nuralnetwork commited on
Commit
a139648
1 Parent(s): eea911e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jinaai/jina-embeddings-v2-base-code
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:317521
19
+ - loss:TripletLoss
20
+ widget:
21
+ - source_sentence: Write a function to extract every specified element from a given
22
+ two dimensional list.
23
+ sentences:
24
+ - "def nCr_mod_p(n, r, p): \r\n\tif (r > n- r): \r\n\t\tr = n - r \r\n\tC = [0 for\
25
+ \ i in range(r + 1)] \r\n\tC[0] = 1 \r\n\tfor i in range(1, n + 1): \r\n\t\tfor\
26
+ \ j in range(min(i, r), 0, -1): \r\n\t\t\tC[j] = (C[j] + C[j-1]) % p \r\n\treturn\
27
+ \ C[r] "
28
+ - "import cmath\r\ndef len_complex(a,b):\r\n cn=complex(a,b)\r\n length=abs(cn)\r\
29
+ \n return length"
30
+ - "def specified_element(nums, N):\r\n result = [i[N] for i in nums]\r\n return\
31
+ \ result"
32
+ - source_sentence: Write a python function to find the kth element in an array containing
33
+ odd elements first and then even elements.
34
+ sentences:
35
+ - "def get_Number(n, k): \r\n arr = [0] * n; \r\n i = 0; \r\n odd = 1;\
36
+ \ \r\n while (odd <= n): \r\n arr[i] = odd; \r\n i += 1; \r\
37
+ \n odd += 2;\r\n even = 2; \r\n while (even <= n): \r\n arr[i]\
38
+ \ = even; \r\n i += 1;\r\n even += 2; \r\n return arr[k - 1]; "
39
+ - "def sort_matrix(M):\r\n result = sorted(M, key=sum)\r\n return result"
40
+ - "INT_BITS = 32\r\ndef left_Rotate(n,d): \r\n return (n << d)|(n >> (INT_BITS\
41
+ \ - d)) "
42
+ - source_sentence: Write a function to remove all the words with k length in the given
43
+ string.
44
+ sentences:
45
+ - "def remove_tuples(test_list, K):\r\n res = [ele for ele in test_list if len(ele)\
46
+ \ != K]\r\n return (res) "
47
+ - "def is_Sub_Array(A,B,n,m): \r\n i = 0; j = 0; \r\n while (i < n and j <\
48
+ \ m): \r\n if (A[i] == B[j]): \r\n i += 1; \r\n \
49
+ \ j += 1; \r\n if (j == m): \r\n return True; \r\n\
50
+ \ else: \r\n i = i - j + 1; \r\n j = 0; \r\n\
51
+ \ return False; "
52
+ - "def remove_length(test_str, K):\r\n temp = test_str.split()\r\n res = [ele\
53
+ \ for ele in temp if len(ele) != K]\r\n res = ' '.join(res)\r\n return (res) "
54
+ - source_sentence: Write a function to find the occurence of characters 'std' in the
55
+ given string 1. list item 1. list item 1. list item 2. list item 2. list item
56
+ 2. list item
57
+ sentences:
58
+ - "def magic_square_test(my_matrix):\r\n iSize = len(my_matrix[0])\r\n sum_list\
59
+ \ = []\r\n sum_list.extend([sum (lines) for lines in my_matrix]) \r\n \
60
+ \ for col in range(iSize):\r\n sum_list.append(sum(row[col] for row in\
61
+ \ my_matrix))\r\n result1 = 0\r\n for i in range(0,iSize):\r\n result1\
62
+ \ +=my_matrix[i][i]\r\n sum_list.append(result1) \r\n result2 = 0\r\
63
+ \n for i in range(iSize-1,-1,-1):\r\n result2 +=my_matrix[i][i]\r\n\
64
+ \ sum_list.append(result2)\r\n if len(set(sum_list))>1:\r\n return\
65
+ \ False\r\n return True"
66
+ - "def count_occurance(s):\r\n count=0\r\n for i in range(len(s)):\r\n if (s[i]==\
67
+ \ 's' and s[i+1]=='t' and s[i+2]== 'd'):\r\n count = count + 1\r\n return\
68
+ \ count"
69
+ - "def power(a,b):\r\n\tif b==0:\r\n\t\treturn 1\r\n\telif a==0:\r\n\t\treturn 0\r\
70
+ \n\telif b==1:\r\n\t\treturn a\r\n\telse:\r\n\t\treturn a*power(a,b-1)"
71
+ - source_sentence: Write a function to find sum and average of first n natural numbers.
