|
|
|
|
|
|
|
|
|
import os |
|
from typing import Any, Dict |
|
import gc |
|
import time |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
import torch |
|
from torchao.quantization import quantize_, autoquant, int8_dynamic_activation_int8_weight, int8_dynamic_activation_int4_weight, float8_dynamic_activation_float8_weight |
|
from torchao.quantization.quant_api import PerRow |
|
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig |
|
from transformers import T5EncoderModel, BitsAndBytesConfig |
|
from optimum.quanto import freeze, qfloat8, quantize |
|
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe |
|
from huggingface_inference_toolkit.logging import logger |
|
|
|
import subprocess |
|
subprocess.run("pip list", shell=True) |
|
|
|
print("device name:", torch.cuda.get_device_name()) |
|
print("device capability:", torch.cuda.get_device_capability()) |
|
|
|
IS_TURBO = False |
|
IS_4BIT = False |
|
IS_PARA = True |
|
IS_LVRAM = False |
|
IS_COMPILE = True |
|
IS_AUTOQ = False |
|
IS_CC90 = True if torch.cuda.get_device_capability() >= (9, 0) else False |
|
IS_CC89 = True if torch.cuda.get_device_capability() >= (8, 9) else False |
|
|
|
|
|
|
|
torch.set_float32_matmul_precision("high") |
|
|
|
if IS_COMPILE: |
|
import torch._dynamo |
|
torch._dynamo.config.suppress_errors = True |
|
|
|
def print_vram(): |
|
free = torch.cuda.mem_get_info()[0] / (1024 ** 3) |
|
total = torch.cuda.mem_get_info()[1] / (1024 ** 3) |
|
print(f"VRAM: {total - free:.2f}/{total:.2f}GB") |
|
|
|
def pil_to_base64(image: Image.Image, modelname: str, prompt: str, height: int, width: int, steps: int, cfg: float, seed: int) -> str: |
|
import base64 |
|
from io import BytesIO |
|
import json |
|
from PIL import PngImagePlugin |
|
metadata = {"prompt": prompt, "num_inference_steps": steps, "guidance_scale": cfg, "seed": seed, "resolution": f"{width} x {height}", |
|
"Model": {"Model": modelname.split("/")[-1]}} |
|
info = PngImagePlugin.PngInfo() |
|
info.add_text("metadata", json.dumps(metadata)) |
|
buffered = BytesIO() |
|
image.save(buffered, "PNG", pnginfo=info) |
|
return base64.b64encode(buffered.getvalue()).decode('ascii') |
|
|
|
def load_te2(repo_id: str, dtype: torch.dtype) -> Any: |
|
if IS_4BIT: |
|
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) |
|
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype, quantization_config=nf4_config) |
|
else: |
|
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype) |
|
quantize(text_encoder_2, weights=qfloat8) |
|
freeze(text_encoder_2) |
|
return text_encoder_2 |
|
|
|
def load_pipeline_stable(repo_id: str, dtype: torch.dtype) -> Any: |
|
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_CC90 else "int8wo") |
|
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) |
|
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config) |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
return pipe |
|
|
|
def load_pipeline_lowvram(repo_id: str, dtype: torch.dtype) -> Any: |
|
int4_config = TorchAoConfig("int4dq") |
|
float8_config = TorchAoConfig("float8dq") |
|
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) |
|
transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=float8_config) |
|
pipe = FluxPipeline.from_pretrained(repo_id, vae=None, transformer=None, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=int4_config) |
|
pipe.transformer = transformer |
|
pipe.vae = vae |
|
|
|
|
|
pipe.to("cuda") |
|
return pipe |
|
|
|
def load_pipeline_compile(repo_id: str, dtype: torch.dtype) -> Any: |
|
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_CC90 else "int8wo") |
|
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) |
|
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config) |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True) |
|
return pipe |
|
|
|
def load_pipeline_autoquant(repo_id: str, dtype: torch.dtype) -> Any: |
|
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype) |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True) |
|
pipe.transformer = autoquant(pipe.transformer, error_on_unseen=False) |
|
pipe.vae = autoquant(pipe.vae, error_on_unseen=False) |
|
return pipe |
|
|
|
def load_pipeline_turbo(repo_id: str, dtype: torch.dtype) -> Any: |
|
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype) |
|
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") |
|
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) |
|
pipe.fuse_lora() |
|
pipe.unload_lora_weights() |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight() |
|
quantize_(pipe.transformer, weight, device="cuda") |
|
quantize_(pipe.vae, weight, device="cuda") |
|
return pipe |
|
|
|
def load_pipeline_turbo_compile(repo_id: str, dtype: torch.dtype) -> Any: |
|
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype) |
|
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") |
|
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) |
|
pipe.fuse_lora() |
|
pipe.unload_lora_weights() |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight() |
|
quantize_(pipe.transformer, weight, device="cuda") |
|
quantize_(pipe.vae, weight, device="cuda") |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True) |
|
return pipe |
|
|
|
def load_pipeline_opt(repo_id: str, dtype: torch.dtype) -> Any: |
|
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_CC90 else "int8wo") |
|
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight() |
|
transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype) |
|
transformer.fuse_qkv_projections() |
|
if IS_CC90: quantize_(transformer, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda") |
|
elif IS_CC89: quantize_(transformer, float8_dynamic_activation_float8_weight(), device="cuda") |
|
else: quantize_(transformer, weight, device="cuda") |
|
transformer.to(memory_format=torch.channels_last) |
|
transformer = torch.compile(transformer, mode="max-autotune", fullgraph=True) |
|
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) |
|
vae.fuse_qkv_projections() |
|
if IS_CC90: quantize_(vae, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda") |
|
elif IS_CC89: quantize_(vae, float8_dynamic_activation_float8_weight(), device="cuda") |
|
else: quantize_(vae, weight, device="cuda") |
|
vae.to(memory_format=torch.channels_last) |
|
vae = torch.compile(vae, mode="max-autotune", fullgraph=True) |
|
pipe = FluxPipeline.from_pretrained(repo_id, transformer=None, vae=None, torch_dtype=dtype, quantization_config=quantization_config) |
|
pipe.transformer = transformer |
|
pipe.vae = vae |
|
return pipe |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
repo_id = "NoMoreCopyrightOrg/flux-dev-8step" if IS_TURBO else "NoMoreCopyrightOrg/flux-dev" |
|
self.repo_id = repo_id |
|
dtype = torch.bfloat16 |
|
|
|
print_vram() |
|
print("Loading pipeline...") |
|
if IS_AUTOQ: self.pipeline = load_pipeline_autoquant(repo_id, dtype) |
|
elif IS_COMPILE: self.pipeline = load_pipeline_opt(repo_id, dtype) |
|
elif IS_LVRAM and IS_CC89: self.pipeline = load_pipeline_lowvram(repo_id, dtype) |
|
else: self.pipeline = load_pipeline_stable(repo_id, dtype) |
|
if IS_PARA: apply_cache_on_pipe(self.pipeline, residual_diff_threshold=0.12) |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
self.pipeline.enable_vae_slicing() |
|
self.pipeline.enable_vae_tiling() |
|
self.pipeline.to("cuda") |
|
print_vram() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Image.Image: |
|
logger.info(f"Received incoming request with {data=}") |
|
|
|
if "inputs" in data and isinstance(data["inputs"], str): |
|
prompt = data.pop("inputs") |
|
elif "prompt" in data and isinstance(data["prompt"], str): |
|
prompt = data.pop("prompt") |
|
else: |
|
raise ValueError( |
|
"Provided input body must contain either the key `inputs` or `prompt` with the" |
|
" prompt to use for the image generation, and it needs to be a non-empty string." |
|
) |
|
|
|
parameters = data.pop("parameters", {}) |
|
|
|
num_inference_steps = parameters.get("num_inference_steps", 8 if IS_TURBO else 28) |
|
width = parameters.get("width", 1024) |
|
height = parameters.get("height", 1024) |
|
guidance_scale = parameters.get("guidance_scale", 3.5) |
|
|
|
|
|
seed = parameters.get("seed", 0) |
|
generator = torch.manual_seed(seed) |
|
|
|
start = time.time() |
|
image = self.pipeline( |
|
prompt, |
|
height=height, |
|
width=width, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
output_type="pil", |
|
).images[0] |
|
end = time.time() |
|
print(f'Elapsed {end - start:.3f} sec. / prompt:"{prompt}" / size:{width}x{height} / steps:{num_inference_steps} / guidance scale:{guidance_scale} / seed:{seed}') |
|
|
|
return pil_to_base64(image, self.repo_id, prompt, height, width, num_inference_steps, guidance_scale, seed) |
|
|
|
|
|
|