File size: 1,726 Bytes
d524d6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60bc38b
d524d6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c11ace
d524d6c
 
 
 
 
60bc38b
 
 
 
 
 
d524d6c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: llama3.1
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model-index:
- name: llama3.1_8b_bwgenerator
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama3.1_8b_bwgenerator

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1153

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7197        | 0.1536 | 40   | 0.2706          |
| 0.233         | 0.3071 | 80   | 0.2020          |
| 0.1719        | 0.4607 | 120  | 0.1414          |
| 0.1317        | 0.6142 | 160  | 0.1239          |
| 0.1209        | 0.7678 | 200  | 0.1179          |
| 0.1168        | 0.9213 | 240  | 0.1153          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.44.0
- Pytorch 2.3.0+cu121
- Datasets 2.14.7
- Tokenizers 0.19.1