Ogamon commited on
Commit
cffdc7b
1 Parent(s): cf0a3a7

second commit

Browse files
all_results.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
- "epoch": 4.903225806451613,
3
- "num_input_tokens_seen": 1207760,
4
- "total_flos": 5.438488809413018e+16,
5
- "train_loss": 0.49016160156086125,
6
- "train_runtime": 2575.226,
7
- "train_samples_per_second": 9.626,
8
- "train_steps_per_second": 0.074
9
  }
 
1
  {
2
+ "predict_bleu-4": 83.9079045886076,
3
+ "predict_rouge-1": 89.87341772151899,
4
+ "predict_rouge-2": 0.0,
5
+ "predict_rouge-l": 89.87341772151899,
6
+ "predict_runtime": 9.6133,
7
+ "predict_samples_per_second": 130.34,
8
+ "predict_steps_per_second": 8.218
9
  }
generated_predictions.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
llamaboard_config.yaml CHANGED
@@ -1,5 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
1
  top.booster: auto
2
- top.checkpoint_path: null
3
  top.finetuning_type: full
4
  top.model_name: LLaMA3-8B-Chat
5
  top.quantization_bit: none
@@ -7,59 +18,3 @@ top.quantization_method: bitsandbytes
7
  top.rope_scaling: none
8
  top.template: llama3
9
  top.visual_inputs: false
10
- train.additional_target: ''
11
- train.badam_mode: layer
12
- train.badam_switch_interval: 50
13
- train.badam_switch_mode: ascending
14
- train.badam_update_ratio: 0.05
15
- train.batch_size: 2
16
- train.compute_type: bf16
17
- train.create_new_adapter: false
18
- train.cutoff_len: 1024
19
- train.dataset:
20
- - truth_train_0716_2
21
- train.dataset_dir: data
22
- train.ds_offload: false
23
- train.ds_stage: '2'
24
- train.freeze_extra_modules: ''
25
- train.freeze_trainable_layers: 2
26
- train.freeze_trainable_modules: all
27
- train.galore_rank: 16
28
- train.galore_scale: 0.25
29
- train.galore_target: all
30
- train.galore_update_interval: 200
31
- train.gradient_accumulation_steps: 8
32
- train.learning_rate: 5e-6
33
- train.logging_steps: 1
34
- train.lora_alpha: 16
35
- train.lora_dropout: 0
36
- train.lora_rank: 8
37
- train.lora_target: ''
38
- train.loraplus_lr_ratio: 0
39
- train.lr_scheduler_type: cosine
40
- train.max_grad_norm: '1.0'
41
- train.max_samples: '100000'
42
- train.neat_packing: false
43
- train.neftune_alpha: 0
44
- train.num_train_epochs: '5.0'
45
- train.optim: adamw_torch
46
- train.packing: false
47
- train.ppo_score_norm: false
48
- train.ppo_whiten_rewards: false
49
- train.pref_beta: 0.1
50
- train.pref_ftx: 0
51
- train.pref_loss: sigmoid
52
- train.report_to: false
53
- train.resize_vocab: false
54
- train.reward_model: null
55
- train.save_steps: 1000
56
- train.shift_attn: false
57
- train.training_stage: Supervised Fine-Tuning
58
- train.use_badam: false
59
- train.use_dora: false
60
- train.use_galore: false
61
- train.use_llama_pro: false
62
- train.use_pissa: false
63
- train.use_rslora: false
64
- train.val_size: 0
65
- train.warmup_steps: 10
 
1
+ eval.batch_size: 2
2
+ eval.cutoff_len: 1024
3
+ eval.dataset:
4
+ - truth_dev_0716_2
5
+ eval.dataset_dir: data
6
+ eval.max_new_tokens: 512
7
+ eval.max_samples: '100000'
8
+ eval.output_dir: eval_2024-07-16-16-45-32
9
+ eval.predict: true
10
+ eval.temperature: 0.95
11
+ eval.top_p: 0.7
12
  top.booster: auto
13
+ top.checkpoint_path: train_2024-07-16-15-59-42_llama3_2
14
  top.finetuning_type: full
15
  top.model_name: LLaMA3-8B-Chat
16
  top.quantization_bit: none
 
18
  top.rope_scaling: none
19
  top.template: llama3
20
  top.visual_inputs: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
predict_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_bleu-4": 83.9079045886076,
3
+ "predict_rouge-1": 89.87341772151899,
4
+ "predict_rouge-2": 0.0,
5
+ "predict_rouge-l": 89.87341772151899,
6
+ "predict_runtime": 9.6133,
7
+ "predict_samples_per_second": 130.34,
8
+ "predict_steps_per_second": 8.218
9
+ }
running_log.txt CHANGED
@@ -1,95 +1,73 @@
1
- 07/16/2024 16:00:59 - INFO - llamafactory.hparams.parser - Process rank: 7, device: cuda:7, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
2
 
3
- 07/16/2024 16:00:59 - INFO - llamafactory.hparams.parser - Process rank: 6, device: cuda:6, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
4
 
5
- 07/16/2024 16:00:59 - INFO - llamafactory.hparams.parser - Process rank: 4, device: cuda:4, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
6
 
7
- 07/16/2024 16:01:00 - INFO - llamafactory.hparams.parser - Process rank: 5, device: cuda:5, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
8
 
9
- 07/16/2024 16:01:00 - INFO - llamafactory.hparams.parser - Process rank: 3, device: cuda:3, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
10
 
11
- 07/16/2024 16:01:00 - INFO - llamafactory.hparams.parser - Process rank: 2, device: cuda:2, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
12
 
13
- 07/16/2024 16:01:00 - INFO - llamafactory.hparams.parser - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
14
 
15
- [INFO|parser.py:325] 2024-07-16 16:01:00,148 >> Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, compute dtype: torch.bfloat16
16
 
17
- 07/16/2024 16:01:00 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
18
 
19
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
20
 
21
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Add pad token: <|eot_id|>
22
 
23
- 07/16/2024 16:01:00 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
24
 
25
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
26
 
27
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Add pad token: <|eot_id|>
28
 
29
- 07/16/2024 16:01:00 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
30
 
31
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
32
 
33
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Add pad token: <|eot_id|>
34
 
35
- 07/16/2024 16:01:00 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
36
 
37
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
38
 
39
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Add pad token: <|eot_id|>
40
 
41
- 07/16/2024 16:01:00 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
42
 
43
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
44
 
45
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Add pad token: <|eot_id|>
46
 
47
- 07/16/2024 16:01:00 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
48
 
49
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
50
 
51
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Add pad token: <|eot_id|>
52
 
53
- 07/16/2024 16:01:00 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
54
 
55
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
56
 
57
- 07/16/2024 16:01:00 - INFO - llamafactory.data.template - Add pad token: <|eot_id|>
58
 
59
- [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:01:00,358 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/e1945c40cd546c78e41f1151f4db032b271faeaa/tokenizer.json
60
 
61
- [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:01:00,358 >> loading file added_tokens.json from cache at None
62
 
63
- [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:01:00,359 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/e1945c40cd546c78e41f1151f4db032b271faeaa/special_tokens_map.json
64
 
65
- [INFO|tokenization_utils_base.py:2161] 2024-07-16 16:01:00,359 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/e1945c40cd546c78e41f1151f4db032b271faeaa/tokenizer_config.json
66
 
67
- [WARNING|logging.py:313] 2024-07-16 16:01:00,655 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
68
 
69
- [INFO|template.py:270] 2024-07-16 16:01:00,656 >> Replace eos token: <|eot_id|>
70
-
71
- [INFO|template.py:372] 2024-07-16 16:01:00,656 >> Add pad token: <|eot_id|>
72
-
73
- [INFO|loader.py:50] 2024-07-16 16:01:00,657 >> Loading dataset 0716_truthfulqa_benchmark_train_2.json...
74
-
75
- 07/16/2024 16:01:02 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
76
-
77
- 07/16/2024 16:01:02 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
78
-
79
- 07/16/2024 16:01:02 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
80
-
81
- 07/16/2024 16:01:02 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
82
-
83
- 07/16/2024 16:01:02 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
84
-
85
- 07/16/2024 16:01:02 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
86
-
87
- 07/16/2024 16:01:02 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_train_2.json...
88
-
89
- [INFO|configuration_utils.py:733] 2024-07-16 16:01:06,083 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/e1945c40cd546c78e41f1151f4db032b271faeaa/config.json
90
-
91
- [INFO|configuration_utils.py:800] 2024-07-16 16:01:06,086 >> Model config LlamaConfig {
92
- "_name_or_path": "meta-llama/Meta-Llama-3-8B-Instruct",
93
  "architectures": [
94
  "LlamaForCausalLM"
95
  ],
@@ -114,30 +92,46 @@
114
  "tie_word_embeddings": false,
115
  "torch_dtype": "bfloat16",
116
  "transformers_version": "4.42.3",
117
- "use_cache": true,
118
  "vocab_size": 128256
119
  }
120
 
121
 
122
- [INFO|modeling_utils.py:3556] 2024-07-16 16:01:06,138 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/e1945c40cd546c78e41f1151f4db032b271faeaa/model.safetensors.index.json
 
 
123
 
124
- [INFO|modeling_utils.py:1531] 2024-07-16 16:01:06,140 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
125
 
126
- [INFO|configuration_utils.py:1000] 2024-07-16 16:01:06,142 >> Generate config GenerationConfig {
127
  "bos_token_id": 128000,
128
  "eos_token_id": 128009
129
  }
130
 
131
 
132
- [INFO|modeling_utils.py:4364] 2024-07-16 16:01:10,034 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
 
 
 
 
 
 
 
 
133
 
 
134
 
135
- [INFO|modeling_utils.py:4372] 2024-07-16 16:01:10,034 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at meta-llama/Meta-Llama-3-8B-Instruct.
 
 
 
 
 
136
  If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
137
 
138
- [INFO|configuration_utils.py:955] 2024-07-16 16:01:10,203 >> loading configuration file generation_config.json from cache at /root/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/e1945c40cd546c78e41f1151f4db032b271faeaa/generation_config.json
139
 
140
- [INFO|configuration_utils.py:1000] 2024-07-16 16:01:10,204 >> Generate config GenerationConfig {
141
  "bos_token_id": 128000,
142
  "do_sample": true,
143
  "eos_token_id": [
@@ -150,518 +144,60 @@ If your task is similar to the task the model of the checkpoint was trained on,
150
  }
151
 
