Omartificial-Intelligence-Space commited on
Commit
2952d95
·
verified ·
1 Parent(s): 052ec71

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ar
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:2772052
11
+ - loss:MultipleNegativesRankingLoss
12
+ - loss:SoftmaxLoss
13
+ - loss:CoSENTLoss
14
+ base_model: google-bert/bert-base-multilingual-cased
15
+ datasets:
16
+ - Omartificial-Intelligence-Space/Arabic-stsb
17
+ - Omartificial-Intelligence-Space/Arabic-Quora-Duplicates
18
+ widget:
19
+ - source_sentence: امرأة تكتب شيئاً
20
+ sentences:
21
+ - قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
22
+ - امرأة تقطع البصل الأخضر.
23
+ - مراهق يتحدث إلى فتاة عبر كاميرا الإنترنت
24
+ - source_sentence: لاعب التزلج على الجليد يقفز فوق برميل
25
+ sentences:
26
+ - الرجل كان يمشي
27
+ - رجل عجوز يجلس في غرفة الانتظار بالمستشفى.
28
+ - متزلج على الجليد يقفز
29
+ - source_sentence: العديد من النساء يرتدين ملابس الشرق الأوسط من الذهب والأزرق والأصفر
30
+ والأحمر ويؤدون رقصة.
31
+ sentences:
32
+ - الناس توقفوا على جانب الطريق
33
+ - هناك على الأقل إمرأتين
34
+ - المرأة وحدها نائمة في قاربها على القمر
35
+ - source_sentence: الرجل يرتدي قميصاً أزرق.
36
+ sentences:
37
+ - رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء
38
+ مع الماء في الخلفية.
39
+ - الرجل يجلس بجانب لوحة لنفسه
40
+ - رجل يرتدي قميص أسود يعزف على الجيتار.
41
+ - source_sentence: ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟
42
+ sentences:
43
+ - ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟
44
+ - ما مدى قربنا من الحرب العالمية؟
45
+ - هل حرق وقود الطائرات يذوب أعمدة الصلب؟
46
+ pipeline_tag: sentence-similarity
47
+ ---
48
+
49
+ # SentenceTransformer based on google-bert/bert-base-multilingual-cased
50
+
51
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the all-nli-pair, all-nli-pair-class, all-nli-pair-score, all-nli-triplet, [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) and [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** Sentence Transformer
57
+ - **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 -->
58
+ - **Maximum Sequence Length:** 512 tokens
59
+ - **Output Dimensionality:** 768 tokens
60
+ - **Similarity Function:** Cosine Similarity
61
+ - **Training Datasets:**
62
+ - all-nli-pair
63
+ - all-nli-pair-class
64
+ - all-nli-pair-score
65
+ - all-nli-triplet
66
+ - [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
67
+ - [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates)
68
+ - **Language:** ar
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
74
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
75
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
76
+
77
+ ### Full Model Architecture
78
+
79
+ ```
80
+ SentenceTransformer(
81
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
82
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
83
+ )
84
+ ```
85
+
86
+ ## Usage
87
+
88
+ ### Direct Usage (Sentence Transformers)
89
+
90
+ First install the Sentence Transformers library:
91
+
92
+ ```bash
93
+ pip install -U sentence-transformers
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+ ```python
98
+ from sentence_transformers import SentenceTransformer
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-base-all-nli-stsb-quora")
102
+ # Run inference
103
+ sentences = [
104
+ 'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟',
105
+ 'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟',
106
+ 'ما مدى قربنا من الحرب العالمية؟',
107
+ ]
108
+ embeddings = model.encode(sentences)
109
+ print(embeddings.shape)
110
+ # [3, 768]
111
+
112
+ # Get the similarity scores for the embeddings
113
+ similarities = model.similarity(embeddings, embeddings)
114
+ print(similarities.shape)
115
+ # [3, 3]
116
+ ```
117
+
118
+ <!--
119
+ ### Direct Usage (Transformers)
120
+
121
+ <details><summary>Click to see the direct usage in Transformers</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Downstream Usage (Sentence Transformers)
128
+
129
+ You can finetune this model on your own dataset.