72
+ sentences:
73
+ - "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n\
74
+ \ for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\
75
+ \n return word_len\t"
76
+ - "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n\
77
+ \ for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\
78
+ \n return word_len\t"
79
+ - "def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\
80
+ \n total = total + value\r\n average = total / number\r\n return (total,average)"
81
+ model-index:
82
+ - name: SentenceTransformer based on jinaai/jina-embeddings-v2-base-code
83
+ results:
84
+ - task:
85
+ type: triplet
86
+ name: Triplet
87
+ dataset:
88
+ name: sts dev
89
+ type: sts-dev
90
+ metrics:
91
+ - type: cosine_accuracy
92
+ value: 0.4794644366223058
93
+ name: Cosine Accuracy
94
+ - type: dot_accuracy
95
+ value: 0.3189056517809246
96
+ name: Dot Accuracy
97
+ - type: manhattan_accuracy
98
+ value: 0.49047258618028966
99
+ name: Manhattan Accuracy
100
+ - type: euclidean_accuracy
101
+ value: 0.47951587657351136
102
+ name: Euclidean Accuracy
103
+ - type: max_accuracy
104
+ value: 0.49047258618028966
105
+ name: Max Accuracy
106
+ ---
107
+
108
+ # SentenceTransformer based on jinaai/jina-embeddings-v2-base-code
109
+
110
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v2-base-code](https://huggingface.co/jinaai/jina-embeddings-v2-base-code). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
111
+
112
+ ## Model Details
113
+
114
+ ### Model Description
115
+ - **Model Type:** Sentence Transformer
116
+ - **Base model:** [jinaai/jina-embeddings-v2-base-code](https://huggingface.co/jinaai/jina-embeddings-v2-base-code) <!-- at revision fa8baa2e34f0fe28aae07f9bd7bcd1215de41dce -->
117
+ - **Maximum Sequence Length:** 8192 tokens
118
+ - **Output Dimensionality:** 768 tokens
119
+ - **Similarity Function:** Cosine Similarity
120
+ <!-- - **Training Dataset:** Unknown -->
121
+ <!-- - **Language:** Unknown -->
122
+ <!-- - **License:** Unknown -->
123
+
124
+ ### Model Sources
125
+
126
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
127
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
128
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
129
+
130
+ ### Full Model Architecture
131
+
132
+ ```
133
+ SentenceTransformer(
134
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: BertModel
135
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
136
+ )
137
+ ```
138
+
139
+ ## Usage
140
+
141
+ ### Direct Usage (Sentence Transformers)
142
+
143
+ First install the Sentence Transformers library:
144
+
145
+ ```bash
146
+ pip install -U sentence-transformers
147
+ ```
148
+
149
+ Then you can load this model and run inference.
150
+ ```python
151
+ from sentence_transformers import SentenceTransformer
152
+
153
+ # Download from the 🤗 Hub
154
+ model = SentenceTransformer("Nutanix/jina-embeddings-v2-base-code-mbpp")
155
+ # Run inference
156
+ sentences = [
157
+ 'Write a function to find sum and average of first n natural numbers.',
158
+ 'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n total = total + value\r\n average = total / number\r\n return (total,average)',
159
+ 'def long_words(n, str):\r\n word_len = []\r\n txt = str.split(" ")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t',
160
+ ]
161
+ embeddings = model.encode(sentences)
162
+ print(embeddings.shape)
163
+ # [3, 768]
164
+
165
+ # Get the similarity scores for the embeddings
166
+ similarities = model.similarity(embeddings, embeddings)
167
+ print(similarities.shape)
168
+ # [3, 3]
169
+ ```
170
+
171
+ <!--
172
+ ### Direct Usage (Transformers)
173
+
174
+ <details><summary>Click to see the direct usage in Transformers</summary>
175
+
176
+ </details>
177
+ -->
178
+
179
+ <!--
180
+ ### Downstream Usage (Sentence Transformers)
181
+
182
+ You can finetune this model on your own dataset.
183
+
184
+ <details><summary>Click to expand</summary>
185
+
186
+ </details>
187
+ -->
188
+
189
+ <!--
190
+ ### Out-of-Scope Use
191
+
192
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
193
+ -->
194
+
195
+ ## Evaluation
196
+
197
+ ### Metrics
198
+
199
+ #### Triplet
200
+ * Dataset: `sts-dev`
201
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
202
+
203
+ | Metric | Value |
204
+ |:-------------------|:-----------|
205
+ | cosine_accuracy | 0.4795 |
206
+ | dot_accuracy | 0.3189 |
207
+ | manhattan_accuracy | 0.4905 |
208
+ | euclidean_accuracy | 0.4795 |
209
+ | **max_accuracy** | **0.4905** |
210
+
211
+ <!--
212
+ ## Bias, Risks and Limitations
213
+
214
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
215
+ -->
216
+
217
+ <!--
218
+ ### Recommendations
219
+
220
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
221
+ -->
222
+
223
+ ## Training Details
224
+
225
+ ### Training Hyperparameters
226
+ #### Non-Default Hyperparameters
227
+
228
+ - `per_device_train_batch_size`: 16
229
+ - `per_device_eval_batch_size`: 16
230
+ - `num_train_epochs`: 1
231
+ - `warmup_ratio`: 0.1
232
+ - `fp16`: True
233
+ - `batch_sampler`: no_duplicates
234
+
235
+ #### All Hyperparameters
236
+ <details><summary>Click to expand</summary>
237
+
238
+ - `overwrite_output_dir`: False
239
+ - `do_predict`: False
240
+ - `prediction_loss_only`: True
241
+ - `per_device_train_batch_size`: 16
242
+ - `per_device_eval_batch_size`: 16
243
+ - `per_gpu_train_batch_size`: None
244
+ - `per_gpu_eval_batch_size`: None
245
+ - `gradient_accumulation_steps`: 1