152
 
153
- [INFO|checkpointing.py:103] 2024-07-16 16:01:10,211 >> Gradient checkpointing enabled.
154
-
155
- [INFO|attention.py:80] 2024-07-16 16:01:10,211 >> Using torch SDPA for faster training and inference.
156
-
157
- [INFO|adapter.py:302] 2024-07-16 16:01:10,212 >> Upcasting trainable params to float32.
158
-
159
- [INFO|adapter.py:48] 2024-07-16 16:01:10,212 >> Fine-tuning method: Full
160
-
161
- [INFO|loader.py:196] 2024-07-16 16:01:10,254 >> trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
162
-
163
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
164
-
165
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
166
-
167
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
168
-
169
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
170
-
171
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
172
-
173
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
174
-
175
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
176
-
177
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
178
-
179
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
180
-
181
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
182
-
183
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
184
-
185
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
186
-
187
- 07/16/2024 16:01:10 - INFO - llamafactory.model.loader - trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
188
-
189
- 07/16/2024 16:01:10 - INFO - llamafactory.model.loader - trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
190
-
191
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
192
-
193
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
194
-
195
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
196
-
197
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
198
-
199
- 07/16/2024 16:01:10 - INFO - llamafactory.model.loader - trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
200
-
201
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
202
-
203
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
204
-
205
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
206
-
207
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
208
-
209
- 07/16/2024 16:01:10 - INFO - llamafactory.model.loader - trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
210
-
211
- 07/16/2024 16:01:10 - INFO - llamafactory.model.loader - trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
212
-
213
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
214
-
215
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
216
-
217
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
218
-
219
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
220
-
221
- [INFO|trainer.py:642] 2024-07-16 16:01:10,260 >> Using auto half precision backend
222
-
223
- 07/16/2024 16:01:10 - INFO - llamafactory.model.loader - trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
224
-
225
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.
226
-
227
- 07/16/2024 16:01:10 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
228
-
229
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.
230
-
231
- 07/16/2024 16:01:10 - INFO - llamafactory.model.adapter - Fine-tuning method: Full
232
-
233
- 07/16/2024 16:01:10 - INFO - llamafactory.model.loader - trainable params: 8,030,261,248 || all params: 8,030,261,248 || trainable%: 100.0000
234
-
235
- [INFO|trainer.py:2128] 2024-07-16 16:01:34,721 >> ***** Running training *****
236
-
237
- [INFO|trainer.py:2129] 2024-07-16 16:01:34,721 >> Num examples = 4,958
238
-
239
- [INFO|trainer.py:2130] 2024-07-16 16:01:34,721 >> Num Epochs = 5
240
-
241
- [INFO|trainer.py:2131] 2024-07-16 16:01:34,721 >> Instantaneous batch size per device = 2
242
-
243
- [INFO|trainer.py:2134] 2024-07-16 16:01:34,721 >> Total train batch size (w. parallel, distributed & accumulation) = 128
244
-
245
- [INFO|trainer.py:2135] 2024-07-16 16:01:34,721 >> Gradient Accumulation steps = 8
246
-
247
- [INFO|trainer.py:2136] 2024-07-16 16:01:34,721 >> Total optimization steps = 190
248
-
249
- [INFO|trainer.py:2137] 2024-07-16 16:01:34,722 >> Number of trainable parameters = 8,030,261,248
250
-
251
- [INFO|callbacks.py:310] 2024-07-16 16:01:59,318 >> {'loss': 13.7821, 'learning_rate': 5.0000e-07, 'epoch': 0.03, 'throughput': 260.88}
252
-
253
- [INFO|callbacks.py:310] 2024-07-16 16:02:12,483 >> {'loss': 13.6363, 'learning_rate': 1.0000e-06, 'epoch': 0.05, 'throughput': 344.08}
254
-
255
- [INFO|callbacks.py:310] 2024-07-16 16:02:25,669 >> {'loss': 13.6033, 'learning_rate': 1.5000e-06, 'epoch': 0.08, 'throughput': 382.21}
256
-
257
- [INFO|callbacks.py:310] 2024-07-16 16:02:38,846 >> {'loss': 12.5696, 'learning_rate': 2.0000e-06, 'epoch': 0.10, 'throughput': 404.48}
258
-
259
- [INFO|callbacks.py:310] 2024-07-16 16:02:52,032 >> {'loss': 9.3589, 'learning_rate': 2.5000e-06, 'epoch': 0.13, 'throughput': 417.45}
260
-
261
- [INFO|callbacks.py:310] 2024-07-16 16:03:05,202 >> {'loss': 6.7715, 'learning_rate': 3.0000e-06, 'epoch': 0.15, 'throughput': 427.06}
262
-
263
- [INFO|callbacks.py:310] 2024-07-16 16:03:18,375 >> {'loss': 5.3541, 'learning_rate': 3.5000e-06, 'epoch': 0.18, 'throughput': 434.07}
264
-
265
- [INFO|callbacks.py:310] 2024-07-16 16:03:31,565 >> {'loss': 1.9295, 'learning_rate': 4.0000e-06, 'epoch': 0.21, 'throughput': 439.30}
266
-
267
- [INFO|callbacks.py:310] 2024-07-16 16:03:44,763 >> {'loss': 0.6328, 'learning_rate': 4.5000e-06, 'epoch': 0.23, 'throughput': 441.47}
268
-
269
- [INFO|callbacks.py:310] 2024-07-16 16:03:57,936 >> {'loss': 3.3225, 'learning_rate': 5.0000e-06, 'epoch': 0.26, 'throughput': 444.77}
270
-
271
- [INFO|callbacks.py:310] 2024-07-16 16:04:11,125 >> {'loss': 0.2598, 'learning_rate': 4.9996e-06, 'epoch': 0.28, 'throughput': 447.47}
272
-
273
- [INFO|callbacks.py:310] 2024-07-16 16:04:24,294 >> {'loss': 0.6874, 'learning_rate': 4.9985e-06, 'epoch': 0.31, 'throughput': 450.46}
274
-
275
- [INFO|callbacks.py:310] 2024-07-16 16:04:37,477 >> {'loss': 2.0329, 'learning_rate': 4.9966e-06, 'epoch': 0.34, 'throughput': 452.54}
276
-
277
- [INFO|callbacks.py:310] 2024-07-16 16:04:50,644 >> {'loss': 0.4942, 'learning_rate': 4.9939e-06, 'epoch': 0.36, 'throughput': 454.14}
278
-
279
- [INFO|callbacks.py:310] 2024-07-16 16:05:03,824 >> {'loss': 1.1786, 'learning_rate': 4.9905e-06, 'epoch': 0.39, 'throughput': 456.59}
280
-
281
- [INFO|callbacks.py:310] 2024-07-16 16:05:17,004 >> {'loss': 0.4424, 'learning_rate': 4.9863e-06, 'epoch': 0.41, 'throughput': 458.45}
282
-
283
- [INFO|callbacks.py:310] 2024-07-16 16:05:30,183 >> {'loss': 0.3336, 'learning_rate': 4.9814e-06, 'epoch': 0.44, 'throughput': 459.83}
284
-
285
- [INFO|callbacks.py:310] 2024-07-16 16:05:43,368 >> {'loss': 0.2568, 'learning_rate': 4.9757e-06, 'epoch': 0.46, 'throughput': 460.35}
286
-
287
- [INFO|callbacks.py:310] 2024-07-16 16:05:56,545 >> {'loss': 0.1889, 'learning_rate': 4.9692e-06, 'epoch': 0.49, 'throughput': 461.44}
288
-
289
- [INFO|callbacks.py:310] 2024-07-16 16:06:09,717 >> {'loss': 0.1974, 'learning_rate': 4.9620e-06, 'epoch': 0.52, 'throughput': 462.27}
290
-
291
- [INFO|callbacks.py:310] 2024-07-16 16:06:22,902 >> {'loss': 0.1766, 'learning_rate': 4.9541e-06, 'epoch': 0.54, 'throughput': 463.99}
292
-
293
- [INFO|callbacks.py:310] 2024-07-16 16:06:36,060 >> {'loss': 0.1694, 'learning_rate': 4.9454e-06, 'epoch': 0.57, 'throughput': 464.28}
294
-
295
- [INFO|callbacks.py:310] 2024-07-16 16:06:49,233 >> {'loss': 0.1374, 'learning_rate': 4.9359e-06, 'epoch': 0.59, 'throughput': 465.03}
296
-
297
- [INFO|callbacks.py:310] 2024-07-16 16:07:02,410 >> {'loss': 0.1496, 'learning_rate': 4.9257e-06, 'epoch': 0.62, 'throughput': 466.25}
298
-
299
- [INFO|callbacks.py:310] 2024-07-16 16:07:15,596 >> {'loss': 0.1554, 'learning_rate': 4.9148e-06, 'epoch': 0.65, 'throughput': 466.38}
300
-
301
- [INFO|callbacks.py:310] 2024-07-16 16:07:28,752 >> {'loss': 0.0918, 'learning_rate': 4.9032e-06, 'epoch': 0.67, 'throughput': 466.86}
302
-
303
- [INFO|callbacks.py:310] 2024-07-16 16:07:41,916 >> {'loss': 0.1062, 'learning_rate': 4.8908e-06, 'epoch': 0.70, 'throughput': 467.90}
304
-
305
- [INFO|callbacks.py:310] 2024-07-16 16:07:55,082 >> {'loss': 0.1975, 'learning_rate': 4.8776e-06, 'epoch': 0.72, 'throughput': 468.27}
306
-
307
- [INFO|callbacks.py:310] 2024-07-16 16:08:08,244 >> {'loss': 0.1389, 'learning_rate': 4.8638e-06, 'epoch': 0.75, 'throughput': 468.71}
308
-
309
- [INFO|callbacks.py:310] 2024-07-16 16:08:21,418 >> {'loss': 0.1382, 'learning_rate': 4.8492e-06, 'epoch': 0.77, 'throughput': 469.38}
310
-
311
- [INFO|callbacks.py:310] 2024-07-16 16:08:34,599 >> {'loss': 0.1982, 'learning_rate': 4.8340e-06, 'epoch': 0.80, 'throughput': 469.24}
312
-
313
- [INFO|callbacks.py:310] 2024-07-16 16:08:47,765 >> {'loss': 0.1072, 'learning_rate': 4.8180e-06, 'epoch': 0.83, 'throughput': 469.35}
314
-
315
- [INFO|callbacks.py:310] 2024-07-16 16:09:00,929 >> {'loss': 0.0757, 'learning_rate': 4.8013e-06, 'epoch': 0.85, 'throughput': 470.10}
316
-
317
- [INFO|callbacks.py:310] 2024-07-16 16:09:14,099 >> {'loss': 0.0829, 'learning_rate': 4.7839e-06, 'epoch': 0.88, 'throughput': 470.13}
318
-
319
- [INFO|callbacks.py:310] 2024-07-16 16:09:27,270 >> {'loss': 0.1017, 'learning_rate': 4.7658e-06, 'epoch': 0.90, 'throughput': 470.20}
320
-
321
- [INFO|callbacks.py:310] 2024-07-16 16:09:40,431 >> {'loss': 0.0957, 'learning_rate': 4.7470e-06, 'epoch': 0.93, 'throughput': 470.47}
322
-
323
- [INFO|callbacks.py:310] 2024-07-16 16:09:53,603 >> {'loss': 0.0999, 'learning_rate': 4.7275e-06, 'epoch': 0.95, 'throughput': 471.30}
324
-
325
- [INFO|callbacks.py:310] 2024-07-16 16:10:06,768 >> {'loss': 0.0581, 'learning_rate': 4.7074e-06, 'epoch': 0.98, 'throughput': 471.80}
326
-
327
- [INFO|callbacks.py:310] 2024-07-16 16:10:19,934 >> {'loss': 0.0923, 'learning_rate': 4.6865e-06, 'epoch': 1.01, 'throughput': 472.34}
328
-
329
- [INFO|callbacks.py:310] 2024-07-16 16:10:33,082 >> {'loss': 0.0506, 'learning_rate': 4.6651e-06, 'epoch': 1.03, 'throughput': 472.58}
330
-
331
- [INFO|callbacks.py:310] 2024-07-16 16:10:46,249 >> {'loss': 0.0333, 'learning_rate': 4.6429e-06, 'epoch': 1.06, 'throughput': 472.58}
332
-
333
- [INFO|callbacks.py:310] 2024-07-16 16:10:59,408 >> {'loss': 0.0380, 'learning_rate': 4.6201e-06, 'epoch': 1.08, 'throughput': 472.96}
334
-
335
- [INFO|callbacks.py:310] 2024-07-16 16:11:12,564 >> {'loss': 0.0416, 'learning_rate': 4.5967e-06, 'epoch': 1.11, 'throughput': 473.13}
336
-
337
- [INFO|callbacks.py:310] 2024-07-16 16:11:25,735 >> {'loss': 0.1068, 'learning_rate': 4.5726e-06, 'epoch': 1.14, 'throughput': 473.22}
338
-
339
- [INFO|callbacks.py:310] 2024-07-16 16:11:38,904 >> {'loss': 0.0369, 'learning_rate': 4.5479e-06, 'epoch': 1.16, 'throughput': 473.32}
340
-
341
- [INFO|callbacks.py:310] 2024-07-16 16:11:52,063 >> {'loss': 0.1703, 'learning_rate': 4.5225e-06, 'epoch': 1.19, 'throughput': 473.49}
342
-
343
- [INFO|callbacks.py:310] 2024-07-16 16:12:05,226 >> {'loss': 0.1102, 'learning_rate': 4.4966e-06, 'epoch': 1.21, 'throughput': 473.60}
344
-
345
- [INFO|callbacks.py:310] 2024-07-16 16:12:18,398 >> {'loss': 0.0595, 'learning_rate': 4.4700e-06, 'epoch': 1.24, 'throughput': 473.71}
346
-
347
- [INFO|callbacks.py:310] 2024-07-16 16:12:31,565 >> {'loss': 0.1009, 'learning_rate': 4.4429e-06, 'epoch': 1.26, 'throughput': 473.98}
348
-
349
- [INFO|callbacks.py:310] 2024-07-16 16:12:44,725 >> {'loss': 0.0434, 'learning_rate': 4.4151e-06, 'epoch': 1.29, 'throughput': 474.12}
350
-
351
- [INFO|callbacks.py:310] 2024-07-16 16:12:57,869 >> {'loss': 0.0281, 'learning_rate': 4.3868e-06, 'epoch': 1.32, 'throughput': 474.46}
352
-
353
- [INFO|callbacks.py:310] 2024-07-16 16:13:11,049 >> {'loss': 0.0513, 'learning_rate': 4.3579e-06, 'epoch': 1.34, 'throughput': 474.35}
354
-
355
- [INFO|callbacks.py:310] 2024-07-16 16:13:24,229 >> {'loss': 0.0902, 'learning_rate': 4.3284e-06, 'epoch': 1.37, 'throughput': 474.43}
356
-
357
- [INFO|callbacks.py:310] 2024-07-16 16:13:37,389 >> {'loss': 0.0448, 'learning_rate': 4.2983e-06, 'epoch': 1.39, 'throughput': 474.55}
358
-
359
- [INFO|callbacks.py:310] 2024-07-16 16:13:50,556 >> {'loss': 0.0360, 'learning_rate': 4.2678e-06, 'epoch': 1.42, 'throughput': 474.98}
360
-
361
- [INFO|callbacks.py:310] 2024-07-16 16:14:03,729 >> {'loss': 0.0279, 'learning_rate': 4.2366e-06, 'epoch': 1.45, 'throughput': 475.04}
362
-
363
- [INFO|callbacks.py:310] 2024-07-16 16:14:16,913 >> {'loss': 0.0527, 'learning_rate': 4.2050e-06, 'epoch': 1.47, 'throughput': 475.14}
364
-
365
- [INFO|callbacks.py:310] 2024-07-16 16:14:30,074 >> {'loss': 0.0466, 'learning_rate': 4.1728e-06, 'epoch': 1.50, 'throughput': 475.66}
366
-
367
- [INFO|callbacks.py:310] 2024-07-16 16:14:43,261 >> {'loss': 0.0203, 'learning_rate': 4.1401e-06, 'epoch': 1.52, 'throughput': 475.90}
368
-
369
- [INFO|callbacks.py:310] 2024-07-16 16:14:56,437 >> {'loss': 0.0693, 'learning_rate': 4.1070e-06, 'epoch': 1.55, 'throughput': 475.74}
370
-
371
- [INFO|callbacks.py:310] 2024-07-16 16:15:09,625 >> {'loss': 0.0193, 'learning_rate': 4.0733e-06, 'epoch': 1.57, 'throughput': 475.58}
372
-
373
- [INFO|callbacks.py:310] 2024-07-16 16:15:22,819 >> {'loss': 0.1155, 'learning_rate': 4.0392e-06, 'epoch': 1.60, 'throughput': 475.95}
374
-
375
- [INFO|callbacks.py:310] 2024-07-16 16:15:36,030 >> {'loss': 0.0594, 'learning_rate': 4.0045e-06, 'epoch': 1.63, 'throughput': 476.06}
376
-
377
- [INFO|callbacks.py:310] 2024-07-16 16:15:49,202 >> {'loss': 0.0391, 'learning_rate': 3.9695e-06, 'epoch': 1.65, 'throughput': 476.02}
378
-
379
- [INFO|callbacks.py:310] 2024-07-16 16:16:02,414 >> {'loss': 0.0552, 'learning_rate': 3.9339e-06, 'epoch': 1.68, 'throughput': 476.02}
380
-
381
- [INFO|callbacks.py:310] 2024-07-16 16:16:15,619 >> {'loss': 0.0300, 'learning_rate': 3.8980e-06, 'epoch': 1.70, 'throughput': 476.12}
382
-
383
- [INFO|callbacks.py:310] 2024-07-16 16:16:28,843 >> {'loss': 0.0458, 'learning_rate': 3.8616e-06, 'epoch': 1.73, 'throughput': 476.36}
384
-
385
- [INFO|callbacks.py:310] 2024-07-16 16:16:42,017 >> {'loss': 0.0502, 'learning_rate': 3.8248e-06, 'epoch': 1.75, 'throughput': 476.58}
386
-
387
- [INFO|callbacks.py:310] 2024-07-16 16:16:55,194 >> {'loss': 0.0513, 'learning_rate': 3.7876e-06, 'epoch': 1.78, 'throughput': 476.59}
388
-
389
- [INFO|callbacks.py:310] 2024-07-16 16:17:08,356 >> {'loss': 0.0309, 'learning_rate': 3.7500e-06, 'epoch': 1.81, 'throughput': 476.93}
390
-
391
- [INFO|callbacks.py:310] 2024-07-16 16:17:21,528 >> {'loss': 0.0889, 'learning_rate': 3.7120e-06, 'epoch': 1.83, 'throughput': 476.99}
392
-
393
- [INFO|callbacks.py:310] 2024-07-16 16:17:34,696 >> {'loss': 0.0868, 'learning_rate': 3.6737e-06, 'epoch': 1.86, 'throughput': 476.95}
394
-
395
- [INFO|callbacks.py:310] 2024-07-16 16:17:47,854 >> {'loss': 0.0516, 'learning_rate': 3.6350e-06, 'epoch': 1.88, 'throughput': 476.96}
396
-
397
- [INFO|callbacks.py:310] 2024-07-16 16:18:01,019 >> {'loss': 0.0590, 'learning_rate': 3.5959e-06, 'epoch': 1.91, 'throughput': 477.28}
398
-
399
- [INFO|callbacks.py:310] 2024-07-16 16:18:14,190 >> {'loss': 0.0475, 'learning_rate': 3.5565e-06, 'epoch': 1.94, 'throughput': 477.42}
400
-
401
- [INFO|callbacks.py:310] 2024-07-16 16:18:27,351 >> {'loss': 0.0704, 'learning_rate': 3.5168e-06, 'epoch': 1.96, 'throughput': 477.51}
402
-
403
- [INFO|callbacks.py:310] 2024-07-16 16:18:40,532 >> {'loss': 0.0666, 'learning_rate': 3.4768e-06, 'epoch': 1.99, 'throughput': 477.44}
