File size: 2,255 Bytes
3205209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f82bf4f
 
3205209
f82bf4f
c484c67
3205209
f82bf4f
3205209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c484c67
3205209
 
 
 
 
 
c484c67
f82bf4f
3205209
 
 
 
 
1f7c2dc
3205209
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: NInjaQuarrior/vit-base-patch16-224-in21k-disaster
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# NInjaQuarrior/vit-base-patch16-224-in21k-disaster

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1536
- Train Accuracy: 0.9803
- Train Top-3-accuracy: 1.0
- Validation Loss: 0.1509
- Validation Accuracy: 0.9733
- Validation Top-3-accuracy: 1.0
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 219, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16

### Training results

| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.4890     | 0.9378         | 1.0                  | 0.1937          | 0.9733              | 1.0                       | 0     |
| 0.1536     | 0.9803         | 1.0                  | 0.1509          | 0.9733              | 1.0                       | 1     |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.8.0
- Datasets 2.15.0
- Tokenizers 0.15.0