246
+ - `eval_accumulation_steps`: None
247
+ - `learning_rate`: 5e-05
248
+ - `weight_decay`: 0.0
249
+ - `adam_beta1`: 0.9
250
+ - `adam_beta2`: 0.999
251
+ - `adam_epsilon`: 1e-08
252
+ - `max_grad_norm`: 1.0
253
+ - `num_train_epochs`: 1
254
+ - `max_steps`: -1
255
+ - `lr_scheduler_type`: linear
256
+ - `lr_scheduler_kwargs`: {}
257
+ - `warmup_ratio`: 0.1
258
+ - `warmup_steps`: 0
259
+ - `log_level`: passive
260
+ - `log_level_replica`: warning
261
+ - `log_on_each_node`: True
262
+ - `logging_nan_inf_filter`: True
263
+ - `save_safetensors`: True
264
+ - `save_on_each_node`: False
265
+ - `save_only_model`: False
266
+ - `no_cuda`: False
267
+ - `use_cpu`: False
268
+ - `use_mps_device`: False
269
+ - `seed`: 42
270
+ - `data_seed`: None
271
+ - `jit_mode_eval`: False
272
+ - `use_ipex`: False
273
+ - `bf16`: False
274
+ - `fp16`: True
275
+ - `fp16_opt_level`: O1
276
+ - `half_precision_backend`: auto
277
+ - `bf16_full_eval`: False
278
+ - `fp16_full_eval`: False
279
+ - `tf32`: None
280
+ - `local_rank`: 0
281
+ - `ddp_backend`: None
282
+ - `tpu_num_cores`: None
283
+ - `tpu_metrics_debug`: False
284
+ - `debug`: []
285
+ - `dataloader_drop_last`: False
286
+ - `dataloader_num_workers`: 0
287
+ - `dataloader_prefetch_factor`: None
288
+ - `past_index`: -1
289
+ - `disable_tqdm`: False
290
+ - `remove_unused_columns`: True
291
+ - `label_names`: None
292
+ - `load_best_model_at_end`: False
293
+ - `ignore_data_skip`: False
294
+ - `fsdp`: []
295
+ - `fsdp_min_num_params`: 0
296
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
297
+ - `fsdp_transformer_layer_cls_to_wrap`: None
298
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
299
+ - `deepspeed`: None
300
+ - `label_smoothing_factor`: 0.0
301
+ - `optim`: adamw_torch
302
+ - `optim_args`: None
303
+ - `adafactor`: False
304
+ - `group_by_length`: False
305
+ - `length_column_name`: length
306
+ - `ddp_find_unused_parameters`: None
307
+ - `ddp_bucket_cap_mb`: None
308
+ - `ddp_broadcast_buffers`: False
309
+ - `dataloader_pin_memory`: True
310
+ - `dataloader_persistent_workers`: False
311
+ - `skip_memory_metrics`: True
312
+ - `use_legacy_prediction_loop`: False
313
+ - `push_to_hub`: False
314
+ - `resume_from_checkpoint`: None
315
+ - `hub_model_id`: None
316
+ - `hub_strategy`: every_save
317
+ - `hub_private_repo`: False
318
+ - `hub_always_push`: False
319
+ - `gradient_checkpointing`: False
320
+ - `gradient_checkpointing_kwargs`: None
321
+ - `include_inputs_for_metrics`: False
322
+ - `eval_do_concat_batches`: True
323
+ - `fp16_backend`: auto
324
+ - `push_to_hub_model_id`: None
325
+ - `push_to_hub_organization`: None
326
+ - `mp_parameters`:
327
+ - `auto_find_batch_size`: False
328
+ - `full_determinism`: False