404
-
405
- [INFO|callbacks.py:310] 2024-07-16 16:18:53,697 >> {'loss': 0.0275, 'learning_rate': 3.4365e-06, 'epoch': 2.01, 'throughput': 477.39}
406
-
407
- [INFO|callbacks.py:310] 2024-07-16 16:19:06,863 >> {'loss': 0.0169, 'learning_rate': 3.3959e-06, 'epoch': 2.04, 'throughput': 477.49}
408
-
409
- [INFO|callbacks.py:310] 2024-07-16 16:19:20,024 >> {'loss': 0.0056, 'learning_rate': 3.3551e-06, 'epoch': 2.06, 'throughput': 477.79}
410
-
411
- [INFO|callbacks.py:310] 2024-07-16 16:19:33,190 >> {'loss': 0.0139, 'learning_rate': 3.3139e-06, 'epoch': 2.09, 'throughput': 477.73}
412
-
413
- [INFO|callbacks.py:310] 2024-07-16 16:19:46,365 >> {'loss': 0.0561, 'learning_rate': 3.2725e-06, 'epoch': 2.12, 'throughput': 477.99}
414
-
415
- [INFO|callbacks.py:310] 2024-07-16 16:19:59,530 >> {'loss': 0.0098, 'learning_rate': 3.2309e-06, 'epoch': 2.14, 'throughput': 478.07}
416
-
417
- [INFO|callbacks.py:310] 2024-07-16 16:20:12,693 >> {'loss': 0.0037, 'learning_rate': 3.1891e-06, 'epoch': 2.17, 'throughput': 478.10}
418
-
419
- [INFO|callbacks.py:310] 2024-07-16 16:20:25,850 >> {'loss': 0.0194, 'learning_rate': 3.1470e-06, 'epoch': 2.19, 'throughput': 478.31}
420
-
421
- [INFO|callbacks.py:310] 2024-07-16 16:20:39,012 >> {'loss': 0.0004, 'learning_rate': 3.1048e-06, 'epoch': 2.22, 'throughput': 478.31}
422
-
423
- [INFO|callbacks.py:310] 2024-07-16 16:20:52,174 >> {'loss': 0.0003, 'learning_rate': 3.0624e-06, 'epoch': 2.25, 'throughput': 478.43}
424
-
425
- [INFO|callbacks.py:310] 2024-07-16 16:21:05,338 >> {'loss': 0.0511, 'learning_rate': 3.0198e-06, 'epoch': 2.27, 'throughput': 478.42}
426
-
427
- [INFO|callbacks.py:310] 2024-07-16 16:21:18,503 >> {'loss': 0.0974, 'learning_rate': 2.9770e-06, 'epoch': 2.30, 'throughput': 478.66}
428
-
429
- [INFO|callbacks.py:310] 2024-07-16 16:21:31,670 >> {'loss': 0.0442, 'learning_rate': 2.9341e-06, 'epoch': 2.32, 'throughput': 478.60}
430
-
431
- [INFO|callbacks.py:310] 2024-07-16 16:21:44,838 >> {'loss': 0.0802, 'learning_rate': 2.8911e-06, 'epoch': 2.35, 'throughput': 478.49}
432
-
433
- [INFO|callbacks.py:310] 2024-07-16 16:21:58,015 >> {'loss': 0.0195, 'learning_rate': 2.8479e-06, 'epoch': 2.37, 'throughput': 478.66}
434
-
435
- [INFO|callbacks.py:310] 2024-07-16 16:22:11,180 >> {'loss': 0.0550, 'learning_rate': 2.8047e-06, 'epoch': 2.40, 'throughput': 478.62}
436
-
437
- [INFO|callbacks.py:310] 2024-07-16 16:22:24,345 >> {'loss': 0.0268, 'learning_rate': 2.7613e-06, 'epoch': 2.43, 'throughput': 478.66}
438
-
439
- [INFO|callbacks.py:310] 2024-07-16 16:22:37,492 >> {'loss': 0.0196, 'learning_rate': 2.7179e-06, 'epoch': 2.45, 'throughput': 478.71}
440
-
441
- [INFO|callbacks.py:310] 2024-07-16 16:22:50,668 >> {'loss': 0.0363, 'learning_rate': 2.6744e-06, 'epoch': 2.48, 'throughput': 478.69}
442
-
443
- [INFO|callbacks.py:310] 2024-07-16 16:23:03,834 >> {'loss': 0.0046, 'learning_rate': 2.6308e-06, 'epoch': 2.50, 'throughput': 478.64}
444
-
445
- [INFO|callbacks.py:310] 2024-07-16 16:23:16,992 >> {'loss': 0.0366, 'learning_rate': 2.5872e-06, 'epoch': 2.53, 'throughput': 478.64}
446
-
447
- [INFO|callbacks.py:310] 2024-07-16 16:23:30,144 >> {'loss': 0.0051, 'learning_rate': 2.5436e-06, 'epoch': 2.55, 'throughput': 478.64}
448
-
449
- [INFO|callbacks.py:310] 2024-07-16 16:23:43,301 >> {'loss': 0.0226, 'learning_rate': 2.5000e-06, 'epoch': 2.58, 'throughput': 478.82}
450
-
451
- [INFO|callbacks.py:310] 2024-07-16 16:23:56,469 >> {'loss': 0.0818, 'learning_rate': 2.4564e-06, 'epoch': 2.61, 'throughput': 478.85}
452
-
453
- [INFO|callbacks.py:310] 2024-07-16 16:24:09,632 >> {'loss': 0.0247, 'learning_rate': 2.4128e-06, 'epoch': 2.63, 'throughput': 478.93}
454
-
455
- [INFO|callbacks.py:310] 2024-07-16 16:24:22,814 >> {'loss': 0.0593, 'learning_rate': 2.3692e-06, 'epoch': 2.66, 'throughput': 478.83}
456
-
457
- [INFO|callbacks.py:310] 2024-07-16 16:24:35,972 >> {'loss': 0.0073, 'learning_rate': 2.3256e-06, 'epoch': 2.68, 'throughput': 479.05}
458
-
459
- [INFO|callbacks.py:310] 2024-07-16 16:24:49,129 >> {'loss': 0.0295, 'learning_rate': 2.2821e-06, 'epoch': 2.71, 'throughput': 479.07}
460
-
461
- [INFO|callbacks.py:310] 2024-07-16 16:25:02,310 >> {'loss': 0.0115, 'learning_rate': 2.2387e-06, 'epoch': 2.74, 'throughput': 478.96}
462
-
463
- [INFO|callbacks.py:310] 2024-07-16 16:25:15,470 >> {'loss': 0.0064, 'learning_rate': 2.1953e-06, 'epoch': 2.76, 'throughput': 478.95}
464
-
465
- [INFO|callbacks.py:310] 2024-07-16 16:25:28,641 >> {'loss': 0.0229, 'learning_rate': 2.1521e-06, 'epoch': 2.79, 'throughput': 478.89}
466
-
467
- [INFO|callbacks.py:310] 2024-07-16 16:25:41,814 >> {'loss': 0.0605, 'learning_rate': 2.1089e-06, 'epoch': 2.81, 'throughput': 478.89}
468
-
469
- [INFO|callbacks.py:310] 2024-07-16 16:25:54,992 >> {'loss': 0.0500, 'learning_rate': 2.0659e-06, 'epoch': 2.84, 'throughput': 478.95}
470
-
471
- [INFO|callbacks.py:310] 2024-07-16 16:26:08,163 >> {'loss': 0.0544, 'learning_rate': 2.0230e-06, 'epoch': 2.86, 'throughput': 478.93}
472
-
473
- [INFO|callbacks.py:310] 2024-07-16 16:26:21,350 >> {'loss': 0.0109, 'learning_rate': 1.9802e-06, 'epoch': 2.89, 'throughput': 478.90}
474
-
475
- [INFO|callbacks.py:310] 2024-07-16 16:26:34,506 >> {'loss': 0.0242, 'learning_rate': 1.9376e-06, 'epoch': 2.92, 'throughput': 478.86}
476
-
477
- [INFO|callbacks.py:310] 2024-07-16 16:26:47,673 >> {'loss': 0.0223, 'learning_rate': 1.8952e-06, 'epoch': 2.94, 'throughput': 479.09}
478
-
479
- [INFO|callbacks.py:310] 2024-07-16 16:27:00,837 >> {'loss': 0.0263, 'learning_rate': 1.8530e-06, 'epoch': 2.97, 'throughput': 479.20}
480
-
481
- [INFO|callbacks.py:310] 2024-07-16 16:27:13,992 >> {'loss': 0.0014, 'learning_rate': 1.8109e-06, 'epoch': 2.99, 'throughput': 479.12}
482
-
483
- [INFO|callbacks.py:310] 2024-07-16 16:27:27,158 >> {'loss': 0.0061, 'learning_rate': 1.7691e-06, 'epoch': 3.02, 'throughput': 479.09}
484
-
485
- [INFO|callbacks.py:310] 2024-07-16 16:27:40,327 >> {'loss': 0.0296, 'learning_rate': 1.7275e-06, 'epoch': 3.05, 'throughput': 479.08}
486
-
487
- [INFO|callbacks.py:310] 2024-07-16 16:27:53,500 >> {'loss': 0.0186, 'learning_rate': 1.6861e-06, 'epoch': 3.07, 'throughput': 479.11}
488
-
489
- [INFO|callbacks.py:310] 2024-07-16 16:28:06,669 >> {'loss': 0.0038, 'learning_rate': 1.6449e-06, 'epoch': 3.10, 'throughput': 478.93}
490
-
491
- [INFO|callbacks.py:310] 2024-07-16 16:28:19,843 >> {'loss': 0.0033, 'learning_rate': 1.6041e-06, 'epoch': 3.12, 'throughput': 478.90}
492
-
493
- [INFO|callbacks.py:310] 2024-07-16 16:28:33,006 >> {'loss': 0.0091, 'learning_rate': 1.5635e-06, 'epoch': 3.15, 'throughput': 478.92}
494
-
495
- [INFO|callbacks.py:310] 2024-07-16 16:28:46,166 >> {'loss': 0.0012, 'learning_rate': 1.5232e-06, 'epoch': 3.17, 'throughput': 478.94}
496
-
497
- [INFO|callbacks.py:310] 2024-07-16 16:28:59,319 >> {'loss': 0.0223, 'learning_rate': 1.4832e-06, 'epoch': 3.20, 'throughput': 479.08}
498
-
499
- [INFO|callbacks.py:310] 2024-07-16 16:29:12,500 >> {'loss': 0.0131, 'learning_rate': 1.4435e-06, 'epoch': 3.23, 'throughput': 479.02}
500
-
501
- [INFO|callbacks.py:310] 2024-07-16 16:29:25,669 >> {'loss': 0.0008, 'learning_rate': 1.4041e-06, 'epoch': 3.25, 'throughput': 479.00}
502
-
503
- [INFO|callbacks.py:310] 2024-07-16 16:29:38,814 >> {'loss': 0.0058, 'learning_rate': 1.3650e-06, 'epoch': 3.28, 'throughput': 479.10}
504
-
505
- [INFO|callbacks.py:310] 2024-07-16 16:29:51,974 >> {'loss': 0.0065, 'learning_rate': 1.3263e-06, 'epoch': 3.30, 'throughput': 479.09}
506
-
507
- [INFO|callbacks.py:310] 2024-07-16 16:30:05,138 >> {'loss': 0.0398, 'learning_rate': 1.2880e-06, 'epoch': 3.33, 'throughput': 479.13}
508
-
509
- [INFO|callbacks.py:310] 2024-07-16 16:30:18,301 >> {'loss': 0.0005, 'learning_rate': 1.2500e-06, 'epoch': 3.35, 'throughput': 479.20}
510
-
511
- [INFO|callbacks.py:310] 2024-07-16 16:30:31,457 >> {'loss': 0.0049, 'learning_rate': 1.2124e-06, 'epoch': 3.38, 'throughput': 479.35}
512
-
513
- [INFO|callbacks.py:310] 2024-07-16 16:30:44,626 >> {'loss': 0.0061, 'learning_rate': 1.1752e-06, 'epoch': 3.41, 'throughput': 479.38}
514
-
515
- [INFO|callbacks.py:310] 2024-07-16 16:30:57,792 >> {'loss': 0.0111, 'learning_rate': 1.1384e-06, 'epoch': 3.43, 'throughput': 479.56}
516
-
517
- [INFO|callbacks.py:310] 2024-07-16 16:31:10,962 >> {'loss': 0.0049, 'learning_rate': 1.1020e-06, 'epoch': 3.46, 'throughput': 479.60}
518
-
519
- [INFO|callbacks.py:310] 2024-07-16 16:31:24,131 >> {'loss': 0.0012, 'learning_rate': 1.0661e-06, 'epoch': 3.48, 'throughput': 479.57}
520
-
521
- [INFO|callbacks.py:310] 2024-07-16 16:31:37,297 >> {'loss': 0.0004, 'learning_rate': 1.0305e-06, 'epoch': 3.51, 'throughput': 479.59}
522
-
523
- [INFO|callbacks.py:310] 2024-07-16 16:31:50,469 >> {'loss': 0.0006, 'learning_rate': 9.9546e-07, 'epoch': 3.54, 'throughput': 479.51}
524
-
525
- [INFO|callbacks.py:310] 2024-07-16 16:32:03,645 >> {'loss': 0.0003, 'learning_rate': 9.6085e-07, 'epoch': 3.56, 'throughput': 479.49}
526
-
527
- [INFO|callbacks.py:310] 2024-07-16 16:32:16,814 >> {'loss': 0.0004, 'learning_rate': 9.2670e-07, 'epoch': 3.59, 'throughput': 479.61}
528
-
529
- [INFO|callbacks.py:310] 2024-07-16 16:32:29,980 >> {'loss': 0.0016, 'learning_rate': 8.9303e-07, 'epoch': 3.61, 'throughput': 479.62}
530
-
531
- [INFO|callbacks.py:310] 2024-07-16 16:32:43,150 >> {'loss': 0.0268, 'learning_rate': 8.5985e-07, 'epoch': 3.64, 'throughput': 479.64}
532
-
533
- [INFO|callbacks.py:310] 2024-07-16 16:32:56,321 >> {'loss': 0.0018, 'learning_rate': 8.2717e-07, 'epoch': 3.66, 'throughput': 479.52}
534
-
535
- [INFO|callbacks.py:310] 2024-07-16 16:33:09,497 >> {'loss': 0.0100, 'learning_rate': 7.9500e-07, 'epoch': 3.69, 'throughput': 479.48}
536
-
537
- [INFO|callbacks.py:310] 2024-07-16 16:33:22,661 >> {'loss': 0.0209, 'learning_rate': 7.6335e-07, 'epoch': 3.72, 'throughput': 479.66}
538
-
539
- [INFO|callbacks.py:310] 2024-07-16 16:33:35,822 >> {'loss': 0.0076, 'learning_rate': 7.3223e-07, 'epoch': 3.74, 'throughput': 479.70}
540
-
541
- [INFO|callbacks.py:310] 2024-07-16 16:33:48,985 >> {'loss': 0.0227, 'learning_rate': 7.0165e-07, 'epoch': 3.77, 'throughput': 479.79}
542
-
543
- [INFO|callbacks.py:310] 2024-07-16 16:34:02,148 >> {'loss': 0.0002, 'learning_rate': 6.7162e-07, 'epoch': 3.79, 'throughput': 479.87}
544
-
545
- [INFO|callbacks.py:310] 2024-07-16 16:34:15,317 >> {'loss': 0.0296, 'learning_rate': 6.4214e-07, 'epoch': 3.82, 'throughput': 479.86}
546
-
547
- [INFO|callbacks.py:310] 2024-07-16 16:34:28,475 >> {'loss': 0.0006, 'learning_rate': 6.1323e-07, 'epoch': 3.85, 'throughput': 479.79}
548
-
549
- [INFO|callbacks.py:310] 2024-07-16 16:34:41,637 >> {'loss': 0.0012, 'learning_rate': 5.8489e-07, 'epoch': 3.87, 'throughput': 479.85}
550
-
551
- [INFO|callbacks.py:310] 2024-07-16 16:34:54,805 >> {'loss': 0.0007, 'learning_rate': 5.5714e-07, 'epoch': 3.90, 'throughput': 479.79}
552
-
553
- [INFO|callbacks.py:310] 2024-07-16 16:35:07,976 >> {'loss': 0.0003, 'learning_rate': 5.2997e-07, 'epoch': 3.92, 'throughput': 479.87}
554
-
555
- [INFO|callbacks.py:310] 2024-07-16 16:35:21,144 >> {'loss': 0.0005, 'learning_rate': 5.0341e-07, 'epoch': 3.95, 'throughput': 479.85}
556
-
557
- [INFO|callbacks.py:310] 2024-07-16 16:35:34,309 >> {'loss': 0.0008, 'learning_rate': 4.7746e-07, 'epoch': 3.97, 'throughput': 479.92}
558
-
559
- [INFO|callbacks.py:310] 2024-07-16 16:35:47,468 >> {'loss': 0.0003, 'learning_rate': 4.5212e-07, 'epoch': 4.00, 'throughput': 480.10}
560
-
561
- [INFO|callbacks.py:310] 2024-07-16 16:36:00,628 >> {'loss': 0.0015, 'learning_rate': 4.2741e-07, 'epoch': 4.03, 'throughput': 480.13}
562
-
563
- [INFO|callbacks.py:310] 2024-07-16 16:36:13,783 >> {'loss': 0.0007, 'learning_rate': 4.0332e-07, 'epoch': 4.05, 'throughput': 480.16}
564
-
565
- [INFO|callbacks.py:310] 2024-07-16 16:36:26,955 >> {'loss': 0.0002, 'learning_rate': 3.7988e-07, 'epoch': 4.08, 'throughput': 480.08}
566
-
567
- [INFO|callbacks.py:310] 2024-07-16 16:36:40,127 >> {'loss': 0.0052, 'learning_rate': 3.5708e-07, 'epoch': 4.10, 'throughput': 480.01}
568
-
569
- [INFO|callbacks.py:310] 2024-07-16 16:36:53,283 >> {'loss': 0.0040, 'learning_rate': 3.3494e-07, 'epoch': 4.13, 'throughput': 479.97}
570
-
571
- [INFO|callbacks.py:310] 2024-07-16 16:37:06,436 >> {'loss': 0.0004, 'learning_rate': 3.1345e-07, 'epoch': 4.15, 'throughput': 480.06}
572
-
573
- [INFO|callbacks.py:310] 2024-07-16 16:37:19,608 >> {'loss': 0.0020, 'learning_rate': 2.9263e-07, 'epoch': 4.18, 'throughput': 480.12}
574
-
575
- [INFO|callbacks.py:310] 2024-07-16 16:37:32,769 >> {'loss': 0.0001, 'learning_rate': 2.7248e-07, 'epoch': 4.21, 'throughput': 480.10}
576
-
577
- [INFO|callbacks.py:310] 2024-07-16 16:37:45,932 >> {'loss': 0.0001, 'learning_rate': 2.5301e-07, 'epoch': 4.23, 'throughput': 480.03}
578
-
579
- [INFO|callbacks.py:310] 2024-07-16 16:37:59,104 >> {'loss': 0.0002, 'learning_rate': 2.3423e-07, 'epoch': 4.26, 'throughput': 480.08}
580
-
581
- [INFO|callbacks.py:310] 2024-07-16 16:38:12,270 >> {'loss': 0.0076, 'learning_rate': 2.1614e-07, 'epoch': 4.28, 'throughput': 480.00}
582
-
583
- [INFO|callbacks.py:310] 2024-07-16 16:38:25,424 >> {'loss': 0.0001, 'learning_rate': 1.9874e-07, 'epoch': 4.31, 'throughput': 480.08}
584
-
585
- [INFO|callbacks.py:310] 2024-07-16 16:38:38,584 >> {'loss': 0.0002, 'learning_rate': 1.8204e-07, 'epoch': 4.34, 'throughput': 480.02}
586
-
587
- [INFO|callbacks.py:310] 2024-07-16 16:38:51,770 >> {'loss': 0.0001, 'learning_rate': 1.6605e-07, 'epoch': 4.36, 'throughput': 479.94}
588
-
589
- [INFO|callbacks.py:310] 2024-07-16 16:39:04,932 >> {'loss': 0.0001, 'learning_rate': 1.5077e-07, 'epoch': 4.39, 'throughput': 480.03}
590
-
591
- [INFO|callbacks.py:310] 2024-07-16 16:39:18,090 >> {'loss': 0.0002, 'learning_rate': 1.3620e-07, 'epoch': 4.41, 'throughput': 480.18}
592
-
593
- [INFO|callbacks.py:310] 2024-07-16 16:39:31,264 >> {'loss': 0.0001, 'learning_rate': 1.2236e-07, 'epoch': 4.44, 'throughput': 480.20}
594
-
595
- [INFO|callbacks.py:310] 2024-07-16 16:39:44,432 >> {'loss': 0.0005, 'learning_rate': 1.0924e-07, 'epoch': 4.46, 'throughput': 480.29}
596
-
597
- [INFO|callbacks.py:310] 2024-07-16 16:39:57,582 >> {'loss': 0.0001, 'learning_rate': 9.6846e-08, 'epoch': 4.49, 'throughput': 480.29}
598
-
599
- [INFO|callbacks.py:310] 2024-07-16 16:40:10,744 >> {'loss': 0.0001, 'learning_rate': 8.5185e-08, 'epoch': 4.52, 'throughput': 480.35}
600
-
601
- [INFO|callbacks.py:310] 2024-07-16 16:40:23,896 >> {'loss': 0.0081, 'learning_rate': 7.4261e-08, 'epoch': 4.54, 'throughput': 480.49}
602
-
603
- [INFO|callbacks.py:310] 2024-07-16 16:40:37,074 >> {'loss': 0.0002, 'learning_rate': 6.4075e-08, 'epoch': 4.57, 'throughput': 480.44}
604
-
605
- [INFO|callbacks.py:310] 2024-07-16 16:40:50,235 >> {'loss': 0.0003, 'learning_rate': 5.4631e-08, 'epoch': 4.59, 'throughput': 480.50}
606
-
607
- [INFO|callbacks.py:310] 2024-07-16 16:41:03,386 >> {'loss': 0.0001, 'learning_rate': 4.5932e-08, 'epoch': 4.62, 'throughput': 480.53}
608
-
609
- [INFO|callbacks.py:310] 2024-07-16 16:41:16,551 >> {'loss': 0.0005, 'learning_rate': 3.7981e-08, 'epoch': 4.65, 'throughput': 480.53}
610
-
611
- [INFO|callbacks.py:310] 2024-07-16 16:41:29,712 >> {'loss': 0.0001, 'learning_rate': 3.0779e-08, 'epoch': 4.67, 'throughput': 480.54}
612
-
613
- [INFO|callbacks.py:310] 2024-07-16 16:41:42,867 >> {'loss': 0.0002, 'learning_rate': 2.4330e-08, 'epoch': 4.70, 'throughput': 480.53}
614
 
