--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-footulcer results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # beit-base-patch16-224-pt22k-ft22k-finetuned-footulcer This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co./microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0120 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.97 | 8 | 0.3613 | 0.8103 | | 0.5337 | 1.94 | 16 | 0.1871 | 0.9483 | | 0.2621 | 2.91 | 24 | 0.0921 | 0.9655 | | 0.2071 | 4.0 | 33 | 0.0626 | 0.9741 | | 0.1577 | 4.97 | 41 | 0.0316 | 0.9914 | | 0.1577 | 5.94 | 49 | 0.0421 | 0.9828 | | 0.1296 | 6.91 | 57 | 0.0142 | 1.0 | | 0.1102 | 8.0 | 66 | 0.0570 | 0.9828 | | 0.1344 | 8.97 | 74 | 0.0123 | 1.0 | | 0.0905 | 9.7 | 80 | 0.0120 | 1.0 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2