Your Name
commited on
Commit
·
4fcd1d5
0
Parent(s):
Initial commit
Browse files- .gitattributes +36 -0
- pyproject.toml +43 -0
- src/main.py +50 -0
- src/pipeline.py +134 -0
- uv.lock +0 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
|
pyproject.toml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An Optimization Pipeline"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "8"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.5.1",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"torchao==0.6.1",
|
19 |
+
"optimum-quanto",
|
20 |
+
"hf_transfer==0.1.8",
|
21 |
+
"setuptools==75.2.0",
|
22 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
23 |
+
]
|
24 |
+
|
25 |
+
[[tool.edge-maxxing.models]]
|
26 |
+
repository = "black-forest-labs/FLUX.1-schnell"
|
27 |
+
revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
28 |
+
exclude = ["transformer", "vae", "text_encoder_2"]
|
29 |
+
|
30 |
+
[[tool.edge-maxxing.models]]
|
31 |
+
repository = "city96/t5-v1_1-xxl-encoder-bf16"
|
32 |
+
revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86"
|
33 |
+
|
34 |
+
[[tool.edge-maxxing.models]]
|
35 |
+
repository = "MyApricity/Vae_Only"
|
36 |
+
revision = "a47d57702caf8ff0c0e21d30b93f9d3297b81920"
|
37 |
+
|
38 |
+
[[tool.edge-maxxing.models]]
|
39 |
+
repository = "MyApricity/Flux_Transformer_float8"
|
40 |
+
revision = "66c5f182385555a00ec90272ab711bb6d3c197db"
|
41 |
+
|
42 |
+
[project.scripts]
|
43 |
+
start_inference = "main:main"
|
src/main.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from multiprocessing.connection import Listener
|
3 |
+
from os import chmod, remove
|
4 |
+
from os.path import abspath, exists
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
8 |
+
from pipelines.models import TextToImageRequest
|
9 |
+
|
10 |
+
from pipeline import load_pipeline, infer
|
11 |
+
|
12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
print(f"Loading pipeline")
|
17 |
+
pipeline = load_pipeline()
|
18 |
+
|
19 |
+
print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
|
20 |
+
|
21 |
+
if exists(SOCKET):
|
22 |
+
remove(SOCKET)
|
23 |
+
|
24 |
+
with Listener(SOCKET) as listener:
|
25 |
+
chmod(SOCKET, 0o777)
|
26 |
+
|
27 |
+
print(f"Awaiting connections")
|
28 |
+
with listener.accept() as connection:
|
29 |
+
print(f"Connected")
|
30 |
+
|
31 |
+
while True:
|
32 |
+
try:
|
33 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
34 |
+
except EOFError:
|
35 |
+
print(f"Inference socket exiting")
|
36 |
+
|
37 |
+
return
|
38 |
+
|
39 |
+
image = infer(request, pipeline)
|
40 |
+
|
41 |
+
data = BytesIO()
|
42 |
+
image.save(data, format=JpegImageFile.format)
|
43 |
+
|
44 |
+
packet = data.getvalue()
|
45 |
+
|
46 |
+
connection.send_bytes(packet)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch._dynamo
|
4 |
+
import gc
|
5 |
+
|
6 |
+
import json
|
7 |
+
import transformers
|
8 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
+
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
|
10 |
+
|
11 |
+
from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only
|
12 |
+
from torch import Generator
|
13 |
+
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
14 |
+
|
15 |
+
from PIL.Image import Image
|
16 |
+
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
|
17 |
+
from pipelines.models import TextToImageRequest
|
18 |
+
from optimum.quanto import requantize
|
19 |
+
import json
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
torch._dynamo.config.suppress_errors = True
|
25 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
26 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
27 |
+
|
28 |
+
CHECKPOINT = "black-forest-labs/FLUX.1-schnell"
|
29 |
+
REVISION = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
30 |
+
Pipeline = None
|
31 |
+
|
32 |
+
|
33 |
+
import torch
|
34 |
+
import math
|
35 |
+
from typing import Dict, Any
|
36 |
+
|
37 |
+
def remove_cache():
|
38 |
+
gc.collect()
|
39 |
+
torch.cuda.empty_cache()
|
40 |
+
torch.cuda.reset_max_memory_allocated()
|
41 |
+
torch.cuda.reset_peak_memory_stats()
|
42 |
+
|
43 |
+
|
44 |
+
class InitModel:
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def load_text_encoder() -> T5EncoderModel:
|
48 |
+
print("Loading text encoder...")
|
49 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
50 |
+
"city96/t5-v1_1-xxl-encoder-bf16",
|
51 |
+
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
52 |
+
torch_dtype=torch.bfloat16,
|
53 |
+
)
|
54 |
+
return text_encoder.to(memory_format=torch.channels_last)
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def load_vae() -> AutoencoderTiny:
|
58 |
+
print("Loading VAE model...")
|
59 |
+
vae = AutoencoderTiny.from_pretrained(
|
60 |
+
"XiangquiAI/FLUX_Vae_Model",
|
61 |
+
revision="103bcc03998f48ef311c100ee119f1b9942132ab",
|
62 |
+
torch_dtype=torch.bfloat16,
|
63 |
+
)
|
64 |
+
return vae
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def load_transformer(trans_path: str) -> FluxTransformer2DModel:
|
68 |
+
print("Loading transformer model...")
|
69 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
70 |
+
trans_path,
|
71 |
+
torch_dtype=torch.bfloat16,
|
72 |
+
use_safetensors=False,
|
73 |
+
)
|
74 |
+
return transformer.to(memory_format=torch.channels_last)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
def load_pipeline() -> Pipeline:
|
79 |
+
|
80 |
+
|
81 |
+
transformer_path = os.path.join(HF_HUB_CACHE, "models--MyApricity--Flux_Transformer_float8/snapshots/66c5f182385555a00ec90272ab711bb6d3c197db")
|
82 |
+
transformer = InitModel.load_transformer(transformer_path)
|
83 |
+
|
84 |
+
text_encoder_2 = InitModel.load_text_encoder()
|
85 |
+
vae = InitModel.load_vae()
|
86 |
+
|
87 |
+
|
88 |
+
pipeline = DiffusionPipeline.from_pretrained(CHECKPOINT,
|
89 |
+
revision=REVISION,
|
90 |
+
vae=vae,
|
91 |
+
transformer=transformer,
|
92 |
+
text_encoder_2=text_encoder_2,
|
93 |
+
torch_dtype=torch.bfloat16)
|
94 |
+
pipeline.to("cuda")
|
95 |
+
try:
|
96 |
+
pipeline.disable_vae_slice()
|
97 |
+
except:
|
98 |
+
print("Using origin pipeline")
|
99 |
+
|
100 |
+
|
101 |
+
promts_listing = [
|
102 |
+
"melanogen, endosome",
|
103 |
+
"buffer, cutie, buttinsky, prototrophic",
|
104 |
+
"puzzlehead, fistical, must return non duplicate",
|
105 |
+
"apical, polymyodous, tiptilt"
|
106 |
+
]
|
107 |
+
|
108 |
+
for p in promts_listing:
|
109 |
+
pipeline(prompt=p,
|
110 |
+
width=1024,
|
111 |
+
height=1024,
|
112 |
+
guidance_scale=0.0,
|
113 |
+
num_inference_steps=4,
|
114 |
+
max_sequence_length=256)
|
115 |
+
|
116 |
+
return pipeline
|
117 |
+
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
121 |
+
|
122 |
+
remove_cache()
|
123 |
+
# remove cache here for better result
|
124 |
+
generator = Generator(pipeline.device).manual_seed(request.seed)
|
125 |
+
|
126 |
+
return pipeline(
|
127 |
+
request.prompt,
|
128 |
+
generator=generator,
|
129 |
+
guidance_scale=0.0,
|
130 |
+
num_inference_steps=4,
|
131 |
+
max_sequence_length=256,
|
132 |
+
height=request.height,
|
133 |
+
width=request.width,
|
134 |
+
).images[0]
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|