File size: 1,369 Bytes
b589f2f
3d32165
b589f2f
 
 
3d32165
b589f2f
3d32165
 
 
 
 
b589f2f
4f4597e
b589f2f
 
0be7a39
b589f2f
 
 
 
 
 
 
 
 
 
3d32165
b589f2f
 
5599459
 
 
 
 
b589f2f
 
 
d36bf84
 
 
 
 
 
 
 
 
b589f2f
d36bf84
 
 
 
 
 
052eb30
d36bf84
b589f2f
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: Nvidia Nemo
license: apache-2.0
language:
- fa
pipeline_tag: automatic-speech-recognition
tags:
- Persian
- Neura
- PersianASR
datasets: 
- common_voice_17_0
---
# Neura Speech Nemo

<p align="center">
  <img src="neura_speech.png" width=512 height=256 />
</p>

<!-- Provide a quick summary of what the model is/does. -->

## Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Neura company
- **Funded by:** Neura
- **Model type:** fa_FastConformers_Transducer
- **Language(s) (NLP):** Persian

## Model Architecture

The model features an improved Conformer architecture from
[Fast Conformer with Linearly Scalable Attention for Efficient
Speech Recognition](https://arxiv.org/abs/2305.05084).

## Uses

make sure these packages are installed:
```
!pip install nemo_toolkit['all']
```
```python
import nemo
print('nemo', nemo.__version__)
import numpy as np
import nemo.collections.asr as nemo_asr

asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(model_name="Neurai/NeuraSpeech_900h")
asr_model.transcribe(paths2audio_files=['persian_audio.wav', ], batch_size=1)[0]

```
trascribed text :
```
او خواهان آزاد کردن بردگان بود
```


## More Information
https://neura.info

## Model Card Authors
Esmaeil Zahedi, Mohsen Yazdinejad

## Model Card Contact
[email protected]