English
Inference Endpoints
flux-test / handler.py
John6666's picture
Upload handler.py
d265ac6 verified
raw
history blame
2.68 kB
import os
from typing import Any, Dict
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig
from PIL import Image
import torch
IS_COMPILE = True
if IS_COMPILE:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
#from huggingface_inference_toolkit.logging import logger
def compile_pipeline(pipe) -> Any:
pipe.transformer.fuse_qkv_projections()
pipe.transformer.to(memory_format=torch.channels_last)
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False, backend="inductor")
return pipe
class EndpointHandler:
def __init__(self, path=""):
repo_id = "camenduru/FLUX.1-dev-diffusers"
#repo_id = "NoMoreCopyright/FLUX.1-dev-test"
dtype = torch.bfloat16
quantization_config = TorchAoConfig("int8wo")
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
#transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=quantization_config).to("cuda")
self.pipeline = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config)
if IS_COMPILE: self.pipeline = compile_pipeline(self.pipeline)
self.pipeline.to("cuda")
#@torch.inference_mode()
def __call__(self, data: Dict[str, Any]) -> Image.Image:
#logger.info(f"Received incoming request with {data=}")
if "inputs" in data and isinstance(data["inputs"], str):
prompt = data.pop("inputs")
elif "prompt" in data and isinstance(data["prompt"], str):
prompt = data.pop("prompt")
else:
raise ValueError(
"Provided input body must contain either the key `inputs` or `prompt` with the"
" prompt to use for the image generation, and it needs to be a non-empty string."
)
parameters = data.pop("parameters", {})
num_inference_steps = parameters.get("num_inference_steps", 28)
width = parameters.get("width", 1024)
height = parameters.get("height", 1024)
guidance_scale = parameters.get("guidance_scale", 3.5)
# seed generator (seed cannot be provided as is but via a generator)
seed = parameters.get("seed", 0)
generator = torch.manual_seed(seed)
return self.pipeline( # type: ignore
prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]