615
- [INFO|callbacks.py:310] 2024-07-16 16:41:56,020 >> {'loss': 0.0001, 'learning_rate': 1.8635e-08, 'epoch': 4.72, 'throughput': 480.54}
616
 
617
- [INFO|callbacks.py:310] 2024-07-16 16:42:09,197 >> {'loss': 0.0002, 'learning_rate': 1.3695e-08, 'epoch': 4.75, 'throughput': 480.55}
 
618
 
619
- [INFO|callbacks.py:310] 2024-07-16 16:42:22,355 >> {'loss': 0.0002, 'learning_rate': 9.5133e-09, 'epoch': 4.77, 'throughput': 480.63}
620
 
621
- [INFO|callbacks.py:310] 2024-07-16 16:42:35,516 >> {'loss': 0.0002, 'learning_rate': 6.0899e-09, 'epoch': 4.80, 'throughput': 480.58}
622
 
623
- [INFO|callbacks.py:310] 2024-07-16 16:42:48,681 >> {'loss': 0.0001, 'learning_rate': 3.4262e-09, 'epoch': 4.83, 'throughput': 480.61}
624
 
625
- [INFO|callbacks.py:310] 2024-07-16 16:43:01,838 >> {'loss': 0.0004, 'learning_rate': 1.5229e-09, 'epoch': 4.85, 'throughput': 480.59}
626
 
627
- [INFO|callbacks.py:310] 2024-07-16 16:43:15,009 >> {'loss': 0.0013, 'learning_rate': 3.8076e-10, 'epoch': 4.88, 'throughput': 480.53}
628
 
629
- [INFO|callbacks.py:310] 2024-07-16 16:43:28,160 >> {'loss': 0.0008, 'learning_rate': 0.0000e+00, 'epoch': 4.90, 'throughput': 480.52}
630
 
631
- [INFO|trainer.py:3478] 2024-07-16 16:43:36,298 >> Saving model checkpoint to saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/checkpoint-190
632
 
633
- [INFO|configuration_utils.py:472] 2024-07-16 16:43:36,301 >> Configuration saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/checkpoint-190/config.json
634
 
635
- [INFO|configuration_utils.py:769] 2024-07-16 16:43:36,302 >> Configuration saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/checkpoint-190/generation_config.json
636
 
637
- [INFO|modeling_utils.py:2698] 2024-07-16 16:43:52,783 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/checkpoint-190/model.safetensors.index.json.
638
 
639
- [INFO|tokenization_utils_base.py:2574] 2024-07-16 16:43:52,786 >> tokenizer config file saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/checkpoint-190/tokenizer_config.json
640
 
641
- [INFO|tokenization_utils_base.py:2583] 2024-07-16 16:43:52,787 >> Special tokens file saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/checkpoint-190/special_tokens_map.json
642
 
643
- [INFO|trainer.py:2383] 2024-07-16 16:44:29,948 >>
644
 
645
- Training completed. Do not forget to share your model on huggingface.co/models =)
646
 
 
647
 
 
648
 
649
- [INFO|trainer.py:3478] 2024-07-16 16:44:37,828 >> Saving model checkpoint to saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2
650
 
651
- [INFO|configuration_utils.py:472] 2024-07-16 16:44:37,830 >> Configuration saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/config.json
652
 
653
- [INFO|configuration_utils.py:769] 2024-07-16 16:44:37,831 >> Configuration saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/generation_config.json
654
 
655
- [INFO|modeling_utils.py:2698] 2024-07-16 16:44:54,696 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/model.safetensors.index.json.
656
 
657
- [INFO|tokenization_utils_base.py:2574] 2024-07-16 16:44:54,699 >> tokenizer config file saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/tokenizer_config.json
658
 
659
- [INFO|tokenization_utils_base.py:2583] 2024-07-16 16:44:54,699 >> Special tokens file saved in saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/special_tokens_map.json
660
 
661
- [WARNING|ploting.py:89] 2024-07-16 16:44:56,064 >> No metric eval_loss to plot.
662
 
663
- [WARNING|ploting.py:89] 2024-07-16 16:44:56,065 >> No metric eval_accuracy to plot.
664
 
665
- [INFO|modelcard.py:449] 2024-07-16 16:44:56,065 >> Dropping the following result as it does not have all the necessary fields:
666
- {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
667
 
 
1
+ 07/16/2024 16:46:13 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
2
 
3
+ 07/16/2024 16:46:13 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
4
 
5
+ 07/16/2024 16:46:13 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
6
 
7
+ 07/16/2024 16:46:13 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
8
 
9
+ [INFO|parser.py:325] 2024-07-16 16:46:13,724 >> Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, compute dtype: None
10
 
11
+ [INFO|tokenization_utils_base.py:2159] 2024-07-16 16:46:13,726 >> loading file tokenizer.json
12
 
13
+ [INFO|tokenization_utils_base.py:2159] 2024-07-16 16:46:13,726 >> loading file added_tokens.json
14
 
15
+ 07/16/2024 16:46:13 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
16
 
17
+ 07/16/2024 16:46:13 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
18
 
19
+ 07/16/2024 16:46:13 - INFO - llamafactory.hparams.parser - Process rank: 3, device: cuda:3, n_gpu: 1, distributed training: True, compute dtype: None
20
 
21
+ 07/16/2024 16:46:13 - INFO - llamafactory.hparams.parser - Process rank: 7, device: cuda:7, n_gpu: 1, distributed training: True, compute dtype: None
22
 
23
+ 07/16/2024 16:46:13 - INFO - llamafactory.hparams.parser - Process rank: 6, device: cuda:6, n_gpu: 1, distributed training: True, compute dtype: None
24
 
25
+ [INFO|tokenization_utils_base.py:2159] 2024-07-16 16:46:13,726 >> loading file special_tokens_map.json
26
 
27
+ [INFO|tokenization_utils_base.py:2159] 2024-07-16 16:46:13,726 >> loading file tokenizer_config.json
28
 
29
+ [WARNING|logging.py:313] 2024-07-16 16:46:13,988 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
30
 
31
+ [INFO|template.py:270] 2024-07-16 16:46:13,989 >> Replace eos token: <|eot_id|>
32
 
33
+ [INFO|loader.py:50] 2024-07-16 16:46:13,989 >> Loading dataset 0716_truthfulqa_benchmark_test_2.json...
34
 
35
+ 07/16/2024 16:46:13 - INFO - llamafactory.hparams.parser - Process rank: 5, device: cuda:5, n_gpu: 1, distributed training: True, compute dtype: None
36
 
37
+ 07/16/2024 16:46:14 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
38
 
39
+ 07/16/2024 16:46:14 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
40
 
41
+ 07/16/2024 16:46:14 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
42
 
43
+ 07/16/2024 16:46:14 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
44
 
45
+ 07/16/2024 16:46:14 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
46
 
47
+ 07/16/2024 16:46:14 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
48
 
49
+ 07/16/2024 16:46:14 - WARNING - transformers.tokenization_utils_base - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
50
 
51
+ 07/16/2024 16:46:14 - INFO - llamafactory.data.template - Replace eos token: <|eot_id|>
52
 
53
+ 07/16/2024 16:46:15 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_test_2.json...
54
 
55
+ 07/16/2024 16:46:15 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_test_2.json...
56
 
57
+ 07/16/2024 16:46:15 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_test_2.json...
58
 
59
+ 07/16/2024 16:46:15 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_test_2.json...
60
 
61
+ 07/16/2024 16:46:15 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_test_2.json...
62
 
63
+ 07/16/2024 16:46:15 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_test_2.json...
64
 
65
+ 07/16/2024 16:46:15 - INFO - llamafactory.data.loader - Loading dataset 0716_truthfulqa_benchmark_test_2.json...
66
 
67
+ [INFO|configuration_utils.py:731] 2024-07-16 16:46:19,192 >> loading configuration file saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/config.json
68
 
69
+ [INFO|configuration_utils.py:800] 2024-07-16 16:46:19,193 >> Model config LlamaConfig {
70
+ "_name_or_path": "saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  "architectures": [
72
  "LlamaForCausalLM"
73
  ],
 
92
  "tie_word_embeddings": false,
93
  "torch_dtype": "bfloat16",
94
  "transformers_version": "4.42.3",
95
+ "use_cache": false,
96
  "vocab_size": 128256
97
  }
98
 
99
 
100
+ [INFO|patcher.py:81] 2024-07-16 16:46:19,193 >> Using KV cache for faster generation.
101
+
102
+ [INFO|modeling_utils.py:3553] 2024-07-16 16:46:19,217 >> loading weights file saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/model.safetensors.index.json
103
 
104
+ [INFO|modeling_utils.py:1531] 2024-07-16 16:46:19,218 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
105
 
106
+ [INFO|configuration_utils.py:1000] 2024-07-16 16:46:19,219 >> Generate config GenerationConfig {
107
  "bos_token_id": 128000,
108
  "eos_token_id": 128009
109
  }
110
 
111
 
112
+ 07/16/2024 16:46:19 - INFO - llamafactory.model.patcher - Using KV cache for faster generation.
113
+
114
+ 07/16/2024 16:46:19 - INFO - llamafactory.model.patcher - Using KV cache for faster generation.
115
+
116
+ 07/16/2024 16:46:19 - INFO - llamafactory.model.patcher - Using KV cache for faster generation.
117
+
118
+ 07/16/2024 16:46:19 - INFO - llamafactory.model.patcher - Using KV cache for faster generation.
119
+
120
+ 07/16/2024 16:46:19 - INFO - llamafactory.model.patcher - Using KV cache for faster generation.
121
 
122
+ 07/16/2024 16:46:19 - INFO - llamafactory.model.patcher - Using KV cache for faster generation.
123
 
124
+ 07/16/2024 16:46:19 - INFO - llamafactory.model.patcher - Using KV cache for faster generation.
125
+
126
+ [INFO|modeling_utils.py:4364] 2024-07-16 16:46:23,245 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
127
+
128
+
129
+ [INFO|modeling_utils.py:4372] 2024-07-16 16:46:23,245 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2.
130
  If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
131
 
132
+ [INFO|configuration_utils.py:953] 2024-07-16 16:46:23,249 >> loading configuration file saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2/generation_config.json
133
 
134
+ [INFO|configuration_utils.py:1000] 2024-07-16 16:46:23,249 >> Generate config GenerationConfig {
135
  "bos_token_id": 128000,
136
  "do_sample": true,
137
  "eos_token_id": [
 
144
  }
145
 
146
 
147
+ [INFO|attention.py:80] 2024-07-16 16:46:23,255 >> Using torch SDPA for faster training and inference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
+ [INFO|loader.py:196] 2024-07-16 16:46:23,260 >> all params: 8,030,261,248
150
 
151
+ [INFO|trainer.py:3788] 2024-07-16 16:46:23,374 >>
152
+ ***** Running Prediction *****
153
 
154
+ [INFO|trainer.py:3790] 2024-07-16 16:46:23,375 >> Num examples = 1253
155
 
156
+ [INFO|trainer.py:3793] 2024-07-16 16:46:23,375 >> Batch size = 2
157
 
158
+ [WARNING|logging.py:328] 2024-07-16 16:46:24,023 >> We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
159
 