329
+ - `torchdynamo`: None
330
+ - `ray_scope`: last
331
+ - `ddp_timeout`: 1800
332
+ - `torch_compile`: False
333
+ - `torch_compile_backend`: None
334
+ - `torch_compile_mode`: None
335
+ - `dispatch_batches`: None
336
+ - `split_batches`: None
337
+ - `include_tokens_per_second`: False
338
+ - `include_num_input_tokens_seen`: False
339
+ - `neftune_noise_alpha`: None
340
+ - `optim_target_modules`: None
341
+ - `batch_sampler`: no_duplicates
342
+ - `multi_dataset_batch_sampler`: proportional
343
+
344
+ </details>
345
+
346
+ ### Training Logs
347
+ <details><summary>Click to expand</summary>
348
+
349
+ | Epoch | Step | Training Loss | sts-dev_max_accuracy |
350
+ |:------:|:-----:|:-------------:|:--------------------:|
351
+ | 0 | 0 | - | 0.5027 |
352
+ | 0.0050 | 100 | 5.0 | - |
353
+ | 0.0101 | 200 | 5.0 | - |
354
+ | 0.0151 | 300 | 4.9999 | - |
355
+ | 0.0202 | 400 | 5.0001 | - |
356
+ | 0.0252 | 500 | 5.0 | - |
357
+ | 0.0302 | 600 | 5.0 | - |
358
+ | 0.0353 | 700 | 4.9999 | - |
359
+ | 0.0403 | 800 | 5.0001 | - |
360
+ | 0.0453 | 900 | 5.0 | - |
361
+ | 0.0504 | 1000 | 5.0001 | - |
362
+ | 0.0554 | 1100 | 4.9999 | - |
363
+ | 0.0605 | 1200 | 5.0 | - |
364
+ | 0.0655 | 1300 | 5.0 | - |
365
+ | 0.0705 | 1400 | 4.9999 | - |
366
+ | 0.0756 | 1500 | 5.0 | - |
367
+ | 0.0806 | 1600 | 4.9999 | - |
368
+ | 0.0857 | 1700 | 5.0001 | - |
369
+ | 0.0907 | 1800 | 5.0001 | - |
370
+ | 0.0957 | 1900 | 5.0 | - |
371
+ | 0.1008 | 2000 | 5.0001 | - |
372
+ | 0.1058 | 2100 | 5.0 | - |
373
+ | 0.1109 | 2200 | 4.9999 | - |
374
+ | 0.1159 | 2300 | 4.9999 | - |
375
+ | 0.1209 | 2400 | 5.0 | - |
376
+ | 0.1260 | 2500 | 5.0 | - |
377
+ | 0.1310 | 2600 | 5.0001 | - |
378
+ | 0.1360 | 2700 | 4.9999 | - |
379
+ | 0.1411 | 2800 | 5.0001 | - |
380
+ | 0.1461 | 2900 | 5.0001 | - |
381
+ | 0.1512 | 3000 | 5.0 | - |
382
+ | 0.1562 | 3100 | 5.0001 | - |
383
+ | 0.1612 | 3200 | 4.9999 | - |
384
+ | 0.1663 | 3300 | 5.0001 | - |
385
+ | 0.1713 | 3400 | 4.9999 | - |
386
+ | 0.1764 | 3500 | 4.9999 | - |
387
+ | 0.1814 | 3600 | 4.9999 | - |
388
+ | 0.1864 | 3700 | 5.0 | - |
389
+ | 0.1915 | 3800 | 4.9999 | - |
390
+ | 0.1965 | 3900 | 5.0 | - |
391
+ | 0.2016 | 4000 | 5.0 | - |
392
+ | 0.2066 | 4100 | 5.0 | - |
393
+ | 0.2116 | 4200 | 5.0002 | - |
394
+ | 0.2167 | 4300 | 5.0002 | - |
395
+ | 0.2217 | 4400 | 5.0 | - |
396
+ | 0.2267 | 4500 | 5.0001 | - |
397
+ | 0.2318 | 4600 | 5.0001 | - |
398
+ | 0.2368 | 4700 | 5.0001 | - |
399
+ | 0.2419 | 4800 | 4.9998 | - |
400
+ | 0.2469 | 4900 | 5.0 | - |
401
+ | 0.2519 | 5000 | 4.9999 | - |
402
+ | 0.2570 | 5100 | 4.9999 | - |
403
+ | 0.2620 | 5200 | 5.0001 | - |
404
+ | 0.2671 | 5300 | 5.0001 | - |
405
+ | 0.2721 | 5400 | 4.9999 | - |
406
+ | 0.2771 | 5500 | 5.0 | - |
407
