Upload handler.py
Browse files- handler.py +4 -2
handler.py
CHANGED
@@ -29,8 +29,10 @@ class EndpointHandler:
|
|
29 |
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
30 |
#transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=quantization_config).to("cuda")
|
31 |
self.pipeline = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config)
|
32 |
-
self.pipeline.transformer.fuse_qkv_projections()
|
33 |
-
self.pipeline.
|
|
|
|
|
34 |
if IS_COMPILE: self.pipeline = compile_pipeline(self.pipeline)
|
35 |
self.pipeline.to(distributed_state.device)
|
36 |
|
|
|
29 |
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
30 |
#transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=quantization_config).to("cuda")
|
31 |
self.pipeline = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config)
|
32 |
+
self.pipeline.transformer.fuse_qkv_projections()
|
33 |
+
self.pipeline.transformer.to(memory_format=torch.channels_last)
|
34 |
+
self.pipeline.vae.fuse_qkv_projections()
|
35 |
+
self.pipeline.vae.to(memory_format=torch.channels_last)
|
36 |
if IS_COMPILE: self.pipeline = compile_pipeline(self.pipeline)
|
37 |
self.pipeline.to(distributed_state.device)
|
38 |
|