File size: 1,669 Bytes
bcf7a74
 
c363161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf7a74
 
c363161
bcf7a74
 
c363161
 
 
281e738
c363161
 
bcf7a74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c363161
 
 
 
 
bcf7a74
 
 
c363161
bcf7a74
c363161
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: mit
datasets:
- locuslab/TOFU
language:
- en
base_model:
- NousResearch/Llama-2-7b-chat-hf
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
---

# Origin Model on Task "TOFU"

## Model Details
- **Training**:
  - **Task**: [🤗datasets/locuslab/TOFU](https://huggingface.co./datasets/locuslab/TOFU)
  - **Method**: Fine tune
- **Base Model**: [🤗NousResearch/Llama-2-7b-chat-hf](https://huggingface.co./NousResearch/Llama-2-7b-chat-hf)
- **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)
- **Research Paper**: ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163)


## Loading the Model

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("OPTML-Group/TOFU-origin-Llama-2-7b-chat", use_flash_attention_2=True, torch_dtype=torch.bfloat16, trust_remote_code=True)
```

## Citation

If you use this model in your research, please cite: 
```
@article{fan2024simplicity,
  title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
  author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
  journal={arXiv preprint arXiv:2410.07163},
  year={2024}
}
```

## Reporting Issues

Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)