Liangtai Sun
commited on
Commit
•
0cd0d00
1
Parent(s):
d89aafa
upload files
Browse files- README.md +88 -167
- smiles.model +3 -0
README.md
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
license: agpl-3.0
|
3 |
language:
|
4 |
- en
|
@@ -6,198 +6,119 @@ language:
|
|
6 |
tags:
|
7 |
- AI4S
|
8 |
- MoE
|
9 |
-
|
10 |
-
#
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
## Model Details
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
<!-- Provide a longer summary of what this model is. -->
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
- **Developed by:** [More Information Needed]
|
25 |
-
- **Funded by [optional]:** [More Information Needed]
|
26 |
-
- **Shared by [optional]:** [More Information Needed]
|
27 |
-
- **Model type:** [More Information Needed]
|
28 |
-
- **Language(s) (NLP):** [More Information Needed]
|
29 |
-
- **License:** [More Information Needed]
|
30 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
31 |
-
|
32 |
-
### Model Sources [optional]
|
33 |
-
|
34 |
-
<!-- Provide the basic links for the model. -->
|
35 |
-
|
36 |
-
- **Repository:** [More Information Needed]
|
37 |
-
- **Paper [optional]:** [More Information Needed]
|
38 |
-
- **Demo [optional]:** [More Information Needed]
|
39 |
-
|
40 |
-
## Uses
|
41 |
-
|
42 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
43 |
-
|
44 |
-
### Direct Use
|
45 |
-
|
46 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
47 |
-
|
48 |
-
[More Information Needed]
|
49 |
-
|
50 |
-
### Downstream Use [optional]
|
51 |
-
|
52 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
-
|
56 |
-
### Out-of-Scope Use
|
57 |
-
|
58 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
59 |
-
|
60 |
-
[More Information Needed]
|
61 |
-
|
62 |
-
## Bias, Risks, and Limitations
|
63 |
-
|
64 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
65 |
-
|
66 |
-
[More Information Needed]
|
67 |
-
|
68 |
-
### Recommendations
|
69 |
-
|
70 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
71 |
-
|
72 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
73 |
-
|
74 |
-
## How to Get Started with the Model
|
75 |
-
|
76 |
-
Use the code below to get started with the model.
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
|
80 |
## Training Details
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
-
### Training Procedure
|
89 |
-
|
90 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
91 |
-
|
92 |
-
#### Preprocessing [optional]
|
93 |
-
|
94 |
-
[More Information Needed]
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
## Evaluation
|
108 |
-
|
109 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
110 |
-
|
111 |
-
### Testing Data, Factors & Metrics
|
112 |
-
|
113 |
-
#### Testing Data
|
114 |
-
|
115 |
-
<!-- This should link to a Dataset Card if possible. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
#### Factors
|
120 |
-
|
121 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
-
|
125 |
-
#### Metrics
|
126 |
-
|
127 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
### Results
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
#### Summary
|
136 |
|
|
|
|
|
|
|
137 |
|
|
|
|
|
|
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
|
149 |
-
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
- **Cloud Provider:** [More Information Needed]
|
154 |
-
- **Compute Region:** [More Information Needed]
|
155 |
-
- **Carbon Emitted:** [More Information Needed]
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
|
|
|
|
|
|
160 |
|
161 |
-
|
|
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
|
|
|
|
|
|
166 |
|
167 |
-
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
#### Software
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Citation [optional]
|
176 |
-
|
177 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
178 |
-
|
179 |
-
**BibTeX:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
**APA:**
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## Glossary [optional]
|
188 |
-
|
189 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## More Information [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Authors [optional]
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Model Card Contact
|
202 |
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
----
|
2 |
license: agpl-3.0
|
3 |
language:
|
4 |
- en
|
|
|
6 |
tags:
|
7 |
- AI4S
|
8 |
- MoE
|
9 |
+
----
|
10 |
+
# SciDFM: Dialogue Foundation Model for Science
|
11 |
|
12 |
+
SciDFM is the pioneering open-sourced dialogue foundation model tailored for science, which integrates a mixture-of-experts architecture into a transformer-based framework, aiming at enhancing its sophisticated scientific reasoning and understanding capabilities. SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reachs a SOTA performance on domain-specific benchmark among models of similar size.
