--- license: apache-2.0 language: - en pipeline_tag: image-to-text --- # Nougat-LaTeX-based - **Model type:** [Donut](https://huggingface.co./docs/transformers/model_doc/donut) - **Finetuned from:** [facebook/nougat-base](https://huggingface.co./facebook/nougat-base) - **Repository:** [source code](https://github.com/NormXU/nougat-latex-ocr) Nougat-LaTeX-based is fine-tuned from [facebook/nougat-base](https://huggingface.co./facebook/nougat-base) with [im2latex-100k](https://zenodo.org/record/56198#.V2px0jXT6eA) to boost its proficiency in generating LaTeX code from images. Since the initial encoder input image size of nougat was unsuitable for equation image segments, leading to potential rescaling artifacts that degrades the generation quality of LaTeX code. To address this, Nougat-LaTeX-based adjusts the input resolution and uses an adaptive padding approach to ensure that equation image segments in the wild are resized to closely match the resolution of the training data. ### Evaluation Evaluated on an image-equation pair dataset collected from Wikipedia, arXiv, and im2latex-100k, curated by [lukas-blecher](https://github.com/lukas-blecher/LaTeX-OCR#data) |model| token_acc ↑ | normed edit distance ↓ | | --- | --- | --- | |pix2tex| 0.5346 | 0.10312 |pix2tex*|0.60|0.10| |nougat-latex-based| **0.623850** | **0.06180** | pix2tex is a ResNet + ViT + Text Decoder architecture introduced in [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR). **pix2tex***: reported from [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR); **pix2tex**: my evaluation with the released [checkpoint](https://github.com/lukas-blecher/LaTeX-OCR/releases/tag/v0.0.1) ; **nougat-latex-based**: evaluated on results generated with beam-search strategy. ## Requirements ```text pip install transformers >= 4.34.0 ``` ## Uses ```python import torch from PIL import Image from transformers import VisionEncoderDecoderModel from transformers.models.nougat import NougatTokenizerFast from nougat_latex import NougatLaTexProcessor model_name = "Norm/nougat-latex-base" device = "cuda" if torch.cuda.is_available() else "cpu" # init model model = VisionEncoderDecoderModel.from_pretrained(model_name).to(device) # init processor tokenizer = NougatTokenizerFast.from_pretrained(model_name) latex_processor = NougatLaTexProcessor.from_pretrained(model_name) # run test image = Image.open("path/to/latex/image.png") if not image.mode == "RGB": image = image.convert('RGB') pixel_values = latex_processor(image, return_tensors="pt").pixel_values decoder_input_ids = tokenizer(tokenizer.bos_token, add_special_tokens=False, return_tensors="pt").input_ids with torch.no_grad(): outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_length, early_stopping=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, use_cache=True, num_beams=5, bad_words_ids=[[tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = tokenizer.batch_decode(outputs.sequences)[0] sequence = sequence.replace(tokenizer.eos_token, "").replace(tokenizer.pad_token, "").replace(tokenizer.bos_token, "") print(sequence) ```