130
+
131
+ <details><summary>Click to expand</summary>
132
+
133
+ </details>
134
+ -->
135
+
136
+ <!--
137
+ ### Out-of-Scope Use
138
+
139
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
140
+ -->
141
+
142
+ <!--
143
+ ## Bias, Risks and Limitations
144
+
145
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
146
+ -->
147
+
148
+ <!--
149
+ ### Recommendations
150
+
151
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
152
+ -->
153
+
154
+ ## Training Details
155
+
156
+ ### Training Datasets
157
+
158
+ #### all-nli-pair
159
+
160
+ * Dataset: all-nli-pair
161
+ * Size: 314,315 training samples
162
+ * Columns: <code>anchor</code> and <code>positive</code>
163
+ * Approximate statistics based on the first 1000 samples:
164
+ | | anchor | positive |
165
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
166
+ | type | string | string |
167
+ | details | <ul><li>min: 6 tokens</li><li>mean: 24.43 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.73 tokens</li><li>max: 45 tokens</li></ul> |
168
+ * Samples:
169
+ | anchor | positive |
170
+ |:------------------------------------------------------------|:--------------------------------------------|
171
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> |
172
+ | <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> |
173
+ | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> |
174
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
175
+ ```json
176
+ {
177
+ "scale": 20.0,
178
+ "similarity_fct": "cos_sim"
179
+ }
180
+ ```
181
+
182
+ #### all-nli-pair-class
183
+
184
+ * Dataset: all-nli-pair-class
185
+ * Size: 942,069 training samples
186
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
187
+ * Approximate statistics based on the first 1000 samples:
188
+ | | premise | hypothesis | label |
189
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
190
+ | type | string | string | int |
191
+ | details | <ul><li>min: 8 tokens</li><li>mean: 24.78 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.55 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
192
+ * Samples:
193
+ | premise | hypothesis | label |
194
+ |:-----------------------------------------------|:--------------------------------------------|:---------------|
195
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>1</code> |
196
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>2</code> |
197
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>0</code> |
198
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
199
+
200
+ #### all-nli-pair-score
201
+
202
+ * Dataset: all-nli-pair-score
203
+ * Size: 942,069 training samples
204
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
205
+ * Approximate statistics based on the first 1000 samples:
206
+ | | sentence1 | sentence2 | score |
207
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
208
+ | type | string | string | float |
209
+ | details | <ul><li>min: 8 tokens</li><li>mean: 24.78 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.55 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
210
+ * Samples:
211
+ | sentence1 | sentence2 | score |
212
+ |:-----------------------------------------------|:--------------------------------------------|:-----------------|
213
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>0.5</code> |
214
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>0.0</code> |
215
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>1.0</code> |
216
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
217
+ ```json
218
+ {
219
+ "scale": 20.0,
220
+ "similarity_fct": "pairwise_cos_sim"
221
+ }
222
+ ```
223
+
224
+ #### all-nli-triplet
225
+
226
+ * Dataset: all-nli-triplet
227
+ * Size: 557,850 training samples
228
