# https://github.com/sayakpaul/diffusers-torchao import os from typing import Any, Dict from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig from PIL import Image import torch from torchao.quantization import quantize_, autoquant, int8_dynamic_activation_int8_weight, int8_dynamic_activation_int4_weight from huggingface_hub import hf_hub_download IS_COMPILE = False IS_TURBO = False IS_4BIT = True if IS_COMPILE: import torch._dynamo torch._dynamo.config.suppress_errors = True from huggingface_inference_toolkit.logging import logger def load_pipeline_stable(repo_id: str, dtype: torch.dtype) -> Any: quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "int8dq") vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config) pipe.transformer.fuse_qkv_projections() pipe.vae.fuse_qkv_projections() pipe.to("cuda") return pipe def load_pipeline_compile(repo_id: str, dtype: torch.dtype) -> Any: quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "int8dq") vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config) pipe.transformer.fuse_qkv_projections() pipe.vae.fuse_qkv_projections() pipe.transformer.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False) pipe.vae.to(memory_format=torch.channels_last) pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=False, dynamic=False) pipe.to("cuda") return pipe def load_pipeline_autoquant(repo_id: str, dtype: torch.dtype) -> Any: pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda") pipe.transformer.fuse_qkv_projections() pipe.vae.fuse_qkv_projections() pipe.transformer.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) pipe.vae.to(memory_format=torch.channels_last) pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True) pipe.transformer = autoquant(pipe.transformer, error_on_unseen=False) pipe.vae = autoquant(pipe.vae, error_on_unseen=False) pipe.to("cuda") return pipe def load_pipeline_turbo(repo_id: str, dtype: torch.dtype) -> Any: pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda") pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) pipe.fuse_lora() pipe.transformer.fuse_qkv_projections() pipe.vae.fuse_qkv_projections() weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight() quantize_(pipe.transformer, weight, device="cuda") quantize_(pipe.vae, weight, device="cuda") quantize_(pipe.text_encoder_2, weight, device="cuda") pipe.to("cuda") return pipe def load_pipeline_turbo_compile(repo_id: str, dtype: torch.dtype) -> Any: pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda") pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) pipe.fuse_lora() pipe.transformer.fuse_qkv_projections() pipe.vae.fuse_qkv_projections() weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight() quantize_(pipe.transformer, weight, device="cuda") quantize_(pipe.vae, weight, device="cuda") quantize_(pipe.text_encoder_2, weight, device="cuda") pipe.transformer.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False) pipe.vae.to(memory_format=torch.channels_last) pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=False, dynamic=False) pipe.to("cuda") return pipe class EndpointHandler: def __init__(self, path=""): repo_id = "NoMoreCopyrightOrg/flux-dev-8step" if IS_TURBO else "NoMoreCopyrightOrg/flux-dev" #dtype = torch.bfloat16 dtype = torch.float16 # for older nVidia GPUs if IS_COMPILE: load_pipeline_compile(repo_id, dtype) else: self.pipeline = load_pipeline_stable(repo_id, dtype) def __call__(self, data: Dict[str, Any]) -> Image.Image: logger.info(f"Received incoming request with {data=}") if "inputs" in data and isinstance(data["inputs"], str): prompt = data.pop("inputs") elif "prompt" in data and isinstance(data["prompt"], str): prompt = data.pop("prompt") else: raise ValueError( "Provided input body must contain either the key `inputs` or `prompt` with the" " prompt to use for the image generation, and it needs to be a non-empty string." ) parameters = data.pop("parameters", {}) num_inference_steps = parameters.get("num_inference_steps", 8 if IS_TURBO else 28) width = parameters.get("width", 1024) height = parameters.get("height", 1024) guidance_scale = parameters.get("guidance_scale", 3.5) # seed generator (seed cannot be provided as is but via a generator) seed = parameters.get("seed", 0) generator = torch.manual_seed(seed) return self.pipeline( # type: ignore prompt, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", ).images[0]