+ | 0.2822 | 5600 | 5.0002 | - |
408
+ | 0.2872 | 5700 | 5.0002 | - |
409
+ | 0.2923 | 5800 | 4.9999 | - |
410
+ | 0.2973 | 5900 | 5.0 | - |
411
+ | 0.3023 | 6000 | 5.0001 | - |
412
+ | 0.3074 | 6100 | 4.9999 | - |
413
+ | 0.3124 | 6200 | 4.9997 | - |
414
+ | 0.3174 | 6300 | 4.9999 | - |
415
+ | 0.3225 | 6400 | 5.0 | - |
416
+ | 0.3275 | 6500 | 4.9998 | - |
417
+ | 0.3326 | 6600 | 5.0 | - |
418
+ | 0.3376 | 6700 | 4.9998 | - |
419
+ | 0.3426 | 6800 | 5.0001 | - |
420
+ | 0.3477 | 6900 | 5.0002 | - |
421
+ | 0.3527 | 7000 | 5.0 | - |
422
+ | 0.3578 | 7100 | 4.9998 | - |
423
+ | 0.3628 | 7200 | 5.0003 | - |
424
+ | 0.3678 | 7300 | 5.0 | - |
425
+ | 0.3729 | 7400 | 5.0002 | - |
426
+ | 0.3779 | 7500 | 5.0 | - |
427
+ | 0.3829 | 7600 | 5.0001 | - |
428
+ | 0.3880 | 7700 | 5.0002 | - |
429
+ | 0.3930 | 7800 | 5.0001 | - |
430
+ | 0.3981 | 7900 | 5.0001 | - |
431
+ | 0.4031 | 8000 | 5.0 | - |
432
+ | 0.4081 | 8100 | 4.9998 | - |
433
+ | 0.4132 | 8200 | 4.9999 | - |
434
+ | 0.4182 | 8300 | 5.0001 | - |
435
+ | 0.4233 | 8400 | 5.0001 | - |
436
+ | 0.4283 | 8500 | 5.0 | - |
437
+ | 0.4333 | 8600 | 5.0002 | - |
438
+ | 0.4384 | 8700 | 5.0001 | - |
439
+ | 0.4434 | 8800 | 5.0 | - |
440
+ | 0.4485 | 8900 | 4.9996 | - |
441
+ | 0.4535 | 9000 | 4.9999 | - |
442
+ | 0.4585 | 9100 | 5.0 | - |
443
+ | 0.4636 | 9200 | 4.9999 | - |
444
+ | 0.4686 | 9300 | 4.9999 | - |
445
+ | 0.4736 | 9400 | 4.9998 | - |
446
+ | 0.4787 | 9500 | 5.0001 | - |
447
+ | 0.4837 | 9600 | 4.9998 | - |
448
+ | 0.4888 | 9700 | 4.9999 | - |
449
+ | 0.4938 | 9800 | 5.0 | - |
450
+ | 0.4988 | 9900 | 4.9998 | - |
451
+ | 0.5039 | 10000 | 5.0 | - |
452
+ | 0.5089 | 10100 | 5.0002 | - |
453
+ | 0.5140 | 10200 | 5.0003 | - |
454
+ | 0.5190 | 10300 | 4.9998 | - |
455
+ | 0.5240 | 10400 | 4.9999 | - |
456
+ | 0.5291 | 10500 | 5.0 | - |
457
+ | 0.5341 | 10600 | 4.9999 | - |
458
+ | 0.5392 | 10700 | 5.0 | - |
459
+ | 0.5442 | 10800 | 5.0001 | - |
460
+ | 0.5492 | 10900 | 4.9999 | - |
461
+ | 0.5543 | 11000 | 5.0 | - |
462
+ | 0.5593 | 11100 | 4.9999 | - |
463
+ | 0.5643 | 11200 | 5.0 | - |
464
+ | 0.5694 | 11300 | 4.9999 | - |
465
+ | 0.5744 | 11400 | 4.9997 | - |
466
+ | 0.5795 | 11500 | 5.0002 | - |
467
+ | 0.5845 | 11600 | 4.9999 | - |
468
+ | 0.5895 | 11700 | 5.0001 | - |
469
+ | 0.5946 | 11800 | 5.0001 | - |
470
+ | 0.5996 | 11900 | 5.0004 | - |
471
+ | 0.6047 | 12000 | 4.9998 | - |
472
+ | 0.6097 | 12100 | 5.0002 | - |
473
+ | 0.6147 | 12200 | 4.9998 | - |
474
+ | 0.6198 | 12300 | 5.0001 | - |
475
+ | 0.6248 | 12400 | 5.0001 | - |
476
+ | 0.6298 | 12500 | 5.0001 | - |
477
+ | 0.6349 | 12600 | 4.9999 | - |
478
+ | 0.6399 | 12700 | 5.0001 | - |
479
+ | 0.6450 | 12800 | 4.9999 | - |
480
+ | 0.6500 | 12900 | 5.0001 | - |
481
+ | 0.6550 | 13000 | 4.9999 | - |
482
