OWG
/

ONNX
English
deit
0xrushi commited on
Commit
486bcbc
1 Parent(s): e3572de

added readme

Browse files
Files changed (2) hide show
  1. README.md +35 -1
  2. onnx/model.onnx +3 -0
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: mit
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - deit
5
+ license: apache-2.0
6
  ---
7
+
8
+ # DeiT
9
+
10
+ ## Model description
11
+
12
+ DeiT proposed in [this paper](https://arxiv.org/abs/2012.12877) are more efficiently trained transformers for image classification, requiring far less data and far less computing resources compared to the original ViT models.
13
+
14
+ ## Original implementation
15
+
16
+ Follow [this link](https://huggingface.co/docs/transformers/main/en/model_doc/deit#deit) to see the original implementation.
17
+
18
+ ## How to use
19
+
20
+ ```{python}
21
+ from onnxruntime import InferenceSession
22
+ from transformers import DeiTFeatureExtractor, DeiTForImageClassification
23
+ import torch
24
+ from PIL import Image
25
+ import requests
26
+
27
+ torch.manual_seed(3)
28
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
29
+ image = Image.open(requests.get(url, stream=True).raw)
30
+
31
+ feature_extractor = DeiTFeatureExtractor.from_pretrained("facebook/deit-base-distilled-patch16-224")
32
+ inputs = feature_extractor(images=image, return_tensors="np")
33
+ session = InferenceSession("onnx/model.onnx")
34
+
35
+ # ONNX Runtime expects NumPy arrays as input
36
+ outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
37
+ ```
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ff45d3308d00918461270c16bda63a37cb099c264c01e2fc55412110fe18ee1
3
+ size 345664810