_id, ally_agent_num, enemy_agent_num):
48
+ # In many multi-agent environments such as SMAC, the global state is the simplified version of the combination
49
+ # of all the agent's independent state, and the concrete implementation depends on the characteris of environment.
50
+ # For simplicity, we use random feature here.
51
+ ally_center_feature = torch.randn(8)
52
+ enemy_center_feature = torch.randn(8)
53
+ return torch.cat([ally_center_feature, enemy_center_feature])
54
+
55
+
56
+ def get_as_global_state(agent_id, ally_agent_num, enemy_agent_num):
57
+ # You need to implement this function
58
+ raise NotImplementedError
59
+
60
+
61
+ def test_global_state():
62
+ ally_agent_num = 3
63
+ enemy_agent_num = 5
64
+ # get independent global state, which usually used in decentralized training
65
+ for agent_id in range(ally_agent_num):
66
+ ind_global_state = get_ind_global_state(agent_id, ally_agent_num, enemy_agent_num)
67
+ assert isinstance(ind_global_state, torch.Tensor)
68
+ # get environment provide global state, which is the same for all agents, used in centralized training
69
+ for agent_id in range(ally_agent_num):
70
+ ep_global_state = get_ep_global_state(agent_id, ally_agent_num, enemy_agent_num)
71
+ assert isinstance(ep_global_state, torch.Tensor)
72
+ # get naive agent-specific global state, which is the specific for each agent, used in centralized training
73
+ for agent_id in range(ally_agent_num):
74
+ as_global_state = get_as_global_state(agent_id, ally_agent_num, enemy_agent_num)
75
+ assert isinstance(as_global_state, torch.Tensor)
76
+
77
+
78
+ if __name__ == "__main__":
79
+ test_global_state()
ppof_ch7_code_p1.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, List
2
+ import torch
3
+ import torch.nn as nn
4
+ import treetensor.torch as ttorch
5
+
6
+
7
+ class PPOFModel(nn.Module):
8
+ mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']
9
+
10
+ def __init__(
11
+ self,
12
+ obs_shape: Tuple[int],
13
+ action_shape: int,
14
+ encoder_hidden_size_list: List = [128, 128, 64],
15
+ actor_head_hidden_size: int = 64,
16
+ actor_head_layer_num: int = 1,
17
+ critic_head_hidden_size: int = 64,
18
+ critic_head_layer_num: int = 1,
19
+ activation: Optional[nn.Module] = nn.ReLU(),
20
+ ) -> None:
21
+ super(PPOFModel, self).__init__()
22
+ self.obs_shape, self.action_shape = obs_shape, action_shape
23
+
24
+ # encoder
25
+ layers = []
26
+ input_size = obs_shape[0]
27
+ kernel_size_list = [8, 4, 3]
28
+ stride_list = [4, 2, 1]
29
+ for i in range(len(encoder_hidden_size_list)):
30
+ output_size = encoder_hidden_size_list[i]
31
+ layers.append(nn.Conv2d(input_size, output_size, kernel_size_list[i], stride_list[i]))
32
+ layers.append(activation)
33
+ input_size = output_size
34
+ layers.append(nn.Flatten())
35
+ self.encoder = nn.Sequential(*layers)
36
+
37
+ flatten_size = input_size = self.get_flatten_size()
38
+ # critic
39
+ layers = []
40
+ for i in range(critic_head_layer_num):
41
+ layers.append(nn.Linear(input_size, critic_head_hidden_size))
42
+ layers.append(activation)
43
+ input_size = critic_head_hidden_size
44
+ layers.append(nn.Linear(critic_head_hidden_size, 1))
45
+ self.critic = nn.Sequential(*layers)
46
+ # actor
47
+ layers = []
48
+ input_size = flatten_size
49
+ for i in range(actor_head_layer_num):
50
+ layers.append(nn.Linear(input_size, actor_head_hidden_size))
51
+ layers.append(activation)
52
+ input_size = actor_head_hidden_size
53
+ self.actor = nn.Sequential(*layers)
54
+ self.mu = nn.Linear(actor_head_hidden_size, action_shape)
55
+ self.log_sigma = nn.Parameter(torch.zeros(1, action_shape))
56
+
57
+ # init weights
58
+ self.init_weights()
59
+
60
+ def init_weights(self) -> None:
61
+ # You need to implement this function
62
+ raise NotImplementedError
63
+
64
+ def get_flatten_size(self) -> int:
65
+ test_data = torch.randn(1, *self.obs_shape)
66
+ with torch.no_grad():
67
+ output = self.encoder(test_data)
68
+ return output.shape[1]
69
+
70
+ def forward(self, inputs: ttorch.Tensor, mode: str) -> ttorch.Tensor:
71
+ assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
72
+ return getattr(self, mode)(inputs)
73
+
74
+ def compute_actor(self, x: ttorch.Tensor) -> ttorch.Tensor:
75
+ x = self.encoder(x)
76
+ x = self.actor(x)
77
+ mu = self.mu(x)
78
+ log_sigma = self.log_sigma + torch.zeros_like(mu) # addition aims to broadcast shape
79
+ sigma = torch.exp(log_sigma)
80
+ return ttorch.as_tensor({'mu': mu, 'sigma': sigma})
81
+
82
+ def compute_critic(self, x: ttorch.Tensor) -> ttorch.Tensor:
83
+ x = self.encoder(x)
84
+ value = self.critic(x)
85
+ return value
86
+
87
+ def compute_actor_critic(self, x: ttorch.Tensor) -> ttorch.Tensor:
88
+ x = self.encoder(x)
89
+ value = self.critic(x)
90
+ x = self.actor(x)
91
+ mu = self.mu(x)
92
+ log_sigma = self.log_sigma + torch.zeros_like(mu) # addition aims to broadcast shape
93
+ sigma = torch.exp(log_sigma)
94
+ return ttorch.as_tensor({'logit': {'mu': mu, 'sigma': sigma}, 'value': value})
95
+
96
+
97
+ def test_ppof_model() -> None:
98
+ model = PPOFModel((4, 84, 84), 5)
99
+ print(model)
100
+ data = torch.randn(3, 4, 84, 84)
101
+ output = model(data, mode='compute_critic')
102
+ assert output.shape == (3, 1)
103
+ output = model(data, mode='compute_actor')
104
+ assert output.mu.shape == (3, 5)
105
+ assert output.sigma.shape == (3, 5)
106
+ output = model(data, mode='compute_actor_critic')
107
+ assert output.value.shape == (3, 1)
108
+ assert output.logit.mu.shape == (3, 5)
109
+ assert output.logit.sigma.shape == (3, 5)
110
+ print('End...')
111
+
112
+
113
+ if __name__ == "__main__":
114
+ test_ppof_model()