Commit
·
52d175d
1
Parent(s):
8cd6b46
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- Open-Orca/OpenOrca
|
5 |
+
- OpenAssistant/oasst_top1_2023-08-25
|
6 |
+
language:
|
7 |
+
- bg
|
8 |
+
- ca
|
9 |
+
- cs
|
10 |
+
- da
|
11 |
+
- de
|
12 |
+
- en
|
13 |
+
- es
|
14 |
+
- fr
|
15 |
+
- hr
|
16 |
+
- hu
|
17 |
+
- it
|
18 |
+
- nl
|
19 |
+
- pl
|
20 |
+
- pt
|
21 |
+
- ro
|
22 |
+
- ru
|
23 |
+
- sl
|
24 |
+
- sr
|
25 |
+
- sv
|
26 |
+
- uk
|
27 |
+
|
28 |
+
library_name: transformers
|
29 |
+
---
|
30 |
+
|
31 |
+
```
|
32 |
+
reference-data-model:
|
33 |
+
|
34 |
+
datasets:
|
35 |
+
- OpenAssistant/oasst_top1_2023-08-25:
|
36 |
+
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
|
37 |
+
link: https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25
|
38 |
+
|
39 |
+
model:
|
40 |
+
- Open-Orca/Mistral-7B-OpenOrca
|
41 |
+
Link:
|
42 |
+
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
|
43 |
+
|
44 |
+
100 examples of generating:
|
45 |
+
- Link:
|
46 |
+
https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3/blob/main/output.xlsx
|
47 |
+
|
48 |
+
Activated training with:
|
49 |
+
- Link:
|
50 |
+
https://huggingface.co/blog/tomaarsen/attention-sinks
|
51 |
+
https://github.com/tomaarsen/attention_sinks
|
52 |
+
https://arxiv.org/abs/2309.17453
|
53 |
+
|
54 |
+
Version 1:
|
55 |
+
- Link:
|
56 |
+
https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1
|
57 |
+
|
58 |
+
```
|
59 |
+
|
60 |
+
|
61 |
+
##
|
62 |
+
|
63 |
+
|
64 |
+
```py
|
65 |
+
# attention-sinks
|
66 |
+
pip install attention_sinks
|
67 |
+
|
68 |
+
# flash-attn
|
69 |
+
!export CUDA_HOME=/usr/local/cuda-11.8
|
70 |
+
!MAX_JOBS=4 pip install flash-attn --no-build-isolation -qqq
|
71 |
+
!pip install git+"https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary" -qqq
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
## Version
|
76 |
+
```py
|
77 |
+
import torch, transformers,torchvision
|
78 |
+
torch.__version__,transformers.__version__, torchvision.__version__
|
79 |
+
#OUTPUTS: ('2.0.1+cu118', '4.34.0', '0.15.2+cu118')
|
80 |
+
```
|
81 |
+
|
82 |
+
## How to use
|
83 |
+
```py
|
84 |
+
|
85 |
+
from transformers import (
|
86 |
+
AutoModelForCausalLM,
|
87 |
+
AutoTokenizer,
|
88 |
+
BitsAndBytesConfig,
|
89 |
+
HfArgumentParser,
|
90 |
+
TrainingArguments,
|
91 |
+
pipeline,
|
92 |
+
logging,
|
93 |
+
GenerationConfig,
|
94 |
+
TextIteratorStreamer,
|
95 |
+
)
|
96 |
+
|
97 |
+
from attention_sinks import AutoModelForCausalLM
|
98 |
+
|
99 |
+
import torch
|
100 |
+
|
101 |
+
# model_id = 'Open-Orca/Mistral-7B-OpenOrca'
|
102 |
+
model_id='NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3'
|
103 |
+
|
104 |
+
model = AutoModelForCausalLM.from_pretrained(model_id,
|
105 |
+
device_map="auto",
|
106 |
+
trust_remote_code=True,
|
107 |
+
torch_dtype=torch.bfloat16,
|
108 |
+
load_in_4bit=True,
|
109 |
+
low_cpu_mem_usage= True,
|
110 |
+
|
111 |
+
attention_sink_size=4,
|
112 |
+
attention_sink_window_size=1024, #512, # <- Low for the sake of faster generation
|
113 |
+
)
|
114 |
+
|
115 |
+
max_length=2048
|
116 |
+
print("max_length",max_length)
|
117 |
+
|
118 |
+
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id,
|
120 |
+
# use_fast = False,
|
121 |
+
max_length=max_length,)
|
122 |
+
|
123 |
+
tokenizer.pad_token = tokenizer.eos_token
|
124 |
+
tokenizer.padding_side = 'right'
|
125 |
+
|
126 |
+
#EXAMPLE #1
|
127 |
+
txt="""<|im_start|>user
|
128 |
+
I'm looking for an efficient Python script to output prime numbers. Can you help me out? I'm interested in a script that can handle large numbers and output them quickly. Also, it would be great if the script could take a range of numbers as input and output all the prime numbers within that range. Can you generate a script that fits these requirements? Thanks!<|im_end|>
|
129 |
+
<|im_start|>assistant
|
130 |
+
"""
|
131 |
+
|
132 |
+
#EXAMPLE #2
|
133 |
+
txt="""<|im_start|>user
|
134 |
+
Estoy desarrollando una REST API con Nodejs, y estoy tratando de aplicar algún sistema de seguridad, ya sea con tokens o algo similar, me puedes ayudar?<|im_end|>
|
135 |
+
<|im_start|>assistant
|
136 |
+
"""
|
137 |
+
|
138 |
+
inputs = tokenizer.encode(txt, return_tensors="pt").to("cuda")
|
139 |
+
|
140 |
+
generation_config = GenerationConfig(
|
141 |
+
max_new_tokens=max_new_tokens,
|
142 |
+
temperature=0.7,
|
143 |
+
top_p=0.9,
|
144 |
+
top_k=len_tokens,
|
145 |
+
repetition_penalty=1.11,
|
146 |
+
do_sample=True,
|
147 |
+
# pad_token_id=tokenizer.eos_token_id,
|
148 |
+
# eos_token_id=tokenizer.eos_token_id,
|
149 |
+
# use_cache=True,
|
150 |
+
# stopping_criteria= StoppingCriteriaList([stopping_criteria]),
|
151 |
+
)
|
152 |
+
outputs = model.generate(generation_config=generation_config,
|
153 |
+
input_ids=inputs,)
|
154 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=False) #True
|
155 |
+
```
|