Upload 3 files
Browse files- README.md +8 -0
- handler.py +203 -0
- requirements.txt +20 -0
README.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: flux-1-dev-non-commercial-license
|
4 |
+
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
inference: true
|
8 |
+
---
|
handler.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/sayakpaul/diffusers-torchao
|
2 |
+
# https://github.com/pytorch/ao/releases
|
3 |
+
# https://developer.nvidia.com/cuda-gpus
|
4 |
+
|
5 |
+
import os
|
6 |
+
from typing import Any, Dict
|
7 |
+
import gc
|
8 |
+
from PIL import Image
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import torch
|
11 |
+
from torchao.quantization import quantize_, autoquant, int8_dynamic_activation_int8_weight, int8_dynamic_activation_int4_weight, float8_dynamic_activation_float8_weight
|
12 |
+
from torchao.quantization.quant_api import PerRow
|
13 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig
|
14 |
+
from transformers import T5EncoderModel, BitsAndBytesConfig
|
15 |
+
from optimum.quanto import freeze, qfloat8, quantize
|
16 |
+
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
17 |
+
from huggingface_inference_toolkit.logging import logger
|
18 |
+
|
19 |
+
import subprocess
|
20 |
+
subprocess.run("pip list", shell=True)
|
21 |
+
|
22 |
+
print(torch.cuda.get_device_name())
|
23 |
+
print(torch.cuda.get_device_capability())
|
24 |
+
print(torch.cuda.get_arch_list())
|
25 |
+
|
26 |
+
IS_NEW_GPU = False if torch.cuda.get_device_capability() < (8, 9) else True
|
27 |
+
IS_TURBO = False
|
28 |
+
IS_4BIT = True
|
29 |
+
IS_COMPILE = False
|
30 |
+
IS_AUTOQ = False
|
31 |
+
IS_PARA = True
|
32 |
+
IS_LVRAM = True
|
33 |
+
|
34 |
+
# Set high precision for float32 matrix multiplications.
|
35 |
+
# This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer.
|
36 |
+
torch.set_float32_matmul_precision("high")
|
37 |
+
|
38 |
+
if IS_COMPILE:
|
39 |
+
import torch._dynamo
|
40 |
+
torch._dynamo.config.suppress_errors = True
|
41 |
+
|
42 |
+
def offload_pipe(pipe) -> Any:
|
43 |
+
if IS_LVRAM: pipe.enable_model_cpu_offload()
|
44 |
+
return pipe
|
45 |
+
|
46 |
+
def load_te2(repo_id: str, dtype: torch.dtype) -> Any:
|
47 |
+
if IS_4BIT:
|
48 |
+
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
49 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype, quantization_config=nf4_config)
|
50 |
+
else:
|
51 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype)
|
52 |
+
quantize(text_encoder_2, weights=qfloat8)
|
53 |
+
freeze(text_encoder_2)
|
54 |
+
return text_encoder_2
|
55 |
+
|
56 |
+
def load_pipeline_stable(repo_id: str, dtype: torch.dtype) -> Any:
|
57 |
+
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_NEW_GPU else "int8wo")
|
58 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
59 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config))
|
60 |
+
pipe.transformer.fuse_qkv_projections()
|
61 |
+
pipe.vae.fuse_qkv_projections()
|
62 |
+
return pipe
|
63 |
+
|
64 |
+
def load_pipeline_lowvram(repo_id: str, dtype: torch.dtype) -> Any:
|
65 |
+
int4_config = TorchAoConfig("int4dq")
|
66 |
+
float8_config = TorchAoConfig("float8dq")
|
67 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
68 |
+
transformer = AutoencoderKL.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=float8_config)
|
69 |
+
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, transformer=transformer, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=int4_config)
|
70 |
+
pipe.transformer.fuse_qkv_projections()
|
71 |
+
pipe.vae.fuse_qkv_projections()
|
72 |
+
pipe.to("cuda")
|
73 |
+
return pipe
|
74 |
+
|
75 |
+
def load_pipeline_compile(repo_id: str, dtype: torch.dtype) -> Any:
|
76 |
+
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_NEW_GPU else "int8wo")
|
77 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
78 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config))
|
79 |
+
pipe.transformer.fuse_qkv_projections()
|
80 |
+
pipe.vae.fuse_qkv_projections()
|
81 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
82 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
83 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
84 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
85 |
+
return pipe
|
86 |
+
|
87 |
+
def load_pipeline_autoquant(repo_id: str, dtype: torch.dtype) -> Any:
|
88 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype))
|
89 |
+
pipe.transformer.fuse_qkv_projections()
|
90 |
+
pipe.vae.fuse_qkv_projections()
|
91 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
92 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
93 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
94 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
95 |
+
pipe.transformer = autoquant(pipe.transformer, error_on_unseen=False)
|
96 |
+
pipe.vae = autoquant(pipe.vae, error_on_unseen=False)
|
97 |
+
return pipe
|
98 |
+
|
99 |
+
def load_pipeline_turbo(repo_id: str, dtype: torch.dtype) -> Any:
|
100 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype))
|
101 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
|
102 |
+
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
103 |
+
pipe.fuse_lora()
|
104 |
+
pipe.unload_lora_weights()
|
105 |
+
pipe.transformer.fuse_qkv_projections()
