|
import os |
|
from typing import Any, Dict |
|
|
|
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig |
|
from PIL.Image import Image |
|
import torch |
|
|
|
import torch._dynamo |
|
torch._dynamo.config.suppress_errors = True |
|
|
|
|
|
|
|
def compile_pipeline(pipe) -> Any: |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False, backend="inductor") |
|
return pipe |
|
|
|
class EndpointHandler: |
|
def __init__(self, path="", **kwargs: Any) -> None: |
|
is_compile = True |
|
|
|
repo_id = "NoMoreCopyright/FLUX.1-dev-test" |
|
dtype = torch.bfloat16 |
|
quantization_config = TorchAoConfig("int4dq") |
|
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) |
|
|
|
self.pipeline = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config) |
|
if is_compile: self.pipeline = compile_pipeline(self.pipeline) |
|
self.pipeline.to("cuda") |
|
|
|
@torch.inference_mode() |
|
def __call__(self, data: Dict[str, Any]) -> Image: |
|
|
|
|
|
if "inputs" in data and isinstance(data["inputs"], str): |
|
prompt = data.pop("inputs") |
|
elif "prompt" in data and isinstance(data["prompt"], str): |
|
prompt = data.pop("prompt") |
|
else: |
|
raise ValueError( |
|
"Provided input body must contain either the key `inputs` or `prompt` with the" |
|
" prompt to use for the image generation, and it needs to be a non-empty string." |
|
) |
|
|
|
parameters = data.pop("parameters", {}) |
|
|
|
num_inference_steps = parameters.get("num_inference_steps", 30) |
|
width = parameters.get("width", 1024) |
|
height = parameters.get("height", 768) |
|
guidance_scale = parameters.get("guidance_scale", 3.5) |
|
|
|
|
|
seed = parameters.get("seed", 0) |
|
generator = torch.manual_seed(seed) |
|
|
|
return self.pipeline( |
|
prompt, |
|
height=height, |
|
width=width, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
).images[0] |