Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
---
|
2 |
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
model-index:
|
8 |
- name: result
|
9 |
results: []
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
---
|
12 |
|
@@ -15,12 +18,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# tmp_trainer
|
17 |
|
18 |
-
This model
|
|
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
-
|
23 |
-
0.798512
|
24 |
|
25 |
## Intended uses & limitations
|
26 |
|
@@ -28,27 +33,34 @@ More information needed
|
|
28 |
|
29 |
## Training and evaluation data
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
## Training procedure
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
### Training hyperparameters
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
-
metric_for_best_model='accuracy',
|
45 |
learning_rate=2e-5,
|
46 |
num_train_epochs=20,
|
47 |
weight_decay=0.01,
|
48 |
per_device_train_batch_size=16, # batch size per device during training
|
49 |
per_device_eval_batch_size=16, # batch size for evaluation
|
50 |
-
evaluation_strategy="epoch",
|
51 |
-
save_strategy="epoch",
|
52 |
-
save_total_limit = 2,
|
53 |
-
load_best_model_at_end=True)
|
54 |
### Framework versions
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment
|
|
|
|
|
3 |
metrics:
|
4 |
- accuracy
|
5 |
model-index:
|
6 |
- name: result
|
7 |
results: []
|
8 |
+
language:
|
9 |
+
- ar
|
10 |
+
- en
|
11 |
+
library_name: transformers
|
12 |
+
pipeline_tag: text-classification
|
13 |
---
|
14 |
---
|
15 |
|
|
|
18 |
|
19 |
# tmp_trainer
|
20 |
|
21 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.502831
|
24 |
+
- Accuracy: 0.798512
|
25 |
|
26 |
## Model description
|
27 |
|
28 |
+
|
|
|
29 |
|
30 |
## Intended uses & limitations
|
31 |
|
|
|
33 |
|
34 |
## Training and evaluation data
|
35 |
|
36 |
+
|
37 |
+
- Training set: 114,885 records
|
38 |
+
- evaluation data: 12,765 records
|
39 |
+
|
40 |
|
41 |
## Training procedure
|
42 |
|
43 |
+
|
44 |
+
|
45 |
+
| Training Loss | Epoch |Validation Loss | Accuracy |
|
46 |
+
|:-------------:|:-----:|:---------------:|:--------:|
|
47 |
+
| 0.4511 | 2.0 |0.502831 | 0.7985 |
|
48 |
+
| 0.3655 | 3.0 |0.576118 | 0.7954 |
|
49 |
+
| 0.3019 | 4.0 |0.625391 | 0.7985 |
|
50 |
+
| 0.2466 | 5.0 |0.835689 | 0.7979 |
|
51 |
+
|
52 |
+
|
53 |
|
54 |
### Training hyperparameters
|
55 |
|
56 |
The following hyperparameters were used during training:
|
|
|
57 |
learning_rate=2e-5,
|
58 |
num_train_epochs=20,
|
59 |
weight_decay=0.01,
|
60 |
per_device_train_batch_size=16, # batch size per device during training
|
61 |
per_device_eval_batch_size=16, # batch size for evaluation
|
|
|
|
|
|
|
|
|
62 |
### Framework versions
|
63 |
+
- Transformers 4.35.0
|
64 |
+
- Pytorch 2.0.0
|
65 |
+
- Datasets 2.11.0
|
66 |
+
- Tokenizers 0.14.1
|