ppo-LunarLander-v2 / config.json
Nuntea's picture
Upload PPO LunarLander-v2 trained agent
2de0388
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e7b2b281d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e7b2b281e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e7b2b281ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e7b2b281f30>", "_build": "<function ActorCriticPolicy._build at 0x7e7b2b281fc0>", "forward": "<function ActorCriticPolicy.forward at 0x7e7b2b282050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e7b2b2820e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e7b2b282170>", "_predict": "<function ActorCriticPolicy._predict at 0x7e7b2b282200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e7b2b282290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e7b2b282320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e7b2b2823b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e7b2b279900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695479554763907118, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKC7G756hbU+mH7TPbvlUL5bepq7v+MTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGPOiu+yquOMAWyUTakDjAF0lEdAiHGeyAxzrHV9lChoBkdAXq/6KtPpIWgHTegDaAhHQIh+/U+cH4Z1fZQoaAZHQFRkltTDO1RoB03oA2gIR0CIjGs8xKxtdX2UKGgGR8BHSWf9P1tgaAdNhQFoCEdAiJDQgs9SuXV9lChoBkdAYErFERaouWgHTegDaAhHQIieUHnlnyx1fZQoaAZHwDv6j1wo9cNoB0vqaAhHQIig8WfseGR1fZQoaAZHQFrimqYJE6VoB03oA2gIR0CIr5aB7NSqdX2UKGgGR0Ba/euieumraAdN6ANoCEdAiMGzAWSEDnV9lChoBkdAZl1g9eQdS2gHTXkCaAhHQIjK+KqGUOd1fZQoaAZHQGovHpSrHVBoB03BAWgIR0CIz+aWom5UdX2UKGgGR0BWL2dd3SrpaAdN6ANoCEdAiN1yNfgJkXV9lChoBkdAWbja4+bExmgHTegDaAhHQIjrAe3hGYt1fZQoaAZHQEsI+QlruYxoB03oA2gIR0CI+JPUrkKedX2UKGgGR0BPrwpnYg7paAdN6ANoCEdAiQYT6JqIrXV9lChoBkdAXZAB/7SApmgHTegDaAhHQIkUuyu6mO51fZQoaAZHQFgNtVJcxCZoB03oA2gIR0CJJmtZFG5MdX2UKGgGR0BaemWldkauaAdNPQJoCEdAiS8tw71ZknV9lChoBkfAOv/J7sv7FmgHTUoBaAhHQIky4MDwH7h1fZQoaAZHwEupv+fh/AloB03EAWgIR0CJOg/etSyddX2UKGgGR8BbDemzjWCmaAdNSgJoCEdAiUCRM36yjnV9lChoBkdAU6RJsfq5b2gHTegDaAhHQIlOQNb1RLt1fZQoaAZHwFoMgU1yeZpoB033AWgIR0CJVhE1EVnFdX2UKGgGR0BVDLncL0BfaAdN6ANoCEdAiWNz4tYjjnV9lChoBkfAFovIwM6RyWgHTSABaAhHQIlmnShJyyV1fZQoaAZHQFt9MmF8G9poB03oA2gIR0CJdBM6BAfMdX2UKGgGR0Bpa7CLuQZGaAdNrwFoCEdAiXp4f4h2XHV9lChoBkfAUXay7f51vGgHTYkBaAhHQImDNAqur6t1fZQoaAZHQEnf44ZMtbtoB03oA2gIR0CJknozvZyudX2UKGgGR0Bjj3MB6rvLaAdNOQNoCEdAiZ4psO5J9XV9lChoBkdAV7gk1Muez2gHTegDaAhHQImrnd69kBl1fZQoaAZHQFrGFev6j35oB03oA2gIR0CJtw6ij+JhdX2UKGgGR8A51ErGza9LaAdNFgFoCEdAibxfxlQMyHV9lChoBkdAV/2EL6UJOWgHTegDaAhHQInJ7QPZqVR1fZQoaAZHQFTd49ovi99oB03oA2gIR0CJ11rjYI0JdX2UKGgGR0BpWppHqeK9aAdNFgJoCEdAid6cRUWEb3V9lChoBkdAWJ/T9bX6ImgHTegDaAhHQInwXaYeDFt1fZQoaAZHQFU8YL9deIFoB03oA2gIR0