+ | 0.6601 | 13100 | 5.0002 | - |
483
+ | 0.6651 | 13200 | 5.0001 | - |
484
+ | 0.6702 | 13300 | 5.0002 | - |
485
+ | 0.6752 | 13400 | 4.9997 | - |
486
+ | 0.6802 | 13500 | 5.0001 | - |
487
+ | 0.6853 | 13600 | 4.9996 | - |
488
+ | 0.6903 | 13700 | 4.9999 | - |
489
+ | 0.6954 | 13800 | 5.0002 | - |
490
+ | 0.7004 | 13900 | 4.9997 | - |
491
+ | 0.7054 | 14000 | 5.0 | - |
492
+ | 0.7105 | 14100 | 5.0001 | - |
493
+ | 0.7155 | 14200 | 5.0001 | - |
494
+ | 0.7205 | 14300 | 4.9999 | - |
495
+ | 0.7256 | 14400 | 4.9999 | - |
496
+ | 0.7306 | 14500 | 4.9998 | - |
497
+ | 0.7357 | 14600 | 5.0 | - |
498
+ | 0.7407 | 14700 | 5.0002 | - |
499
+ | 0.7457 | 14800 | 5.0001 | - |
500
+ | 0.7508 | 14900 | 4.9998 | - |
501
+ | 0.7558 | 15000 | 5.0002 | - |
502
+ | 0.7609 | 15100 | 5.0002 | - |
503
+ | 0.7659 | 15200 | 5.0 | - |
504
+ | 0.7709 | 15300 | 5.0002 | - |
505
+ | 0.7760 | 15400 | 5.0 | - |
506
+ | 0.7810 | 15500 | 5.0001 | - |
507
+ | 0.7861 | 15600 | 5.0 | - |
508
+ | 0.7911 | 15700 | 5.0004 | - |
509
+ | 0.7961 | 15800 | 5.0 | - |
510
+ | 0.8012 | 15900 | 5.0001 | - |
511
+ | 0.8062 | 16000 | 5.0003 | - |
512
+ | 0.8112 | 16100 | 4.9999 | - |
513
+ | 0.8163 | 16200 | 5.0 | - |
514
+ | 0.8213 | 16300 | 4.9999 | - |
515
+ | 0.8264 | 16400 | 5.0 | - |
516
+ | 0.8314 | 16500 | 4.9999 | - |
517
+ | 0.8364 | 16600 | 4.9998 | - |
518
+ | 0.8415 | 16700 | 4.9998 | - |
519
+ | 0.8465 | 16800 | 5.0002 | - |
520
+ | 0.8516 | 16900 | 4.9999 | - |
521
+ | 0.8566 | 17000 | 4.9999 | - |
522
+ | 0.8616 | 17100 | 4.9997 | - |
523
+ | 0.8667 | 17200 | 5.0001 | - |
524
+ | 0.8717 | 17300 | 4.9999 | - |
525
+ | 0.8768 | 17400 | 5.0001 | - |
526
+ | 0.8818 | 17500 | 4.9999 | - |
527
+ | 0.8868 | 17600 | 5.0001 | - |
528
+ | 0.8919 | 17700 | 5.0001 | - |
529
+ | 0.8969 | 17800 | 5.0001 | - |
530
+ | 0.9019 | 17900 | 4.9996 | - |
531
+ | 0.9070 | 18000 | 5.0001 | - |
532
+ | 0.9120 | 18100 | 4.9997 | - |
533
+ | 0.9171 | 18200 | 5.0001 | - |
534
+ | 0.9221 | 18300 | 4.9998 | - |
535
+ | 0.9271 | 18400 | 4.9997 | - |
536
+ | 0.9322 | 18500 | 4.9999 | - |
537
+ | 0.9372 | 18600 | 5.0001 | - |
538
+ | 0.9423 | 18700 | 5.0004 | - |
539
+ | 0.9473 | 18800 | 4.9997 | - |
540
+ | 0.9523 | 18900 | 4.9999 | - |
541
+ | 0.9574 | 19000 | 5.0001 | - |
542
+ | 0.9624 | 19100 | 4.9999 | - |
543
+ | 0.9674 | 19200 | 5.0 | - |
544
+ | 0.9725 | 19300 | 4.9999 | - |
545
+ | 0.9775 | 19400 | 4.9999 | - |
546
+ | 0.9826 | 19500 | 4.9999 | - |
547
+ | 0.9876 | 19600 | 4.9998 | - |
548
+ | 0.9926 | 19700 | 5.0 | - |
549
+ | 0.9977 | 19800 | 4.9999 | - |
550
+ | 1.0 | 19846 | - | 0.4905 |
551
+
552
+ </details>
553
+
554
+ ### Framework Versions
555
+ - Python: 3.10.14
556
+ - Sentence Transformers: 3.0.1
557
+ - Transformers: 4.40.0
558
+ - PyTorch: 2.3.0+cu121
559
+ - Accelerate: 0.33.0
560
+ - Datasets: 2.20.0
561
+ - Tokenizers: 0.19.1
562
+
563
+ ## Citation
564
+
565
+ ### BibTeX
566
+
567
+ #### Sentence Transformers
568
+ ```bibtex
569
+ @inproceedings{reimers-2019-sentence-bert,
570
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
571
+ author = "Reimers, Nils and Gurevych, Iryna",
572
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
573
+ month = "11",
574
+ year = "2019",
575
+ publisher = "Association for Computational Linguistics",
576
+ url = "https://arxiv.org/abs/1908.10084",
577
+ }
578
+ ```
579
+
580
+ #### TripletLoss
581
+ ```bibtex
582
+ @misc{hermans2017defense,
583
+ title={In Defense of the Triplet Loss for Person Re-Identification},
584
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
585
+ year={2017},
586
+ eprint={1703.07737},
587
+ archivePrefix={arXiv},
588
+ primaryClass={cs.CV}
589
+ }
590
+ ```
591
+
592
+ <!--
593
+ ## Glossary
594
+
595
+ *Clearly define terms in order to be accessible across audiences.*
596
+ -->
597
+
598
+ <!--
599
+ ## Model Card Authors
600
+
601
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
602
+ -->
603
+
604
+ <!--
605
+ ## Model Card Contact
606
+
607
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
608
+ -->
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-embeddings-v2-base-code",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "jinaai/jina-bert-v2-qk-post-norm--configuration_bert.JinaBertConfig",
9
+ "AutoModel": "jinaai/jina-bert-v2-qk-post-norm--modeling_bert.JinaBertModel",
10
+ "AutoModelForMaskedLM": "jinaai/jina-bert-v2-qk-post-norm--modeling_bert.JinaBertForMaskedLM",
11
+ "AutoModelForSequenceClassification": "jinaai/jina-bert-v2-qk-post-norm--modeling_bert.JinaBertForSequenceClassification"
12
+ },
13
+ "classifier_dropout": null,
14
+ "emb_pooler": "mean",
15
+ "feed_forward_type": "geglu",
16
+ "gradient_checkpointing": false,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.0,
19
+ "hidden_size": 768,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "layer_norm_eps": 1e-12,
23
+ "max_position_embeddings": 8192,
24
+ "model_max_length": 8192,
25
+ "model_type": "bert",
26
+ "num_attention_heads": 12,
27
+ "num_hidden_layers": 12,
28
+ "pad_token_id": 0,
29
+ "position_embedding_type": "alibi",
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.40.0",
32
+ "type_vocab_size": 2,
33
+ "use_cache": true,
34
+ "vocab_size": 61056
35
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.40.0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51884e1118e76a16cc5b327d93689c19af318de5a6c913e227201952bbfca9fb
3
+ size 555344752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 8192,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff