Abhaykoul commited on
Commit
d942fc6
1 Parent(s): 4a472c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -17
README.md CHANGED
@@ -48,11 +48,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
48
  torch.random.manual_seed(0)
49
 
50
  model = AutoModelForCausalLM.from_pretrained(
51
- "OEvortex/EMO-phi-128k",
52
- device_map="cuda",
53
- torch_dtype="auto",
54
- trust_remote_code=True,
55
- ignore_mismatched_sizes=True
56
  )
57
  tokenizer = AutoTokenizer.from_pretrained("OEvortex/EMO-phi-128k")
58
 
@@ -61,16 +60,6 @@ messages = [
61
  {"role": "user", "content": "My best friend recently lost their parent to cancer after a long battle. They are understandably devastated and struggling with grief."},
62
  ]
63
 
64
- # Prepare the input for the pipeline
65
- formatted_messages = ""
66
- for message in messages:
67
- formatted_messages += f"<|im_start|>{message['role']}\n{message['content']}<|im_end|>\n"
68
-
69
- # Optionally, add a generation prompt
70
- add_generation_prompt = True # Set this to True if you want to add a generation prompt
71
- if add_generation_prompt:
72
- formatted_messages += "<|im_start|>assistant\n"
73
-
74
  pipe = pipeline(
75
  "text-generation",
76
  model=model,
@@ -78,13 +67,14 @@ pipe = pipeline(
78
  )
79
 
80
  generation_args = {
81
- "max_new_tokens": 500,
82
  "return_full_text": False,
83
  "temperature": 0.6,
84
  "do_sample": True,
85
  }
86
 
87
- output = pipe(formatted_messages, **generation_args)
88
  print(output[0]['generated_text'])
89
 
 
90
  ```
 
48
  torch.random.manual_seed(0)
49
 
50
  model = AutoModelForCausalLM.from_pretrained(
51
+ "OEvortex/EMO-phi-128k",
52
+ device_map="cuda",
53
+ torch_dtype="auto",
54
+ trust_remote_code=True,
 
55
  )
56
  tokenizer = AutoTokenizer.from_pretrained("OEvortex/EMO-phi-128k")
57
 
 
60
  {"role": "user", "content": "My best friend recently lost their parent to cancer after a long battle. They are understandably devastated and struggling with grief."},
61
  ]
62
 
 
 
 
 
 
 
 
 
 
 
63
  pipe = pipeline(
64
  "text-generation",
65
  model=model,
 
67
  )
68
 
69
  generation_args = {
70
+ "max_new_tokens": 2024,
71
  "return_full_text": False,
72
  "temperature": 0.6,
73
  "do_sample": True,
74
  }
75
 
76
+ output = pipe(messages, **generation_args)
77
  print(output[0]['generated_text'])
78
 
79
+
80
  ```