File size: 1,542 Bytes
67baf8a
18a60c1
67baf8a
18a60c1
3c2627f
 
d0c708c
18a60c1
 
67baf8a
 
18a60c1
67baf8a
18a60c1
 
67baf8a
18a60c1
67baf8a
18a60c1
 
67baf8a
18a60c1
 
 
 
 
67baf8a
18a60c1
67baf8a
 
 
18a60c1
67baf8a
18a60c1
67baf8a
18a60c1
 
 
 
 
d0c708c
18a60c1
d0c708c
 
67baf8a
18a60c1
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
library_name: transformers
tags:
- generated_from_trainer
- trl
- reward-trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_name: llama3_8b_instruct_BWRM
licence: license
---

# Model Card for llama3_8b_instruct_BWRM

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="NanQiangHF/llama3_8b_instruct_BWRM", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure



This model was trained with Reward.

### Framework versions

- TRL: 0.12.0.dev0
- Transformers: 4.46.0.dev0
- Pytorch: 2.3.0
- Datasets: 3.0.0
- Tokenizers: 0.20.1

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```