chamidullinr
commited on
Commit
·
27e0aca
1
Parent(s):
9d369ef
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- ResNet-50
|
6 |
+
---
|
7 |
+
|
8 |
+
# ResNet-50
|
9 |
+
|
10 |
+
## Model Description
|
11 |
+
|
12 |
+
ResNet-50 model from [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) paper.
|
13 |
+
|
14 |
+
## Original implementation
|
15 |
+
|
16 |
+
Follow [this link](https://huggingface.co/microsoft/resnet-50) to see the original implementation.
|
17 |
+
|
18 |
+
# How to use
|
19 |
+
|
20 |
+
You can use the `base` model that returns `last_hidden_state`.
|
21 |
+
```python
|
22 |
+
from transformers import AutoFeatureExtractor
|
23 |
+
from onnxruntime import InferenceSession
|
24 |
+
from datasets import load_dataset
|
25 |
+
|
26 |
+
# load image
|
27 |
+
dataset = load_dataset("huggingface/cats-image")
|
28 |
+
image = dataset["test"]["image"][0]
|
29 |
+
|
30 |
+
# load model
|
31 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
32 |
+
session = InferenceSession("onnx/model.onnx")
|
33 |
+
|
34 |
+
# ONNX Runtime expects NumPy arrays as input
|
35 |
+
inputs = feature_extractor(image, return_tensors="np")
|
36 |
+
outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
37 |
+
```
|
38 |
+
|
39 |
+
Or you can use the model with classification head that returns `logits`.
|
40 |
+
```python
|
41 |
+
from transformers import AutoFeatureExtractor
|
42 |
+
from onnxruntime import InferenceSession
|
43 |
+
from datasets import load_dataset
|
44 |
+
|
45 |
+
# load image
|
46 |
+
dataset = load_dataset("huggingface/cats-image")
|
47 |
+
image = dataset["test"]["image"][0]
|
48 |
+
|
49 |
+
# load model
|
50 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
51 |
+
session = InferenceSession("onnx/model_cls.onnx")
|
52 |
+
|
53 |
+
# ONNX Runtime expects NumPy arrays as input
|
54 |
+
inputs = feature_extractor(image, return_tensors="np")
|
55 |
+
outputs = session.run(output_names=["logits"], input_feed=dict(inputs))
|
56 |
+
```
|