|
13 |
|
14 |
+
## News
|
15 |
+
* **2024-06-28** The parameter of SciDFM-MoE-A5.6B-v1.0 is open-soursed! Technical report is coming soon.
|
16 |
|
17 |
## Model Details
|
18 |
|
19 |
+
SciDFM is based on a transformer architecture, and follows modifications of Llama, i.e. RMSNorm, RoPE and SwiGLU. SciDFM use the same hyper-parameters of OpenLLaMa-3B. And in order to better model knowledge of different disciplines, we replace the feed-forward block with Mixture-of-Expert (MoE) layers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
## Training Details
|
22 |
|
23 |
+
SciDFM is pre-trained on a large corpus containing ~300B science tokens and ~270B general tokens for two epochs, resulting in about 1.1T tokens consuming. And we further fine-tune SciDFM using ~9.3M instruction-following samples for 5 epochs to improve the performances on the downstream benchmarks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
## Usage Details
|
26 |
|
27 |
+
### Local Inference
|
28 |
|
29 |
+
To load and run SciDFM locally, here is an example:
|
30 |
|
31 |
+
```python
|
32 |
+
import torch
|
33 |
+
from transformers import LlamaTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
model_name_or_id = "OpenDFM/SciDFM-MoE-A5.6B-v1.0"
|
36 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_name_or_id, use_fast=False)
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
38 |
|
39 |
+
chat_template = "<|user|>:{instruction}<|assistant|>:"
|
40 |
+
input_text = "What is Mixture-of-Experts (MoE) in computer science?"
|
41 |
+
input_text = chat_template.format(instruction=input_text)
|
42 |
|
43 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
44 |
+
generation_config = GenerationConfig(
|
45 |
+
do_sample=True,
|
46 |
+
top_k=20,
|
47 |
+
top_p=0.9,
|
48 |
+
temperature=0.9,
|
49 |
+
max_new_tokens=1024,
|
50 |
+
eos_token_id=tokenizer.eos_token_id
|
51 |
+
)
|
52 |
|
53 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
54 |
+
generated_text = tokenizer.decode(outputs, skip_special_tokens=True)[0][len(input_text):]
|
55 |
+
print(generated_text.strip())
|
56 |
+
```
|
57 |
|
58 |
+
### SMILES preprocess
|
59 |
|
60 |
+
When there involves SMILES notation in your input, we recommend to preprocess the SMILES with the `rdkit` package to canonicalize the SMILES. Here is an example:
|
61 |
+
```python
|
62 |
+
from rdkit import Chem
|
63 |
+
def canonicalize_smiles(smiles):
|
64 |
+
mol = Chem.MolFromSmiles(smiles)
|
65 |
+
if mol is None:
|
66 |
+
return None
|
67 |
+
return Chem.MolToSmiles(mol, isomericSmiles=True, kekuleSmiles=False)
|
68 |
+
```
|
69 |
+
or directly:
|
70 |
+
```python
|
71 |
+
from rdkit import Chem
|
72 |
+
def canonicalize_smiles(smiles):
|
73 |
+
return Chem.CanonSmiles(smiles, useChiral=True)
|
74 |
+
```
|
75 |
|