|
106 |
+
pipe.vae.fuse_qkv_projections()
|
107 |
+
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
108 |
+
quantize_(pipe.transformer, weight, device="cuda")
|
109 |
+
quantize_(pipe.vae, weight, device="cuda")
|
110 |
+
return pipe
|
111 |
+
|
112 |
+
def load_pipeline_turbo_compile(repo_id: str, dtype: torch.dtype) -> Any:
|
113 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype))
|
114 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
|
115 |
+
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
116 |
+
pipe.fuse_lora()
|
117 |
+
pipe.unload_lora_weights()
|
118 |
+
pipe.transformer.fuse_qkv_projections()
|
119 |
+
pipe.vae.fuse_qkv_projections()
|
120 |
+
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
121 |
+
quantize_(pipe.transformer, weight, device="cuda")
|
122 |
+
quantize_(pipe.vae, weight, device="cuda")
|
123 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
124 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
125 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
126 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
127 |
+
return pipe
|
128 |
+
|
129 |
+
def load_pipeline_opt(repo_id: str, dtype: torch.dtype) -> Any:
|
130 |
+
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_NEW_GPU else "int8wo")
|
131 |
+
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
132 |
+
transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype)
|
133 |
+
transformer.fuse_qkv_projections()
|
134 |
+
if IS_NEW_GPU: quantize_(transformer, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda")
|
135 |
+
else: quantize_(transformer, weight, device="cuda")
|
136 |
+
transformer.to(memory_format=torch.channels_last)
|
137 |
+
transformer = torch.compile(transformer, mode="max-autotune", fullgraph=True)
|
138 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
139 |
+
vae.fuse_qkv_projections()
|
140 |
+
if IS_NEW_GPU: quantize_(vae, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda")
|
141 |
+
else: quantize_(vae, weight, device="cuda")
|
142 |
+
vae.to(memory_format=torch.channels_last)
|
143 |
+
vae = torch.compile(vae, mode="max-autotune", fullgraph=True)
|
144 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, transformer=None, vae=None, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config))
|
145 |
+
pipe.transformer = transformer
|
146 |
+
pipe.vae = vae
|
147 |
+
return pipe
|
148 |
+
|
149 |
+
class EndpointHandler:
|
150 |
+
def __init__(self, path=""):
|
151 |
+
repo_id = "NoMoreCopyrightOrg/flux-dev-8step" if IS_TURBO else "NoMoreCopyrightOrg/flux-dev"
|
152 |
+
dtype = torch.bfloat16
|
153 |
+
#dtype = torch.float16 # for older nVidia GPUs
|
154 |
+
if IS_AUTOQ: self.pipeline = load_pipeline_autoquant(repo_id, dtype)
|
155 |
+
elif IS_COMPILE: self.pipeline = load_pipeline_opt(repo_id, dtype)
|
156 |
+
elif IS_LVRAM and IS_NEW_GPU: self.pipeline = load_pipeline_lowvram(repo_id, dtype)
|
157 |
+
else: self.pipeline = load_pipeline_stable(repo_id, dtype)
|
158 |
+
if IS_PARA: apply_cache_on_pipe(self.pipeline, residual_diff_threshold=0.12)
|
159 |
+
gc.collect()
|
160 |
+
torch.cuda.empty_cache()
|
161 |
+
self.enable_vae_slicing()
|
162 |
+
self.enable_vae_tiling()
|
163 |
+
if IS_LVRAM:
|
164 |
+
self.pipeline.transformer.to("cuda")
|
165 |
+
self.pipeline.vae.to("cuda")
|
166 |
+
else: self.pipeline.to("cuda")
|
167 |
+
print(self.pipeline)
|
168 |
+
|
169 |
+
def __call__(self, data: Dict[str, Any]) -> Image.Image:
|
170 |
+
logger.info(f"Received incoming request with {data=}")
|
171 |
+
|
172 |
+
if "inputs" in data and isinstance(data["inputs"], str):
|
173 |
+
prompt = data.pop("inputs")
|
174 |
+
elif "prompt" in data and isinstance(data["prompt"], str):
|
175 |
+
prompt = data.pop("prompt")
|
176 |
+
else:
|
177 |
+
raise ValueError(
|
178 |
+
"Provided input body must contain either the key `inputs` or `prompt` with the"
|
179 |
+
" prompt to use for the image generation, and it needs to be a non-empty string."
|
180 |
+
)
|
181 |
+
|
182 |
+
parameters = data.pop("parameters", {})
|
183 |
+
|
184 |
+
num_inference_steps = parameters.get("num_inference_steps", 8 if IS_TURBO else 28)
|
185 |
+
width = parameters.get("width", 1024)
|
186 |
+
height = parameters.get("height", 1024)
|
187 |
+
guidance_scale = parameters.get("guidance_scale", 3.5)
|
188 |
+
|
189 |
+
# seed generator (seed cannot be provided as is but via a generator)
|
190 |
+
seed = parameters.get("seed", 0)
|
191 |
+
generator = torch.manual_seed(seed)
|
192 |
+
|
193 |
+
return self.pipeline( # type: ignore
|
194 |
+
prompt,
|
195 |
+
height=height,
|
196 |
+
width=width,
|
197 |
+
guidance_scale=guidance_scale,
|
198 |
+
num_inference_steps=num_inference_steps,
|
199 |
+
generator=generator,
|
200 |
+
output_type="pil",
|
201 |
+
).images[0]
|
202 |
+
|
203 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu126
|
2 |
+
torch>=2.6.0
|
3 |
+
torchvision
|
4 |
+
torchaudio
|
5 |
+
huggingface_hub
|
6 |
+
torchao>=0.9.0
|
7 |
+
diffusers>=0.32.2
|
8 |
+
peft
|
9 |
+
transformers==4.48.3
|
10 |
+
accelerate
|
11 |
+
numpy
|
12 |
+
scipy
|
13 |
+
Pillow
|
14 |
+
sentencepiece
|
15 |
+
protobuf
|
16 |
+
triton
|
17 |
+
gemlite
|
18 |
+
para-attn
|
19 |
+
bitsandbytes
|
20 |
+
optimum-quanto
|