160
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
161
 
162
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.loader - all params: 8,030,261,248
163
 
164
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
165
 
166
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
167
 
168
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.loader - all params: 8,030,261,248
169
 
170
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.loader - all params: 8,030,261,248
171
 
172
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
173
 
174
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.loader - all params: 8,030,261,248
175
 
176
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
177
 
178
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.loader - all params: 8,030,261,248
179
 
180
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
181
 
182
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.loader - all params: 8,030,261,248
183
 
184
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.
185
 
186
+ 07/16/2024 16:46:24 - INFO - llamafactory.model.loader - all params: 8,030,261,248
187
 
188
+ 07/16/2024 16:46:25 - WARNING - transformers.models.llama.modeling_llama - We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
189
 
190
+ 07/16/2024 16:46:25 - WARNING - transformers.models.llama.modeling_llama - We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
191
 
192
+ 07/16/2024 16:46:25 - WARNING - transformers.models.llama.modeling_llama - We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
193
 
194
+ 07/16/2024 16:46:25 - WARNING - transformers.models.llama.modeling_llama - We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
195
 
196
+ 07/16/2024 16:46:25 - WARNING - transformers.models.llama.modeling_llama - We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
197
 
198
+ 07/16/2024 16:46:25 - WARNING - transformers.models.llama.modeling_llama - We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
199
 
200
+ 07/16/2024 16:46:25 - WARNING - transformers.models.llama.modeling_llama - We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
201
 
202
+ [INFO|trainer.py:127] 2024-07-16 16:46:32,944 >> Saving prediction results to saves/LLaMA3-8B-Chat/full/eval_2024-07-16-16-45-32/generated_predictions.jsonl
 
203
 
trainer_log.jsonl CHANGED
@@ -1,191 +1,15 @@
1
- {"current_steps": 1, "total_steps": 190, "loss": 13.7821, "learning_rate": 5.000000000000001e-07, "epoch": 0.025806451612903226, "percentage": 0.53, "elapsed_time": "0:00:24", "remaining_time": "1:17:28", "throughput": "260.88", "total_tokens": 6416}
2
- {"current_steps": 2, "total_steps": 190, "loss": 13.6363, "learning_rate": 1.0000000000000002e-06, "epoch": 0.05161290322580645, "percentage": 1.05, "elapsed_time": "0:00:37", "remaining_time": "0:59:09", "throughput": "344.08", "total_tokens": 12992}
3
- {"current_steps": 3, "total_steps": 190, "loss": 13.6033, "learning_rate": 1.5e-06, "epoch": 0.07741935483870968, "percentage": 1.58, "elapsed_time": "0:00:50", "remaining_time": "0:52:55", "throughput": "382.21", "total_tokens": 19472}
4
- {"current_steps": 4, "total_steps": 190, "loss": 12.5696, "learning_rate": 2.0000000000000003e-06, "epoch": 0.1032258064516129, "percentage": 2.11, "elapsed_time": "0:01:04", "remaining_time": "0:49:41", "throughput": "404.48", "total_tokens": 25936}
5
- {"current_steps": 5, "total_steps": 190, "loss": 9.3589, "learning_rate": 2.5e-06, "epoch": 0.12903225806451613, "percentage": 2.63, "elapsed_time": "0:01:17", "remaining_time": "0:47:40", "throughput": "417.45", "total_tokens": 32272}
6
- {"current_steps": 6, "total_steps": 190, "loss": 6.7715, "learning_rate": 3e-06, "epoch": 0.15483870967741936, "percentage": 3.16, "elapsed_time": "0:01:30", "remaining_time": "0:46:14", "throughput": "427.06", "total_tokens": 38640}
7
- {"current_steps": 7, "total_steps": 190, "loss": 5.3541, "learning_rate": 3.5e-06, "epoch": 0.18064516129032257, "percentage": 3.68, "elapsed_time": "0:01:43", "remaining_time": "0:45:09", "throughput": "434.07", "total_tokens": 44992}
8
- {"current_steps": 8, "total_steps": 190, "loss": 1.9295, "learning_rate": 4.000000000000001e-06, "epoch": 0.2064516129032258, "percentage": 4.21, "elapsed_time": "0:01:56", "remaining_time": "0:44:18", "throughput": "439.30", "total_tokens": 51328}
9
- {"current_steps": 9, "total_steps": 190, "loss": 0.6328, "learning_rate": 4.5e-06, "epoch": 0.23225806451612904, "percentage": 4.74, "elapsed_time": "0:02:10", "remaining_time": "0:43:35", "throughput": "441.47", "total_tokens": 57408}
10
- {"current_steps": 10, "total_steps": 190, "loss": 3.3225, "learning_rate": 5e-06, "epoch": 0.25806451612903225, "percentage": 5.26, "elapsed_time": "0:02:23", "remaining_time": "0:42:57", "throughput": "444.77", "total_tokens": 63696}
11
- {"current_steps": 11, "total_steps": 190, "loss": 0.2598, "learning_rate": 4.9996192378909785e-06, "epoch": 0.2838709677419355, "percentage": 5.79, "elapsed_time": "0:02:36", "remaining_time": "0:42:25", "throughput": "447.47", "total_tokens": 69984}
12
- {"current_steps": 12, "total_steps": 190, "loss": 0.6874, "learning_rate": 4.99847706754774e-06, "epoch": 0.3096774193548387, "percentage": 6.32, "elapsed_time": "0:02:49", "remaining_time": "0:41:55", "throughput": "450.46", "total_tokens": 76384}
13
- {"current_steps": 13, "total_steps": 190, "loss": 2.0329, "learning_rate": 4.9965738368864345e-06, "epoch": 0.33548387096774196, "percentage": 6.84, "elapsed_time": "0:03:02", "remaining_time": "0:41:28", "throughput": "452.54", "total_tokens": 82704}
14
- {"current_steps": 14, "total_steps": 190, "loss": 0.4942, "learning_rate": 4.993910125649561e-06, "epoch": 0.36129032258064514, "percentage": 7.37, "elapsed_time": "0:03:15", "remaining_time": "0:41:02", "throughput": "454.14", "total_tokens": 88976}
15
- {"current_steps": 15, "total_steps": 190, "loss": 1.1786, "learning_rate": 4.990486745229364e-06, "epoch": 0.3870967741935484, "percentage": 7.89, "elapsed_time": "0:03:29", "remaining_time": "0:40:39", "throughput": "456.59", "total_tokens": 95472}
16
- {"current_steps": 16, "total_steps": 190, "loss": 0.4424, "learning_rate": 4.986304738420684e-06, "epoch": 0.4129032258064516, "percentage": 8.42, "elapsed_time": "0:03:42", "remaining_time": "0:40:17", "throughput": "458.45", "total_tokens": 101904}
17
- {"current_steps": 17, "total_steps": 190, "loss": 0.3336, "learning_rate": 4.981365379103306e-06, "epoch": 0.43870967741935485, "percentage": 8.95, "elapsed_time": "0:03:55", "remaining_time": "0:39:56", "throughput": "459.83", "total_tokens": 108272}
18
- {"current_steps": 18, "total_steps": 190, "loss": 0.2568, "learning_rate": 4.975670171853926e-06, "epoch": 0.4645161290322581, "percentage": 9.47, "elapsed_time": "0:04:08", "remaining_time": "0:39:35", "throughput": "460.35", "total_tokens": 114464}
19
- {"current_steps": 19, "total_steps": 190, "loss": 0.1889, "learning_rate": 4.9692208514878445e-06, "epoch": 0.49032258064516127, "percentage": 10.0, "elapsed_time": "0:04:21", "remaining_time": "0:39:16", "throughput": "461.44", "total_tokens": 120816}
20
- {"current_steps": 20, "total_steps": 190, "loss": 0.1974, "learning_rate": 4.962019382530521e-06, "epoch": 0.5161290322580645, "percentage": 10.53, "elapsed_time": "0:04:34", "remaining_time": "0:38:57", "throughput": "462.27", "total_tokens": 127120}
21
- {"current_steps": 21, "total_steps": 190, "loss": 0.1766, "learning_rate": 4.9540679586191605e-06, "epoch": 0.5419354838709678, "percentage": 11.05, "elapsed_time": "0:04:48", "remaining_time": "0:38:39", "throughput": "463.99", "total_tokens": 133712}
22
- {"current_steps": 22, "total_steps": 190, "loss": 0.1694, "learning_rate": 4.9453690018345144e-06, "epoch": 0.567741935483871, "percentage": 11.58, "elapsed_time": "0:05:01", "remaining_time": "0:38:21", "throughput": "464.28", "total_tokens": 139904}
23
- {"current_steps": 23, "total_steps": 190, "loss": 0.1374, "learning_rate": 4.935925161963089e-06, "epoch": 0.5935483870967742, "percentage": 12.11, "elapsed_time": "0:05:14", "remaining_time": "0:38:03", "throughput": "465.03", "total_tokens": 146256}
24
- {"current_steps": 24, "total_steps": 190, "loss": 0.1496, "learning_rate": 4.925739315689991e-06, "epoch": 0.6193548387096774, "percentage": 12.63, "elapsed_time": "0:05:27", "remaining_time": "0:37:46", "throughput": "466.25", "total_tokens": 152784}
25
- {"current_steps": 25, "total_steps": 190, "loss": 0.1554, "learning_rate": 4.914814565722671e-06, "epoch": 0.6451612903225806, "percentage": 13.16, "elapsed_time": "0:05:40", "remaining_time": "0:37:29", "throughput": "466.38", "total_tokens": 158976}
26
- {"current_steps": 26, "total_steps": 190, "loss": 0.0918, "learning_rate": 4.903154239845798e-06, "epoch": 0.6709677419354839, "percentage": 13.68, "elapsed_time": "0:05:54", "remaining_time": "0:37:13", "throughput": "466.86", "total_tokens": 165280}
27
- {"current_steps": 27, "total_steps": 190, "loss": 0.1062, "learning_rate": 4.890761889907589e-06, "epoch": 0.6967741935483871, "percentage": 14.21, "elapsed_time": "0:06:07", "remaining_time": "0:36:56", "throughput": "467.90", "total_tokens": 171808}
28
- {"current_steps": 28, "total_steps": 190, "loss": 0.1975, "learning_rate": 4.8776412907378845e-06, "epoch": 0.7225806451612903, "percentage": 14.74, "elapsed_time": "0:06:20", "remaining_time": "0:36:40", "throughput": "468.27", "total_tokens": 178112}
29
- {"current_steps": 29, "total_steps": 190, "loss": 0.1389, "learning_rate": 4.863796438998293e-06, "epoch": 0.7483870967741936, "percentage": 15.26, "elapsed_time": "0:06:33", "remaining_time": "0:36:24", "throughput": "468.71", "total_tokens": 184448}
30
- {"current_steps": 30, "total_steps": 190, "loss": 0.1382, "learning_rate": 4.849231551964771e-06, "epoch": 0.7741935483870968, "percentage": 15.79, "elapsed_time": "0:06:46", "remaining_time": "0:36:09", "throughput": "469.38", "total_tokens": 190896}
31
- {"current_steps": 31, "total_steps": 190, "loss": 0.1982, "learning_rate": 4.833951066243004e-06, "epoch": 0.8, "percentage": 16.32, "elapsed_time": "0:06:59", "remaining_time": "0:35:53", "throughput": "469.24", "total_tokens": 197024}
32
- {"current_steps": 32, "total_steps": 190, "loss": 0.1072, "learning_rate": 4.817959636416969e-06, "epoch": 0.8258064516129032, "percentage": 16.84, "elapsed_time": "0:07:13", "remaining_time": "0:35:38", "throughput": "469.35", "total_tokens": 203248}
33
- {"current_steps": 33, "total_steps": 190, "loss": 0.0757, "learning_rate": 4.801262133631101e-06, "epoch": 0.8516129032258064, "percentage": 17.37, "elapsed_time": "0:07:26", "remaining_time": "0:35:22", "throughput": "470.10", "total_tokens": 209760}
34
- {"current_steps": 34, "total_steps": 190, "loss": 0.0829, "learning_rate": 4.783863644106502e-06, "epoch": 0.8774193548387097, "percentage": 17.89, "elapsed_time": "0:07:39", "remaining_time": "0:35:07", "throughput": "470.13", "total_tokens": 215968}
35
- {"current_steps": 35, "total_steps": 190, "loss": 0.1017, "learning_rate": 4.765769467591626e-06, "epoch": 0.9032258064516129, "percentage": 18.42, "elapsed_time": "0:07:52", "remaining_time": "0:34:52", "throughput": "470.20", "total_tokens": 222192}
36
- {"current_steps": 36, "total_steps": 190, "loss": 0.0957, "learning_rate": 4.746985115747918e-06, "epoch": 0.9290322580645162, "percentage": 18.95, "elapsed_time": "0:08:05", "remaining_time": "0:34:37", "throughput": "470.47", "total_tokens": 228512}
37
- {"current_steps": 37, "total_steps": 190, "loss": 0.0999, "learning_rate": 4.72751631047092e-06, "epoch": 0.9548387096774194, "percentage": 19.47, "elapsed_time": "0:08:18", "remaining_time": "0:34:22", "throughput": "471.30", "total_tokens": 235120}
38
- {"current_steps": 38, "total_steps": 190, "loss": 0.0581, "learning_rate": 4.707368982147318e-06, "epoch": 0.9806451612903225, "percentage": 20.0, "elapsed_time": "0:08:32", "remaining_time": "0:34:08", "throughput": "471.80", "total_tokens": 241584}
39
- {"current_steps": 39, "total_steps": 190, "loss": 0.0923, "learning_rate": 4.68654926784849e-06, "epoch": 1.0064516129032257, "percentage": 20.53, "elapsed_time": "0:08:45", "remaining_time": "0:33:53", "throughput": "472.34", "total_tokens": 248080}
40
- {"current_steps": 40, "total_steps": 190, "loss": 0.0506, "learning_rate": 4.665063509461098e-06, "epoch": 1.032258064516129, "percentage": 21.05, "elapsed_time": "0:08:58", "remaining_time": "0:33:38", "throughput": "472.58", "total_tokens": 254416}
41
- {"current_steps": 41, "total_steps": 190, "loss": 0.0333, "learning_rate": 4.642918251755281e-06, "epoch": 1.0580645161290323, "percentage": 21.58, "elapsed_time": "0:09:11", "remaining_time": "0:33:24", "throughput": "472.58", "total_tokens": 260640}
42
- {"current_steps": 42, "total_steps": 190, "loss": 0.038, "learning_rate": 4.620120240391065e-06, "epoch": 1.0838709677419356, "percentage": 22.11, "elapsed_time": "0:09:24", "remaining_time": "0:33:09", "throughput": "472.96", "total_tokens": 267072}
43
- {"current_steps": 43, "total_steps": 190, "loss": 0.0416, "learning_rate": 4.596676419863561e-06, "epoch": 1.1096774193548387, "percentage": 22.63, "elapsed_time": "0:09:37", "remaining_time": "0:32:55", "throughput": "473.13", "total_tokens": 273392}
44
- {"current_steps": 44, "total_steps": 190, "loss": 0.1068, "learning_rate": 4.572593931387604e-06, "epoch": 1.135483870967742, "percentage": 23.16, "elapsed_time": "0:09:51", "remaining_time": "0:32:41", "throughput": "473.22", "total_tokens": 279680}
45
- {"current_steps": 45, "total_steps": 190, "loss": 0.0369, "learning_rate": 4.54788011072248e-06, "epoch": 1.1612903225806452, "percentage": 23.68, "elapsed_time": "0:10:04", "remaining_time": "0:32:26", "throughput": "473.32", "total_tokens": 285968}
46
- {"current_steps": 46, "total_steps": 190, "loss": 0.1703, "learning_rate": 4.522542485937369e-06, "epoch": 1.1870967741935483, "percentage": 24.21, "elapsed_time": "0:10:17", "remaining_time": "0:32:12", "throughput": "473.49", "total_tokens": 292304}
47
- {"current_steps": 47, "total_steps": 190, "loss": 0.1102, "learning_rate": 4.496588775118232e-06, "epoch": 1.2129032258064516, "percentage": 24.74, "elapsed_time": "0:10:30", "remaining_time": "0:31:58", "throughput": "473.60", "total_tokens": 298608}
48
- {"current_steps": 48, "total_steps": 190, "loss": 0.0595, "learning_rate": 4.470026884016805e-06, "epoch": 1.238709677419355, "percentage": 25.26, "elapsed_time": "0:10:43", "remaining_time": "0:31:44", "throughput": "473.71", "total_tokens": 304912}
49
- {"current_steps": 49, "total_steps": 190, "loss": 0.1009, "learning_rate": 4.442864903642428e-06, "epoch": 1.2645161290322582, "percentage": 25.79, "elapsed_time": "0:10:56", "remaining_time": "0:31:30", "throughput": "473.98", "total_tokens": 311328}
50
- {"current_steps": 50, "total_steps": 190, "loss": 0.0434, "learning_rate": 4.415111107797445e-06, "epoch": 1.2903225806451613, "percentage": 26.32, "elapsed_time": "0:11:10", "remaining_time": "0:31:16", "throughput": "474.12", "total_tokens": 317664}
51
- {"current_steps": 51, "total_steps": 190, "loss": 0.0281, "learning_rate": 4.386773950556931e-06, "epoch": 1.3161290322580645, "percentage": 26.84, "elapsed_time": "0:11:23", "remaining_time": "0:31:01", "throughput": "474.46", "total_tokens": 324128}
52
- {"current_steps": 52, "total_steps": 190, "loss": 0.0513, "learning_rate": 4.357862063693486e-06, "epoch": 1.3419354838709676, "percentage": 27.37, "elapsed_time": "0:11:36", "remaining_time": "0:30:47", "throughput": "474.35", "total_tokens": 330304}
53
- {"current_steps": 53, "total_steps": 190, "loss": 0.0902, "learning_rate": 4.328384254047927e-06, "epoch": 1.367741935483871, "percentage": 27.89, "elapsed_time": "0:11:49", "remaining_time": "0:30:34", "throughput": "474.43", "total_tokens": 336608}
54
- {"current_steps": 54, "total_steps": 190, "loss": 0.0448, "learning_rate": 4.2983495008466285e-06, "epoch": 1.3935483870967742, "percentage": 28.42, "elapsed_time": "0:12:02", "remaining_time": "0:30:20", "throughput": "474.55", "total_tokens": 342944}
55
- {"current_steps": 55, "total_steps": 190, "loss": 0.036, "learning_rate": 4.267766952966369e-06, "epoch": 1.4193548387096775, "percentage": 28.95, "elapsed_time": "0:12:15", "remaining_time": "0:30:06", "throughput": "474.98", "total_tokens": 349504}
56
- {"current_steps": 56, "total_steps": 190, "loss": 0.0279, "learning_rate": 4.236645926147493e-06, "epoch": 1.4451612903225808, "percentage": 29.47, "elapsed_time": "0:12:29", "remaining_time": "0:29:52", "throughput": "475.04", "total_tokens": 355808}
57
- {"current_steps": 57, "total_steps": 190, "loss": 0.0527, "learning_rate": 4.204995900156247e-06, "epoch": 1.4709677419354839, "percentage": 30.0, "elapsed_time": "0:12:42", "remaining_time": "0:29:38", "throughput": "475.14", "total_tokens": 362144}
58
- {"current_steps": 58, "total_steps": 190, "loss": 0.0466, "learning_rate": 4.172826515897146e-06, "epoch": 1.4967741935483871, "percentage": 30.53, "elapsed_time": "0:12:55", "remaining_time": "0:29:24", "throughput": "475.66", "total_tokens": 368800}
59
- {"current_steps": 59, "total_steps": 190, "loss": 0.0203, "learning_rate": 4.140147572476269e-06, "epoch": 1.5225806451612902, "percentage": 31.05, "elapsed_time": "0:13:08", "remaining_time": "0:29:10", "throughput": "475.90", "total_tokens": 375264}
60
- {"current_steps": 60, "total_steps": 190, "loss": 0.0693, "learning_rate": 4.106969024216348e-06, "epoch": 1.5483870967741935, "percentage": 31.58, "elapsed_time": "0:13:21", "remaining_time": "0:28:57", "throughput": "475.74", "total_tokens": 381408}
61
- {"current_steps": 61, "total_steps": 190, "loss": 0.0193, "learning_rate": 4.073300977624594e-06, "epoch": 1.5741935483870968, "percentage": 32.11, "elapsed_time": "0:13:34", "remaining_time": "0:28:43", "throughput": "475.58", "total_tokens": 387552}
62
- {"current_steps": 62, "total_steps": 190, "loss": 0.1155, "learning_rate": 4.039153688314146e-06, "epoch": 1.6, "percentage": 32.63, "elapsed_time": "0:13:48", "remaining_time": "0:28:29", "throughput": "475.95", "total_tokens": 394128}
63
- {"current_steps": 63, "total_steps": 190, "loss": 0.0594, "learning_rate": 4.0045375578801216e-06, "epoch": 1.6258064516129034, "percentage": 33.16, "elapsed_time": "0:14:01", "remaining_time": "0:28:15", "throughput": "476.06", "total_tokens": 400512}
64
- {"current_steps": 64, "total_steps": 190, "loss": 0.0391, "learning_rate": 3.969463130731183e-06, "epoch": 1.6516129032258065, "percentage": 33.68, "elapsed_time": "0:14:14", "remaining_time": "0:28:02", "throughput": "476.02", "total_tokens": 406752}
65
- {"current_steps": 65, "total_steps": 190, "loss": 0.0552, "learning_rate": 3.933941090877615e-06, "epoch": 1.6774193548387095, "percentage": 34.21, "elapsed_time": "0:14:27", "remaining_time": "0:27:48", "throughput": "476.02", "total_tokens": 413040}
66
- {"current_steps": 66, "total_steps": 190, "loss": 0.03, "learning_rate": 3.897982258676867e-06, "epoch": 1.7032258064516128, "percentage": 34.74, "elapsed_time": "0:14:40", "remaining_time": "0:27:35", "throughput": "476.12", "total_tokens": 419408}
67
- {"current_steps": 67, "total_steps": 190, "loss": 0.0458, "learning_rate": 3.861597587537568e-06, "epoch": 1.729032258064516, "percentage": 35.26, "elapsed_time": "0:14:54", "remaining_time": "0:27:21", "throughput": "476.36", "total_tokens": 425920}
68
- {"current_steps": 68, "total_steps": 190, "loss": 0.0502, "learning_rate": 3.824798160583012e-06, "epoch": 1.7548387096774194, "percentage": 35.79, "elapsed_time": "0:15:07", "remaining_time": "0:27:07", "throughput": "476.58", "total_tokens": 432400}
69
- {"current_steps": 69, "total_steps": 190, "loss": 0.0513, "learning_rate": 3.787595187275136e-06, "epoch": 1.7806451612903227, "percentage": 36.32, "elapsed_time": "0:15:20", "remaining_time": "0:26:54", "throughput": "476.59", "total_tokens": 438688}
70
- {"current_steps": 70, "total_steps": 190, "loss": 0.0309, "learning_rate": 3.7500000000000005e-06, "epoch": 1.8064516129032258, "percentage": 36.84, "elapsed_time": "0:15:33", "remaining_time": "0:26:40", "throughput": "476.93", "total_tokens": 445280}
71
- {"current_steps": 71, "total_steps": 190, "loss": 0.0889, "learning_rate": 3.7120240506158433e-06, "epoch": 1.832258064516129, "percentage": 37.37, "elapsed_time": "0:15:46", "remaining_time": "0:26:26", "throughput": "476.99", "total_tokens": 451616}
72
- {"current_steps": 72, "total_steps": 190, "loss": 0.0868, "learning_rate": 3.6736789069647273e-06, "epoch": 1.8580645161290321, "percentage": 37.89, "elapsed_time": "0:15:59", "remaining_time": "0:26:13", "throughput": "476.95", "total_tokens": 457856}
73
- {"current_steps": 73, "total_steps": 190, "loss": 0.0516, "learning_rate": 3.634976249348867e-06, "epoch": 1.8838709677419354, "percentage": 38.42, "elapsed_time": "0:16:13", "remaining_time": "0:25:59", "throughput": "476.96", "total_tokens": 464144}
74
- {"current_steps": 74, "total_steps": 190, "loss": 0.059, "learning_rate": 3.595927866972694e-06, "epoch": 1.9096774193548387, "percentage": 38.95, "elapsed_time": "0:16:26", "remaining_time": "0:25:46", "throughput": "477.28", "total_tokens": 470736}
75
- {"current_steps": 75, "total_steps": 190, "loss": 0.0475, "learning_rate": 3.556545654351749e-06, "epoch": 1.935483870967742, "percentage": 39.47, "elapsed_time": "0:16:39", "remaining_time": "0:25:32", "throughput": "477.42", "total_tokens": 477168}
76
- {"current_steps": 76, "total_steps": 190, "loss": 0.0704, "learning_rate": 3.516841607689501e-06, "epoch": 1.9612903225806453, "percentage": 40.0, "elapsed_time": "0:16:52", "remaining_time": "0:25:18", "throughput": "477.51", "total_tokens": 483536}
77
- {"current_steps": 77, "total_steps": 190, "loss": 0.0666, "learning_rate": 3.476827821223184e-06, "epoch": 1.9870967741935484, "percentage": 40.53, "elapsed_time": "0:17:05", "remaining_time": "0:25:05", "throughput": "477.44", "total_tokens": 489760}
78
- {"current_steps": 78, "total_steps": 190, "loss": 0.0275, "learning_rate": 3.436516483539781e-06, "epoch": 2.0129032258064514, "percentage": 41.05, "elapsed_time": "0:17:18", "remaining_time": "0:24:51", "throughput": "477.39", "total_tokens": 496000}
79
- {"current_steps": 79, "total_steps": 190, "loss": 0.0169, "learning_rate": 3.39591987386325e-06, "epoch": 2.0387096774193547, "percentage": 41.58, "elapsed_time": "0:17:32", "remaining_time": "0:24:38", "throughput": "477.49", "total_tokens": 502384}
80
- {"current_steps": 80, "total_steps": 190, "loss": 0.0056, "learning_rate": 3.3550503583141726e-06, "epoch": 2.064516129032258, "percentage": 42.11, "elapsed_time": "0:17:45", "remaining_time": "0:24:24", "throughput": "477.79", "total_tokens": 508992}
81
- {"current_steps": 81, "total_steps": 190, "loss": 0.0139, "learning_rate": 3.313920386142892e-06, "epoch": 2.0903225806451613, "percentage": 42.63, "elapsed_time": "0:17:58", "remaining_time": "0:24:11", "throughput": "477.73", "total_tokens": 515216}
82
- {"current_steps": 82, "total_steps": 190, "loss": 0.0561, "learning_rate": 3.272542485937369e-06, "epoch": 2.1161290322580646, "percentage": 43.16, "elapsed_time": "0:18:11", "remaining_time": "0:23:57", "throughput": "477.99", "total_tokens": 521792}
83
- {"current_steps": 83, "total_steps": 190, "loss": 0.0098, "learning_rate": 3.230929261806842e-06, "epoch": 2.141935483870968, "percentage": 43.68, "elapsed_time": "0:18:24", "remaining_time": "0:23:44", "throughput": "478.07", "total_tokens": 528176}
84
- {"current_steps": 84, "total_steps": 190, "loss": 0.0037, "learning_rate": 3.189093389542498e-06, "epoch": 2.167741935483871, "percentage": 44.21, "elapsed_time": "0:18:37", "remaining_time": "0:23:30", "throughput": "478.10", "total_tokens": 534496}
85
- {"current_steps": 85, "total_steps": 190, "loss": 0.0194, "learning_rate": 3.147047612756302e-06, "epoch": 2.193548387096774, "percentage": 44.74, "elapsed_time": "0:18:51", "remaining_time": "0:23:17", "throughput": "478.31", "total_tokens": 541024}
86
- {"current_steps": 86, "total_steps": 190, "loss": 0.0004, "learning_rate": 3.1048047389991693e-06, "epoch": 2.2193548387096773, "percentage": 45.26, "elapsed_time": "0:19:04", "remaining_time": "0:23:03", "throughput": "478.31", "total_tokens": 547328}
87
- {"current_steps": 87, "total_steps": 190, "loss": 0.0003, "learning_rate": 3.062377635859663e-06, "epoch": 2.2451612903225806, "percentage": 45.79, "elapsed_time": "0:19:17", "remaining_time": "0:22:50", "throughput": "478.43", "total_tokens": 553760}
88
- {"current_steps": 88, "total_steps": 190, "loss": 0.0511, "learning_rate": 3.019779227044398e-06, "epoch": 2.270967741935484, "percentage": 46.32, "elapsed_time": "0:19:30", "remaining_time": "0:22:36", "throughput": "478.42", "total_tokens": 560048}
89
- {"current_steps": 89, "total_steps": 190, "loss": 0.0974, "learning_rate": 2.9770224884413625e-06, "epoch": 2.296774193548387, "percentage": 46.84, "elapsed_time": "0:19:43", "remaining_time": "0:22:23", "throughput": "478.66", "total_tokens": 566624}
90
- {"current_steps": 90, "total_steps": 190, "loss": 0.0442, "learning_rate": 2.9341204441673267e-06, "epoch": 2.3225806451612905, "percentage": 47.37, "elapsed_time": "0:19:56", "remaining_time": "0:22:09", "throughput": "478.60", "total_tokens": 572864}
91
- {"current_steps": 91, "total_steps": 190, "loss": 0.0802, "learning_rate": 2.8910861626005774e-06, "epoch": 2.3483870967741938, "percentage": 47.89, "elapsed_time": "0:20:10", "remaining_time": "0:21:56", "throughput": "478.49", "total_tokens": 579024}
92
- {"current_steps": 92, "total_steps": 190, "loss": 0.0195, "learning_rate": 2.847932752400164e-06, "epoch": 2.3741935483870966, "percentage": 48.42, "elapsed_time": "0:20:23", "remaining_time": "0:21:43", "throughput": "478.66", "total_tokens": 585536}
93
- {"current_steps": 93, "total_steps": 190, "loss": 0.055, "learning_rate": 2.804673358512869e-06, "epoch": 2.4, "percentage": 48.95, "elapsed_time": "0:20:36", "remaining_time": "0:21:29", "throughput": "478.62", "total_tokens": 591792}
94
- {"current_steps": 94, "total_steps": 190, "loss": 0.0268, "learning_rate": 2.761321158169134e-06, "epoch": 2.425806451612903, "percentage": 49.47, "elapsed_time": "0:20:49", "remaining_time": "0:21:16", "throughput": "478.66", "total_tokens": 598144}
95
- {"current_steps": 95, "total_steps": 190, "loss": 0.0196, "learning_rate": 2.717889356869146e-06, "epoch": 2.4516129032258065, "percentage": 50.0, "elapsed_time": "0:21:02", "remaining_time": "0:21:02", "throughput": "478.71", "total_tokens": 604496}
96
- {"current_steps": 96, "total_steps": 190, "loss": 0.0363, "learning_rate": 2.6743911843603134e-06, "epoch": 2.47741935483871, "percentage": 50.53, "elapsed_time": "0:21:15", "remaining_time": "0:20:49", "throughput": "478.69", "total_tokens": 610784}
97
- {"current_steps": 97, "total_steps": 190, "loss": 0.0046, "learning_rate": 2.6308398906073603e-06, "epoch": 2.5032258064516126, "percentage": 51.05, "elapsed_time": "0:21:29", "remaining_time": "0:20:35", "throughput": "478.64", "total_tokens": 617024}
98
- {"current_steps": 98, "total_steps": 190, "loss": 0.0366, "learning_rate": 2.587248741756253e-06, "epoch": 2.5290322580645164, "percentage": 51.58, "elapsed_time": "0:21:42", "remaining_time": "0:20:22", "throughput": "478.64", "total_tokens": 623312}
99
- {"current_steps": 99, "total_steps": 190, "loss": 0.0051, "learning_rate": 2.543631016093209e-06, "epoch": 2.554838709677419, "percentage": 52.11, "elapsed_time": "0:21:55", "remaining_time": "0:20:09", "throughput": "478.64", "total_tokens": 629616}
100
- {"current_steps": 100, "total_steps": 190, "loss": 0.0226, "learning_rate": 2.5e-06, "epoch": 2.5806451612903225, "percentage": 52.63, "elapsed_time": "0:22:08", "remaining_time": "0:19:55", "throughput": "478.82", "total_tokens": 636144}
101
- {"current_steps": 101, "total_steps": 190, "loss": 0.0818, "learning_rate": 2.4563689839067913e-06, "epoch": 2.606451612903226, "percentage": 53.16, "elapsed_time": "0:22:21", "remaining_time": "0:19:42", "throughput": "478.85", "total_tokens": 642496}
102
- {"current_steps": 102, "total_steps": 190, "loss": 0.0247, "learning_rate": 2.4127512582437486e-06, "epoch": 2.632258064516129, "percentage": 53.68, "elapsed_time": "0:22:34", "remaining_time": "0:19:28", "throughput": "478.93", "total_tokens": 648912}
103
- {"current_steps": 103, "total_steps": 190, "loss": 0.0593, "learning_rate": 2.3691601093926406e-06, "epoch": 2.6580645161290324, "percentage": 54.21, "elapsed_time": "0:22:48", "remaining_time": "0:19:15", "throughput": "478.83", "total_tokens": 655088}
104
- {"current_steps": 104, "total_steps": 190, "loss": 0.0073, "learning_rate": 2.325608815639687e-06, "epoch": 2.6838709677419352, "percentage": 54.74, "elapsed_time": "0:23:01", "remaining_time": "0:19:02", "throughput": "479.05", "total_tokens": 661680}
105
- {"current_steps": 105, "total_steps": 190, "loss": 0.0295, "learning_rate": 2.2821106431308546e-06, "epoch": 2.709677419354839, "percentage": 55.26, "elapsed_time": "0:23:14", "remaining_time": "0:18:48", "throughput": "479.07", "total_tokens": 668016}
106
- {"current_steps": 106, "total_steps": 190, "loss": 0.0115, "learning_rate": 2.238678841830867e-06, "epoch": 2.735483870967742, "percentage": 55.79, "elapsed_time": "0:23:27", "remaining_time": "0:18:35", "throughput": "478.96", "total_tokens": 674176}
107
- {"current_steps": 107, "total_steps": 190, "loss": 0.0064, "learning_rate": 2.195326641487132e-06, "epoch": 2.761290322580645, "percentage": 56.32, "elapsed_time": "0:23:40", "remaining_time": "0:18:22", "throughput": "478.95", "total_tokens": 680464}
108
- {"current_steps": 108, "total_steps": 190, "loss": 0.0229, "learning_rate": 2.1520672475998374e-06, "epoch": 2.7870967741935484, "percentage": 56.84, "elapsed_time": "0:23:53", "remaining_time": "0:18:08", "throughput": "478.89", "total_tokens": 686688}
109
- {"current_steps": 109, "total_steps": 190, "loss": 0.0605, "learning_rate": 2.1089138373994226e-06, "epoch": 2.8129032258064517, "percentage": 57.37, "elapsed_time": "0:24:07", "remaining_time": "0:17:55", "throughput": "478.89", "total_tokens": 692992}
110
- {"current_steps": 110, "total_steps": 190, "loss": 0.05, "learning_rate": 2.0658795558326745e-06, "epoch": 2.838709677419355, "percentage": 57.89, "elapsed_time": "0:24:20", "remaining_time": "0:17:42", "throughput": "478.95", "total_tokens": 699392}
111
- {"current_steps": 111, "total_steps": 190, "loss": 0.0544, "learning_rate": 2.022977511558638e-06, "epoch": 2.864516129032258, "percentage": 58.42, "elapsed_time": "0:24:33", "remaining_time": "0:17:28", "throughput": "478.93", "total_tokens": 705680}
112
- {"current_steps": 112, "total_steps": 190, "loss": 0.0109, "learning_rate": 1.9802207729556023e-06, "epoch": 2.8903225806451616, "percentage": 58.95, "elapsed_time": "0:24:46", "remaining_time": "0:17:15", "throughput": "478.90", "total_tokens": 711952}
113
- {"current_steps": 113, "total_steps": 190, "loss": 0.0242, "learning_rate": 1.937622364140338e-06, "epoch": 2.9161290322580644, "percentage": 59.47, "elapsed_time": "0:24:59", "remaining_time": "0:17:01", "throughput": "478.86", "total_tokens": 718192}
114
- {"current_steps": 114, "total_steps": 190, "loss": 0.0223, "learning_rate": 1.895195261000831e-06, "epoch": 2.9419354838709677, "percentage": 60.0, "elapsed_time": "0:25:12", "remaining_time": "0:16:48", "throughput": "479.09", "total_tokens": 724832}
115
- {"current_steps": 115, "total_steps": 190, "loss": 0.0263, "learning_rate": 1.852952387243698e-06, "epoch": 2.967741935483871, "percentage": 60.53, "elapsed_time": "0:25:26", "remaining_time": "0:16:35", "throughput": "479.20", "total_tokens": 731312}
116
- {"current_steps": 116, "total_steps": 190, "loss": 0.0014, "learning_rate": 1.8109066104575023e-06, "epoch": 2.9935483870967743, "percentage": 61.05, "elapsed_time": "0:25:39", "remaining_time": "0:16:21", "throughput": "479.12", "total_tokens": 737488}
117
- {"current_steps": 117, "total_steps": 190, "loss": 0.0061, "learning_rate": 1.7690707381931585e-06, "epoch": 3.0193548387096776, "percentage": 61.58, "elapsed_time": "0:25:52", "remaining_time": "0:16:08", "throughput": "479.09", "total_tokens": 743760}
118
- {"current_steps": 118, "total_steps": 190, "loss": 0.0296, "learning_rate": 1.7274575140626318e-06, "epoch": 3.0451612903225804, "percentage": 62.11, "elapsed_time": "0:26:05", "remaining_time": "0:15:55", "throughput": "479.08", "total_tokens": 750048}
119
- {"current_steps": 119, "total_steps": 190, "loss": 0.0186, "learning_rate": 1.686079613857109e-06, "epoch": 3.0709677419354837, "percentage": 62.63, "elapsed_time": "0:26:18", "remaining_time": "0:15:41", "throughput": "479.11", "total_tokens": 756400}
120
- {"current_steps": 120, "total_steps": 190, "loss": 0.0038, "learning_rate": 1.6449496416858285e-06, "epoch": 3.096774193548387, "percentage": 63.16, "elapsed_time": "0:26:31", "remaining_time": "0:15:28", "throughput": "478.93", "total_tokens": 762432}
121
- {"current_steps": 121, "total_steps": 190, "loss": 0.0033, "learning_rate": 1.6040801261367494e-06, "epoch": 3.1225806451612903, "percentage": 63.68, "elapsed_time": "0:26:45", "remaining_time": "0:15:15", "throughput": "478.90", "total_tokens": 768688}
122
- {"current_steps": 122, "total_steps": 190, "loss": 0.0091, "learning_rate": 1.56348351646022e-06, "epoch": 3.1483870967741936, "percentage": 64.21, "elapsed_time": "0:26:58", "remaining_time": "0:15:01", "throughput": "478.92", "total_tokens": 775024}
123
- {"current_steps": 123, "total_steps": 190, "loss": 0.0012, "learning_rate": 1.5231721787768162e-06, "epoch": 3.174193548387097, "percentage": 64.74, "elapsed_time": "0:27:11", "remaining_time": "0:14:48", "throughput": "478.94", "total_tokens": 781360}
124
- {"current_steps": 124, "total_steps": 190, "loss": 0.0223, "learning_rate": 1.4831583923105e-06, "epoch": 3.2, "percentage": 65.26, "elapsed_time": "0:27:24", "remaining_time": "0:14:35", "throughput": "479.08", "total_tokens": 787888}
125
- {"current_steps": 125, "total_steps": 190, "loss": 0.0131, "learning_rate": 1.443454345648252e-06, "epoch": 3.225806451612903, "percentage": 65.79, "elapsed_time": "0:27:37", "remaining_time": "0:14:22", "throughput": "479.02", "total_tokens": 794112}
126
- {"current_steps": 126, "total_steps": 190, "loss": 0.0008, "learning_rate": 1.4040721330273063e-06, "epoch": 3.2516129032258063, "percentage": 66.32, "elapsed_time": "0:27:50", "remaining_time": "0:14:08", "throughput": "479.00", "total_tokens": 800384}
127
- {"current_steps": 127, "total_steps": 190, "loss": 0.0058, "learning_rate": 1.3650237506511333e-06, "epoch": 3.2774193548387096, "percentage": 66.84, "elapsed_time": "0:28:04", "remaining_time": "0:13:55", "throughput": "479.10", "total_tokens": 806848}
128
- {"current_steps": 128, "total_steps": 190, "loss": 0.0065, "learning_rate": 1.3263210930352737e-06, "epoch": 3.303225806451613, "percentage": 67.37, "elapsed_time": "0:28:17", "remaining_time": "0:13:42", "throughput": "479.09", "total_tokens": 813136}
129
- {"current_steps": 129, "total_steps": 190, "loss": 0.0398, "learning_rate": 1.2879759493841577e-06, "epoch": 3.329032258064516, "percentage": 67.89, "elapsed_time": "0:28:30", "remaining_time": "0:13:28", "throughput": "479.13", "total_tokens": 819504}
130
- {"current_steps": 130, "total_steps": 190, "loss": 0.0005, "learning_rate": 1.2500000000000007e-06, "epoch": 3.3548387096774195, "percentage": 68.42, "elapsed_time": "0:28:43", "remaining_time": "0:13:15", "throughput": "479.20", "total_tokens": 825936}
131
- {"current_steps": 131, "total_steps": 190, "loss": 0.0049, "learning_rate": 1.2124048127248644e-06, "epoch": 3.3806451612903228, "percentage": 68.95, "elapsed_time": "0:28:56", "remaining_time": "0:13:02", "throughput": "479.35", "total_tokens": 832496}
132
- {"current_steps": 132, "total_steps": 190, "loss": 0.0061, "learning_rate": 1.1752018394169882e-06, "epoch": 3.4064516129032256, "percentage": 69.47, "elapsed_time": "0:29:09", "remaining_time": "0:12:48", "throughput": "479.38", "total_tokens": 838864}
133
- {"current_steps": 133, "total_steps": 190, "loss": 0.0111, "learning_rate": 1.1384024124624324e-06, "epoch": 3.432258064516129, "percentage": 70.0, "elapsed_time": "0:29:23", "remaining_time": "0:12:35", "throughput": "479.56", "total_tokens": 845504}
134
- {"current_steps": 134, "total_steps": 190, "loss": 0.0049, "learning_rate": 1.1020177413231334e-06, "epoch": 3.458064516129032, "percentage": 70.53, "elapsed_time": "0:29:36", "remaining_time": "0:12:22", "throughput": "479.60", "total_tokens": 851888}
135
- {"current_steps": 135, "total_steps": 190, "loss": 0.0012, "learning_rate": 1.0660589091223854e-06, "epoch": 3.4838709677419355, "percentage": 71.05, "elapsed_time": "0:29:49", "remaining_time": "0:12:09", "throughput": "479.57", "total_tokens": 858144}
136
- {"current_steps": 136, "total_steps": 190, "loss": 0.0004, "learning_rate": 1.0305368692688175e-06, "epoch": 3.509677419354839, "percentage": 71.58, "elapsed_time": "0:30:02", "remaining_time": "0:11:55", "throughput": "479.59", "total_tokens": 864496}
137
- {"current_steps": 137, "total_steps": 190, "loss": 0.0006, "learning_rate": 9.95462442119879e-07, "epoch": 3.535483870967742, "percentage": 72.11, "elapsed_time": "0:30:15", "remaining_time": "0:11:42", "throughput": "479.51", "total_tokens": 870672}
138
- {"current_steps": 138, "total_steps": 190, "loss": 0.0003, "learning_rate": 9.608463116858544e-07, "epoch": 3.5612903225806454, "percentage": 72.63, "elapsed_time": "0:30:28", "remaining_time": "0:11:29", "throughput": "479.49", "total_tokens": 876944}
139
- {"current_steps": 139, "total_steps": 190, "loss": 0.0004, "learning_rate": 9.266990223754069e-07, "epoch": 3.587096774193548, "percentage": 73.16, "elapsed_time": "0:30:42", "remaining_time": "0:11:15", "throughput": "479.61", "total_tokens": 883488}
140
- {"current_steps": 140, "total_steps": 190, "loss": 0.0016, "learning_rate": 8.930309757836517e-07, "epoch": 3.6129032258064515, "percentage": 73.68, "elapsed_time": "0:30:55", "remaining_time": "0:11:02", "throughput": "479.62", "total_tokens": 889824}
141
- {"current_steps": 141, "total_steps": 190, "loss": 0.0268, "learning_rate": 8.598524275237321e-07, "epoch": 3.638709677419355, "percentage": 74.21, "elapsed_time": "0:31:08", "remaining_time": "0:10:49", "throughput": "479.64", "total_tokens": 896176}
142
- {"current_steps": 142, "total_steps": 190, "loss": 0.0018, "learning_rate": 8.271734841028553e-07, "epoch": 3.664516129032258, "percentage": 74.74, "elapsed_time": "0:31:21", "remaining_time": "0:10:36", "throughput": "479.52", "total_tokens": 902272}
143
- {"current_steps": 143, "total_steps": 190, "loss": 0.01, "learning_rate": 7.950040998437541e-07, "epoch": 3.6903225806451614, "percentage": 75.26, "elapsed_time": "0:31:34", "remaining_time": "0:10:22", "throughput": "479.48", "total_tokens": 908512}
144
- {"current_steps": 144, "total_steps": 190, "loss": 0.0209, "learning_rate": 7.633540738525066e-07, "epoch": 3.7161290322580647, "percentage": 75.79, "elapsed_time": "0:31:47", "remaining_time": "0:10:09", "throughput": "479.66", "total_tokens": 915152}
145
- {"current_steps": 145, "total_steps": 190, "loss": 0.0076, "learning_rate": 7.322330470336314e-07, "epoch": 3.741935483870968, "percentage": 76.32, "elapsed_time": "0:32:01", "remaining_time": "0:09:56", "throughput": "479.70", "total_tokens": 921552}
146
- {"current_steps": 146, "total_steps": 190, "loss": 0.0227, "learning_rate": 7.016504991533727e-07, "epoch": 3.767741935483871, "percentage": 76.84, "elapsed_time": "0:32:14", "remaining_time": "0:09:42", "throughput": "479.79", "total_tokens": 928048}
147
- {"current_steps": 147, "total_steps": 190, "loss": 0.0002, "learning_rate": 6.716157459520739e-07, "epoch": 3.793548387096774, "percentage": 77.37, "elapsed_time": "0:32:27", "remaining_time": "0:09:29", "throughput": "479.87", "total_tokens": 934512}
148
- {"current_steps": 148, "total_steps": 190, "loss": 0.0296, "learning_rate": 6.421379363065142e-07, "epoch": 3.8193548387096774, "percentage": 77.89, "elapsed_time": "0:32:40", "remaining_time": "0:09:16", "throughput": "479.86", "total_tokens": 940816}
149
- {"current_steps": 149, "total_steps": 190, "loss": 0.0006, "learning_rate": 6.1322604944307e-07, "epoch": 3.8451612903225807, "percentage": 78.42, "elapsed_time": "0:32:53", "remaining_time": "0:09:03", "throughput": "479.79", "total_tokens": 946992}
150
- {"current_steps": 150, "total_steps": 190, "loss": 0.0012, "learning_rate": 5.848888922025553e-07, "epoch": 3.870967741935484, "percentage": 78.95, "elapsed_time": "0:33:06", "remaining_time": "0:08:49", "throughput": "479.85", "total_tokens": 953424}
151
- {"current_steps": 151, "total_steps": 190, "loss": 0.0007, "learning_rate": 5.571350963575728e-07, "epoch": 3.896774193548387, "percentage": 79.47, "elapsed_time": "0:33:20", "remaining_time": "0:08:36", "throughput": "479.79", "total_tokens": 959616}
152
- {"current_steps": 152, "total_steps": 190, "loss": 0.0003, "learning_rate": 5.299731159831953e-07, "epoch": 3.9225806451612906, "percentage": 80.0, "elapsed_time": "0:33:33", "remaining_time": "0:08:23", "throughput": "479.87", "total_tokens": 966096}
153
- {"current_steps": 153, "total_steps": 190, "loss": 0.0005, "learning_rate": 5.034112248817685e-07, "epoch": 3.9483870967741934, "percentage": 80.53, "elapsed_time": "0:33:46", "remaining_time": "0:08:10", "throughput": "479.85", "total_tokens": 972368}
154
- {"current_steps": 154, "total_steps": 190, "loss": 0.0008, "learning_rate": 4.774575140626317e-07, "epoch": 3.9741935483870967, "percentage": 81.05, "elapsed_time": "0:33:59", "remaining_time": "0:07:56", "throughput": "479.92", "total_tokens": 978848}
155
- {"current_steps": 155, "total_steps": 190, "loss": 0.0003, "learning_rate": 4.5211988927752026e-07, "epoch": 4.0, "percentage": 81.58, "elapsed_time": "0:34:12", "remaining_time": "0:07:43", "throughput": "480.10", "total_tokens": 985520}
156
- {"current_steps": 156, "total_steps": 190, "loss": 0.0015, "learning_rate": 4.27406068612396e-07, "epoch": 4.025806451612903, "percentage": 82.11, "elapsed_time": "0:34:25", "remaining_time": "0:07:30", "throughput": "480.13", "total_tokens": 991904}
157
- {"current_steps": 157, "total_steps": 190, "loss": 0.0007, "learning_rate": 4.033235801364402e-07, "epoch": 4.051612903225807, "percentage": 82.63, "elapsed_time": "0:34:39", "remaining_time": "0:07:16", "throughput": "480.16", "total_tokens": 998288}
158
- {"current_steps": 158, "total_steps": 190, "loss": 0.0002, "learning_rate": 3.798797596089351e-07, "epoch": 4.077419354838709, "percentage": 83.16, "elapsed_time": "0:34:52", "remaining_time": "0:07:03", "throughput": "480.08", "total_tokens": 1004432}
159
- {"current_steps": 159, "total_steps": 190, "loss": 0.0052, "learning_rate": 3.5708174824471947e-07, "epoch": 4.103225806451613, "percentage": 83.68, "elapsed_time": "0:35:05", "remaining_time": "0:06:50", "throughput": "480.01", "total_tokens": 1010608}
160
- {"current_steps": 160, "total_steps": 190, "loss": 0.004, "learning_rate": 3.3493649053890325e-07, "epoch": 4.129032258064516, "percentage": 84.21, "elapsed_time": "0:35:18", "remaining_time": "0:06:37", "throughput": "479.97", "total_tokens": 1016848}
161
- {"current_steps": 161, "total_steps": 190, "loss": 0.0004, "learning_rate": 3.134507321515107e-07, "epoch": 4.15483870967742, "percentage": 84.74, "elapsed_time": "0:35:31", "remaining_time": "0:06:23", "throughput": "480.06", "total_tokens": 1023360}
162
- {"current_steps": 162, "total_steps": 190, "loss": 0.002, "learning_rate": 2.9263101785268253e-07, "epoch": 4.180645161290323, "percentage": 85.26, "elapsed_time": "0:35:44", "remaining_time": "0:06:10", "throughput": "480.12", "total_tokens": 1029808}
163
- {"current_steps": 163, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.7248368952908055e-07, "epoch": 4.2064516129032254, "percentage": 85.79, "elapsed_time": "0:35:58", "remaining_time": "0:05:57", "throughput": "480.10", "total_tokens": 1036080}
164
- {"current_steps": 164, "total_steps": 190, "loss": 0.0001, "learning_rate": 2.53014884252083e-07, "epoch": 4.232258064516129, "percentage": 86.32, "elapsed_time": "0:36:11", "remaining_time": "0:05:44", "throughput": "480.03", "total_tokens": 1042240}
165
- {"current_steps": 165, "total_steps": 190, "loss": 0.0002, "learning_rate": 2.3423053240837518e-07, "epoch": 4.258064516129032, "percentage": 86.84, "elapsed_time": "0:36:24", "remaining_time": "0:05:30", "throughput": "480.08", "total_tokens": 1048672}
166
- {"current_steps": 166, "total_steps": 190, "loss": 0.0076, "learning_rate": 2.1613635589349756e-07, "epoch": 4.283870967741936, "percentage": 87.37, "elapsed_time": "0:36:37", "remaining_time": "0:05:17", "throughput": "480.00", "total_tokens": 1054832}
167
- {"current_steps": 167, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.9873786636889908e-07, "epoch": 4.309677419354839, "percentage": 87.89, "elapsed_time": "0:36:50", "remaining_time": "0:05:04", "throughput": "480.08", "total_tokens": 1061312}
168
- {"current_steps": 168, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.8204036358303173e-07, "epoch": 4.335483870967742, "percentage": 88.42, "elapsed_time": "0:37:03", "remaining_time": "0:04:51", "throughput": "480.02", "total_tokens": 1067488}
169
- {"current_steps": 169, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.6604893375699594e-07, "epoch": 4.361290322580645, "percentage": 88.95, "elapsed_time": "0:37:17", "remaining_time": "0:04:37", "throughput": "479.94", "total_tokens": 1073648}
170
- {"current_steps": 170, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.507684480352292e-07, "epoch": 4.387096774193548, "percentage": 89.47, "elapsed_time": "0:37:30", "remaining_time": "0:04:24", "throughput": "480.03", "total_tokens": 1080160}
171
- {"current_steps": 171, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.362035610017079e-07, "epoch": 4.412903225806452, "percentage": 90.0, "elapsed_time": "0:37:43", "remaining_time": "0:04:11", "throughput": "480.18", "total_tokens": 1086832}
172
- {"current_steps": 172, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.223587092621162e-07, "epoch": 4.438709677419355, "percentage": 90.53, "elapsed_time": "0:37:56", "remaining_time": "0:03:58", "throughput": "480.20", "total_tokens": 1093184}
173
- {"current_steps": 173, "total_steps": 190, "loss": 0.0005, "learning_rate": 1.0923811009241142e-07, "epoch": 4.464516129032258, "percentage": 91.05, "elapsed_time": "0:38:09", "remaining_time": "0:03:45", "throughput": "480.29", "total_tokens": 1099728}
174
- {"current_steps": 174, "total_steps": 190, "loss": 0.0001, "learning_rate": 9.684576015420277e-08, "epoch": 4.490322580645161, "percentage": 91.58, "elapsed_time": "0:38:22", "remaining_time": "0:03:31", "throughput": "480.29", "total_tokens": 1106032}
175
- {"current_steps": 175, "total_steps": 190, "loss": 0.0001, "learning_rate": 8.518543427732951e-08, "epoch": 4.516129032258064, "percentage": 92.11, "elapsed_time": "0:38:36", "remaining_time": "0:03:18", "throughput": "480.35", "total_tokens": 1112496}
176
- {"current_steps": 176, "total_steps": 190, "loss": 0.0081, "learning_rate": 7.426068431000883e-08, "epoch": 4.541935483870968, "percentage": 92.63, "elapsed_time": "0:38:49", "remaining_time": "0:03:05", "throughput": "480.49", "total_tokens": 1119152}
177
- {"current_steps": 177, "total_steps": 190, "loss": 0.0002, "learning_rate": 6.407483803691216e-08, "epoch": 4.567741935483871, "percentage": 93.16, "elapsed_time": "0:39:02", "remaining_time": "0:02:52", "throughput": "480.44", "total_tokens": 1125360}
178
- {"current_steps": 178, "total_steps": 190, "loss": 0.0003, "learning_rate": 5.463099816548578e-08, "epoch": 4.593548387096774, "percentage": 93.68, "elapsed_time": "0:39:15", "remaining_time": "0:02:38", "throughput": "480.50", "total_tokens": 1131824}
179
- {"current_steps": 179, "total_steps": 190, "loss": 0.0001, "learning_rate": 4.593204138084006e-08, "epoch": 4.619354838709677, "percentage": 94.21, "elapsed_time": "0:39:28", "remaining_time": "0:02:25", "throughput": "480.53", "total_tokens": 1138224}
180
- {"current_steps": 180, "total_steps": 190, "loss": 0.0005, "learning_rate": 3.798061746947995e-08, "epoch": 4.645161290322581, "percentage": 94.74, "elapsed_time": "0:39:41", "remaining_time": "0:02:12", "throughput": "480.53", "total_tokens": 1144528}
181
- {"current_steps": 181, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.077914851215585e-08, "epoch": 4.670967741935484, "percentage": 95.26, "elapsed_time": "0:39:54", "remaining_time": "0:01:59", "throughput": "480.54", "total_tokens": 1150880}
182
- {"current_steps": 182, "total_steps": 190, "loss": 0.0002, "learning_rate": 2.4329828146074096e-08, "epoch": 4.6967741935483875, "percentage": 95.79, "elapsed_time": "0:40:08", "remaining_time": "0:01:45", "throughput": "480.53", "total_tokens": 1157184}
183
- {"current_steps": 183, "total_steps": 190, "loss": 0.0001, "learning_rate": 1.8634620896695044e-08, "epoch": 4.72258064516129, "percentage": 96.32, "elapsed_time": "0:40:21", "remaining_time": "0:01:32", "throughput": "480.54", "total_tokens": 1163536}
184
- {"current_steps": 184, "total_steps": 190, "loss": 0.0002, "learning_rate": 1.3695261579316776e-08, "epoch": 4.748387096774193, "percentage": 96.84, "elapsed_time": "0:40:34", "remaining_time": "0:01:19", "throughput": "480.55", "total_tokens": 1169888}
185
- {"current_steps": 185, "total_steps": 190, "loss": 0.0002, "learning_rate": 9.513254770636138e-09, "epoch": 4.774193548387097, "percentage": 97.37, "elapsed_time": "0:40:47", "remaining_time": "0:01:06", "throughput": "480.63", "total_tokens": 1176400}
186
- {"current_steps": 186, "total_steps": 190, "loss": 0.0002, "learning_rate": 6.089874350439507e-09, "epoch": 4.8, "percentage": 97.89, "elapsed_time": "0:41:00", "remaining_time": "0:00:52", "throughput": "480.58", "total_tokens": 1182608}
187
- {"current_steps": 187, "total_steps": 190, "loss": 0.0001, "learning_rate": 3.4261631135654174e-09, "epoch": 4.825806451612904, "percentage": 98.42, "elapsed_time": "0:41:13", "remaining_time": "0:00:39", "throughput": "480.61", "total_tokens": 1189008}
188
- {"current_steps": 188, "total_steps": 190, "loss": 0.0004, "learning_rate": 1.5229324522605949e-09, "epoch": 4.851612903225806, "percentage": 98.95, "elapsed_time": "0:41:27", "remaining_time": "0:00:26", "throughput": "480.59", "total_tokens": 1195280}
189
- {"current_steps": 189, "total_steps": 190, "loss": 0.0013, "learning_rate": 3.8076210902182607e-10, "epoch": 4.877419354838709, "percentage": 99.47, "elapsed_time": "0:41:40", "remaining_time": "0:00:13", "throughput": "480.53", "total_tokens": 1201456}
190
- {"current_steps": 190, "total_steps": 190, "loss": 0.0008, "learning_rate": 0.0, "epoch": 4.903225806451613, "percentage": 100.0, "elapsed_time": "0:41:53", "remaining_time": "0:00:00", "throughput": "480.52", "total_tokens": 1207760}
191
- {"current_steps": 190, "total_steps": 190, "epoch": 4.903225806451613, "percentage": 100.0, "elapsed_time": "0:42:55", "remaining_time": "0:00:00", "throughput": "468.99", "total_tokens": 1207760}
 
1
+ {"current_steps": 5, "total_steps": 79, "percentage": 6.33, "elapsed_time": "0:00:00", "remaining_time": "0:00:04"}
2
+ {"current_steps": 10, "total_steps": 79, "percentage": 12.66, "elapsed_time": "0:00:00", "remaining_time": "0:00:05"}
3
+ {"current_steps": 15, "total_steps": 79, "percentage": 18.99, "elapsed_time": "0:00:01", "remaining_time": "0:00:04"}
4
+ {"current_steps": 20, "total_steps": 79, "percentage": 25.32, "elapsed_time": "0:00:01", "remaining_time": "0:00:04"}
5
+ {"current_steps": 25, "total_steps": 79, "percentage": 31.65, "elapsed_time": "0:00:01", "remaining_time": "0:00:04"}
6
+ {"current_steps": 30, "total_steps": 79, "percentage": 37.97, "elapsed_time": "0:00:02", "remaining_time": "0:00:03"}
7
+ {"current_steps": 35, "total_steps": 79, "percentage": 44.3, "elapsed_time": "0:00:02", "remaining_time": "0:00:03"}
8
+ {"current_steps": 40, "total_steps": 79, "percentage": 50.63, "elapsed_time": "0:00:03", "remaining_time": "0:00:03"}
9
+ {"current_steps": 45, "total_steps": 79, "percentage": 56.96, "elapsed_time": "0:00:03", "remaining_time": "0:00:02"}
10
+ {"current_steps": 50, "total_steps": 79, "percentage": 63.29, "elapsed_time": "0:00:03", "remaining_time": "0:00:02"}
11
+ {"current_steps": 55, "total_steps": 79, "percentage": 69.62, "elapsed_time": "0:00:04", "remaining_time": "0:00:01"}
12
+ {"current_steps": 60, "total_steps": 79, "percentage": 75.95, "elapsed_time": "0:00:04", "remaining_time": "0:00:01"}
13
+ {"current_steps": 65, "total_steps": 79, "percentage": 82.28, "elapsed_time": "0:00:05", "remaining_time": "0:00:01"}
14
+ {"current_steps": 70, "total_steps": 79, "percentage": 88.61, "elapsed_time": "0:00:05", "remaining_time": "0:00:00"}
15
+ {"current_steps": 75, "total_steps": 79, "percentage": 94.94, "elapsed_time": "0:00:05", "remaining_time": "0:00:00"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training_args.yaml CHANGED
@@ -1,30 +1,18 @@
1
- bf16: true
2
  cutoff_len: 1024
3
- dataset: truth_train_0716_2
4
  dataset_dir: data
5
- ddp_timeout: 180000000
6
- deepspeed: cache/ds_z2_config.json
7
- do_train: true
8
  finetuning_type: full
9
  flash_attn: auto
10
- gradient_accumulation_steps: 8
11
- include_num_input_tokens_seen: true
12
- learning_rate: 5.0e-06
13
- logging_steps: 1
14
- lr_scheduler_type: cosine
15
- max_grad_norm: 1.0
16
  max_samples: 100000
17
- model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
18
- num_train_epochs: 5.0
19
- optim: adamw_torch
20
- output_dir: saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2
21
- packing: false
22
- per_device_train_batch_size: 2
23
- plot_loss: true
24
  preprocessing_num_workers: 16
25
  quantization_method: bitsandbytes
26
- report_to: none
27
- save_steps: 1000
28
  stage: sft
 
29
  template: llama3
30
- warmup_steps: 10
 
 
1
  cutoff_len: 1024
2
+ dataset: truth_dev_0716_2
3
  dataset_dir: data
4
+ do_predict: true
 
 
5
  finetuning_type: full
6
  flash_attn: auto
7
+ max_new_tokens: 512
 
 
 
 
 
8
  max_samples: 100000
9
+ model_name_or_path: saves/LLaMA3-8B-Chat/full/train_2024-07-16-15-59-42_llama3_2
10
+ output_dir: saves/LLaMA3-8B-Chat/full/eval_2024-07-16-16-45-32
11
+ per_device_eval_batch_size: 2
12
+ predict_with_generate: true
 
 
 
13
  preprocessing_num_workers: 16
14
  quantization_method: bitsandbytes
 
 
15
  stage: sft
16
+ temperature: 0.95
17
  template: llama3
18
+ top_p: 0.7