|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
import holidays |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
self.pipeline = pipeline("text-classification",model=path) |
|
self.holidays = holidays.US() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
inputs = data.pop("inputs",data) |
|
date = data.pop("date", None) |
|
|
|
|
|
if date is not None and date in self.holidays: |
|
return [{"label": "happy", "score": 1}] |
|
|
|
|
|
|
|
prediction = self.pipeline(inputs) |
|
return prediction |
|
|