File size: 3,893 Bytes
aef95a5
587ba3c
 
 
 
 
 
 
 
7cf6931
587ba3c
 
 
 
 
 
 
 
e7ad50b
27e8fc2
dcd8f4d
7f9f147
3c96d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef95a5
27e8fc2
587ba3c
a1d46af
ed93df5
14281cb
2a00212
14281cb
587ba3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b88c68
587ba3c
 
 
0b88c68
587ba3c
0b88c68
 
587ba3c
0b88c68
 
 
 
587ba3c
 
 
 
 
 
 
 
 
 
 
0b88c68
587ba3c
0b88c68
 
587ba3c
0b88c68
 
4cd0a6e
0b88c68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
datasets:
- cerebras/SlimPajama-627B
- HuggingFaceH4/ultrachat_200k
- bigcode/starcoderdata
language:
- en
metrics:
- accuracy
- speed
library_name: transformers
tags:
- HelpingAI
- coder
- lite
- Fine-tuned
- Text-Generation
- Transformers
license: mit
widget:
- text: "<|system|>\nYou are a chatbot who can code!</s>\n<|user|>\nWrite me a function to search for OEvortex on youtube use Webbrowser .</s>\n<|assistant|>\n"
- text: "<|system|>\nYou are a chatbot who can be a teacher!</s>\n<|user|>\nExplain me working of AI .</s>\n<|assistant|>\n"
model-index:
  - name: HelpingAI-Lite
    results:
      - task:
          type: text-generation
        metrics:
          - name: Epoch
            type: Training Epoch
            value: 3.0
          - name: Eval Logits/Chosen
            type: Evaluation Logits for Chosen Samples
            value: -2.707406759262085
          - name: Eval Logits/Rejected
            type: Evaluation Logits for Rejected Samples
            value: -2.65652441978546
          - name: Eval Logps/Chosen
            type: Evaluation Log-probabilities for Chosen Samples
            value: -370.129670421875
          - name: Eval Logps/Rejected
            type: Evaluation Log-probabilities for Rejected Samples
            value: -296.073825390625
          - name: Eval Loss
            type: Evaluation Loss
            value: 0.513750433921814
          - name: Eval Rewards/Accuracies
            type: Evaluation Rewards and Accuracies
            value: 0.738095223903656
          - name: Eval Rewards/Chosen
            type: Evaluation Rewards for Chosen Samples
            value: -0.0274422804903984
          - name: Eval Rewards/Margins
            type: Evaluation Rewards Margins
            value: 1.008722543614307
          - name: Eval Rewards/Rejected
            type: Evaluation Rewards for Rejected Samples
            value: -1.03616464138031
          - name: Eval Runtime
            type: Evaluation Runtime
            value: 93.5908
          - name: Eval Samples
            type: Number of Evaluation Samples
            value: 2000
          - name: Eval Samples per Second
            type: Evaluation Samples per Second
            value: 21.37
          - name: Eval Steps per Second
            type: Evaluation Steps per Second
            value: 0.673
---

# HelpingAI-Lite
# Subscribe to my YouTube channel
[Subscribe](https://youtube.com/@OEvortex)

GGUF version [here](https://huggingface.co./OEvortex/HelpingAI-Lite-GGUF)

HelpingAI-Lite is a lite version of the HelpingAI model that can assist with coding tasks. It's trained on a diverse range of datasets and fine-tuned to provide accurate and helpful responses.

## License

This model is licensed under MIT.

## Datasets

The model was trained on the following datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized

## Language

The model supports English language.

## Usage

# CPU and GPU code

```python
from transformers import pipeline
from accelerate import Accelerator

# Initialize the accelerator
accelerator = Accelerator()

# Initialize the pipeline
pipe = pipeline("text-generation", model="OEvortex/HelpingAI-Lite", device=accelerator.device)

# Define the messages
messages = [
    {
        "role": "system",
        "content": "You are a chatbot who can help code!",
    },
    {
        "role": "user",
        "content": "Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.",
    },
]

# Prepare the prompt
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

# Generate predictions
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)

# Print the generated text
print(outputs[0]["generated_text"])