Nessrine9 commited on
Commit
471bf48
·
verified ·
1 Parent(s): 6a44a72

Finetuned model on SNLI

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L12-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:100000
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: A boy wearing climbing gear climbs by a wooden pole.
25
+ sentences:
26
+ - A person wearing climbing gear climbs by a wooden pole.
27
+ - A man holds up a tent pole.
28
+ - A man plays an instrument.
29
+ - source_sentence: Asian men saying hello to each other.
30
+ sentences:
31
+ - Asian men are about to attend a convention.
32
+ - One man is working on a wrist watch to repair it.
33
+ - A white male dog is following a black female dog because she is in heat.
34
+ - source_sentence: A woman in a white shirt and red jeans is carrying a plastic bag
35
+ and cellphone while walking along the street by art prints.
36
+ sentences:
37
+ - The people are sitting on a couch
38
+ - The man is walking down the street with a plastic bag.
39
+ - A man wants to join in the conversation
40
+ - source_sentence: Girl in a thin rowboat leaving the dock of a lake.
41
+ sentences:
42
+ - A man in a solid white shirt and two black-haired boys pose for pictures inside.
43
+ - The ladies are having a conversation.
44
+ - The girl is sitting on the shore of the lake.
45
+ - source_sentence: A large crowd watches as a couple tap dances together on a wooden
46
+ floor.
47
+ sentences:
48
+ - People are leaving the restaurant.
49
+ - A man crashes his car into the grocery store.
50
+ - A man swings a golf club.
51
+ model-index:
52
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: snli dev
59
+ type: snli-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.5007411996817115
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.49310662404125943
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.4737846265333258
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.4923216703895389
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.47496147875492195
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.4931066240443629
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.500741200773276
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.49310655847757945
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.500741200773276
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.4931066240443629
90
+ name: Spearman Max
91
+ ---
92
+
93
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision 30ce63ae64e71b9199b3d2eae9de99f64a26eedc -->
102
+ - **Maximum Sequence Length:** 128 tokens
103
+ - **Output Dimensionality:** 384 tokens
104
+ - **Similarity Function:** Cosine Similarity
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
113
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
114
+
115
+ ### Full Model Architecture
116
+
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
120
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
121
+ (2): Normalize()
122
+ )
123
+ ```
124
+
125
+ ## Usage
126
+
127
+ ### Direct Usage (Sentence Transformers)
128
+
129
+ First install the Sentence Transformers library:
130
+
131
+ ```bash
132
+ pip install -U sentence-transformers
133
+ ```
134
+
135
+ Then you can load this model and run inference.
136
+ ```python
137
+ from sentence_transformers import SentenceTransformer
138
+
139
+ # Download from the 🤗 Hub
140
+ model = SentenceTransformer("Nessrine9/finetuned2-MiniLM-L12-v2")
141
+ # Run inference
142
+ sentences = [
143
+ 'A large crowd watches as a couple tap dances together on a wooden floor.',
144
+ 'A man swings a golf club.',
145
+ 'A man crashes his car into the grocery store.',
146
+ ]
147
+ embeddings = model.encode(sentences)
148
+ print(embeddings.shape)
149
+ # [3, 384]
150
+
151
+ # Get the similarity scores for the embeddings
152
+ similarities = model.similarity(embeddings, embeddings)
153
+ print(similarities.shape)
154
+ # [3, 3]
155
+ ```
156
+
157
+ <!--
158
+ ### Direct Usage (Transformers)
159
+
160
+ <details><summary>Click to see the direct usage in Transformers</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Downstream Usage (Sentence Transformers)
167
+
168
+ You can finetune this model on your own dataset.
