--- datasets: - emozilla/yarn-train-tokenized-32k-mistral metrics: - perplexity library_name: transformers license: apache-2.0 language: - en --- # Model Card: Yarn-Solar-10b-32k [Preprint (arXiv)](https://arxiv.org/abs/2309.00071) [GitHub](https://github.com/jquesnelle/yarn) ![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/solar/data/proofpile-long-small-solar.csv.png) ## Model Description Yarn-Solar-10b-32k is a state-of-the-art language model for long context, further pretrained on two billion long context tokens using the YaRN extension method. It is an extension of [SOLAR-10.7B-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-v1.0) and supports a 32k token context window. To use, pass `trust_remote_code=True` when loading the model, for example ```python model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Solar-10b-32k", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) ``` In addition you will need to use the latest version of `transformers` ```sh pip install git+https://github.com/huggingface/transformers ``` ## Benchmarks Long context benchmarks: | Model | Context Window | 4k PPL | 8k PPL | 16k PPL | 32k PPL | 64k PPL | |-------|---------------:|------:|----------:|-----:|-----:|------------:| | [Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) | 8k | 3.09 | 2.96 | - | - | - | | [Yarn-Mistral-7b-64k](https://huggingface.co./NousResearch/Yarn-Mistral-7b-64k) | 64k | 3.18 | 3.04 | 2.65 | 2.44 | 2.20 | | [Yarn-Mistral-7b-128k](https://huggingface.co./NousResearch/Yarn-Mistral-7b-128k) | 128k | 3.21 | 3.08 | 2.68 | 2.47 | 2.24 | | [SOLAR-10.7B-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-v1.0) | 4k | 3.07 | - | - | - | - | | **[Yarn-Solar-10b-32k](https://huggingface.co./NousResearch/Yarn-Solar-10b-32k)** | **32k** | **3.09** | **2.95** | **2.57** | **2.31** | **-** | | [Yarn-Solar-10b-64k](https://huggingface.co./NousResearch/Yarn-Solar-10b-64k) | 64k | 3.13 | 2.99 | 2.61 | 2.34 | 2.15 | Short context benchmarks showing that quality degradation is minimal: | Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA | |-------|---------------:|------:|----------:|-----:|------------:| | [Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) | 8k | 59.98 | 83.31 | 64.16 | 42.15 | | [Yarn-Mistral-7b-64k](https://huggingface.co./NousResearch/Yarn-Mistral-7b-64k) | 64k | 59.38 | 81.21 | 61.32 | 42.50 | | [Yarn-Mistral-7b-128k](https://huggingface.co./NousResearch/Yarn-Mistral-7b-128k) | 128k | 58.87 | 80.58 | 60.64 | 42.46 | | [SOLAR-10.7B-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-v1.0) | 4k | 61.95 | 84.60 | 65.48 | 45.04 | | **[Yarn-Solar-10b-32k](https://huggingface.co./NousResearch/Yarn-Solar-10b-32k)** | **32k** | **59.64** | **83.65** | **64.36** | **44.82** | | [Yarn-Solar-10b-64k](https://huggingface.co./NousResearch/Yarn-Solar-10b-64k) | 64k | 59.21 | 83.08 | 63.57 | 45.70 | ## Collaborators - [bloc97](https://github.com/bloc97): Methods, paper and evals - [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals - [@EnricoShippole](https://twitter.com/EnricoShippole): Model training - [honglu2875](https://github.com/honglu2875): Paper and evals The authors would like to thank LAION AI for their support of compute for this model. It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.