--- library_name: transformers tags: - persian - whisper-base - whisper - farsi - Neura - NeuraSpeech license: apache-2.0 language: - fa pipeline_tag: automatic-speech-recognition --- #
## Model Description - **Developed by:** Neura company - **Funded by:** Neura - **Model type:** Whisper Base - **Language(s) (NLP):** Persian ## Model Architecture This model uses a FastConformer-TDT architecture. FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. You may find more information on the details of FastConformer here: Fast-Conformer Model. [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084). ## Uses Check out the Google Colab demo to run NeuraSpeech ASR on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12d7zecB94ah7ZHKnDtJF58saLzdkZAj3#scrollTo=oNt032WVkQUa) make sure these packages are installed: ```python from IPython.display import Audio, display display(Audio('persian_audio.mp3', rate = 32_000,autoplay=True)) ``` ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration import librosa # load model and processor processor = WhisperProcessor.from_pretrained("Neurai/NeuraSpeech_WhisperBase") model = WhisperForConditionalGeneration.from_pretrained("Neurai/NeuraSpeech_WhisperBase") forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe") array, sample_rate = librosa.load('persian_audio.mp3', sr=16000,mono=True) sr = 16000 array = librosa.to_mono(array) array = librosa.resample(array, orig_sr=sample_rate, target_sr=16000) input_features = processor(array, sampling_rate=sr, return_tensors="pt").input_features # generate token ids predicted_ids = model.generate(input_features) # decode token ids to text transcription = processor.batch_decode(predicted_ids,) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(transcription) ``` trascribed text : ``` او خواهان آزاد کردن بردگان بود ``` ## More Information https://neura.info ## Model Card Authors Esmaeil Zahedi, Mohsen Yazdinejad ## Model Card Contact info@neura.info