import os from typing import Any, Dict from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig from PIL import Image import torch from accelerate import PartialState distributed_state = PartialState() IS_COMPILE = False if IS_COMPILE: import torch._dynamo torch._dynamo.config.suppress_errors = True #from huggingface_inference_toolkit.logging import logger def compile_pipeline(pipe) -> Any: pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False, backend="inductor") pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=False, dynamic=False, backend="inductor") return pipe class EndpointHandler: def __init__(self, path=""): repo_id = "camenduru/FLUX.1-dev-diffusers" #repo_id = "NoMoreCopyright/FLUX.1-dev-test" dtype = torch.bfloat16 quantization_config = TorchAoConfig("int8dq") vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) #transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=quantization_config).to("cuda") self.pipeline = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config) self.pipeline.transformer.fuse_qkv_projections() self.pipeline.transformer.to(memory_format=torch.channels_last) self.pipeline.vae.fuse_qkv_projections() self.pipeline.vae.to(memory_format=torch.channels_last) if IS_COMPILE: self.pipeline = compile_pipeline(self.pipeline) self.pipeline.to(distributed_state.device) @torch.inference_mode() def __call__(self, data: Dict[str, Any]) -> Image.Image: #logger.info(f"Received incoming request with {data=}") if "inputs" in data and isinstance(data["inputs"], str): prompt = data.pop("inputs") elif "prompt" in data and isinstance(data["prompt"], str): prompt = data.pop("prompt") else: raise ValueError( "Provided input body must contain either the key `inputs` or `prompt` with the" " prompt to use for the image generation, and it needs to be a non-empty string." ) parameters = data.pop("parameters", {}) num_inference_steps = parameters.get("num_inference_steps", 28) width = parameters.get("width", 1024) height = parameters.get("height", 1024) guidance_scale = parameters.get("guidance_scale", 3.5) # seed generator (seed cannot be provided as is but via a generator) seed = parameters.get("seed", 0) generator = torch.manual_seed(seed) return self.pipeline( # type: ignore prompt, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", ).images[0]