--- library_name: Nvidia Nemo license: apache-2.0 language: - fa pipeline_tag: automatic-speech-recognition tags: - Persian - Neura - PersianASR datasets: - common_voice_17_0 --- # Neura Speech Nemo
## Model Description - **Developed by:** Neura company - **Funded by:** Neura - **Model type:** fa_FastConformers_Transducer - **Language(s) (NLP):** Persian ## Model Architecture This model uses a FastConformer-TDT architecture. FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. You may find more information on the details of FastConformer here: Fast-Conformer Model. [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084). ## Uses Check out the Google Colab demo to run NeuraSpeech ASR on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kt34iFb_ez0y2SjU_km3vnzG4ccdVrXB#scrollTo=Z9DvUwmKtmR7) make sure these packages are installed: ``` !pip install nemo_toolkit['all'] ``` ```python from IPython.display import Audio, display display(Audio('persian_audio.mp3', rate = 32_000,autoplay=True)) ``` ```python import nemo print('nemo', nemo.__version__) import numpy as np import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(model_name="Neurai/NeuraSpeech_900h") asr_model.transcribe(paths2audio_files=['persian_audio.mp3', ], batch_size=1)[0] ``` trascribed text : ``` او خواهان آزاد کردن بردگان بود ``` ## More Information https://neura.info ## Model Card Authors Esmaeil Zahedi, Mohsen Yazdinejad ## Model Card Contact info@neura.info