NagaSaiAbhinay commited on
Commit
3d37cdf
·
verified ·
1 Parent(s): 4186576

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/config-checkpoint.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class CSDConfig(PretrainedConfig):
4
+ model_type = "CSDModel"
5
+
6
+ def __init__(
7
+ self,
8
+ attention_dropout:float=0.0,
9
+ dropout:float=0.0,
10
+ hidden_act:str= "quick_gelu",
11
+ hidden_size:int= 1024,
12
+ image_size:int= 224,
13
+ initializer_factor:float= 1.0,
14
+ initializer_range:float=0.02,
15
+ intermediate_size:int=4096,
16
+ layer_norm_eps:float=1e-05,
17
+ num_attention_heads:int=16,
18
+ num_channels:int=3,
19
+ num_hidden_layers:int=24,
20
+ patch_size:int= 14,
21
+ projection_dim:int=768,
22
+ style_projection_dim:int=768,
23
+ content_projection_dim:int=768,
24
+ **kwargs,
25
+ ):
26
+ super().__init__(**kwargs)
27
+ self.attention_dropout=attention_dropout
28
+ self.dropout=dropout
29
+ self.hidden_act=hidden_act
30
+ self.hidden_size=hidden_size
31
+ self.image_size=image_size
32
+ self.initializer_factor=initializer_factor
33
+ self.initializer_range=initializer_range
34
+ self.intermediate_size=intermediate_size
35
+ self.layer_norm_eps=layer_norm_eps
36
+ self.num_attention_heads=num_attention_heads
37
+ self.num_channels=num_channels
38
+ self.num_hidden_layers=num_hidden_layers
39
+ self.patch_size=patch_size
40
+ self.projection_dim=projection_dim
41
+ self.style_projection_dim=style_projection_dim
42
+ self.content_projection_dim=content_projection_dim
.ipynb_checkpoints/model-checkpoint.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .config import CSDConfig
3
+ from transformers import PreTrainedModel, CLIPVisionModel
4
+
5
+ class CSDModel(PreTrainedModel):
6
+ config_class = CSDConfig
7
+ def __init__(self, config: CSDConfig):
8
+ super().__init__(config)
9
+ self.backbone = CLIPVisionModel(config)
10
+ self.out_style = nn.Linear(config.hidden_size, config.style_projection_dim, bias=False)
11
+ self.out_content = nn.Linear(config.hidden_size, config.content_projection_dim, bias=False)
12
+
13
+ def forward(self, pixel_values):
14
+ features = self.backbone(pixel_values)
15
+ style_embeds = self.out_style(features)
16
+ content_embeds = self.out_content(features)
__pycache__/config.cpython-311.pyc ADDED
Binary file (2.07 kB). View file
 
__pycache__/model.cpython-311.pyc ADDED
Binary file (1.7 kB). View file
 
config.json CHANGED
@@ -1,8 +1,13 @@
1
  {
 
2
  "architectures": [
3
  "CSDModel"
4
  ],
5
  "attention_dropout": 0.0,
 
 
 
 
6
  "content_projection_dim": 768,
7
  "dropout": 0.0,
8
  "hidden_act": "quick_gelu",
@@ -12,6 +17,7 @@
12
  "initializer_range": 0.02,
13
  "intermediate_size": 4096,
14
  "layer_norm_eps": 1e-05,
 
15
  "num_attention_heads": 16,
16
  "num_channels": 3,
17
  "num_hidden_layers": 24,
 
1
  {
2
+ "_name_or_path": "./",
3
  "architectures": [
4
  "CSDModel"
5
  ],
6
  "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "config.CSDConfig",
9
+ "AutoModel": "model.CSDModel"
10
+ },
11
  "content_projection_dim": 768,
12
  "dropout": 0.0,
13
  "hidden_act": "quick_gelu",
 
17
  "initializer_range": 0.02,
18
  "intermediate_size": 4096,
19
  "layer_norm_eps": 1e-05,
20
+ "model_type": "CSDModel",
21
  "num_attention_heads": 16,
22
  "num_channels": 3,
23
  "num_hidden_layers": 24,
config.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class CSDConfig(PretrainedConfig):
4
+ model_type = "CSDModel"
5
+
6
+ def __init__(
7
+ self,
8
+ attention_dropout:float=0.0,
9
+ dropout:float=0.0,
10
+ hidden_act:str= "quick_gelu",
11
+ hidden_size:int= 1024,
12
+ image_size:int= 224,
13
+ initializer_factor:float= 1.0,
14
+ initializer_range:float=0.02,
15
+ intermediate_size:int=4096,
16
+ layer_norm_eps:float=1e-05,
17
+ num_attention_heads:int=16,
18
+ num_channels:int=3,
19
+ num_hidden_layers:int=24,
20
+ patch_size:int= 14,
21
+ projection_dim:int=768,
22
+ style_projection_dim:int=768,
23
+ content_projection_dim:int=768,
24
+ **kwargs,
25
+ ):
26
+ super().__init__(**kwargs)
27
+ self.attention_dropout=attention_dropout
28
+ self.dropout=dropout
29
+ self.hidden_act=hidden_act
30
+ self.hidden_size=hidden_size
31
+ self.image_size=image_size
32
+ self.initializer_factor=initializer_factor
33
+ self.initializer_range=initializer_range
34
+ self.intermediate_size=intermediate_size
35
+ self.layer_norm_eps=layer_norm_eps
36
+ self.num_attention_heads=num_attention_heads
37
+ self.num_channels=num_channels
38
+ self.num_hidden_layers=num_hidden_layers
39
+ self.patch_size=patch_size
40
+ self.projection_dim=projection_dim
41
+ self.style_projection_dim=style_projection_dim
42
+ self.content_projection_dim=content_projection_dim
model.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .config import CSDConfig
3
+ from transformers import PreTrainedModel, CLIPVisionModel
4
+
5
+ class CSDModel(PreTrainedModel):
6
+ config_class = CSDConfig
7
+ def __init__(self, config: CSDConfig):
8
+ super().__init__(config)
9
+ self.backbone = CLIPVisionModel(config)
10
+ self.out_style = nn.Linear(config.hidden_size, config.style_projection_dim, bias=False)
11
+ self.out_content = nn.Linear(config.hidden_size, config.content_projection_dim, bias=False)
12
+
13
+ def forward(self, pixel_values):
14
+ features = self.backbone(pixel_values)
15
+ style_embeds = self.out_style(features)
16
+ content_embeds = self.out_content(features)