Neura commited on
Commit
790c92d
1 Parent(s): dd9a6f0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -167
README.md CHANGED
@@ -21,191 +21,63 @@ pipeline_tag: automatic-speech-recognition
21
  </p>
22
 
23
 
24
- ## Model Details
25
 
26
- ### Model Description
27
 
28
  <!-- Provide a longer summary of what this model is. -->
29
 
30
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
31
 
32
- - **Developed by:** [More Information Needed]
33
- - **Funded by [optional]:** [More Information Needed]
34
- - **Shared by [optional]:** [More Information Needed]
35
- - **Model type:** [More Information Needed]
36
- - **Language(s) (NLP):** [More Information Needed]
37
- - **License:** [More Information Needed]
38
- - **Finetuned from model [optional]:** [More Information Needed]
39
 
40
- ### Model Sources [optional]
41
-
42
- <!-- Provide the basic links for the model. -->
43
-
44
- - **Repository:** [More Information Needed]
45
- - **Paper [optional]:** [More Information Needed]
46
- - **Demo [optional]:** [More Information Needed]
47
 
48
  ## Uses
 
49
 
50
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
51
-
52
- ### Direct Use
53
-
54
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
55
-
56
- [More Information Needed]
57
-
58
- ### Downstream Use [optional]
59
-
60
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
61
-
62
- [More Information Needed]
63
-
64
- ### Out-of-Scope Use
65
-
66
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
67
-
68
- [More Information Needed]
69
-
70
- ## Bias, Risks, and Limitations
71
-
72
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
73
-
74
- [More Information Needed]
75
-
76
- ### Recommendations
77
-
78
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
79
-
80
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
81
-
82
- ## How to Get Started with the Model
83
-
84
- Use the code below to get started with the model.
85
-
86
- [More Information Needed]
87
-
88
- ## Training Details
89
-
90
- ### Training Data
91
-
92
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
93
-
94
- [More Information Needed]
95
-
96
- ### Training Procedure
97
-
98
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
99
-
100
- #### Preprocessing [optional]
101
-
102
- [More Information Needed]
103
-
104
-
105
- #### Training Hyperparameters
106
-
107
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
108
-
109
- #### Speeds, Sizes, Times [optional]
110
-
111
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
112
-
113
- [More Information Needed]
114
-
115
- ## Evaluation
116
-
117
- <!-- This section describes the evaluation protocols and provides the results. -->
118
 
119
- ### Testing Data, Factors & Metrics
120
 
121
- #### Testing Data
122
 
123
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
124
 
125
- [More Information Needed]
 
 
126
 
127
- #### Factors
 
 
 
128
 
129
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
130
 
131
- [More Information Needed]
 
 
 
 
132
 
133
- #### Metrics
134
 
135
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
136
 
137
- [More Information Needed]
138
-
139
- ### Results
140
-
141
- [More Information Needed]
142
-
143
- #### Summary
144
-
145
-
146
-
147
- ## Model Examination [optional]
148
-
149
- <!-- Relevant interpretability work for the model goes here -->
150
-
151
- [More Information Needed]
152
-
153
- ## Environmental Impact
154
-
155
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
156
-
157
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
158
-
159
- - **Hardware Type:** [More Information Needed]
160
- - **Hours used:** [More Information Needed]
161
- - **Cloud Provider:** [More Information Needed]
162
- - **Compute Region:** [More Information Needed]
163
- - **Carbon Emitted:** [More Information Needed]
164
-
165
- ## Technical Specifications [optional]
166
-
167
- ### Model Architecture and Objective
168
-
169
- [More Information Needed]
170
-
171
- ### Compute Infrastructure
172
-
173
- [More Information Needed]
174
-
175
- #### Hardware
176
-
177
- [More Information Needed]
178
-
179
- #### Software
180
-
181
- [More Information Needed]
182
-
183
- ## Citation [optional]
184
-
185
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
186
-
187
- **BibTeX:**
188
-
189
- [More Information Needed]
190
-
191
- **APA:**
192
-
193
- [More Information Needed]
194
-
195
- ## Glossary [optional]
196
-
197
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
198
-
199
- [More Information Needed]
200
-
201
- ## More Information [optional]
202
-
203
- [More Information Needed]
204
-
205
- ## Model Card Authors [optional]
206
-
207
- [More Information Needed]
208
 
209
  ## Model Card Contact
210
-
211
- [More Information Needed]
 
21
  </p>
22
 
23
 
24
+ <!-- Provide a quick summary of what the model is/does. -->
25
 
26
+ ## Model Description
27
 
28
  <!-- Provide a longer summary of what this model is. -->
29
 
30
+ - **Developed by:** Neura company
31
+ - **Funded by:** Neura
32
+ - **Model type:** Whisper Base
33
+ - **Language(s) (NLP):** Persian
34
 
35
+ ## Model Architecture
 
 
 
 
 
 
36
 
37
+ This model uses a FastConformer-TDT architecture. FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling.
38
+ You may find more information on the details of FastConformer here: Fast-Conformer Model.
39
+ [Fast Conformer with Linearly Scalable Attention for Efficient
40
+ Speech Recognition](https://arxiv.org/abs/2305.05084).
 
 
 
41
 
42
  ## Uses
43
+ Check out the Google Colab demo to run NeuraSpeech ASR on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12d7zecB94ah7ZHKnDtJF58saLzdkZAj3#scrollTo=oNt032WVkQUa)
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
 
46
 
47
+ make sure these packages are installed:
48
 
49
+ ```python
50
+ from IPython.display import Audio, display
51
+ display(Audio('persian_audio.mp3', rate = 32_000,autoplay=True))
52
+ ```
53
 
54
+ ```python
55
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
56
+ import librosa
57
 
58
+ # load model and processor
59
+ processor = WhisperProcessor.from_pretrained("Neurai/NeuraSpeech_WhisperBase")
60
+ model = WhisperForConditionalGeneration.from_pretrained("Neurai/NeuraSpeech_WhisperBase")
61
+ forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe")
62
 
63
+ array, sample_rate = librosa.load('persian_audio.mp3', sr=16000,mono=True)
64
+ sr = 16000
65
+ array = librosa.to_mono(array)
66
+ array = librosa.resample(array, orig_sr=sample_rate, target_sr=16000)
67
+ input_features = processor(array, sampling_rate=sr, return_tensors="pt").input_features
68
 
69
+ ```
70
+ trascribed text :
71
+ ```
72
+ او خواهان آزاد کردن بردگان بود
73
+ ```
74
 
 
75
 
76
+ ## More Information
77
+ https://neura.info
78
 
79
+ ## Model Card Authors
80
+ Esmaeil Zahedi, Mohsen Yazdinejad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  ## Model Card Contact
83