--- language: - 'no' license: apache-2.0 base_model: NbAiLab/nb-whisper-medium-v0.8-vad3 tags: - audio - asr - automatic-speech-recognition - hf-asr-leaderboard model-index: - name: nb-whisper-medium-v0.8-vad3-verbatim results: [] --- # nb-whisper-medium-v0.8-vad3-verbatim This model is a fine-tuned version of [NbAiLab/nb-whisper-medium-v0.8-vad3](https://huggingface.co./NbAiLab/nb-whisper-medium-v0.8-vad3) on the NbAiLab/NPSC dataset. It achieves the following results on the evaluation set: - step: 249 - validation_loss: 0.6296 - train_loss: 0.4324 - validation_wer: 8.2769 - validation_cer: 2.8193 - validation_exact_wer: 8.4048 - validation_exact_cer: 2.8363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - lr_scheduler_type: linear - per_device_train_batch_size: 32 - total_train_batch_size_per_node: 128 - total_train_batch_size: 1024 - total_optimization_steps: 250 - starting_optimization_step: None - finishing_optimization_step: 250 - num_train_dataset_workers: 32 - num_hosts: 8 - total_num_training_examples: 256,000 - steps_per_epoch: 45 - num_beams: None - weight_decay: 0.01 - adam_beta1: 0.9 - adam_beta2: 0.98 - adam_epsilon: 1e-06 - dropout: True - bpe_dropout_probability: 0.2 - activation_dropout_probability: 0.1 ### Training results | step | validation_loss | train_loss | validation_wer | validation_cer | validation_exact_wer | validation_exact_cer | |:----:|:---------------:|:----------:|:--------------:|:--------------:|:--------------------:|:--------------------:| | 0 | 1.5895 | 1.4606 | 17.5605 | 10.5650 | 33.0099 | 13.8415 | | 40 | 0.6409 | 0.5035 | 9.1662 | 3.0250 | 9.3637 | 3.0542 | | 80 | 0.6309 | 0.4790 | 8.7132 | 2.9755 | 8.8730 | 2.9952 | | 120 | 0.6250 | 0.4480 | 8.4503 | 2.8812 | 8.6079 | 2.9019 | | 160 | 0.6294 | 0.4423 | 8.4000 | 2.8641 | 8.5345 | 2.8810 | | 200 | 0.6276 | 0.4467 | 8.3161 | 2.8345 | 8.4668 | 2.8534 | | 240 | 0.6287 | 0.4376 | 8.2266 | 2.7917 | 8.3597 | 2.8087 | | 249 | 0.6296 | 0.4324 | 8.2769 | 2.8193 | 8.4048 | 2.8363 | ### Framework versions - Transformers 4.34.1 - Datasets 2.16.1 - Tokenizers 0.14.1