NexusRaven-13B / non_langchain_example.py
brian-yu-nexusflow's picture
Upload 2 files
ef90054
raw
history blame
3.97 kB
from typing import Literal
import math
import inspect
from transformers import pipeline
##########################################################
# Step 1: Define the functions you want to articulate. ###
##########################################################
def calculator(
input_a: float,
input_b: float,
operation: Literal["add", "subtract", "multiply", "divide"],
):
"""
Computes a calculation.
Args:
input_a (float) : Required. The first input.
input_b (float) : Required. The second input.
operation (string): The operation. Choices include: add to add two numbers, subtract to subtract two numbers, multiply to multiply two numbers, and divide to divide them.
"""
match operation:
case "add":
return input_a + input_b
case "subtract":
return input_a - input_b
case "multiply":
return input_a * input_b
case "divide":
return input_a / input_b
def cylinder_volume(radius, height):
"""
Calculate the volume of a cylinder.
Parameters:
- radius (float): The radius of the base of the cylinder.
- height (float): The height of the cylinder.
Returns:
- float: The volume of the cylinder.
"""
if radius < 0 or height < 0:
raise ValueError("Radius and height must be non-negative.")
volume = math.pi * (radius**2) * height
return volume
#############################################################
# Step 2: Let's define some utils for building the prompt ###
#############################################################
def format_functions_for_prompt(*functions):
formatted_functions = []
for func in functions:
source_code = inspect.getsource(func)
docstring = inspect.getdoc(func)
formatted_functions.append(
f"OPTION:\n<func_start>{source_code}<func_end>\n<docstring_start>\n{docstring}\n<docstring_end>"
)
return "\n".join(formatted_functions)
##############################
# Step 3: Construct Prompt ###
##############################
def construct_prompt(user_query: str):
formatted_prompt = format_functions_for_prompt(calculator, cylinder_volume)
formatted_prompt += f"\n\nUser Query: Question: {user_query}\n"
prompt = (
"<human>:\n"
+ formatted_prompt
+ "Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>"
)
return prompt
#######################################
# Step 4: Execute the function call ###
#######################################
def execute_function_call(model_output):
# Ignore everything after "Reflection" since that is not essential.
function_call = (
model_output[0]["generated_text"]
.strip()
.split("\n")[1]
.replace("Initial Answer:", "")
.strip()
)
try:
return eval(function_call)
except Exception as e:
return str(e)
if __name__ == "__main__":
# Build the model
text_gen = pipeline(
"text-generation",
model="Nexusflow/NexusRaven-13B",
device="cuda",
)
# Comp[ute a Simple equation
prompt = construct_prompt("What is 1+10?")
model_output = text_gen(
prompt, do_sample=False, max_new_tokens=400, return_full_text=False
)
result = execute_function_call(model_output)
print("Model Output:", model_output)
print("Execution Result:", result)
prompt = construct_prompt(
"I have a cake that is about 3 centimenters high and 200 centimeters in diameter. How much cake do I have?"
)
model_output = text_gen(
prompt,
do_sample=False,
max_new_tokens=400,
return_full_text=False,
stop=["\nReflection:"],
)
result = execute_function_call(model_output)
print("Model Output:", model_output)
print("Execution Result:", result)