169
+
170
+ <details><summary>Click to expand</summary>
171
+
172
+ </details>
173
+ -->
174
+
175
+ <!--
176
+ ### Out-of-Scope Use
177
+
178
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
179
+ -->
180
+
181
+ ## Evaluation
182
+
183
+ ### Metrics
184
+
185
+ #### Semantic Similarity
186
+ * Dataset: `snli-dev`
187
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
188
+
189
+ | Metric | Value |
190
+ |:-------------------|:-----------|
191
+ | pearson_cosine | 0.5007 |
192
+ | spearman_cosine | 0.4931 |
193
+ | pearson_manhattan | 0.4738 |
194
+ | spearman_manhattan | 0.4923 |
195
+ | pearson_euclidean | 0.475 |
196
+ | spearman_euclidean | 0.4931 |
197
+ | pearson_dot | 0.5007 |
198
+ | spearman_dot | 0.4931 |
199
+ | pearson_max | 0.5007 |
200
+ | **spearman_max** | **0.4931** |
201
+
202
+ <!--
203
+ ## Bias, Risks and Limitations
204
+
205
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
206
+ -->
207
+
208
+ <!--
209
+ ### Recommendations
210
+
211
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
212
+ -->
213
+
214
+ ## Training Details
215
+
216
+ ### Training Dataset
217
+
218
+ #### Unnamed Dataset
219
+
220
+
221
+ * Size: 100,000 training samples
222
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | sentence_0 | sentence_1 | label |
225
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
226
+ | type | string | string | float |
227
+ | details | <ul><li>min: 7 tokens</li><li>mean: 16.85 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.61 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
228
+ * Samples:
229
+ | sentence_0 | sentence_1 | label |
230
+ |:---------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------|
231
+ | <code>A biker is practicing a trick while his friend watch him as his audience.</code> | <code>man riding the bike to show his talent to his girlfriend.</code> | <code>0.5</code> |
232
+ | <code>A man in a brown jacket standing in front of an open porch door.</code> | <code>A man is standing in front of the porch door.</code> | <code>0.0</code> |
233
+ | <code>Two men and three children are at the beach.</code> | <code>Five people enjoying their vacation.</code> | <code>0.5</code> |
234
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
235
+ ```json
236
+ {
237
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
238
+ }
239
+ ```
240
+
241
+ ### Training Hyperparameters
242
+ #### Non-Default Hyperparameters
243
+
244
+ - `eval_strategy`: steps
245
+ - `per_device_train_batch_size`: 16
246
+ - `per_device_eval_batch_size`: 16
247
+ - `num_train_epochs`: 4
248
+ - `fp16`: True
249
+ - `multi_dataset_batch_sampler`: round_robin
250
+
251
+ #### All Hyperparameters
252
+ <details><summary>Click to expand</summary>
253
+
254
+ - `overwrite_output_dir`: False
255
+ - `do_predict`: False
256
+ - `eval_strategy`: steps
257
+ - `prediction_loss_only`: True
258
+ - `per_device_train_batch_size`: 16
259
+ - `per_device_eval_batch_size`: 16
260
+ - `per_gpu_train_batch_size`: None
261
+ - `per_gpu_eval_batch_size`: None
262
+ - `gradient_accumulation_steps`: 1
263
+ - `eval_accumulation_steps`: None
264
+ - `torch_empty_cache_steps`: None
265
+ - `learning_rate`: 5e-05
266
+ - `weight_decay`: 0.0
267
+ - `adam_beta1`: 0.9
268
+ - `adam_beta2`: 0.999
269
+ - `adam_epsilon`: 1e-08
270
+ - `max_grad_norm`: 1
271
+ - `num_train_epochs`: 4
