File size: 1,369 Bytes
b589f2f 3d32165 b589f2f 3d32165 b589f2f 3d32165 b589f2f 4f4597e b589f2f 0be7a39 b589f2f 3d32165 b589f2f 5599459 b589f2f d36bf84 b589f2f d36bf84 052eb30 d36bf84 b589f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: Nvidia Nemo
license: apache-2.0
language:
- fa
pipeline_tag: automatic-speech-recognition
tags:
- Persian
- Neura
- PersianASR
datasets:
- common_voice_17_0
---
# Neura Speech Nemo
<p align="center">
<img src="neura_speech.png" width=512 height=256 />
</p>
<!-- Provide a quick summary of what the model is/does. -->
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Neura company
- **Funded by:** Neura
- **Model type:** fa_FastConformers_Transducer
- **Language(s) (NLP):** Persian
## Model Architecture
The model features an improved Conformer architecture from
[Fast Conformer with Linearly Scalable Attention for Efficient
Speech Recognition](https://arxiv.org/abs/2305.05084).
## Uses
make sure these packages are installed:
```
!pip install nemo_toolkit['all']
```
```python
import nemo
print('nemo', nemo.__version__)
import numpy as np
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(model_name="Neurai/NeuraSpeech_900h")
asr_model.transcribe(paths2audio_files=['persian_audio.wav', ], batch_size=1)[0]
```
trascribed text :
```
او خواهان آزاد کردن بردگان بود
```
## More Information
https://neura.info
## Model Card Authors
Esmaeil Zahedi, Mohsen Yazdinejad
## Model Card Contact
[email protected] |