--- base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T library_name: peft license: apache-2.0 tags: - generated_from_trainer - Axolotl - fine tuned model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# outputs/lora-out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4615 | 0.08 | 1 | 1.4899 | | 1.3849 | 0.24 | 3 | 1.4852 | | 1.3665 | 0.48 | 6 | 1.4411 | | 1.2689 | 0.72 | 9 | 1.3381 | | 1.2258 | 0.96 | 12 | 1.2960 | | 1.2518 | 1.16 | 15 | 1.2797 | | 1.2263 | 1.4 | 18 | 1.2534 | | 1.1343 | 1.6400 | 21 | 1.2354 | | 1.2699 | 1.88 | 24 | 1.2255 | | 1.1493 | 2.08 | 27 | 1.2228 | | 1.153 | 2.32 | 30 | 1.2188 | | 1.1947 | 2.56 | 33 | 1.2183 | | 1.1125 | 2.8 | 36 | 1.2157 | | 1.1512 | 3.04 | 39 | 1.2123 | | 1.1883 | 3.24 | 42 | 1.2100 | | 1.1012 | 3.48 | 45 | 1.2119 | | 1.1891 | 3.7200 | 48 | 1.2122 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1