Narsil HF staff commited on
Commit
dfa909d
1 Parent(s): 9ad3ae7

Initial commit.

Browse files
Files changed (7) hide show
  1. README.md +62 -0
  2. bpe_encoder.bin +3 -0
  3. config.json +33 -0
  4. merges.txt +0 -0
  5. pytorch_model.bin +3 -0
  6. tokenizer_config.json +4 -0
  7. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - deberta-v1
5
+ - deberta-mnli
6
+ tasks: mnli
7
+ thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
8
+ license: mit
9
+ widget:
10
+ - text: "[CLS] I love you. [SEP] I like you. [SEP]"
11
+ ---
12
+
13
+ ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
14
+
15
+ [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
16
+
17
+ Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
18
+
19
+ This is the DeBERTa large model fine-tuned with MNLI task.
20
+
21
+ #### Fine-tuning on NLU tasks
22
+
23
+ We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
24
+
25
+ | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
26
+ |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
27
+ | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S |
28
+ | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- |
29
+ | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- |
30
+ | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- |
31
+ | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
32
+ | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7|
33
+ | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
34
+ |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
35
+ --------
36
+ #### Notes.
37
+ - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
38
+ - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp**
39
+
40
+ ```bash
41
+ cd transformers/examples/text-classification/
42
+ export TASK_NAME=mrpc
43
+ python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\
44
+ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\
45
+ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
46
+ ```
47
+
48
+ ### Citation
49
+
50
+ If you find DeBERTa useful for your work, please cite the following paper:
51
+
52
+ ``` latex
53
+ @inproceedings{
54
+ he2021deberta,
55
+ title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
56
+ author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
57
+ booktitle={International Conference on Learning Representations},
58
+ year={2021},
59
+ url={https://openreview.net/forum?id=XPZIaotutsD}
60
+ }
61
+ ```
62
+
bpe_encoder.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7c6f9eecb461c01e09c00656ccf3e27944b9e74bfe29e51632b13d3cd9d6c8e
3
+ size 3917897
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "num_labels": 3,
3
+ "architectures": [
4
+ "DebertaForSequenceClassification"
5
+ ],
6
+ "id2label": {
7
+ "0": "CONTRADICTION",
8
+ "1": "NEUTRAL",
9
+ "2": "ENTAILMENT"
10
+ },
11
+ "label2id": {
12
+ "CONTRADICTION": 0,
13
+ "NEUTRAL": 1,
14
+ "ENTAILMENT": 2
15
+ },
16
+ "model_type": "deberta",
17
+ "attention_probs_dropout_prob": 0.1,
18
+ "hidden_act": "gelu",
19
+ "hidden_dropout_prob": 0.1,
20
+ "hidden_size": 1024,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 4096,
23
+ "max_position_embeddings": 512,
24
+ "relative_attention": true,
25
+ "pos_att_type": "c2p|p2c",
26
+ "layer_norm_eps": 1e-7,
27
+ "max_relative_positions": -1,
28
+ "position_biased_input": false,
29
+ "num_attention_heads": 16,
30
+ "num_hidden_layers": 24,
31
+ "type_vocab_size": 0,
32
+ "vocab_size": 50265
33
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3abd875c9e6dd137a689a1fa1a433f0c2d6bc7462afc42a0095878f88f23be87
3
+ size 1624928186
tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "do_lower_case": false,
3
+ "vocab_type": "gpt2"
4
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff