--- license: apache-2.0 tags: - code - mistral --- # Mistral-7B-codealpaca I am thrilled to introduce my Mistral-7B-codealpaca model. This variant is optimized and demonstrates potential in assisting developers as a coding companion. I welcome contributions from testers and enthusiasts to help evaluate its performance. ## Training Details I trained the model using 3xRTX 3090 for 118 hours. [![Built with Axolotl](https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png)](https://github.com/OpenAccess-AI-Collective/axolotl) ## Quantised Model Links: 1. https://huggingface.co./TheBloke/Mistral-7B-codealpaca-lora-GPTQ 2. https://huggingface.co./TheBloke/Mistral-7B-codealpaca-lora-GGUF 3. https://huggingface.co./TheBloke/Mistral-7B-codealpaca-lora-AWQ ## Download by qBittorrent: #### Torrent file: https://github.com/Nondzu/LlamaTor/blob/torrents/torrents/Nondzu_Mistral-7B-codealpaca-lora.torrent ## Dataset: - Dataset Name: theblackcat102/evol-codealpaca-v1 - Dataset Link: [theblackcat102/evol-codealpaca-v1](https://huggingface.co./datasets/theblackcat102/evol-codealpaca-v1) ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## Performance (evalplus) Human eval plus: https://github.com/evalplus/evalplus ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63729f35acef705233c87909/azE6LU0qQ9E9u60t5VrMk.png) Well, the results are better than I expected: - Base: `{'pass@1': 0.47560975609756095}` - Base + Extra: `{'pass@1': 0.4329268292682927}` For reference, I've provided the performance of the original Mistral model alongside my Mistral-7B-code-16k-qlora model. ** [Nondzu/Mistral-7B-code-16k-qlora](https://huggingface.co./Nondzu/Mistral-7B-code-16k-qlora)**: - Base: `{'pass@1': 0.3353658536585366}` - Base + Extra: `{'pass@1': 0.2804878048780488}` ** [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1)**: - Base: `{'pass@1': 0.2926829268292683}` - Base + Extra: `{'pass@1': 0.24390243902439024}` ## Model Configuration: Here are the configurations for my Mistral-7B-codealpaca-lora: ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.1 base_model_config: mistralai/Mistral-7B-Instruct-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: theblackcat102/evol-codealpaca-v1 type: oasst dataset_prepared_path: val_set_size: 0.01 output_dir: ./nondzu/Mistral-7B-codealpaca-test14 adapter: lora sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63729f35acef705233c87909/5nPgL3ajROKf7dttf4BO0.png) ## Additional Projects: For other related projects, you can check out: - [LlamaTor on GitHub](https://github.com/Nondzu/LlamaTor)