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
229
+ * Approximate statistics based on the first 1000 samples:
230
+ | | anchor | positive | negative |
231
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
232
+ | type | string | string | string |
233
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.54 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.06 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.13 tokens</li><li>max: 70 tokens</li></ul> |
234
+ * Samples:
235
+ | anchor | positive | negative |
236
+ |:------------------------------------------------------------|:--------------------------------------------|:------------------------------------|
237
+ | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> |
238
+ | <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> |
239
+ | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> |
240
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
241
+ ```json
242
+ {
243
+ "scale": 20.0,
244
+ "similarity_fct": "cos_sim"
245
+ }
246
+ ```
247
+
248
+ #### stsb
249
+
250
+ * Dataset: [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [7c6c4bd](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/7c6c4bd31a465a0f3ed1a3704a31f2682a0f65be)
251
+ * Size: 5,749 training samples
252
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
253
+ * Approximate statistics based on the first 1000 samples:
254
+ | | sentence1 | sentence2 | score |
255
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
256
+ | type | string | string | float |
257
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.68 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.44 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
258
+ * Samples:
259
+ | sentence1 | sentence2 | score |
260
+ |:-----------------------------------------------|:--------------------------------------------------------|:------------------|
261
+ | <code>طائرة ستقلع</code> | <code>طائرة جوية ستقلع</code> | <code>1.0</code> |
262
+ | <code>رجل يعزف على ناي كبير</code> | <code>رجل يعزف على الناي.</code> | <code>0.76</code> |
263
+ | <code>رجل ينشر الجبن الممزق على البيتزا</code> | <code>رجل ينشر الجبن الممزق على بيتزا غير مطبوخة</code> | <code>0.76</code> |
264
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
265
+ ```json
266
+ {
267
+ "scale": 20.0,
268
+ "similarity_fct": "pairwise_cos_sim"
269
+ }
270
+ ```
271
+
272
+ #### quora
273
+
274
+ * Dataset: [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) at [7d49308](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates/tree/7d49308a21bbad3a2762d11f2e8c0cbcc86510fe)
275
+ * Size: 10,000 training samples
276
+ * Columns: <code>anchor</code> and <code>positive</code>
277
+ * Approximate statistics based on the first 1000 samples:
278
+ | | anchor | positive |
279
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
280
+ | type | string | string |
281
+ | details | <ul><li>min: 7 tokens</li><li>mean: 19.69 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.15 tokens</li><li>max: 73 tokens</li></ul> |
282
+ * Samples:
283
+ | anchor | positive |
284
+ |:-----------------------------------------------------------------------|:------------------------------------------------------------------------------------------|
285
+ | <code>علم التنجيم: أنا برج الجدي الشمس القمر والقبعة الشمسية...</code> | <code>أنا برج الجدي الثلاثي (الشمس والقمر والصعود في برج الجدي) ماذا يقول هذا عني؟</code> |
286
+ | <code>كيف أكون جيولوجياً جيداً؟</code> | <code>ماذا علي أن أفعل لأكون جيولوجياً عظيماً؟</code> |
287
+ | <code>كيف أقرأ وأجد تعليقاتي على يوتيوب؟</code> | <code>كيف يمكنني رؤية كل تعليقاتي على اليوتيوب؟</code> |
288
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
289
+ ```json
290
+ {
291
+ "scale": 20.0,
292
+ "similarity_fct": "cos_sim"
293
+ }
294
+ ```
295
+
296
+ ### Evaluation Datasets
297
+
298
+ #### all-nli-triplet
299
+
300
+ * Dataset: all-nli-triplet
301
+ * Size: 6,584 evaluation samples
302
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
303
+ * Approximate statistics based on the first 1000 samples:
304
+ | | anchor | positive | negative |
305
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
306
+ | type | string | string | string |
307
+ | details | <ul><li>min: 5 tokens</li><li>mean: 25.81 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.09 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.35 tokens</li><li>max: 42 tokens</li></ul> |
308
+ * Samples:
309
+ | anchor | positive | negative |
310
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------|
311
+ | <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> |
312
+ | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> |
313
+ | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> |
314
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
315
+ ```json
316
+ {
317
+ "scale": 20.0,
318
+ "similarity_fct": "cos_sim"
319
+ }
320
+ ```
321
+
322
+ #### stsb
323
+
324
+ * Dataset: [stsb](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [7c6c4bd](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/7c6c4bd31a465a0f3ed1a3704a31f2682a0f65be)
325
+ * Size: 1,500 evaluation samples
326
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
327
+ * Approximate statistics based on the first 1000 samples:
328
+ | | sentence1 | sentence2 | score |
329
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
330
+ | type | string | string | float |
331
+ | details | <ul><li>min: 5 tokens</li><li>mean: 20.19 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.09 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
332
+ * Samples:
333
+ | sentence1 | sentence2 | score |
334
+ |:--------------------------------------|:---------------------------------------|:------------------|
335
+ | <code>رجل يرتدي قبعة صلبة يرقص</code> | <code>رجل يرتدي قبعة صلبة يرقص.</code> | <code>1.0</code> |
336
+ | <code>طفل صغير يركب حصاناً.</code> | <code>طفل يركب حصاناً.</code> | <code>0.95</code> |
337
+ | <code>رجل يطعم فأراً لأفعى</code> | <code>الرجل يطعم الفأر للثعبان.</code> | <code>1.0</code> |
338
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
339
+ ```json
340
+ {
341
+ "scale": 20.0,
342
+ "similarity_fct": "pairwise_cos_sim"
343
+ }
344
+ ```
345
+
346
+ #### quora
347
+
348
+ * Dataset: [quora](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates) at [7d49308](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-quora-duplicates/tree/7d49308a21bbad3a2762d11f2e8c0cbcc86510fe)
349
+ * Size: 1,000 evaluation samples
350
+ * Columns: <code>anchor</code> and <code>positive</code>
351
+ * Approximate statistics based on the first 1000 samples:
352
+ | | anchor | positive |
353
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
354
+ | type | string | string |
355
+ | details | <ul><li>min: 7 tokens</li><li>mean: 19.66 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.17 tokens</li><li>max: 96 tokens</li></ul> |
356
+ * Samples:
357
+ | anchor | positive |
358
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------|
359
+ | <code>ما هو قرارك في السنة الجديدة؟</code> | <code>ما الذي يمكن أن يكون قراري للعام الجديد لعام 2017؟</code> |
360
+ | <code>هل يجب أن أشتري هاتف آيفون 6 أو سامسونج غالاكسي إس 7؟</code> | <code>أيهما أفضل: الـ iPhone 6S Plus أو الـ Samsung Galaxy S7 Edge؟</code> |
361
+ | <code>ما هي الاختلافات بين التجاوز والتراجع؟</code> | <code>ما الفرق بين التجاوز والتراجع؟</code> |
362
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
363
+ ```json
364
+ {
365
+ "scale": 20.0,
366
+ "similarity_fct": "cos_sim"
367
+ }
368
+ ```
369
+
370
+ ### Training Hyperparameters
371
+ #### Non-Default Hyperparameters
372
+
373
+ - `per_device_train_batch_size`: 128
374
+ - `num_train_epochs`: 1
375
+ - `warmup_ratio`: 0.1
376
+
377
+ #### All Hyperparameters
378
+ <details><summary>Click to expand</summary>
379
+
380
+ - `overwrite_output_dir`: False
381
+ - `do_predict`: False
382
+ - `prediction_loss_only`: True
383
+ - `per_device_train_batch_size`: 128
384
+ - `per_device_eval_batch_size`: 8
385
+ - `per_gpu_train_batch_size`: None
386
+ - `per_gpu_eval_batch_size`: None
387
+ - `gradient_accumulation_steps`: 1
388
+ - `eval_accumulation_steps`: None
389
+ - `learning_rate`: 5e-05
390
+ - `weight_decay`: 0.0
391
+ - `adam_beta1`: 0.9
392
+ - `adam_beta2`: 0.999
393
+ - `adam_epsilon`: 1e-08
394
+ - `max_grad_norm`: 1.0
395
+ - `num_train_epochs`: 1
396
+ - `max_steps`: -1
397
+ - `lr_scheduler_type`: linear
398
+ - `lr_scheduler_kwargs`: {}
399
+ - `warmup_ratio`: 0.1
400
+ - `warmup_steps`: 0
401
+ - `log_level`: passive
402
+ - `log_level_replica`: warning
403
+ - `log_on_each_node`: True
404
+ - `logging_nan_inf_filter`: True
405
+ - `save_safetensors`: True
406
+ - `save_on_each_node`: False
407
+ - `save_only_model`: False
408
+ - `no_cuda`: False
409
+ - `use_cpu`: False
410
+ - `use_mps_device`: False
411
+ - `seed`: 42
412
+ - `data_seed`: None
413
+ - `jit_mode_eval`: False
414
+ - `use_ipex`: False
415
+ - `bf16`: False
416
+ - `fp16`: False
417
+ - `fp16_opt_level`: O1
418
+ - `half_precision_backend`: auto
419
+ - `bf16_full_eval`: False
420
+ - `fp16_full_eval`: False
421
+ - `tf32`: None
422
+ - `local_rank`: 0
423
+ - `ddp_backend`: None
424
+ - `tpu_num_cores`: None
425
+ - `tpu_metrics_debug`: False
426
+ - `debug`: []
427
+ - `dataloader_drop_last`: False
428
+ - `dataloader_num_workers`: 0
429
+ - `dataloader_prefetch_factor`: None
430
+ - `past_index`: -1
431
+ - `disable_tqdm`: False
432
+ - `remove_unused_columns`: True
433
+ - `label_names`: None
434
+ - `load_best_model_at_end`: False
435
+ - `ignore_data_skip`: False
436
+ - `fsdp`: []
437
+ - `fsdp_min_num_params`: 0
438
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
439
+ - `fsdp_transformer_layer_cls_to_wrap`: None
440
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
441
+ - `deepspeed`: None
442
+ - `label_smoothing_factor`: 0.0
443
+ - `optim`: adamw_torch
444
+ - `optim_args`: None
445
+ - `adafactor`: False
446
+ - `group_by_length`: False
447
+ - `length_column_name`: length
448
+ - `ddp_find_unused_parameters`: None
449
+ - `ddp_bucket_cap_mb`: None
450
+ - `ddp_broadcast_buffers`: False
451
+ - `dataloader_pin_memory`: True
452
+ - `dataloader_persistent_workers`: False
453
+ - `skip_memory_metrics`: True
454
+ - `use_legacy_prediction_loop`: False
455
+ - `push_to_hub`: False
456
+ - `resume_from_checkpoint`: None
457
+ - `hub_model_id`: None
458
+ - `hub_strategy`: every_save
459
+ - `hub_private_repo`: False
460
+ - `hub_always_push`: False
461
+ - `gradient_checkpointing`: False
462
+ - `gradient_checkpointing_kwargs`: None
463
+ - `include_inputs_for_metrics`: False
464
+ - `eval_do_concat_batches`: True
465
+ - `fp16_backend`: auto
466
+ - `push_to_hub_model_id`: None
467
+ - `push_to_hub_organization`: None
468
+ - `mp_parameters`:
469
+ - `auto_find_batch_size`: False
470
+ - `full_determinism`: False
471
+ - `torchdynamo`: None
472
+ - `ray_scope`: last
473
+ - `ddp_timeout`: 1800
474
+ - `torch_compile`: False
475
+ - `torch_compile_backend`: None
476
+ - `torch_compile_mode`: None
477
+ - `dispatch_batches`: None
478
+ - `split_batches`: None
479
+ - `include_tokens_per_second`: False
480
+ - `include_num_input_tokens_seen`: False
481
+ - `neftune_noise_alpha`: None
482
+ - `optim_target_modules`: None
483
+ - `batch_sampler`: batch_sampler
484
+ - `multi_dataset_batch_sampler`: proportional
485
+
486
+ </details>
487
+
488
+ ### Training Logs
489
+ | Epoch | Step | Training Loss |
490
+ |:------:|:-----:|:-------------:|
491
+ | 0.0231 | 500 | 5.0061 |
492
+ | 0.0462 | 1000 | 4.7876 |
493
+ | 0.0693 | 1500 | 4.6618 |
494
+ | 0.0923 | 2000 | 4.7337 |
495
+ | 0.1154 | 2500 | 4.5945 |
496
+ | 0.1385 | 3000 | 4.7536 |
497
+ | 0.1616 | 3500 | 4.619 |
498
+ | 0.1847 | 4000 | 4.4761 |
499
+ | 0.2078 | 4500 | 4.4454 |
500
+ | 0.2309 | 5000 | 4.6376 |
501
+ | 0.2539 | 5500 | 4.5513 |
502
+ | 0.2770 | 6000 | 4.5619 |
503
+ | 0.3001 | 6500 | 4.3416 |
504
+ | 0.3232 | 7000 | 4.7372 |
505
+ | 0.3463 | 7500 | 4.5906 |
506
+ | 0.3694 | 8000 | 4.6546 |
507
+ | 0.3924 | 8500 | 4.2452 |
508
+ | 0.4155 | 9000 | 4.684 |
509
+ | 0.4386 | 9500 | 4.426 |
510
+ | 0.4617 | 10000 | 4.2539 |
511
+ | 0.4848 | 10500 | 4.3224 |
512
+ | 0.5079 | 11000 | 4.4046 |
513
+ | 0.5310 | 11500 | 4.4644 |
514
+ | 0.5540 | 12000 | 4.4542 |
515
+ | 0.5771 | 12500 | 4.6026 |
516
+ | 0.6002 | 13000 | 4.3519 |
517
+ | 0.6233 | 13500 | 4.5135 |
518
+ | 0.6464 | 14000 | 4.3318 |
519
+ | 0.6695 | 14500 | 4.4465 |
520
+ | 0.6926 | 15000 | 3.9692 |
521
+ | 0.7156 | 15500 | 4.2084 |
522
+ | 0.7387 | 16000 | 4.2217 |
523
+ | 0.7618 | 16500 | 4.2791 |
524
+ | 0.7849 | 17000 | 4.5962 |
525
+ | 0.8080 | 17500 | 4.5871 |
526
+ | 0.8311 | 18000 | 4.3271 |
527
+ | 0.8541 | 18500 | 4.1688 |
528
+ | 0.8772 | 19000 | 4.2081 |
529
+ | 0.9003 | 19500 | 4.2867 |
530
+ | 0.9234 | 20000 | 4.5474 |
531
+ | 0.9465 | 20500 | 4.5257 |
532
+ | 0.9696 | 21000 | 3.8461 |
533
+ | 0.9927 | 21500 | 4.1254 |
534
+
535
+
536
+ ### Framework Versions
537
+ - Python: 3.9.18
538
+ - Sentence Transformers: 3.0.1
539
+ - Transformers: 4.40.0
540
+ - PyTorch: 2.2.2+cu121
541
+ - Accelerate: 0.26.1
542
+ - Datasets: 2.19.0
543
+ - Tokenizers: 0.19.1
544
+
545
+ ## Citation
546
+
547
+ ### BibTeX
548
+
549
+ #### Sentence Transformers and SoftmaxLoss
550
+ ```bibtex
551
+ @inproceedings{reimers-2019-sentence-bert,
552
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
553
+ author = "Reimers, Nils and Gurevych, Iryna",
554
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
555
+ month = "11",
556
+ year = "2019",
557
+ publisher = "Association for Computational Linguistics",
558
+ url = "https://arxiv.org/abs/1908.10084",
559
+ }
560
+ ```
561
+
562
+ #### MultipleNegativesRankingLoss
563
+ ```bibtex
564
+ @misc{henderson2017efficient,
565
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
566
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
567
+ year={2017},
568
+ eprint={1705.00652},
569
+ archivePrefix={arXiv},
570
+ primaryClass={cs.CL}
571
+ }
572
+ ```
573
+
574
+ #### CoSENTLoss
575
+ ```bibtex
576
+ @online{kexuefm-8847,
577
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
578
+ author={Su Jianlin},
579
+ year={2022},
580
+ month={Jan},
581
+ url={https://kexue.fm/archives/8847},
582
+ }
583
+ ```
584
+
585
+ <!--
586
+ ## Glossary
587
+
588
+ *Clearly define terms in order to be accessible across audiences.*
589
+ -->
590
+
591
+ <!--
592
+ ## Model Card Authors
593
+
594
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
595
+ -->
596
+
597
+ <!--
598
+ ## Model Card Contact
599
+
600
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
601
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.40.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 119547
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.40.0",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50aacb357c86dfd2fcc749c93554d9de01774f84a1f2ef1c638f3b6a8e7403f
3
+ size 711436136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff