Your Name commited on
Commit
4fcd1d5
·
0 Parent(s):

Initial commit

Browse files
Files changed (5) hide show
  1. .gitattributes +36 -0
  2. pyproject.toml +43 -0
  3. src/main.py +50 -0
  4. src/pipeline.py +134 -0
  5. uv.lock +0 -0
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+
pyproject.toml ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 75.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "flux-schnell-edge-inference"
7
+ description = "An Optimization Pipeline"
8
+ requires-python = ">=3.10,<3.13"
9
+ version = "8"
10
+ dependencies = [
11
+ "diffusers==0.31.0",
12
+ "transformers==4.46.2",
13
+ "accelerate==1.1.0",
14
+ "omegaconf==2.3.0",
15
+ "torch==2.5.1",
16
+ "protobuf==5.28.3",
17
+ "sentencepiece==0.2.0",
18
+ "torchao==0.6.1",
19
+ "optimum-quanto",
20
+ "hf_transfer==0.1.8",
21
+ "setuptools==75.2.0",
22
+ "edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
23
+ ]
24
+
25
+ [[tool.edge-maxxing.models]]
26
+ repository = "black-forest-labs/FLUX.1-schnell"
27
+ revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
28
+ exclude = ["transformer", "vae", "text_encoder_2"]
29
+
30
+ [[tool.edge-maxxing.models]]
31
+ repository = "city96/t5-v1_1-xxl-encoder-bf16"
32
+ revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86"
33
+
34
+ [[tool.edge-maxxing.models]]
35
+ repository = "MyApricity/Vae_Only"
36
+ revision = "a47d57702caf8ff0c0e21d30b93f9d3297b81920"
37
+
38
+ [[tool.edge-maxxing.models]]
39
+ repository = "MyApricity/Flux_Transformer_float8"
40
+ revision = "66c5f182385555a00ec90272ab711bb6d3c197db"
41
+
42
+ [project.scripts]
43
+ start_inference = "main:main"
src/main.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
+ from multiprocessing.connection import Listener
3
+ from os import chmod, remove
4
+ from os.path import abspath, exists
5
+ from pathlib import Path
6
+
7
+ from PIL.JpegImagePlugin import JpegImageFile
8
+ from pipelines.models import TextToImageRequest
9
+
10
+ from pipeline import load_pipeline, infer
11
+
12
+ SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
13
+
14
+
15
+ def main():
16
+ print(f"Loading pipeline")
17
+ pipeline = load_pipeline()
18
+
19
+ print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
20
+
21
+ if exists(SOCKET):
22
+ remove(SOCKET)
23
+
24
+ with Listener(SOCKET) as listener:
25
+ chmod(SOCKET, 0o777)
26
+
27
+ print(f"Awaiting connections")
28
+ with listener.accept() as connection:
29
+ print(f"Connected")
30
+
31
+ while True:
32
+ try:
33
+ request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
34
+ except EOFError:
35
+ print(f"Inference socket exiting")
36
+
37
+ return
38
+
39
+ image = infer(request, pipeline)
40
+
41
+ data = BytesIO()
42
+ image.save(data, format=JpegImageFile.format)
43
+
44
+ packet = data.getvalue()
45
+
46
+ connection.send_bytes(packet)
47
+
48
+
49
+ if __name__ == '__main__':
50
+ main()
src/pipeline.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch._dynamo
4
+ import gc
5
+
6
+ import json
7
+ import transformers
8
+ from huggingface_hub.constants import HF_HUB_CACHE
9
+ from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
10
+
11
+ from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only
12
+ from torch import Generator
13
+ from diffusers import FluxTransformer2DModel, DiffusionPipeline
14
+
15
+ from PIL.Image import Image
16
+ from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
17
+ from pipelines.models import TextToImageRequest
18
+ from optimum.quanto import requantize
19
+ import json
20
+
21
+
22
+
23
+
24
+ torch._dynamo.config.suppress_errors = True
25
+ os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
26
+ os.environ["TOKENIZERS_PARALLELISM"] = "True"
27
+
28
+ CHECKPOINT = "black-forest-labs/FLUX.1-schnell"
29
+ REVISION = "741f7c3ce8b383c54771c7003378a50191e9efe9"
30
+ Pipeline = None
31
+
32
+
33
+ import torch
34
+ import math
35
+ from typing import Dict, Any
36
+
37
+ def remove_cache():
38
+ gc.collect()
39
+ torch.cuda.empty_cache()
40
+ torch.cuda.reset_max_memory_allocated()
41
+ torch.cuda.reset_peak_memory_stats()
42
+
43
+
44
+ class InitModel:
45
+
46
+ @staticmethod
47
+ def load_text_encoder() -> T5EncoderModel:
48
+ print("Loading text encoder...")
49
+ text_encoder = T5EncoderModel.from_pretrained(
50
+ "city96/t5-v1_1-xxl-encoder-bf16",
51
+ revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
52
+ torch_dtype=torch.bfloat16,
53
+ )
54
+ return text_encoder.to(memory_format=torch.channels_last)
55
+
56
+ @staticmethod
57
+ def load_vae() -> AutoencoderTiny:
58
+ print("Loading VAE model...")
59
+ vae = AutoencoderTiny.from_pretrained(
60
+ "XiangquiAI/FLUX_Vae_Model",
61
+ revision="103bcc03998f48ef311c100ee119f1b9942132ab",
62
+ torch_dtype=torch.bfloat16,
63
+ )
64
+ return vae
65
+
66
+ @staticmethod
67
+ def load_transformer(trans_path: str) -> FluxTransformer2DModel:
68
+ print("Loading transformer model...")
69
+ transformer = FluxTransformer2DModel.from_pretrained(
70
+ trans_path,
71
+ torch_dtype=torch.bfloat16,
72
+ use_safetensors=False,
73
+ )
74
+ return transformer.to(memory_format=torch.channels_last)
75
+
76
+
77
+
78
+ def load_pipeline() -> Pipeline:
79
+
80
+
81
+ transformer_path = os.path.join(HF_HUB_CACHE, "models--MyApricity--Flux_Transformer_float8/snapshots/66c5f182385555a00ec90272ab711bb6d3c197db")
82
+ transformer = InitModel.load_transformer(transformer_path)
83
+
84
+ text_encoder_2 = InitModel.load_text_encoder()
85
+ vae = InitModel.load_vae()
86
+
87
+
88
+ pipeline = DiffusionPipeline.from_pretrained(CHECKPOINT,
89
+ revision=REVISION,
90
+ vae=vae,
91
+ transformer=transformer,
92
+ text_encoder_2=text_encoder_2,
93
+ torch_dtype=torch.bfloat16)
94
+ pipeline.to("cuda")
95
+ try:
96
+ pipeline.disable_vae_slice()
97
+ except:
98
+ print("Using origin pipeline")
99
+
100
+
101
+ promts_listing = [
102
+ "melanogen, endosome",
103
+ "buffer, cutie, buttinsky, prototrophic",
104
+ "puzzlehead, fistical, must return non duplicate",
105
+ "apical, polymyodous, tiptilt"
106
+ ]
107
+
108
+ for p in promts_listing:
109
+ pipeline(prompt=p,
110
+ width=1024,
111
+ height=1024,
112
+ guidance_scale=0.0,
113
+ num_inference_steps=4,
114
+ max_sequence_length=256)
115
+
116
+ return pipeline
117
+
118
+
119
+ @torch.no_grad()
120
+ def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
121
+
122
+ remove_cache()
123
+ # remove cache here for better result
124
+ generator = Generator(pipeline.device).manual_seed(request.seed)
125
+
126
+ return pipeline(
127
+ request.prompt,
128
+ generator=generator,
129
+ guidance_scale=0.0,
130
+ num_inference_steps=4,
131
+ max_sequence_length=256,
132
+ height=request.height,
133
+ width=request.width,
134
+ ).images[0]
uv.lock ADDED
The diff for this file is too large to render. See raw diff