QiushiSun commited on
Commit
1b56f86
·
verified ·
1 Parent(s): e12f895

Upload modeling_internlm2.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_internlm2.py +1414 -0
modeling_internlm2.py ADDED
@@ -0,0 +1,1414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+
516
+ Args:
517
+ query_states (`torch.Tensor`):
518
+ Input query states to be passed to Flash Attention API
519
+ key_states (`torch.Tensor`):
520
+ Input key states to be passed to Flash Attention API
521
+ value_states (`torch.Tensor`):
522
+ Input value states to be passed to Flash Attention API
523
+ attention_mask (`torch.Tensor`):
524
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
525
+ position of padding tokens and 1 for the position of non-padding tokens.
526
+ dropout (`int`, *optional*):
527
+ Attention dropout
528
+ softmax_scale (`float`, *optional*):
529
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
530
+ """
531
+ # Contains at least one padding token in the sequence
532
+ causal = self.is_causal and query_length != 1
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+
574
+ if query_length == kv_seq_len:
575
+ query_layer = index_first_axis(
576
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
577
+ )
578
+ cu_seqlens_q = cu_seqlens_k
579
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
580
+ indices_q = indices_k
581
+ elif query_length == 1:
582
+ max_seqlen_in_batch_q = 1
583
+ cu_seqlens_q = torch.arange(
584
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
585
+ ) # There is a memcpy here, that is very bad.
586
+ indices_q = cu_seqlens_q[:-1]
587
+ query_layer = query_layer.squeeze(1)
588
+ else:
589
+ # The -q_len: slice assumes left padding.
590
+ attention_mask = attention_mask[:, -query_length:]
591
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
592
+
593
+ return (
594
+ query_layer,
595
+ key_layer,
596
+ value_layer,
597
+ indices_q.to(torch.int64),
598
+ (cu_seqlens_q, cu_seqlens_k),
599
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
600
+ )
601
+
602
+
603
+ INTERNLM2_ATTENTION_CLASSES = {
604
+ 'eager': InternLM2Attention,
605
+ 'flash_attention_2': InternLM2FlashAttention2,
606
+ }
607
+
608
+
609
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
610
+ class InternLM2DecoderLayer(nn.Module):
611
+ def __init__(self, config: InternLM2Config):
612
+ super().__init__()
613
+ self.hidden_size = config.hidden_size
614
+
615
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
616
+
617
+ self.feed_forward = InternLM2MLP(config)
618
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: torch.Tensor,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ position_ids: Optional[torch.LongTensor] = None,
626
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
627
+ output_attentions: Optional[bool] = False,
628
+ use_cache: Optional[bool] = False,
629
+ **kwargs,
630
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
631
+ """
632
+ Args:
633
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
634
+ attention_mask (`torch.FloatTensor`, *optional*):
635
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
636
+ query_sequence_length, key_sequence_length)` if default attention is used.
637
+ output_attentions (`bool`, *optional*):
638
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
639
+ returned tensors for more detail.
640
+ use_cache (`bool`, *optional*):
641
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
642
+ (see `past_key_values`).
643
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
644
+ """
645
+ if 'padding_mask' in kwargs:
646
+ warnings.warn(
647
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
648
+ 'Please make sure use `attention_mask` instead.`'
649
+ )
650
+
651
+ residual = hidden_states
652
+
653
+ hidden_states = self.attention_norm(hidden_states)
654
+
655
+ # Self Attention
656
+ hidden_states, self_attn_weights, present_key_value = self.attention(
657
+ hidden_states=hidden_states,
658
+ attention_mask=attention_mask,
659
+ position_ids=position_ids,
660
+ past_key_value=past_key_value,
661
+ output_attentions=output_attentions,
662
+ use_cache=use_cache,
663
+ **kwargs,
664
+ )
665
+ hidden_states = residual + hidden_states
666
+
667
+ # Fully Connected
668
+ residual = hidden_states
669
+ hidden_states = self.ffn_norm(hidden_states)
670
+ hidden_states = self.feed_forward(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ InternLM2_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+
689
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
690
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
691
+ and behavior.
692
+
693
+ Parameters:
694
+ config ([`InternLM2Config`]):
695
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
696
+ load the weights associated with the model, only the configuration. Check out the
697
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
698
+ """
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
702
+ @add_start_docstrings(
703
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
704
+ InternLM2_START_DOCSTRING,
705
+ )
706
+ class InternLM2PreTrainedModel(PreTrainedModel):
707
+ config_class = InternLM2Config
708
+ base_model_prefix = 'model'
709
+ supports_gradient_checkpointing = True
710
+ _no_split_modules = ['InternLM2DecoderLayer']
711
+ _skip_keys_device_placement = 'past_key_values'
712
+
713
+ def _init_weights(self, module):
714
+ std = self.config.initializer_range
715
+ if isinstance(module, nn.Linear):
716
+ module.weight.data.normal_(mean=0.0, std=std)
717
+ if module.bias is not None:
718
+ module.bias.data.zero_()
719
+ elif isinstance(module, nn.Embedding):
720
+ module.weight.data.normal_(mean=0.0, std=std)
721
+ if module.padding_idx is not None:
722
+ module.weight.data[module.padding_idx].zero_()
723
+
724
+
725
+ InternLM2_INPUTS_DOCSTRING = r"""
726
+ Args:
727
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
728
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
729
+ it.
730
+
731
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
732
+ [`PreTrainedTokenizer.__call__`] for details.
733
+
734
+ [What are input IDs?](../glossary#input-ids)
735
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
736
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
737
+
738
+ - 1 for tokens that are **not masked**,
739
+ - 0 for tokens that are **masked**.
740
+
741
+ [What are attention masks?](../glossary#attention-mask)
742
+
743
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
744
+ [`PreTrainedTokenizer.__call__`] for details.
745
+
746
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
747
+ `past_key_values`).
748
+
749
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
750
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
751
+ information on the default strategy.
752
+
753
+ - 1 indicates the head is **not masked**,
754
+ - 0 indicates the head is **masked**.
755
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
756
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
757
+ config.n_positions - 1]`.
758
+
759
+ [What are position IDs?](../glossary#position-ids)
760
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
761
+ when `config.use_cache=True`):
762
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
763
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
764
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
765
+
766
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
767
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
768
+
769
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
770
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
771
+ of shape `(batch_size, sequence_length)`.
772
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
773
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
774
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
775
+ model's internal embedding lookup matrix.
776
+ use_cache (`bool`, *optional*):
777
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
778
+ `past_key_values`).
779
+ output_attentions (`bool`, *optional*):
780
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
781
+ tensors for more detail.
782
+ output_hidden_states (`bool`, *optional*):
783
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
784
+ more detail.
785
+ return_dict (`bool`, *optional*):
786
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
787
+ """
788
+
789
+
790
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
791
+ @add_start_docstrings(
792
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
793
+ InternLM2_START_DOCSTRING,
794
+ )
795
+ class InternLM2Model(InternLM2PreTrainedModel):
796
+ """
797
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
798
+
799
+ Args:
800
+ config: InternLM2Config
801
+ """
802
+
803
+ _auto_class = 'AutoModel'
804
+
805
+ def __init__(self, config: InternLM2Config):
806
+ super().__init__(config)
807
+ self.padding_idx = config.pad_token_id
808
+ self.vocab_size = config.vocab_size
809
+ self.config = config
810
+ if not has_flash_attn:
811
+ self.config.attn_implementation = 'eager'
812
+ print('Warning: Flash attention is not available, using eager attention instead.')
