File size: 24,350 Bytes
6fb041f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
---
base_model: BAAI/bge-base-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Reasoning why the answer may be good:

    1. **Context Grounding:** The answer correctly interprets and references the specific
    part of the provided document that mentions the response status column.

    2. **Relevance:** The answer directly addresses the question by explaining what
    the percentage in the response status column indicates.

    3. **Conciseness:** The answer is concise and avoids unnecessary information,
    focusing solely on the meaning of the percentage in the response status column.

    4. **Specificity:** The answer gives a detailed explanation about what the percentage
    represents—successful completion of response actions.

    5. **Accuracy:** The key concept of the percentage indicating the total amount
    of successful completion of response actions is correctly conveyed as per the
    document.


    Reasoning why the answer may be bad:

    There is no apparent reason for the answer to be bad; it aligns well with the
    document and addresses the question directly and concisely.


    Final result: Good'
- text: 'Reasoning:

    **Why the answer may be good:**

    - It accurately states that the provided information does not address the specific
    question.

    - It directs the reader to seek additional information or context.


    **Why the answer may be bad:**

    - It does not attempt to relate or infer an answer based on the document provided.

    - The document does provide relevant details about endpoint controls, including
    that they involve Device Control, Personal Firewall Control, and Full Disk Encryption
    Visibility, which can imply their purpose.

    - The response is somewhat evasive and does not leverage any context offered by
    the document to give an informed answer.


    Final Result: Bad'
- text: 'Reasoning why the answer may be good:

    - The provided answer is addressing the purpose of an agent (collecting and securely
    forwarding logs), aligning with the context of log collection and forwarding described
    in the document.


    Reasoning why the answer may be bad:

    - The answer is missing specificity. It does not mention on-site collection nor
    does it specify the direct forwarding feature mentioned in the document.

    - It lacks details specified in the document about the agent being used for integrations
    that do not use cloud feeds, e.g., firewalls.

    - The answer does not mention <ORGANIZATION> explicitly ties into the detection
    and correlation engine.


    Final result: Bad'
- text: '### Reasoning


    **Good Aspects of the Answer:**

    1. **Context Grounding:** The answer correctly pulls context from the document
    regarding email notifications.

    2. **Relevance:** The answer attempts to address the purpose of the email notifications
    checkbox directly.


    **Bad Aspects of the Answer:**

    1. **Key/Value/Event Name Accuracy:** The document outlines a checkbox related
    to enabling or disabling email notifications, but the answer uses placeholder
    text "ORGANIZATION_2," which needs replacement for accuracy.

    2. **Conciseness:** The answer is somewhat repetitive with the phrasing "ORGANIZATION_2
    or disable," which should clearly state "enable or disable."

    3. **Specificity:** The answer lacks the specific detail from the document that
    this is specific to stale or archived sensors and involves System Admins.


    ### Final Evaluation


    **Final Result:** `Bad`


    The placeholder text makes the information ambiguous and not actionable. Additionally,
    there is a slight redundancy and missing specific roles (System Admin) and context
    (stale/archived sensors) necessary for precision.'
- text: 'Reasoning why the answer may be good:

    - The answer provides a specific URL, which is required by the question.

    - It appears to be in the format expected for image URLs as hinted at in the document.


    Reasoning why the answer may be bad:

    - The provided answer does not match the precise URL given in the document.

    - The correct URL for the second query should be `..\/..\/_images\/hunting_http://miller.co`,
    while the answer contains `hunting_http://www.flores.net/`, which is not mentioned
    in the document.

    - The answer does not reflect careful cross-referencing with the provided document.


    Final result: Bad'
inference: true
model-index:
- name: SetFit with BAAI/bge-base-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.4788732394366197
      name: Accuracy
---

# SetFit with BAAI/bge-base-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co./datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | <ul><li>'Reasoning why the answer may be good:\n- The answer attempts to address the significance of considering all the answers together, which is the core of the question.\n\nReasoning why the answer may be bad:\n- The provided answer does not specifically mention or directly link to the key points raised in the provided document.\n- It lacks specificity and grounding in the text, failing to reference important considerations such as the significance of the machines involved, the severity of the behavior, and the significance of the users involved.\n- It does not directly explain why combining all the answers aids in determining if the behavior is malicious.\n\nFinal Result: Bad'</li><li>'The answer provided is:\n\n"The information provided doesn\'t cover this specific query. Please refer to additional sources or provide more context to obtain a comprehensive answer."\n\n### Evaluation\n\n**1. Context Grounding:** \n- **Negative:** The provided document actually contains a detailed procedure for excluding MalOps. The answer incorrectly claims the information does not cover the query.\n\n**2. Relevance:** \n- **Negative:** The answer does not address the question of what the process is, instead, it diverts the user to additional sources.\n\n**3. Conciseness:** \n- **Negative:** It doesn\'t provide concise information pertinent to the question asked.\n\n**4. Specificity:** \n- **Negative:** The answer is too general and lacks any specifics related to the step-by-step process detailed in the document.\n\n**5. Correct Key/Value/Event Name:**\n- **Negative:** No keys or values related to the exclusion process (like “Exclude” or “allowlist”) are mentioned, which the document clearly outlines.\n\n### Reasoning\n\n- **Good points:** There are actually no good points since the answer is incorrect and not useful.\n- **Bad points:** The answer dismisses the information when the procedure is clearly mapped out in the document. It fails to provide the necessary details from the document.\n\n### Final Result\n**Bad**'</li><li>'**Reasoning:**\n\n**Good Elements:**\n1. **Conciseness:** The provided answer is concise and directly specifies the action needed for a quarantined file.\n2. **Relevance:** The answer directly addresses the question, mentioning that the file should be un-quarantined.\n\n**Bad Elements:**\n1. **Context Grounding:** The answer only partially references the document without showing a comprehensive understanding.\n2. **Completeness:** The answer mentions un-quarantining but does not provide specifics about the subsequent steps needed for submitting a quarantined file as a false positive.\n3. **Format and Clarity:** It omits the mention of the prerequisite or steps for un-quarantining mentioned in the document.\n\n**Final Result:**\n**Bad** \nThe answer is accurate but lacks the necessary depth and context to be fully correct. It should have included the pre-requisite and clarified the steps for submission after un-quarantining.'</li></ul>                                                                                                                                                                                                                                                                                           |
| 1     | <ul><li>'**Reasoning:**\n\n**Positive Aspects:**\n1. **Context Grounding:** The answer mentions a dump file and relates it to the contents of the sensor’s RAM at the time of failure, which is consistent with the provided document.\n2. **Relevance:** The answer is directed at what the computer generates in case of a system failure.\n\n**Negative Aspects:**\n1. **Specificity:** While it correctly mentions that the dump file contains the entire contents of the sensor\'s RAM at the time of the failure, it does not clearly state specifically that it is a "memory dump file," which would be more precise.\n2. **Terminology:** The document uses the term "memory dump file," which is more accurate and would align better with the terminology used in the question and document.\n3. **Conciseness:** It could be perceived as slightly verbose given the requirement for direct and precise information.\n\nGiven these points, the answer could be clearer and more specific in the terminology used.\n\n**Final Result:** **Bad**'</li><li>'**Evaluation Reasoning:**\n\n1. **Context Grounding:**\n   - **Good Aspect:** The answer is derived from the document where it mentions threat detection as a core capability of the <ORGANIZATION_2> platforms to identify cyber security threats.\n   - **Bad Aspect:** The answer is vague and doesn’t leverage the detailed explanation provided in the document, which talks about using advanced engines, AI, ML, and behavioral analysis to identify cyber security threats.\n\n2. **Relevance:**\n   - **Good Aspect:** The answer addresses the specific question about the purpose of the <ORGANIZATION_2> platforms threat detection abilities.\n   - **Bad Aspect:** It fails to incorporate how the document details the processes (use of AI, ML, etc.) to identify threats.\n\n3. **Conciseness:**\n   - **Good Aspect:** The answer is definitely concise.\n   - **Bad Aspect:** It is overly concise to the point of lacking necessary detail, which makes it too general and uninformative.\n\n4. **Specificity:**\n   - **Good Aspect:** The basic idea of identifying cyber security threats is correct.\n   - **Bad Aspect:** It omits specific key elements such as AI, machine learning, and behavioral analysis mentioned in the document.\n\n5. **Accuracy regarding key/value/event name:** \n   - **Good Aspect:** "Identifying cyber security threats" is a correct general purpose.\n   - **Bad Aspect:** The answer does not mention specifically the details related to the ENGINE or specific methods/tools involved, nor does it leverage the details of how the platform operates.\n\n**Final Evaluation Result:**\nBad'</li><li>'Reasoning:\n\n**Good Points**:\n- The answer directly addresses the lack of coverage in the provided document regarding the specific query.\n\n**Bad Points**:\n- The answer is incorrect because it states there is no information on the fifth scenario, but the document provides examples, and the evaluator should infer which of the mentioned scenarios could be considered the fifth if it was in sequence.\n- The answer does not leverage any context from the document, failing at providing even an approximate related response.\n- The answer lacks specificity and does not attempt to relate to any scenarios described.\n\nFinal Result: Bad'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.4789   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Netta1994/setfit_baai_cybereason_gpt-4o_improved-cot-instructions_two_reasoning_only_reasoning_")
# Run inference
preds = model("Reasoning why the answer may be good:
- The answer provides a specific URL, which is required by the question.
- It appears to be in the format expected for image URLs as hinted at in the document.

Reasoning why the answer may be bad:
- The provided answer does not match the precise URL given in the document.
- The correct URL for the second query should be `..\/..\/_images\/hunting_http://miller.co`, while the answer contains `hunting_http://www.flores.net/`, which is not mentioned in the document.
- The answer does not reflect careful cross-referencing with the provided document.

Final result: Bad")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median   | Max |
|:-------------|:----|:---------|:----|
| Word count   | 60  | 128.2029 | 239 |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 34                    |
| 1     | 35                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0058 | 1    | 0.2486        | -               |
| 0.2890 | 50   | 0.2626        | -               |
| 0.5780 | 100  | 0.2394        | -               |
| 0.8671 | 150  | 0.1005        | -               |
| 1.1561 | 200  | 0.0028        | -               |
| 1.4451 | 250  | 0.002         | -               |
| 1.7341 | 300  | 0.0018        | -               |
| 2.0231 | 350  | 0.0016        | -               |
| 2.3121 | 400  | 0.0016        | -               |
| 2.6012 | 450  | 0.0014        | -               |
| 2.8902 | 500  | 0.0013        | -               |
| 3.1792 | 550  | 0.0012        | -               |
| 3.4682 | 600  | 0.0012        | -               |
| 3.7572 | 650  | 0.0012        | -               |
| 4.0462 | 700  | 0.0012        | -               |
| 4.3353 | 750  | 0.0012        | -               |
| 4.6243 | 800  | 0.0011        | -               |
| 4.9133 | 850  | 0.0011        | -               |

### Framework Versions
- Python: 3.10.14
- SetFit: 1.1.0
- Sentence Transformers: 3.1.0
- Transformers: 4.44.0
- PyTorch: 2.4.1+cu121
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->