76 |
+
### Special Tokens preprocess
|
77 |
|
78 |
+
If there is SMILES expression in your input, please first process it with the following function:
|
79 |
|
80 |
+
```python
|
81 |
+
import sentencepiece as spm
|
|
|
|
|
|
|
82 |
|
83 |
+
smiles_model = spm.SentencePieceProcessor(model_file="smiles.model")
|
84 |
|
85 |
+
def convert_smiles(smiles_str):
|
86 |
+
pieces = smiles_model.encode_as_pieces(smiles_str)[1:]
|
87 |
+
smiles = "".join([f"[ChemDFM_Start_SMILES_Unit]{piece}[ChemDFM_End_SMILES_Unit]" for piece in pieces])
|
88 |
+
return smiles
|
89 |
|
90 |
+
convert_smiles("C(C(=O)O)N")
|
91 |
+
```
|
92 |
|
93 |
+
And if there is protein sequece in your input, please first process it with the following function:
|
94 |
|
95 |
+
```python
|
96 |
+
def convert_protein(p_str):
|
97 |
+
res = [f"<<protein>>{s}" for s in p_str]
|
98 |
+
return "".join(res)
|
99 |
|
100 |
+
convert_protein("MIRLGAPQTL")
|
101 |
+
```
|
102 |
|
103 |
+
## Evaluation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
We briefly compare SciDFM-MoE-A5.6B-v1.0 with similar-sized instruction-tuned LLMs on scientific evaluation benchmarks. The results are shown below:
|
106 |
+
| Model | SciEval | SciQ | ARC\_c | ARC\_e | GSM8K | MATH | MedQA | MMCQA | PMQA | Avg |
|
107 |
+
|--------------------|---------|-------|--------|--------|-------|-------|-------|-------|-------|-------|
|
108 |
+
| LLaMa2-7B | 27.06 | 57.00 | 36.43 | 46.59 | 3.94 | 3.96 | 26.32 | 29.84 | 66.80 | 32.95 |
|
109 |
+
| Galactica-6.7B | 46.28 | 74.20 | 44.28 | 61.83 | 2.80 | 6.32 | 30.48 | 36.46 | 48.80 | 38.91 |
|
110 |
+
| LLaMa2-13B | 33.88 | 78.10 | 56.66 | 72.35 | 22.82 | 3.90 | 32.68 | 34.28 | 77.80 | 45.45 |
|
111 |
+
| ChatGLM2-6B | 54.25 | 75.80 | 57.08 | 73.57 | 25.09 | 7.18 | 27.42 | 34.21 | 60.40 | 45.94 |
|
112 |
+
| Galactica-30B | 54.24 | 83.10 | 57.85 | 75.04 | 13.65 | 8.66 | 37.71 | 48.43 | 58.80 | 48.35 |
|
113 |
+
| LLaMa3-8B | 59.70 | 90.00 | 71.16 | 84.05 | 5.91 | 7.00 | 48.78 | 52.74 | 26.60 | 49.59 |
|
114 |
+
| ChatGLM3-6B | 51.13 | 77.60 | 60.84 | 75.97 | 60.27 | 23.52 | 24.59 | 31.39 | 51.80 | 50.53 |
|
115 |
+
| SciGLM-6B | 61.22 | 88.70 | 77.47 | 86.57 | 42.23 | 16.40 | 42.81 | 44.94 | 73.60 | 59.12 |
|
116 |
+
| SciDFM | 62.48 | 88.00 | 64.76 | 81.48 | 59.14 | 27.28 | 44.54 | 53.10 | 78.00 | 61.56 |
|
117 |
+
| ChatGLM3-6B-base | 60.34 | 89.00 | 78.58 | 87.37 | 59.82 | 22.64 | 42.73 | 45.14 | 74.40 | 61.96 |
|
118 |
+
| Llama3-8B-Instruct | 64.91 | 91.60 | 76.45 | 87.33 | 76.57 | 26.26 | 56.48 | 59.31 | 72.00 | 67.44 |
|
119 |
+
|
120 |
+
## Citation
|
121 |
+
|
122 |
+
```
|
123 |
+
comming soon...
|
124 |
+
```
|
smiles.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b405d2e3ec0b31e44daa3831a1345e80ca7aa7362f6f99e02f118cc0b46468d6
|
3 |
+
size 6641
|