813
+
814
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
815
+
816
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
817
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
818
+
819
+ self.gradient_checkpointing = False
820
+ # Initialize weights and apply final processing
821
+ self.post_init()
822
+
823
+ def get_input_embeddings(self):
824
+ return self.tok_embeddings
825
+
826
+ def set_input_embeddings(self, value):
827
+ self.tok_embeddings = value
828
+
829
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
830
+ # create causal mask
831
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
832
+ combined_attention_mask = None
833
+ if input_shape[-1] > 1:
834
+ combined_attention_mask = _make_causal_mask(
835
+ input_shape,
836
+ inputs_embeds.dtype,
837
+ device=inputs_embeds.device,
838
+ past_key_values_length=past_key_values_length,
839
+ )
840
+
841
+ if attention_mask is not None:
842
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
843
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
844
+ inputs_embeds.device
845
+ )
846
+ combined_attention_mask = (
847
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
848
+ )
849
+
850
+ return combined_attention_mask
851
+
852
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
853
+ def forward(
854
+ self,
855
+ input_ids: torch.LongTensor = None,
856
+ attention_mask: Optional[torch.Tensor] = None,
857
+ position_ids: Optional[torch.LongTensor] = None,
858
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
859
+ inputs_embeds: Optional[torch.FloatTensor] = None,
860
+ use_cache: Optional[bool] = None,
861
+ output_attentions: Optional[bool] = None,
862
+ output_hidden_states: Optional[bool] = None,
863
+ return_dict: Optional[bool] = None,
864
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
865
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
866
+ output_hidden_states = (
867
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
868
+ )
869
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
870
+
871
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
872
+
873
+ if self.config.attn_implementation == 'flash_attention_2':
874
+ _import_flash_attn()
875
+
876
+ # retrieve input_ids and inputs_embeds
877
+ if input_ids is not None and inputs_embeds is not None:
878
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
879
+ elif input_ids is not None:
880
+ batch_size, seq_length = input_ids.shape[:2]
881
+ elif inputs_embeds is not None:
882
+ batch_size, seq_length = inputs_embeds.shape[:2]
883
+ else:
884
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
885
+
886
+ seq_length_with_past = seq_length
887
+ past_key_values_length = 0
888
+ if past_key_values is not None:
889
+ past_key_values_length = past_key_values[0][0].shape[2]
890
+ seq_length_with_past = seq_length_with_past + past_key_values_length
891
+
892
+ if position_ids is None:
893
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
894
+ position_ids = torch.arange(
895
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
896
+ )
897
+ position_ids = position_ids.unsqueeze(0)
898
+
899
+ if inputs_embeds is None:
900
+ inputs_embeds = self.tok_embeddings(input_ids)
901
+
902
+ if self.config.attn_implementation == 'flash_attention_2':
903
+ # 2d mask is passed through the layers
904
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
905
+ else:
906
+ if attention_mask is None:
907
+ attention_mask = torch.ones(
908
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
909
+ )
910
+ attention_mask = self._prepare_decoder_attention_mask(
911
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
912
+ )
913
+
914
+ # embed positions
915
+ hidden_states = inputs_embeds
916
+
917
+ if self.gradient_checkpointing and self.training:
918
+ if use_cache:
919
+ logger.warning_once(
920
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
921
+ )
922
+ use_cache = False
923
+
924
+ # decoder layers
925
+ all_hidden_states = () if output_hidden_states else None
926
+ all_self_attns = () if output_attentions else None
927
+ next_decoder_cache = () if use_cache else None
928
+
929
+ for idx, decoder_layer in enumerate(self.layers):
930
+ if output_hidden_states:
931
+ all_hidden_states += (hidden_states,)
932
+
933
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
934
+
935
+ if self.gradient_checkpointing and self.training:
936
+
937
+ def create_custom_forward(module):
938
+ def custom_forward(*inputs):
939
+ # None for past_key_value
940
+ return module(*inputs, output_attentions, None)
941
+
942
+ return custom_forward
943
+
944
+ layer_outputs = torch.utils.checkpoint.checkpoint(
945
+ create_custom_forward(decoder_layer),
946
+ hidden_states,
947
+ attention_mask,
948
+ position_ids,
949
+ None,
950
+ )
951
+ else:
952
+ layer_outputs = decoder_layer(
953
+ hidden_states,
954
+ attention_mask=attention_mask,
955
+ position_ids=position_ids,
956
+ past_key_value=past_key_value,
957
+ output_attentions=output_attentions,
958
+ use_cache=use_cache,
959
+ )
960
+
961
+ hidden_states = layer_outputs[0]
962
+
963
+ if use_cache:
964
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
965
+
966
+ if output_attentions:
967
+ all_self_attns += (layer_outputs[1],)
968
+
969
+ hidden_states = self.norm(hidden_states)
970
+
971
+ # add hidden states from the last decoder layer
972
+ if output_hidden_states:
973
+ all_hidden_states += (hidden_states,)
974
+
975
+ next_cache = next_decoder_cache if use_cache else None
976
+ if not return_dict:
977
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
978
+ return BaseModelOutputWithPast(
979
+ last_hidden_state=hidden_states,
980
+ past_key_values=next_cache,
981
+ hidden_states=all_hidden_states,
982
+ attentions=all_self_attns,
983
+ )
984
+
985
+
986
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
987
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
988
+ _auto_class = 'AutoModelForCausalLM'
989
+
990
+ _tied_weights_keys = ['output.weight']
991
+
992
+ def __init__(self, config):
993
+ super().__init__(config)
994
+ self.model = InternLM2Model(config)
995
+ self.vocab_size = config.vocab_size
996
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
997
+
998
+ # Initialize weights and apply final processing
999
+ self.post_init()
1000
+
1001
+ def get_input_embeddings(self):
1002
+ return self.model.tok_embeddings
1003
+
1004
+ def set_input_embeddings(self, value):
1005
+ self.model.tok_embeddings = value
1006
+
1007
+ def get_output_embeddings(self):
1008
+ return self.output
1009
+
1010
+ def set_output_embeddings(self, new_embeddings):
1011
+ self.output = new_embeddings
1012
+
1013
+ def set_decoder(self, decoder):
1014
+ self.model = decoder
1015
+
1016
+ def get_decoder(self):
1017
+ return self.model
1018
+
1019
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1020
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1021
+ def forward(
1022
+ self,
1023
+ input_ids: torch.LongTensor = None,
1024
+ attention_mask: Optional[torch.Tensor] = None,
1025
+ position_ids: Optional[torch.LongTensor] = None,
1026
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1027
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1028
+ labels: Optional[torch.LongTensor] = None,
1029
+ use_cache: Optional[bool] = None,
1030
+ output_attentions: Optional[bool] = None,
1031
+ output_hidden_states: Optional[bool] = None,
1032
+ return_dict: Optional[bool] = None,
1033
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1034
+ r"""
1035
+ Args:
1036
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1037
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1038
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1039
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1040
+
1041
+ Returns:
1042
+
1043
+ Example:
1044
+
1045
+ ```python
1046
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1047
+
1048
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1049
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1050
+
1051
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1052
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1053
+
1054
+ >>> # Generate
1055
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1056
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1057
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1058
+ ```"""
1059
+
1060
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1061
+ output_hidden_states = (
1062
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1063
+ )
1064
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1065
+
1066
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1067
+ outputs = self.model(
1068
+ input_ids=input_ids,
1069
+ attention_mask=attention_mask,
1070
+ position_ids=position_ids,
1071
+ past_key_values=past_key_values,
1072
+ inputs_embeds=inputs_embeds,
1073
+ use_cache=use_cache,
1074
+ output_attentions=output_attentions,
1075
+ output_hidden_states=output_hidden_states,
1076
+ return_dict=return_dict,
1077
+ )
1078
+
1079
+ hidden_states = outputs[0]
1080
+ logits = self.output(hidden_states)
1081
+ logits = logits.float()
1082
+
1083
+ loss = None
1084
+ if labels is not None:
1085
+ # Shift so that tokens < n predict n
1086
+ shift_logits = logits[..., :-1, :].contiguous()
1087
+ shift_labels = labels[..., 1:].contiguous()
1088
+ # Flatten the tokens
1089
+ loss_fct = CrossEntropyLoss()
1090
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1091
+ shift_labels = shift_labels.view(-1)
1092
+ # Enable model parallelism
1093
+ shift_labels = shift_labels.to(shift_logits.device)
1094
+ loss = loss_fct(shift_logits, shift_labels)
1095
+
1096
+ if not return_dict:
1097
+ output = (logits,) + outputs[1:]
1098
+ return (loss,) + output if loss is not None else output
1099
+
1100
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1101
+ output = CausalLMOutputWithPast(
1102
+ loss=loss,
1103
+ logits=logits,
1104
+ past_key_values=outputs.past_key_values,
1105
+ hidden_states=outputs.hidden_states,
1106
+ attentions=outputs.attentions,
1107
+ )
1108
+ output['logits'] = output['logits'].to(device)
1109
+ return output
1110
+
1111
+ def prepare_inputs_for_generation(
1112
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1113
+ ):
1114
+ if past_key_values is not None:
1115
+ past_length = past_key_values[0][0].shape[2]
1116
+
1117
+ # Some generation methods already pass only the last input ID
1118
+ if input_ids.shape[1] > past_length:
1119
+ remove_prefix_length = past_length
1120
+ else:
1121
+ # Default to old behavior: keep only final ID
1122
+ remove_prefix_length = input_ids.shape[1] - 1
1123
+
1124
+ input_ids = input_ids[:, remove_prefix_length:]
1125
+
1126
+ position_ids = kwargs.get('position_ids', None)
1127
+ if attention_mask is not None and position_ids is None:
1128
+ # create position_ids on the fly for batch generation
1129
+ position_ids = attention_mask.long().cumsum(-1) - 1
1130
+ position_ids.masked_fill_(attention_mask == 0, 1)
1131
+ if past_key_values:
1132
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1133
+
1134
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1135
+ if inputs_embeds is not None and past_key_values is None:
1136
+ model_inputs = {'inputs_embeds': inputs_embeds}
1137
+ else:
1138
+ model_inputs = {'input_ids': input_ids}
1139
+
1140
+ model_inputs.update(
1141
+ {
1142
+ 'position_ids': position_ids,
1143
+ 'past_key_values': past_key_values,
1144
+ 'use_cache': kwargs.get('use_cache'),
1145
+ 'attention_mask': attention_mask,
1146
+ }
1147
+ )
1148
+ return model_inputs
1149
+
1150
+ @staticmethod
1151
+ def _reorder_cache(past_key_values, beam_idx):
1152
+ reordered_past = ()
1153
+ for layer_past in past_key_values:
1154
+ reordered_past += (
1155
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1156
+ )
1157
+ return reordered_past
1158
+
1159
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1160
+ if tokenizer.add_bos_token:
1161
+ prompt = ''
1162
+ else:
1163
+ prompt = tokenizer.bos_token
1164
+ if meta_instruction:
1165
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1166
+ for record in history:
1167
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1168
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1169
+ return tokenizer([prompt], return_tensors='pt')
1170
+
1171
+ @torch.no_grad()
1172
+ def chat(
1173
+ self,
1174
+ tokenizer,
1175
+ query: str,
1176
+ history: List[Tuple[str, str]] = [],
1177
+ streamer: Optional[BaseStreamer] = None,
1178
+ max_new_tokens: int = 1024,
1179
+ do_sample: bool = True,
1180
+ temperature: float = 0.8,
1181
+ top_p: float = 0.8,
1182
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1183
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1184
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1185
+ **kwargs,
1186
+ ):
1187
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1188
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1189
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1190
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1191
+ outputs = self.generate(
1192
+ **inputs,
1193
+ streamer=streamer,
1194
+ max_new_tokens=max_new_tokens,
1195
+ do_sample=do_sample,
1196
+ temperature=temperature,
1197
+ top_p=top_p,
1198
+ eos_token_id=eos_token_id,
1199
+ **kwargs,
1200
+ )
1201
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1202
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1203
+ response = response.split('<|im_end|>')[0]
1204
+ history = history + [(query, response)]
1205
+ return response, history
1206
+
1207
+ @torch.no_grad()
1208
+ def stream_chat(
1209
+ self,
1210
+ tokenizer,
1211
+ query: str,
1212
+ history: List[Tuple[str, str]] = [],
1213
+ max_new_tokens: int = 1024,
1214
+ do_sample: bool = True,
1215
+ temperature: float = 0.8,
1216
+ top_p: float = 0.8,
1217
+ **kwargs,
1218
+ ):
1219
+ """
1220
+ Return a generator in format: (response, history)
1221
+ Eg.
1222
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1223
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1224
+ """
1225
+ if BaseStreamer is None:
1226
+ raise ModuleNotFoundError(
1227
+ 'The version of `transformers` is too low. Please make sure '
1228
+ 'that you have installed `transformers>=4.28.0`.'
1229
+ )
1230
+
1231
+ response_queue = queue.Queue(maxsize=20)
1232
+
1233
+ class ChatStreamer(BaseStreamer):
1234
+ def __init__(self, tokenizer) -> None:
1235
+ super().__init__()
1236
+ self.tokenizer = tokenizer
1237
+ self.queue = response_queue
1238
+ self.query = query
1239
+ self.history = history
1240
+ self.response = ''
1241
+ self.cache = []
1242
+ self.received_inputs = False
1243
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1244
+
1245
+ def put(self, value):
1246
+ if len(value.shape) > 1 and value.shape[0] > 1:
1247
+ raise ValueError('ChatStreamer only supports batch size 1')
1248
+ elif len(value.shape) > 1:
1249
+ value = value[0]
1250
+
1251
+ if not self.received_inputs:
1252
+ # The first received value is input_ids, ignore here
1253
+ self.received_inputs = True
1254
+ return
1255
+
1256
+ self.cache.extend(value.tolist())
1257
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1258
+ if token.strip() != '<|im_end|>':
1259
+ self.response = self.response + token
1260
+ history = self.history + [(self.query, self.response)]
1261
+ self.queue.put((self.response, history))
1262
+ self.cache = []
1263
+ else:
1264
+ self.end()
1265
+
1266
+ def end(self):
1267
+ self.queue.put(None)
1268
+
1269
+ def stream_producer():
1270
+ return self.chat(
1271
+ tokenizer=tokenizer,
1272
+ query=query,
1273
+ streamer=ChatStreamer(tokenizer=tokenizer),
1274
+ history=history,
1275
+ max_new_tokens=max_new_tokens,
1276
+ do_sample=do_sample,
1277
+ temperature=temperature,
1278
+ top_p=top_p,
1279
+ **kwargs,
1280
+ )
1281
+
1282
+ def consumer():
1283
+ producer = threading.Thread(target=stream_producer)
1284
+ producer.start()
1285
+ while True:
1286
+ res = response_queue.get()
1287
+ if res is None:
1288
+ return
1289
+ yield res
1290
+
1291
+ return consumer()
1292
+
1293
+
1294
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1295
+ @add_start_docstrings(
1296
+ """
1297
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1298
+
1299
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1300
+ as other causal models (e.g. GPT-2) do.
1301
+
1302
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1303
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1304
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1305
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1306
+ each row of the batch).
1307
+ """,
1308
+ InternLM2_START_DOCSTRING,
1309
+ )
1310
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1311
+ def __init__(self, config):
1312
+ super().__init__(config)
1313
+ self.num_labels = config.num_labels
1314
+ self.model = InternLM2Model(config)
1315
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1316
+
1317
+ # Initialize weights and apply final processing
1318
+ self.post_init()
1319
+
1320
+ def get_input_embeddings(self):
1321
+ return self.model.tok_embeddings
1322
+
1323
+ def set_input_embeddings(self, value):
1324
+ self.model.tok_embeddings = value
1325
+
1326
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1327
+ def forward(
1328
+ self,
1329
+ input_ids: torch.LongTensor = None,
1330
+ attention_mask: Optional[torch.Tensor] = None,
1331
+ position_ids: Optional[torch.LongTensor] = None,
1332
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1333
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1334
+ labels: Optional[torch.LongTensor] = None,
1335
+ use_cache: Optional[bool] = None,
1336
+ output_attentions: Optional[bool] = None,
1337
+ output_hidden_states: Optional[bool] = None,
1338
+ return_dict: Optional[bool] = None,
1339
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1340
+ r"""
1341
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1342
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1343
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1344
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1345
+ """
1346
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1347
+
1348
+ transformer_outputs = self.model(
1349
+ input_ids,
1350
+ attention_mask=attention_mask,
1351
+ position_ids=position_ids,
1352
+ past_key_values=past_key_values,
1353
+ inputs_embeds=inputs_embeds,
1354
+ use_cache=use_cache,
1355
+ output_attentions=output_attentions,
1356
+ output_hidden_states=output_hidden_states,
1357
+ return_dict=return_dict,
1358
+ )
1359
+ hidden_states = transformer_outputs[0]
1360
+ logits = self.score(hidden_states)
1361
+
1362
+ if input_ids is not None:
1363
+ batch_size = input_ids.shape[0]
1364
+ else:
1365
+ batch_size = inputs_embeds.shape[0]
1366
+
1367
+ if self.config.pad_token_id is None and batch_size != 1:
1368
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1369
+ if self.config.pad_token_id is None:
1370
+ sequence_lengths = -1
1371
+ else:
1372
+ if input_ids is not None:
1373
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1374
+ logits.device
1375
+ )
1376
+ else:
1377
+ sequence_lengths = -1
1378
+
1379
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1380
+
1381
+ loss = None
1382
+ if labels is not None:
1383
+ labels = labels.to(logits.device)
1384
+ if self.config.problem_type is None:
1385
+ if self.num_labels == 1:
1386
+ self.config.problem_type = 'regression'
1387
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1388
+ self.config.problem_type = 'single_label_classification'
1389
+ else:
1390
+ self.config.problem_type = 'multi_label_classification'
1391
+
1392
+ if self.config.problem_type == 'regression':
1393
+ loss_fct = MSELoss()
1394
+ if self.num_labels == 1:
1395
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1396
+ else:
1397
+ loss = loss_fct(pooled_logits, labels)
1398
+ elif self.config.problem_type == 'single_label_classification':
1399
+ loss_fct = CrossEntropyLoss()
1400
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1401
+ elif self.config.problem_type == 'multi_label_classification':
1402
+ loss_fct = BCEWithLogitsLoss()
1403
+ loss = loss_fct(pooled_logits, labels)
1404
+ if not return_dict:
1405
+ output = (pooled_logits,) + transformer_outputs[1:]
1406
+ return ((loss,) + output) if loss is not None else output
1407
+
1408
+ return SequenceClassifierOutputWithPast(
1409
+ loss=loss,
1410
+ logits=pooled_logits,
1411
+ past_key_values=transformer_outputs.past_key_values,
1412
+ hidden_states=transformer_outputs.hidden_states,
1413
+ attentions=transformer_outputs.attentions,
1414
+ )