CJ/fAlfJFLdX2UKGgGR8A2ae2/i5uqaAdNZgFoCEdAigQbQb+98XV9lChoBkdAa8fxNqQA/GgHTYwCaAhHQIoLp2hZha11fZQoaAZHQF/o5s0pEx9oB03oA2gIR0CKGPE3sHB2dX2UKGgGR0BbNTZlFtsOaAdN6ANoCEdAiiY23jMmnnV9lChoBkdAXaQ/1QIldGgHTegDaAhHQIozwUL2HtZ1fZQoaAZHQFipEqlP8AJoB03oA2gIR0CKQlXzUZvUdX2UKGgGR0Bo0LQzDXOGaAdN6AFoCEdAikxcR15jY3V9lChoBkdAZ33ZyuIRAmgHTVsBaAhHQIpRwRTS9dx1fZQoaAZHQDyKgL7XQMRoB01IAWgIR0CKVZxaPjn3dX2UKGgGR0BY+HmJWNm2aAdN6ANoCEdAimMZOrQw9XV9lChoBkdAYMFKlpGnXWgHTegDaAhHQIpwjPt2LYR1fZQoaAZHQDQrllsguAZoB01iAWgIR0CKdqFK02LpdX2UKGgGR8BPSZCF9KEnaAdNLAFoCEdAinoDwx33YnV9lChoBkfAT4zgEU0vXmgHS9toCEdAinxxFiKBNHV9lChoBkdAXvlLJ0W/J2gHTegDaAhHQIqJqpPykKx1fZQoaAZHQF3DrGBFuvVoB03oA2gIR0CKlz7j1f3OdX2UKGgGR8BC9S5AhStOaAdNDQFoCEdAippOiWVu8HV9lChoBkdAZu9anrIHT2gHTWQBaAhHQIqgdzXBgu11fZQoaAZHQGjThzeXRgJoB02eAWgIR0CKphK28Zk1dX2UKGgGR0BnUS8WbgCPaAdNfAFoCEdAiquHfEXLvHV9lChoBkdAZfnYI0IkaGgHTWwBaAhHQIq0HMW43FV1fZQoaAZHwEWDRFZxJd1oB00nAWgIR0CKuFa3Zwn6dX2UKGgGR0BgYVLg4wRHaAdN6ANoCEdAisWnBUJfIHV9lChoBkdAYuNlZHNHH2gHTegDaAhHQIrTEAHVwxZ1fZQoaAZHwDy/8VHnU2FoB0vMaAhHQIrVZAfMfRx1fZQoaAZHQFC+LGJemeloB03oA2gIR0CK4rK9wm3OdX2UKGgGR0BoYJfF72L6aAdNwQFoCEdAiunvVurIYHV9lChoBkdASSylHjIaLmgHTWcBaAhHQIrt0pNKyv91fZQoaAZHQGhQiw0O3DxoB03NAWgIR0CK8s++ueSTdX2UKGgGR0BawBaTwDvFaAdN6ANoCEdAiwAjujRD1HV9lChoBkfAUi99nbqQimgHTQ8BaAhHQIsFX3ta6jF1fZQoaAZHQGP+r2g3975oB03GAWgIR0CLC2yBTXJ6dX2UKGgGR0BiS6R2bG3naAdN6ANoCEdAixzo4+8oQXV9lChoBkfAQ15pHqeK9GgHTRcBaAhHQIsf9dX1ant1fZQoaAZHwDeX1YhdMTNoB01EAWgIR0CLJchmoR7JdX2UKGgGR8AxSFkxyn1naAdNSgFoCEdAiyl+C04R3HV9lChoBkdAYAype/pMYmgHTegDaAhHQIs3GE25xzd1fZQoaAZHQGDKpfYzzmRoB03oA2gIR0CLRJ+HaewtdX2UKGgGR8BG+C5NGmUGaAdNAgFoCEdAi0d+UyHmBHV9lChoBkdAYMe+CbtqpWgHTegDaAhHQItUz7oB7u51fZQoaAZHQGP60MXrMTxoB03oA2gIR0CLYi1RceKbdX2UKGgGR0Bp4+c+aBqcaAdN2wJoCEdAi2zzviLl3nV9lChoBkfAWlHdk8Rtg2gHTSEBaAhHQItxFTcZccF1fZQoaAZHQGQKKhlDneVoB03oA2gIR0CLgr0Lc9GJdX2UKGgGR8A2+R0EHMUzaAdNKAFoCEdAi4X10Lc9GXV9lChoBkfAP2yS7oSteWgHTQwBaAhHQIuLNBSk0rN1fZQoaAZHwEv+zBRAKOVoB01DAWgIR0CLjsAz544ZdX2UKGgGR0BscD2+PBBSaAdNWQFoCEdAi5K4Z/CqInV9lChoBkfAI3gYHgP3BmgHTVQBaAhHQIuYwtSQ5m11fZQoaAZHwEJiFg2Ifr9oB0vBaAhHQIua3WlMyrR1fZQoaAZHwFBMNQCSzPdoB00HAWgIR0CLnbWRzRx+dX2UKGgGR8BB4DNpudf+aAdL7GgIR0CLoFeRgZ0kdX2UKGgGR0Bhw8V8CxNZaAdN6ANoCEdAi63oVEd/8XV9lChoBkdAXfijk+5e7mgHTegDaAhHQIu7fBciW3V1fZQoaAZHQDNfWOIZZSxoB00gAWgIR0CLwPmVZ9uxdX2UKGgGR8BC/P9UCJXRaAdNQgFoCEdAi8SGX5WRzXV9lChoBkdAY1Uasp5NXmgHTegDaAhHQIvSh5LRKHx1fZQoaAZHwELWOYIBzWBoB0vNaAhHQIvVjjcVQAN1fZQoaAZHwD8rdAPd2xJoB0uyaAhHQIvYCRU3n6l1fZQoaAZHwECOPgeii7FoB00sAWgIR0CL3Gcpb2UTdX2UKGgGR8BbS0U0vXbuaAdNQAFoCEdAi+R8E/0NBnV9lChoBkfAUrUCdSVGC2gHTRIBaAhHQIvntnAZbY91fZQoaAZHwEMifcvduYRoB0vwaAhHQIvqYukDZDl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}