272
+ - `max_steps`: -1
273
+ - `lr_scheduler_type`: linear
274
+ - `lr_scheduler_kwargs`: {}
275
+ - `warmup_ratio`: 0.0
276
+ - `warmup_steps`: 0
277
+ - `log_level`: passive
278
+ - `log_level_replica`: warning
279
+ - `log_on_each_node`: True
280
+ - `logging_nan_inf_filter`: True
281
+ - `save_safetensors`: True
282
+ - `save_on_each_node`: False
283
+ - `save_only_model`: False
284
+ - `restore_callback_states_from_checkpoint`: False
285
+ - `no_cuda`: False
286
+ - `use_cpu`: False
287
+ - `use_mps_device`: False
288
+ - `seed`: 42
289
+ - `data_seed`: None
290
+ - `jit_mode_eval`: False
291
+ - `use_ipex`: False
292
+ - `bf16`: False
293
+ - `fp16`: True
294
+ - `fp16_opt_level`: O1
295
+ - `half_precision_backend`: auto
296
+ - `bf16_full_eval`: False
297
+ - `fp16_full_eval`: False
298
+ - `tf32`: None
299
+ - `local_rank`: 0
300
+ - `ddp_backend`: None
301
+ - `tpu_num_cores`: None
302
+ - `tpu_metrics_debug`: False
303
+ - `debug`: []
304
+ - `dataloader_drop_last`: False
305
+ - `dataloader_num_workers`: 0
306
+ - `dataloader_prefetch_factor`: None
307
+ - `past_index`: -1
308
+ - `disable_tqdm`: False
309
+ - `remove_unused_columns`: True
310
+ - `label_names`: None
311
+ - `load_best_model_at_end`: False
312
+ - `ignore_data_skip`: False
313
+ - `fsdp`: []
314
+ - `fsdp_min_num_params`: 0
315
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
316
+ - `fsdp_transformer_layer_cls_to_wrap`: None
317
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
318
+ - `deepspeed`: None
319
+ - `label_smoothing_factor`: 0.0
320
+ - `optim`: adamw_torch
321
+ - `optim_args`: None
322
+ - `adafactor`: False
323
+ - `group_by_length`: False
324
+ - `length_column_name`: length
325
+ - `ddp_find_unused_parameters`: None
326
+ - `ddp_bucket_cap_mb`: None
327
+ - `ddp_broadcast_buffers`: False
328
+ - `dataloader_pin_memory`: True
329
+ - `dataloader_persistent_workers`: False
330
+ - `skip_memory_metrics`: True
331
+ - `use_legacy_prediction_loop`: False
332
+ - `push_to_hub`: False
333
+ - `resume_from_checkpoint`: None
334
+ - `hub_model_id`: None
335
+ - `hub_strategy`: every_save
336
+ - `hub_private_repo`: False
337
+ - `hub_always_push`: False
338
+ - `gradient_checkpointing`: False
339
+ - `gradient_checkpointing_kwargs`: None
340
+ - `include_inputs_for_metrics`: False
341
+ - `eval_do_concat_batches`: True
342
+ - `fp16_backend`: auto
343
+ - `push_to_hub_model_id`: None
344
+ - `push_to_hub_organization`: None
345
+ - `mp_parameters`:
346
+ - `auto_find_batch_size`: False
347
+ - `full_determinism`: False
348
+ - `torchdynamo`: None
349
+ - `ray_scope`: last
350
+ - `ddp_timeout`: 1800
351
+ - `torch_compile`: False
352
+ - `torch_compile_backend`: None
353
+ - `torch_compile_mode`: None
354
+ - `dispatch_batches`: None
355
+ - `split_batches`: None
356
+ - `include_tokens_per_second`: False
357
+ - `include_num_input_tokens_seen`: False
358
+ - `neftune_noise_alpha`: None
359
+ - `optim_target_modules`: None
360
+ - `batch_eval_metrics`: False
361
+ - `eval_on_start`: False
362
+ - `eval_use_gather_object`: False
363
+ - `batch_sampler`: batch_sampler
364
+ - `multi_dataset_batch_sampler`: round_robin
365
+
366
+ </details>
367
+
368
+ ### Training Logs
369
+ | Epoch | Step | Training Loss | snli-dev_spearman_max |
370
+ |:------:|:-----:|:-------------:|:---------------------:|
371
+ | 0.08 | 500 | 0.1807 | 0.3001 |
372
+ | 0.16 | 1000 | 0.1497 | 0.3646 |
373
+ | 0.24 | 1500 | 0.1443 | 0.3652 |
374
+ | 0.32 | 2000 | 0.1394 | 0.3860 |
375
+ | 0.4 | 2500 | 0.1369 | 0.3810 |
376
+ | 0.48 | 3000 | 0.1346 | 0.3895 |
377
+ | 0.56 | 3500 | 0.1358 | 0.4147 |
378
+ | 0.64 | 4000 | 0.1387 | 0.4190 |
379
+ | 0.72 | 4500 | 0.131 | 0.4254 |
380
+ | 0.8 | 5000 | 0.1314 | 0.4219 |
381
+ | 0.88 | 5500 | 0.1288 | 0.4342 |
382
+ | 0.96 | 6000 | 0.1299 | 0.4135 |
383
+ | 1.0 | 6250 | - | 0.4393 |
384
+ | 1.04 | 6500 | 0.1306 | 0.4565 |
385
+ | 1.12 | 7000 | 0.1253 | 0.4433 |
386
+ | 1.2 | 7500 | 0.1275 | 0.4486 |
387
+ | 1.28 | 8000 | 0.1265 | 0.4616 |
388
+ | 1.3600 | 8500 | 0.1237 | 0.4462 |
389
+ | 1.44 | 9000 | 0.1223 | 0.4573 |
390
+ | 1.52 | 9500 | 0.123 | 0.4609 |
391
+ | 1.6 | 10000 | 0.1251 | 0.4678 |
392
+ | 1.6800 | 10500 | 0.1262 | 0.4500 |
393
+ | 1.76 | 11000 | 0.1194 | 0.4696 |
394
+ | 1.8400 | 11500 | 0.1206 | 0.4733 |
395
+ | 1.92 | 12000 | 0.118 | 0.4701 |
396
+ | 2.0 | 12500 | 0.1238 | 0.4688 |
397
+ | 2.08 | 13000 | 0.1191 | 0.4646 |
398
+ | 2.16 | 13500 | 0.1179 | 0.4757 |
399
+ | 2.24 | 14000 | 0.1177 | 0.4652 |
400
+ | 2.32 | 14500 | 0.1176 | 0.4873 |
401
+ | 2.4 | 15000 | 0.115 | 0.4674 |
402
+ | 2.48 | 15500 | 0.1141 | 0.4784 |
403
+ | 2.56 | 16000 | 0.1143 | 0.4824 |
404
+ | 2.64 | 16500 | 0.1184 | 0.4898 |
405
+ | 2.7200 | 17000 | 0.1124 | 0.4818 |
406
+ | 2.8 | 17500 | 0.1141 | 0.4905 |
407
+ | 2.88 | 18000 | 0.1115 | 0.4850 |
408
+ | 2.96 | 18500 | 0.1123 | 0.4867 |
409
+ | 3.0 | 18750 | - | 0.4867 |
410
+ | 3.04 | 19000 | 0.1149 | 0.4849 |
411
+ | 3.12 | 19500 | 0.1114 | 0.4888 |
412
+ | 3.2 | 20000 | 0.1124 | 0.4903 |
413
+ | 3.2800 | 20500 | 0.1124 | 0.4900 |
414
+ | 3.36 | 21000 | 0.1088 | 0.4871 |
415
+ | 3.44 | 21500 | 0.1065 | 0.4835 |
416
+ | 3.52 | 22000 | 0.1075 | 0.4912 |
417
+ | 3.6 | 22500 | 0.1115 | 0.4944 |
418
+ | 3.68 | 23000 | 0.1122 | 0.4932 |
419
+ | 3.76 | 23500 | 0.1074 | 0.4917 |
420
+ | 3.84 | 24000 | 0.1081 | 0.4923 |
421
+ | 3.92 | 24500 | 0.1057 | 0.4921 |
422
+ | 4.0 | 25000 | 0.1118 | 0.4931 |
423
+
424
+
425
+ ### Framework Versions
426
+ - Python: 3.10.12
427
+ - Sentence Transformers: 3.2.1
428
+ - Transformers: 4.44.2
429
+ - PyTorch: 2.5.0+cu121
430
+ - Accelerate: 0.34.2
431
+ - Datasets: 3.0.2
432
+ - Tokenizers: 0.19.1
433
+
434
+ ## Citation
435
+
436
+ ### BibTeX
437
+
438
+ #### Sentence Transformers
439
+ ```bibtex
440
+ @inproceedings{reimers-2019-sentence-bert,
441
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
442
+ author = "Reimers, Nils and Gurevych, Iryna",
443
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
444
+ month = "11",
445
+ year = "2019",
446
+ publisher = "Association for Computational Linguistics",
447
+ url = "https://arxiv.org/abs/1908.10084",
448
+ }
449
+ ```
450
+
451
+ <!--
452
+ ## Glossary
453
+
454
+ *Clearly define terms in order to be accessible across audiences.*
455
+ -->
456
+
457
+ <!--
458
+ ## Model Card Authors
459
+
460
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
461
+ -->
462
+
463
+ <!--
464
+ ## Model Card Contact
465
+
466
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
467
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38da6d8a7c41426c37bbcae56d420e5cbd8fe08f5902b9ea64f5f29aad62a5fe
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff