MuhammedYahia commited on
Commit
150e2df
·
1 Parent(s): 66397bb

Upload folder using huggingface_hub

Browse files
Files changed (7) hide show
  1. README.md +204 -0
  2. adapter_config.json +29 -0
  3. optimizer.pt +3 -0
  4. rng_state.pth +3 -0
  5. scheduler.pt +3 -0
  6. trainer_state.json +2483 -0
  7. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Salesforce/codegen-350M-mono
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Salesforce/codegen-350M-mono",
5
+ "bias": "all",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 128,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "fc_out",
23
+ "qkv_proj",
24
+ "lm_head",
25
+ "out_proj",
26
+ "fc_in"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13e53dd1b6bf9b97fa8657fe76f43c33b02003925b116dac3f71ef422dbb1f83
3
+ size 196099770
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8f037b1bc0d160d86fab5da09aa2dd8683f9e916a04e84a2669baeda6833cce
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eb2314d3932639e8b7bcafd8f07745559d4397334d657a32bf5310d54057bee
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,2483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.04,
5
+ "eval_steps": 50,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.000000000000001e-07,
14
+ "loss": 1.424,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 1.0000000000000002e-06,
20
+ "loss": 0.9593,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 1.5e-06,
26
+ "loss": 0.8636,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 2.0000000000000003e-06,
32
+ "loss": 1.0751,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 2.5e-06,
38
+ "loss": 1.0284,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "learning_rate": 3e-06,
44
+ "loss": 1.0424,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.0,
49
+ "learning_rate": 3.5000000000000004e-06,
50
+ "loss": 1.154,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "learning_rate": 4.000000000000001e-06,
56
+ "loss": 1.4715,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.0,
61
+ "learning_rate": 4.5e-06,
62
+ "loss": 1.5074,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.0,
67
+ "learning_rate": 5e-06,
68
+ "loss": 0.9633,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.0,
73
+ "learning_rate": 5.500000000000001e-06,
74
+ "loss": 0.7885,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.0,
79
+ "learning_rate": 6e-06,
80
+ "loss": 0.9121,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.0,
85
+ "learning_rate": 6.5000000000000004e-06,
86
+ "loss": 1.0456,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.0,
91
+ "learning_rate": 7.000000000000001e-06,
92
+ "loss": 0.8722,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.0,
97
+ "learning_rate": 7.5e-06,
98
+ "loss": 1.0264,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.0,
103
+ "learning_rate": 8.000000000000001e-06,
104
+ "loss": 1.2709,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.0,
109
+ "learning_rate": 8.500000000000002e-06,
110
+ "loss": 1.1519,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.0,
115
+ "learning_rate": 9e-06,
116
+ "loss": 0.9543,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.0,
121
+ "learning_rate": 9.5e-06,
122
+ "loss": 0.7449,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 1e-05,
128
+ "loss": 1.0338,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 1.05e-05,
134
+ "loss": 1.3037,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 1.1000000000000001e-05,
140
+ "loss": 1.0368,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.0,
145
+ "learning_rate": 1.1500000000000002e-05,
146
+ "loss": 1.076,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.0,
151
+ "learning_rate": 1.2e-05,
152
+ "loss": 1.4172,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.0,
157
+ "learning_rate": 1.25e-05,
158
+ "loss": 0.7517,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.0,
163
+ "learning_rate": 1.3000000000000001e-05,
164
+ "loss": 1.0805,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.0,
169
+ "learning_rate": 1.3500000000000001e-05,
170
+ "loss": 0.9719,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.0,
175
+ "learning_rate": 1.4000000000000001e-05,
176
+ "loss": 0.8599,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.0,
181
+ "learning_rate": 1.45e-05,
182
+ "loss": 1.0069,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.0,
187
+ "learning_rate": 1.5e-05,
188
+ "loss": 0.8821,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.0,
193
+ "learning_rate": 1.55e-05,
194
+ "loss": 1.324,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.0,
199
+ "learning_rate": 1.6000000000000003e-05,
200
+ "loss": 0.7325,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.0,
205
+ "learning_rate": 1.65e-05,
206
+ "loss": 0.9195,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.0,
211
+ "learning_rate": 1.7000000000000003e-05,
212
+ "loss": 1.0733,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.0,
217
+ "learning_rate": 1.75e-05,
218
+ "loss": 1.0441,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.0,
223
+ "learning_rate": 1.8e-05,
224
+ "loss": 0.9961,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.0,
229
+ "learning_rate": 1.85e-05,
230
+ "loss": 1.0976,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.0,
235
+ "learning_rate": 1.9e-05,
236
+ "loss": 0.7981,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.0,
241
+ "learning_rate": 1.9500000000000003e-05,
242
+ "loss": 0.9183,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.0,
247
+ "learning_rate": 2e-05,
248
+ "loss": 1.2273,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.0,
253
+ "learning_rate": 2.05e-05,
254
+ "loss": 1.0005,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.0,
259
+ "learning_rate": 2.1e-05,
260
+ "loss": 1.2448,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.0,
265
+ "learning_rate": 2.15e-05,
266
+ "loss": 1.4173,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.0,
271
+ "learning_rate": 2.2000000000000003e-05,
272
+ "loss": 0.6956,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.0,
277
+ "learning_rate": 2.25e-05,
278
+ "loss": 0.7313,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.0,
283
+ "learning_rate": 2.3000000000000003e-05,
284
+ "loss": 0.9992,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.0,
289
+ "learning_rate": 2.35e-05,
290
+ "loss": 1.0287,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.0,
295
+ "learning_rate": 2.4e-05,
296
+ "loss": 1.3604,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.0,
301
+ "learning_rate": 2.45e-05,
302
+ "loss": 0.7198,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.01,
307
+ "learning_rate": 2.5e-05,
308
+ "loss": 0.2974,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.01,
313
+ "eval_loss": 1.1389975547790527,
314
+ "eval_runtime": 71.831,
315
+ "eval_samples_per_second": 2.77,
316
+ "eval_steps_per_second": 0.696,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.01,
321
+ "learning_rate": 2.5500000000000003e-05,
322
+ "loss": 0.5533,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.01,
327
+ "learning_rate": 2.6000000000000002e-05,
328
+ "loss": 1.2819,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.01,
333
+ "learning_rate": 2.6500000000000004e-05,
334
+ "loss": 1.4542,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.01,
339
+ "learning_rate": 2.7000000000000002e-05,
340
+ "loss": 1.5254,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.01,
345
+ "learning_rate": 2.7500000000000004e-05,
346
+ "loss": 1.1699,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.01,
351
+ "learning_rate": 2.8000000000000003e-05,
352
+ "loss": 1.3209,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.01,
357
+ "learning_rate": 2.8499999999999998e-05,
358
+ "loss": 0.659,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.01,
363
+ "learning_rate": 2.9e-05,
364
+ "loss": 1.0342,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.01,
369
+ "learning_rate": 2.95e-05,
370
+ "loss": 1.1414,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.01,
375
+ "learning_rate": 3e-05,
376
+ "loss": 1.2102,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.01,
381
+ "learning_rate": 3.05e-05,
382
+ "loss": 1.0656,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.01,
387
+ "learning_rate": 3.1e-05,
388
+ "loss": 1.0089,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.01,
393
+ "learning_rate": 3.15e-05,
394
+ "loss": 1.2177,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.01,
399
+ "learning_rate": 3.2000000000000005e-05,
400
+ "loss": 0.965,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.01,
405
+ "learning_rate": 3.2500000000000004e-05,
406
+ "loss": 0.8526,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.01,
411
+ "learning_rate": 3.3e-05,
412
+ "loss": 0.9656,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.01,
417
+ "learning_rate": 3.35e-05,
418
+ "loss": 1.0447,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.01,
423
+ "learning_rate": 3.4000000000000007e-05,
424
+ "loss": 0.7947,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.01,
429
+ "learning_rate": 3.45e-05,
430
+ "loss": 0.7962,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.01,
435
+ "learning_rate": 3.5e-05,
436
+ "loss": 0.5062,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.01,
441
+ "learning_rate": 3.55e-05,
442
+ "loss": 0.9352,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.01,
447
+ "learning_rate": 3.6e-05,
448
+ "loss": 1.8548,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.01,
453
+ "learning_rate": 3.65e-05,
454
+ "loss": 2.0769,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.01,
459
+ "learning_rate": 3.7e-05,
460
+ "loss": 0.8846,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.01,
465
+ "learning_rate": 3.7500000000000003e-05,
466
+ "loss": 0.864,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.01,
471
+ "learning_rate": 3.8e-05,
472
+ "loss": 0.8684,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.01,
477
+ "learning_rate": 3.85e-05,
478
+ "loss": 1.0395,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.01,
483
+ "learning_rate": 3.9000000000000006e-05,
484
+ "loss": 1.1751,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.01,
489
+ "learning_rate": 3.9500000000000005e-05,
490
+ "loss": 0.7136,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.01,
495
+ "learning_rate": 4e-05,
496
+ "loss": 0.5699,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.01,
501
+ "learning_rate": 4.05e-05,
502
+ "loss": 0.782,
503
+ "step": 81
504
+ },
505
+ {
506
+ "epoch": 0.01,
507
+ "learning_rate": 4.1e-05,
508
+ "loss": 1.4756,
509
+ "step": 82
510
+ },
511
+ {
512
+ "epoch": 0.01,
513
+ "learning_rate": 4.15e-05,
514
+ "loss": 1.3176,
515
+ "step": 83
516
+ },
517
+ {
518
+ "epoch": 0.01,
519
+ "learning_rate": 4.2e-05,
520
+ "loss": 1.2823,
521
+ "step": 84
522
+ },
523
+ {
524
+ "epoch": 0.01,
525
+ "learning_rate": 4.25e-05,
526
+ "loss": 1.3336,
527
+ "step": 85
528
+ },
529
+ {
530
+ "epoch": 0.01,
531
+ "learning_rate": 4.3e-05,
532
+ "loss": 1.3062,
533
+ "step": 86
534
+ },
535
+ {
536
+ "epoch": 0.01,
537
+ "learning_rate": 4.35e-05,
538
+ "loss": 1.2965,
539
+ "step": 87
540
+ },
541
+ {
542
+ "epoch": 0.01,
543
+ "learning_rate": 4.4000000000000006e-05,
544
+ "loss": 1.7232,
545
+ "step": 88
546
+ },
547
+ {
548
+ "epoch": 0.01,
549
+ "learning_rate": 4.4500000000000004e-05,
550
+ "loss": 1.0913,
551
+ "step": 89
552
+ },
553
+ {
554
+ "epoch": 0.01,
555
+ "learning_rate": 4.5e-05,
556
+ "loss": 1.3334,
557
+ "step": 90
558
+ },
559
+ {
560
+ "epoch": 0.01,
561
+ "learning_rate": 4.55e-05,
562
+ "loss": 1.1843,
563
+ "step": 91
564
+ },
565
+ {
566
+ "epoch": 0.01,
567
+ "learning_rate": 4.600000000000001e-05,
568
+ "loss": 0.9398,
569
+ "step": 92
570
+ },
571
+ {
572
+ "epoch": 0.01,
573
+ "learning_rate": 4.6500000000000005e-05,
574
+ "loss": 0.7859,
575
+ "step": 93
576
+ },
577
+ {
578
+ "epoch": 0.01,
579
+ "learning_rate": 4.7e-05,
580
+ "loss": 1.2015,
581
+ "step": 94
582
+ },
583
+ {
584
+ "epoch": 0.01,
585
+ "learning_rate": 4.75e-05,
586
+ "loss": 1.1383,
587
+ "step": 95
588
+ },
589
+ {
590
+ "epoch": 0.01,
591
+ "learning_rate": 4.8e-05,
592
+ "loss": 0.9095,
593
+ "step": 96
594
+ },
595
+ {
596
+ "epoch": 0.01,
597
+ "learning_rate": 4.85e-05,
598
+ "loss": 0.9644,
599
+ "step": 97
600
+ },
601
+ {
602
+ "epoch": 0.01,
603
+ "learning_rate": 4.9e-05,
604
+ "loss": 1.2399,
605
+ "step": 98
606
+ },
607
+ {
608
+ "epoch": 0.01,
609
+ "learning_rate": 4.9500000000000004e-05,
610
+ "loss": 0.8818,
611
+ "step": 99
612
+ },
613
+ {
614
+ "epoch": 0.01,
615
+ "learning_rate": 5e-05,
616
+ "loss": 0.9184,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.01,
621
+ "eval_loss": 1.1290233135223389,
622
+ "eval_runtime": 72.0275,
623
+ "eval_samples_per_second": 2.763,
624
+ "eval_steps_per_second": 0.694,
625
+ "step": 100
626
+ },
627
+ {
628
+ "epoch": 0.01,
629
+ "learning_rate": 4.999999874125034e-05,
630
+ "loss": 0.4027,
631
+ "step": 101
632
+ },
633
+ {
634
+ "epoch": 0.01,
635
+ "learning_rate": 4.9999994965001495e-05,
636
+ "loss": 0.0226,
637
+ "step": 102
638
+ },
639
+ {
640
+ "epoch": 0.01,
641
+ "learning_rate": 4.999998867125384e-05,
642
+ "loss": 0.0269,
643
+ "step": 103
644
+ },
645
+ {
646
+ "epoch": 0.01,
647
+ "learning_rate": 4.9999979860008006e-05,
648
+ "loss": 0.025,
649
+ "step": 104
650
+ },
651
+ {
652
+ "epoch": 0.01,
653
+ "learning_rate": 4.999996853126489e-05,
654
+ "loss": 0.0204,
655
+ "step": 105
656
+ },
657
+ {
658
+ "epoch": 0.01,
659
+ "learning_rate": 4.999995468502562e-05,
660
+ "loss": 0.0263,
661
+ "step": 106
662
+ },
663
+ {
664
+ "epoch": 0.01,
665
+ "learning_rate": 4.9999938321291604e-05,
666
+ "loss": 0.0248,
667
+ "step": 107
668
+ },
669
+ {
670
+ "epoch": 0.01,
671
+ "learning_rate": 4.999991944006448e-05,
672
+ "loss": 0.0274,
673
+ "step": 108
674
+ },
675
+ {
676
+ "epoch": 0.01,
677
+ "learning_rate": 4.9999898041346155e-05,
678
+ "loss": 0.0218,
679
+ "step": 109
680
+ },
681
+ {
682
+ "epoch": 0.01,
683
+ "learning_rate": 4.999987412513878e-05,
684
+ "loss": 0.0182,
685
+ "step": 110
686
+ },
687
+ {
688
+ "epoch": 0.01,
689
+ "learning_rate": 4.999984769144476e-05,
690
+ "loss": 0.0205,
691
+ "step": 111
692
+ },
693
+ {
694
+ "epoch": 0.01,
695
+ "learning_rate": 4.9999818740266766e-05,
696
+ "loss": 0.0229,
697
+ "step": 112
698
+ },
699
+ {
700
+ "epoch": 0.01,
701
+ "learning_rate": 4.9999787271607714e-05,
702
+ "loss": 0.0416,
703
+ "step": 113
704
+ },
705
+ {
706
+ "epoch": 0.01,
707
+ "learning_rate": 4.999975328547076e-05,
708
+ "loss": 0.0191,
709
+ "step": 114
710
+ },
711
+ {
712
+ "epoch": 0.01,
713
+ "learning_rate": 4.999971678185933e-05,
714
+ "loss": 0.0205,
715
+ "step": 115
716
+ },
717
+ {
718
+ "epoch": 0.01,
719
+ "learning_rate": 4.9999677760777114e-05,
720
+ "loss": 0.0184,
721
+ "step": 116
722
+ },
723
+ {
724
+ "epoch": 0.01,
725
+ "learning_rate": 4.999963622222803e-05,
726
+ "loss": 0.018,
727
+ "step": 117
728
+ },
729
+ {
730
+ "epoch": 0.01,
731
+ "learning_rate": 4.9999592166216256e-05,
732
+ "loss": 0.0242,
733
+ "step": 118
734
+ },
735
+ {
736
+ "epoch": 0.01,
737
+ "learning_rate": 4.999954559274624e-05,
738
+ "loss": 0.4053,
739
+ "step": 119
740
+ },
741
+ {
742
+ "epoch": 0.01,
743
+ "learning_rate": 4.999949650182266e-05,
744
+ "loss": 0.5058,
745
+ "step": 120
746
+ },
747
+ {
748
+ "epoch": 0.01,
749
+ "learning_rate": 4.9999444893450476e-05,
750
+ "loss": 0.9192,
751
+ "step": 121
752
+ },
753
+ {
754
+ "epoch": 0.01,
755
+ "learning_rate": 4.999939076763487e-05,
756
+ "loss": 1.1211,
757
+ "step": 122
758
+ },
759
+ {
760
+ "epoch": 0.01,
761
+ "learning_rate": 4.99993341243813e-05,
762
+ "loss": 0.7105,
763
+ "step": 123
764
+ },
765
+ {
766
+ "epoch": 0.01,
767
+ "learning_rate": 4.999927496369547e-05,
768
+ "loss": 0.851,
769
+ "step": 124
770
+ },
771
+ {
772
+ "epoch": 0.01,
773
+ "learning_rate": 4.999921328558333e-05,
774
+ "loss": 0.763,
775
+ "step": 125
776
+ },
777
+ {
778
+ "epoch": 0.01,
779
+ "learning_rate": 4.99991490900511e-05,
780
+ "loss": 1.1325,
781
+ "step": 126
782
+ },
783
+ {
784
+ "epoch": 0.01,
785
+ "learning_rate": 4.999908237710523e-05,
786
+ "loss": 1.1006,
787
+ "step": 127
788
+ },
789
+ {
790
+ "epoch": 0.01,
791
+ "learning_rate": 4.999901314675246e-05,
792
+ "loss": 0.9444,
793
+ "step": 128
794
+ },
795
+ {
796
+ "epoch": 0.01,
797
+ "learning_rate": 4.9998941398999754e-05,
798
+ "loss": 1.0285,
799
+ "step": 129
800
+ },
801
+ {
802
+ "epoch": 0.01,
803
+ "learning_rate": 4.999886713385432e-05,
804
+ "loss": 0.9176,
805
+ "step": 130
806
+ },
807
+ {
808
+ "epoch": 0.01,
809
+ "learning_rate": 4.999879035132366e-05,
810
+ "loss": 1.2408,
811
+ "step": 131
812
+ },
813
+ {
814
+ "epoch": 0.01,
815
+ "learning_rate": 4.999871105141549e-05,
816
+ "loss": 1.0897,
817
+ "step": 132
818
+ },
819
+ {
820
+ "epoch": 0.01,
821
+ "learning_rate": 4.999862923413781e-05,
822
+ "loss": 0.6091,
823
+ "step": 133
824
+ },
825
+ {
826
+ "epoch": 0.01,
827
+ "learning_rate": 4.999854489949884e-05,
828
+ "loss": 1.1689,
829
+ "step": 134
830
+ },
831
+ {
832
+ "epoch": 0.01,
833
+ "learning_rate": 4.999845804750709e-05,
834
+ "loss": 1.5978,
835
+ "step": 135
836
+ },
837
+ {
838
+ "epoch": 0.01,
839
+ "learning_rate": 4.999836867817129e-05,
840
+ "loss": 1.4423,
841
+ "step": 136
842
+ },
843
+ {
844
+ "epoch": 0.01,
845
+ "learning_rate": 4.999827679150045e-05,
846
+ "loss": 0.9095,
847
+ "step": 137
848
+ },
849
+ {
850
+ "epoch": 0.01,
851
+ "learning_rate": 4.999818238750382e-05,
852
+ "loss": 0.7459,
853
+ "step": 138
854
+ },
855
+ {
856
+ "epoch": 0.01,
857
+ "learning_rate": 4.999808546619091e-05,
858
+ "loss": 0.8685,
859
+ "step": 139
860
+ },
861
+ {
862
+ "epoch": 0.01,
863
+ "learning_rate": 4.9997986027571485e-05,
864
+ "loss": 1.1481,
865
+ "step": 140
866
+ },
867
+ {
868
+ "epoch": 0.01,
869
+ "learning_rate": 4.9997884071655546e-05,
870
+ "loss": 2.5944,
871
+ "step": 141
872
+ },
873
+ {
874
+ "epoch": 0.01,
875
+ "learning_rate": 4.999777959845336e-05,
876
+ "loss": 0.8284,
877
+ "step": 142
878
+ },
879
+ {
880
+ "epoch": 0.01,
881
+ "learning_rate": 4.999767260797546e-05,
882
+ "loss": 1.0722,
883
+ "step": 143
884
+ },
885
+ {
886
+ "epoch": 0.01,
887
+ "learning_rate": 4.999756310023261e-05,
888
+ "loss": 1.0372,
889
+ "step": 144
890
+ },
891
+ {
892
+ "epoch": 0.01,
893
+ "learning_rate": 4.9997451075235834e-05,
894
+ "loss": 1.1565,
895
+ "step": 145
896
+ },
897
+ {
898
+ "epoch": 0.01,
899
+ "learning_rate": 4.9997336532996426e-05,
900
+ "loss": 1.1735,
901
+ "step": 146
902
+ },
903
+ {
904
+ "epoch": 0.01,
905
+ "learning_rate": 4.999721947352591e-05,
906
+ "loss": 0.861,
907
+ "step": 147
908
+ },
909
+ {
910
+ "epoch": 0.01,
911
+ "learning_rate": 4.999709989683607e-05,
912
+ "loss": 0.7458,
913
+ "step": 148
914
+ },
915
+ {
916
+ "epoch": 0.01,
917
+ "learning_rate": 4.999697780293897e-05,
918
+ "loss": 1.1438,
919
+ "step": 149
920
+ },
921
+ {
922
+ "epoch": 0.01,
923
+ "learning_rate": 4.9996853191846885e-05,
924
+ "loss": 0.8448,
925
+ "step": 150
926
+ },
927
+ {
928
+ "epoch": 0.01,
929
+ "eval_loss": 1.1207772493362427,
930
+ "eval_runtime": 72.9183,
931
+ "eval_samples_per_second": 2.729,
932
+ "eval_steps_per_second": 0.686,
933
+ "step": 150
934
+ },
935
+ {
936
+ "epoch": 0.02,
937
+ "learning_rate": 4.999672606357236e-05,
938
+ "loss": 0.4995,
939
+ "step": 151
940
+ },
941
+ {
942
+ "epoch": 0.02,
943
+ "learning_rate": 4.99965964181282e-05,
944
+ "loss": 0.2793,
945
+ "step": 152
946
+ },
947
+ {
948
+ "epoch": 0.02,
949
+ "learning_rate": 4.9996464255527475e-05,
950
+ "loss": 0.5865,
951
+ "step": 153
952
+ },
953
+ {
954
+ "epoch": 0.02,
955
+ "learning_rate": 4.999632957578349e-05,
956
+ "loss": 0.7137,
957
+ "step": 154
958
+ },
959
+ {
960
+ "epoch": 0.02,
961
+ "learning_rate": 4.9996192378909786e-05,
962
+ "loss": 0.495,
963
+ "step": 155
964
+ },
965
+ {
966
+ "epoch": 0.02,
967
+ "learning_rate": 4.9996052664920195e-05,
968
+ "loss": 0.9241,
969
+ "step": 156
970
+ },
971
+ {
972
+ "epoch": 0.02,
973
+ "learning_rate": 4.999591043382878e-05,
974
+ "loss": 2.3316,
975
+ "step": 157
976
+ },
977
+ {
978
+ "epoch": 0.02,
979
+ "learning_rate": 4.9995765685649885e-05,
980
+ "loss": 1.1994,
981
+ "step": 158
982
+ },
983
+ {
984
+ "epoch": 0.02,
985
+ "learning_rate": 4.999561842039806e-05,
986
+ "loss": 0.6486,
987
+ "step": 159
988
+ },
989
+ {
990
+ "epoch": 0.02,
991
+ "learning_rate": 4.999546863808815e-05,
992
+ "loss": 0.6252,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 0.02,
997
+ "learning_rate": 4.999531633873522e-05,
998
+ "loss": 1.0976,
999
+ "step": 161
1000
+ },
1001
+ {
1002
+ "epoch": 0.02,
1003
+ "learning_rate": 4.9995161522354626e-05,
1004
+ "loss": 0.8763,
1005
+ "step": 162
1006
+ },
1007
+ {
1008
+ "epoch": 0.02,
1009
+ "learning_rate": 4.9995004188961954e-05,
1010
+ "loss": 0.4891,
1011
+ "step": 163
1012
+ },
1013
+ {
1014
+ "epoch": 0.02,
1015
+ "learning_rate": 4.9994844338573047e-05,
1016
+ "loss": 0.7395,
1017
+ "step": 164
1018
+ },
1019
+ {
1020
+ "epoch": 0.02,
1021
+ "learning_rate": 4.9994681971203985e-05,
1022
+ "loss": 0.9335,
1023
+ "step": 165
1024
+ },
1025
+ {
1026
+ "epoch": 0.02,
1027
+ "learning_rate": 4.999451708687114e-05,
1028
+ "loss": 0.8835,
1029
+ "step": 166
1030
+ },
1031
+ {
1032
+ "epoch": 0.02,
1033
+ "learning_rate": 4.999434968559111e-05,
1034
+ "loss": 0.7375,
1035
+ "step": 167
1036
+ },
1037
+ {
1038
+ "epoch": 0.02,
1039
+ "learning_rate": 4.9994179767380746e-05,
1040
+ "loss": 1.1447,
1041
+ "step": 168
1042
+ },
1043
+ {
1044
+ "epoch": 0.02,
1045
+ "learning_rate": 4.9994007332257166e-05,
1046
+ "loss": 1.0092,
1047
+ "step": 169
1048
+ },
1049
+ {
1050
+ "epoch": 0.02,
1051
+ "learning_rate": 4.9993832380237735e-05,
1052
+ "loss": 1.2002,
1053
+ "step": 170
1054
+ },
1055
+ {
1056
+ "epoch": 0.02,
1057
+ "learning_rate": 4.999365491134006e-05,
1058
+ "loss": 1.1527,
1059
+ "step": 171
1060
+ },
1061
+ {
1062
+ "epoch": 0.02,
1063
+ "learning_rate": 4.999347492558202e-05,
1064
+ "loss": 0.8259,
1065
+ "step": 172
1066
+ },
1067
+ {
1068
+ "epoch": 0.02,
1069
+ "learning_rate": 4.9993292422981744e-05,
1070
+ "loss": 0.7446,
1071
+ "step": 173
1072
+ },
1073
+ {
1074
+ "epoch": 0.02,
1075
+ "learning_rate": 4.9993107403557606e-05,
1076
+ "loss": 0.8483,
1077
+ "step": 174
1078
+ },
1079
+ {
1080
+ "epoch": 0.02,
1081
+ "learning_rate": 4.999291986732823e-05,
1082
+ "loss": 0.9139,
1083
+ "step": 175
1084
+ },
1085
+ {
1086
+ "epoch": 0.02,
1087
+ "learning_rate": 4.999272981431251e-05,
1088
+ "loss": 1.1312,
1089
+ "step": 176
1090
+ },
1091
+ {
1092
+ "epoch": 0.02,
1093
+ "learning_rate": 4.999253724452958e-05,
1094
+ "loss": 1.0392,
1095
+ "step": 177
1096
+ },
1097
+ {
1098
+ "epoch": 0.02,
1099
+ "learning_rate": 4.999234215799884e-05,
1100
+ "loss": 0.9711,
1101
+ "step": 178
1102
+ },
1103
+ {
1104
+ "epoch": 0.02,
1105
+ "learning_rate": 4.9992144554739915e-05,
1106
+ "loss": 0.0736,
1107
+ "step": 179
1108
+ },
1109
+ {
1110
+ "epoch": 0.02,
1111
+ "learning_rate": 4.9991944434772734e-05,
1112
+ "loss": 0.0228,
1113
+ "step": 180
1114
+ },
1115
+ {
1116
+ "epoch": 0.02,
1117
+ "learning_rate": 4.999174179811742e-05,
1118
+ "loss": 0.0183,
1119
+ "step": 181
1120
+ },
1121
+ {
1122
+ "epoch": 0.02,
1123
+ "learning_rate": 4.9991536644794394e-05,
1124
+ "loss": 0.0135,
1125
+ "step": 182
1126
+ },
1127
+ {
1128
+ "epoch": 0.02,
1129
+ "learning_rate": 4.9991328974824314e-05,
1130
+ "loss": 0.0189,
1131
+ "step": 183
1132
+ },
1133
+ {
1134
+ "epoch": 0.02,
1135
+ "learning_rate": 4.9991118788228084e-05,
1136
+ "loss": 0.0138,
1137
+ "step": 184
1138
+ },
1139
+ {
1140
+ "epoch": 0.02,
1141
+ "learning_rate": 4.999090608502688e-05,
1142
+ "loss": 0.0177,
1143
+ "step": 185
1144
+ },
1145
+ {
1146
+ "epoch": 0.02,
1147
+ "learning_rate": 4.999069086524212e-05,
1148
+ "loss": 0.0161,
1149
+ "step": 186
1150
+ },
1151
+ {
1152
+ "epoch": 0.02,
1153
+ "learning_rate": 4.999047312889547e-05,
1154
+ "loss": 0.0227,
1155
+ "step": 187
1156
+ },
1157
+ {
1158
+ "epoch": 0.02,
1159
+ "learning_rate": 4.999025287600886e-05,
1160
+ "loss": 0.0161,
1161
+ "step": 188
1162
+ },
1163
+ {
1164
+ "epoch": 0.02,
1165
+ "learning_rate": 4.9990030106604466e-05,
1166
+ "loss": 0.0178,
1167
+ "step": 189
1168
+ },
1169
+ {
1170
+ "epoch": 0.02,
1171
+ "learning_rate": 4.9989804820704735e-05,
1172
+ "loss": 0.0351,
1173
+ "step": 190
1174
+ },
1175
+ {
1176
+ "epoch": 0.02,
1177
+ "learning_rate": 4.998957701833233e-05,
1178
+ "loss": 0.0169,
1179
+ "step": 191
1180
+ },
1181
+ {
1182
+ "epoch": 0.02,
1183
+ "learning_rate": 4.998934669951021e-05,
1184
+ "loss": 0.0152,
1185
+ "step": 192
1186
+ },
1187
+ {
1188
+ "epoch": 0.02,
1189
+ "learning_rate": 4.998911386426156e-05,
1190
+ "loss": 0.0116,
1191
+ "step": 193
1192
+ },
1193
+ {
1194
+ "epoch": 0.02,
1195
+ "learning_rate": 4.998887851260983e-05,
1196
+ "loss": 0.015,
1197
+ "step": 194
1198
+ },
1199
+ {
1200
+ "epoch": 0.02,
1201
+ "learning_rate": 4.998864064457871e-05,
1202
+ "loss": 0.021,
1203
+ "step": 195
1204
+ },
1205
+ {
1206
+ "epoch": 0.02,
1207
+ "learning_rate": 4.998840026019217e-05,
1208
+ "loss": 0.017,
1209
+ "step": 196
1210
+ },
1211
+ {
1212
+ "epoch": 0.02,
1213
+ "learning_rate": 4.99881573594744e-05,
1214
+ "loss": 0.4376,
1215
+ "step": 197
1216
+ },
1217
+ {
1218
+ "epoch": 0.02,
1219
+ "learning_rate": 4.9987911942449874e-05,
1220
+ "loss": 0.5764,
1221
+ "step": 198
1222
+ },
1223
+ {
1224
+ "epoch": 0.02,
1225
+ "learning_rate": 4.998766400914329e-05,
1226
+ "loss": 1.0406,
1227
+ "step": 199
1228
+ },
1229
+ {
1230
+ "epoch": 0.02,
1231
+ "learning_rate": 4.9987413559579636e-05,
1232
+ "loss": 1.2413,
1233
+ "step": 200
1234
+ },
1235
+ {
1236
+ "epoch": 0.02,
1237
+ "eval_loss": 1.1171025037765503,
1238
+ "eval_runtime": 71.816,
1239
+ "eval_samples_per_second": 2.771,
1240
+ "eval_steps_per_second": 0.696,
1241
+ "step": 200
1242
+ },
1243
+ {
1244
+ "epoch": 0.02,
1245
+ "learning_rate": 4.998716059378411e-05,
1246
+ "loss": 0.9615,
1247
+ "step": 201
1248
+ },
1249
+ {
1250
+ "epoch": 0.02,
1251
+ "learning_rate": 4.99869051117822e-05,
1252
+ "loss": 0.9232,
1253
+ "step": 202
1254
+ },
1255
+ {
1256
+ "epoch": 0.02,
1257
+ "learning_rate": 4.998664711359963e-05,
1258
+ "loss": 1.3542,
1259
+ "step": 203
1260
+ },
1261
+ {
1262
+ "epoch": 0.02,
1263
+ "learning_rate": 4.9986386599262374e-05,
1264
+ "loss": 0.7679,
1265
+ "step": 204
1266
+ },
1267
+ {
1268
+ "epoch": 0.02,
1269
+ "learning_rate": 4.998612356879667e-05,
1270
+ "loss": 0.9539,
1271
+ "step": 205
1272
+ },
1273
+ {
1274
+ "epoch": 0.02,
1275
+ "learning_rate": 4.9985858022229015e-05,
1276
+ "loss": 1.3759,
1277
+ "step": 206
1278
+ },
1279
+ {
1280
+ "epoch": 0.02,
1281
+ "learning_rate": 4.998558995958614e-05,
1282
+ "loss": 0.9567,
1283
+ "step": 207
1284
+ },
1285
+ {
1286
+ "epoch": 0.02,
1287
+ "learning_rate": 4.998531938089503e-05,
1288
+ "loss": 0.8245,
1289
+ "step": 208
1290
+ },
1291
+ {
1292
+ "epoch": 0.02,
1293
+ "learning_rate": 4.998504628618296e-05,
1294
+ "loss": 0.8987,
1295
+ "step": 209
1296
+ },
1297
+ {
1298
+ "epoch": 0.02,
1299
+ "learning_rate": 4.99847706754774e-05,
1300
+ "loss": 0.9503,
1301
+ "step": 210
1302
+ },
1303
+ {
1304
+ "epoch": 0.02,
1305
+ "learning_rate": 4.998449254880612e-05,
1306
+ "loss": 0.9907,
1307
+ "step": 211
1308
+ },
1309
+ {
1310
+ "epoch": 0.02,
1311
+ "learning_rate": 4.998421190619711e-05,
1312
+ "loss": 1.1336,
1313
+ "step": 212
1314
+ },
1315
+ {
1316
+ "epoch": 0.02,
1317
+ "learning_rate": 4.9983928747678663e-05,
1318
+ "loss": 1.3901,
1319
+ "step": 213
1320
+ },
1321
+ {
1322
+ "epoch": 0.02,
1323
+ "learning_rate": 4.998364307327927e-05,
1324
+ "loss": 1.5705,
1325
+ "step": 214
1326
+ },
1327
+ {
1328
+ "epoch": 0.02,
1329
+ "learning_rate": 4.99833548830277e-05,
1330
+ "loss": 0.8125,
1331
+ "step": 215
1332
+ },
1333
+ {
1334
+ "epoch": 0.02,
1335
+ "learning_rate": 4.9983064176952976e-05,
1336
+ "loss": 0.82,
1337
+ "step": 216
1338
+ },
1339
+ {
1340
+ "epoch": 0.02,
1341
+ "learning_rate": 4.9982770955084376e-05,
1342
+ "loss": 0.7146,
1343
+ "step": 217
1344
+ },
1345
+ {
1346
+ "epoch": 0.02,
1347
+ "learning_rate": 4.9982475217451426e-05,
1348
+ "loss": 1.0612,
1349
+ "step": 218
1350
+ },
1351
+ {
1352
+ "epoch": 0.02,
1353
+ "learning_rate": 4.998217696408391e-05,
1354
+ "loss": 0.7297,
1355
+ "step": 219
1356
+ },
1357
+ {
1358
+ "epoch": 0.02,
1359
+ "learning_rate": 4.9981876195011844e-05,
1360
+ "loss": 0.9502,
1361
+ "step": 220
1362
+ },
1363
+ {
1364
+ "epoch": 0.02,
1365
+ "learning_rate": 4.998157291026553e-05,
1366
+ "loss": 1.1155,
1367
+ "step": 221
1368
+ },
1369
+ {
1370
+ "epoch": 0.02,
1371
+ "learning_rate": 4.998126710987552e-05,
1372
+ "loss": 1.1281,
1373
+ "step": 222
1374
+ },
1375
+ {
1376
+ "epoch": 0.02,
1377
+ "learning_rate": 4.9980958793872577e-05,
1378
+ "loss": 0.848,
1379
+ "step": 223
1380
+ },
1381
+ {
1382
+ "epoch": 0.02,
1383
+ "learning_rate": 4.998064796228779e-05,
1384
+ "loss": 0.6496,
1385
+ "step": 224
1386
+ },
1387
+ {
1388
+ "epoch": 0.02,
1389
+ "learning_rate": 4.998033461515242e-05,
1390
+ "loss": 0.9489,
1391
+ "step": 225
1392
+ },
1393
+ {
1394
+ "epoch": 0.02,
1395
+ "learning_rate": 4.9980018752498035e-05,
1396
+ "loss": 1.1667,
1397
+ "step": 226
1398
+ },
1399
+ {
1400
+ "epoch": 0.02,
1401
+ "learning_rate": 4.9979700374356455e-05,
1402
+ "loss": 1.0077,
1403
+ "step": 227
1404
+ },
1405
+ {
1406
+ "epoch": 0.02,
1407
+ "learning_rate": 4.997937948075973e-05,
1408
+ "loss": 0.8891,
1409
+ "step": 228
1410
+ },
1411
+ {
1412
+ "epoch": 0.02,
1413
+ "learning_rate": 4.997905607174017e-05,
1414
+ "loss": 1.2342,
1415
+ "step": 229
1416
+ },
1417
+ {
1418
+ "epoch": 0.02,
1419
+ "learning_rate": 4.9978730147330355e-05,
1420
+ "loss": 0.7439,
1421
+ "step": 230
1422
+ },
1423
+ {
1424
+ "epoch": 0.02,
1425
+ "learning_rate": 4.9978401707563096e-05,
1426
+ "loss": 0.8864,
1427
+ "step": 231
1428
+ },
1429
+ {
1430
+ "epoch": 0.02,
1431
+ "learning_rate": 4.997807075247146e-05,
1432
+ "loss": 0.8909,
1433
+ "step": 232
1434
+ },
1435
+ {
1436
+ "epoch": 0.02,
1437
+ "learning_rate": 4.997773728208879e-05,
1438
+ "loss": 0.928,
1439
+ "step": 233
1440
+ },
1441
+ {
1442
+ "epoch": 0.02,
1443
+ "learning_rate": 4.997740129644865e-05,
1444
+ "loss": 0.8764,
1445
+ "step": 234
1446
+ },
1447
+ {
1448
+ "epoch": 0.02,
1449
+ "learning_rate": 4.9977062795584893e-05,
1450
+ "loss": 0.8078,
1451
+ "step": 235
1452
+ },
1453
+ {
1454
+ "epoch": 0.02,
1455
+ "learning_rate": 4.99767217795316e-05,
1456
+ "loss": 1.2065,
1457
+ "step": 236
1458
+ },
1459
+ {
1460
+ "epoch": 0.02,
1461
+ "learning_rate": 4.9976378248323095e-05,
1462
+ "loss": 0.6946,
1463
+ "step": 237
1464
+ },
1465
+ {
1466
+ "epoch": 0.02,
1467
+ "learning_rate": 4.997603220199399e-05,
1468
+ "loss": 0.8255,
1469
+ "step": 238
1470
+ },
1471
+ {
1472
+ "epoch": 0.02,
1473
+ "learning_rate": 4.9975683640579126e-05,
1474
+ "loss": 0.9762,
1475
+ "step": 239
1476
+ },
1477
+ {
1478
+ "epoch": 0.02,
1479
+ "learning_rate": 4.99753325641136e-05,
1480
+ "loss": 0.9771,
1481
+ "step": 240
1482
+ },
1483
+ {
1484
+ "epoch": 0.02,
1485
+ "learning_rate": 4.997497897263277e-05,
1486
+ "loss": 0.8766,
1487
+ "step": 241
1488
+ },
1489
+ {
1490
+ "epoch": 0.02,
1491
+ "learning_rate": 4.997462286617224e-05,
1492
+ "loss": 1.03,
1493
+ "step": 242
1494
+ },
1495
+ {
1496
+ "epoch": 0.02,
1497
+ "learning_rate": 4.997426424476787e-05,
1498
+ "loss": 0.7792,
1499
+ "step": 243
1500
+ },
1501
+ {
1502
+ "epoch": 0.02,
1503
+ "learning_rate": 4.997390310845578e-05,
1504
+ "loss": 0.7772,
1505
+ "step": 244
1506
+ },
1507
+ {
1508
+ "epoch": 0.02,
1509
+ "learning_rate": 4.997353945727232e-05,
1510
+ "loss": 0.9822,
1511
+ "step": 245
1512
+ },
1513
+ {
1514
+ "epoch": 0.02,
1515
+ "learning_rate": 4.9973173291254126e-05,
1516
+ "loss": 0.9403,
1517
+ "step": 246
1518
+ },
1519
+ {
1520
+ "epoch": 0.02,
1521
+ "learning_rate": 4.997280461043806e-05,
1522
+ "loss": 1.117,
1523
+ "step": 247
1524
+ },
1525
+ {
1526
+ "epoch": 0.02,
1527
+ "learning_rate": 4.997243341486127e-05,
1528
+ "loss": 1.3156,
1529
+ "step": 248
1530
+ },
1531
+ {
1532
+ "epoch": 0.02,
1533
+ "learning_rate": 4.9972059704561094e-05,
1534
+ "loss": 0.7289,
1535
+ "step": 249
1536
+ },
1537
+ {
1538
+ "epoch": 0.03,
1539
+ "learning_rate": 4.99716834795752e-05,
1540
+ "loss": 0.7193,
1541
+ "step": 250
1542
+ },
1543
+ {
1544
+ "epoch": 0.03,
1545
+ "eval_loss": 1.108275294303894,
1546
+ "eval_runtime": 72.6609,
1547
+ "eval_samples_per_second": 2.739,
1548
+ "eval_steps_per_second": 0.688,
1549
+ "step": 250
1550
+ },
1551
+ {
1552
+ "epoch": 0.03,
1553
+ "learning_rate": 4.9971304739941465e-05,
1554
+ "loss": 0.8273,
1555
+ "step": 251
1556
+ },
1557
+ {
1558
+ "epoch": 0.03,
1559
+ "learning_rate": 4.9970923485698025e-05,
1560
+ "loss": 0.8979,
1561
+ "step": 252
1562
+ },
1563
+ {
1564
+ "epoch": 0.03,
1565
+ "learning_rate": 4.997053971688327e-05,
1566
+ "loss": 1.1935,
1567
+ "step": 253
1568
+ },
1569
+ {
1570
+ "epoch": 0.03,
1571
+ "learning_rate": 4.997015343353585e-05,
1572
+ "loss": 0.6769,
1573
+ "step": 254
1574
+ },
1575
+ {
1576
+ "epoch": 0.03,
1577
+ "learning_rate": 4.996976463569467e-05,
1578
+ "loss": 0.1888,
1579
+ "step": 255
1580
+ },
1581
+ {
1582
+ "epoch": 0.03,
1583
+ "learning_rate": 4.996937332339887e-05,
1584
+ "loss": 0.6274,
1585
+ "step": 256
1586
+ },
1587
+ {
1588
+ "epoch": 0.03,
1589
+ "learning_rate": 4.996897949668785e-05,
1590
+ "loss": 1.1241,
1591
+ "step": 257
1592
+ },
1593
+ {
1594
+ "epoch": 0.03,
1595
+ "learning_rate": 4.996858315560129e-05,
1596
+ "loss": 1.4104,
1597
+ "step": 258
1598
+ },
1599
+ {
1600
+ "epoch": 0.03,
1601
+ "learning_rate": 4.996818430017908e-05,
1602
+ "loss": 1.5033,
1603
+ "step": 259
1604
+ },
1605
+ {
1606
+ "epoch": 0.03,
1607
+ "learning_rate": 4.996778293046141e-05,
1608
+ "loss": 0.9864,
1609
+ "step": 260
1610
+ },
1611
+ {
1612
+ "epoch": 0.03,
1613
+ "learning_rate": 4.996737904648866e-05,
1614
+ "loss": 1.2575,
1615
+ "step": 261
1616
+ },
1617
+ {
1618
+ "epoch": 0.03,
1619
+ "learning_rate": 4.9966972648301536e-05,
1620
+ "loss": 0.4235,
1621
+ "step": 262
1622
+ },
1623
+ {
1624
+ "epoch": 0.03,
1625
+ "learning_rate": 4.996656373594095e-05,
1626
+ "loss": 0.9705,
1627
+ "step": 263
1628
+ },
1629
+ {
1630
+ "epoch": 0.03,
1631
+ "learning_rate": 4.9966152309448076e-05,
1632
+ "loss": 1.1265,
1633
+ "step": 264
1634
+ },
1635
+ {
1636
+ "epoch": 0.03,
1637
+ "learning_rate": 4.996573836886435e-05,
1638
+ "loss": 1.0598,
1639
+ "step": 265
1640
+ },
1641
+ {
1642
+ "epoch": 0.03,
1643
+ "learning_rate": 4.996532191423145e-05,
1644
+ "loss": 0.9536,
1645
+ "step": 266
1646
+ },
1647
+ {
1648
+ "epoch": 0.03,
1649
+ "learning_rate": 4.996490294559132e-05,
1650
+ "loss": 0.936,
1651
+ "step": 267
1652
+ },
1653
+ {
1654
+ "epoch": 0.03,
1655
+ "learning_rate": 4.996448146298614e-05,
1656
+ "loss": 1.1793,
1657
+ "step": 268
1658
+ },
1659
+ {
1660
+ "epoch": 0.03,
1661
+ "learning_rate": 4.996405746645837e-05,
1662
+ "loss": 0.8472,
1663
+ "step": 269
1664
+ },
1665
+ {
1666
+ "epoch": 0.03,
1667
+ "learning_rate": 4.996363095605069e-05,
1668
+ "loss": 0.861,
1669
+ "step": 270
1670
+ },
1671
+ {
1672
+ "epoch": 0.03,
1673
+ "learning_rate": 4.996320193180606e-05,
1674
+ "loss": 0.7457,
1675
+ "step": 271
1676
+ },
1677
+ {
1678
+ "epoch": 0.03,
1679
+ "learning_rate": 4.996277039376767e-05,
1680
+ "loss": 0.9936,
1681
+ "step": 272
1682
+ },
1683
+ {
1684
+ "epoch": 0.03,
1685
+ "learning_rate": 4.996233634197899e-05,
1686
+ "loss": 0.6526,
1687
+ "step": 273
1688
+ },
1689
+ {
1690
+ "epoch": 0.03,
1691
+ "learning_rate": 4.996189977648372e-05,
1692
+ "loss": 0.6052,
1693
+ "step": 274
1694
+ },
1695
+ {
1696
+ "epoch": 0.03,
1697
+ "learning_rate": 4.996146069732583e-05,
1698
+ "loss": 0.3457,
1699
+ "step": 275
1700
+ },
1701
+ {
1702
+ "epoch": 0.03,
1703
+ "learning_rate": 4.996101910454953e-05,
1704
+ "loss": 0.8991,
1705
+ "step": 276
1706
+ },
1707
+ {
1708
+ "epoch": 0.03,
1709
+ "learning_rate": 4.9960574998199285e-05,
1710
+ "loss": 2.1928,
1711
+ "step": 277
1712
+ },
1713
+ {
1714
+ "epoch": 0.03,
1715
+ "learning_rate": 4.9960128378319825e-05,
1716
+ "loss": 1.5278,
1717
+ "step": 278
1718
+ },
1719
+ {
1720
+ "epoch": 0.03,
1721
+ "learning_rate": 4.995967924495611e-05,
1722
+ "loss": 0.7869,
1723
+ "step": 279
1724
+ },
1725
+ {
1726
+ "epoch": 0.03,
1727
+ "learning_rate": 4.995922759815339e-05,
1728
+ "loss": 0.75,
1729
+ "step": 280
1730
+ },
1731
+ {
1732
+ "epoch": 0.03,
1733
+ "learning_rate": 4.995877343795714e-05,
1734
+ "loss": 0.8104,
1735
+ "step": 281
1736
+ },
1737
+ {
1738
+ "epoch": 0.03,
1739
+ "learning_rate": 4.995831676441307e-05,
1740
+ "loss": 0.9529,
1741
+ "step": 282
1742
+ },
1743
+ {
1744
+ "epoch": 0.03,
1745
+ "learning_rate": 4.9957857577567197e-05,
1746
+ "loss": 0.9996,
1747
+ "step": 283
1748
+ },
1749
+ {
1750
+ "epoch": 0.03,
1751
+ "learning_rate": 4.995739587746574e-05,
1752
+ "loss": 0.6799,
1753
+ "step": 284
1754
+ },
1755
+ {
1756
+ "epoch": 0.03,
1757
+ "learning_rate": 4.995693166415521e-05,
1758
+ "loss": 0.3521,
1759
+ "step": 285
1760
+ },
1761
+ {
1762
+ "epoch": 0.03,
1763
+ "learning_rate": 4.995646493768234e-05,
1764
+ "loss": 0.7761,
1765
+ "step": 286
1766
+ },
1767
+ {
1768
+ "epoch": 0.03,
1769
+ "learning_rate": 4.995599569809414e-05,
1770
+ "loss": 1.4368,
1771
+ "step": 287
1772
+ },
1773
+ {
1774
+ "epoch": 0.03,
1775
+ "learning_rate": 4.995552394543784e-05,
1776
+ "loss": 1.2596,
1777
+ "step": 288
1778
+ },
1779
+ {
1780
+ "epoch": 0.03,
1781
+ "learning_rate": 4.995504967976098e-05,
1782
+ "loss": 1.2384,
1783
+ "step": 289
1784
+ },
1785
+ {
1786
+ "epoch": 0.03,
1787
+ "learning_rate": 4.9954572901111286e-05,
1788
+ "loss": 1.2618,
1789
+ "step": 290
1790
+ },
1791
+ {
1792
+ "epoch": 0.03,
1793
+ "learning_rate": 4.995409360953679e-05,
1794
+ "loss": 1.1813,
1795
+ "step": 291
1796
+ },
1797
+ {
1798
+ "epoch": 0.03,
1799
+ "learning_rate": 4.995361180508575e-05,
1800
+ "loss": 1.2225,
1801
+ "step": 292
1802
+ },
1803
+ {
1804
+ "epoch": 0.03,
1805
+ "learning_rate": 4.995312748780668e-05,
1806
+ "loss": 1.6035,
1807
+ "step": 293
1808
+ },
1809
+ {
1810
+ "epoch": 0.03,
1811
+ "learning_rate": 4.995264065774836e-05,
1812
+ "loss": 1.0326,
1813
+ "step": 294
1814
+ },
1815
+ {
1816
+ "epoch": 0.03,
1817
+ "learning_rate": 4.995215131495981e-05,
1818
+ "loss": 1.1068,
1819
+ "step": 295
1820
+ },
1821
+ {
1822
+ "epoch": 0.03,
1823
+ "learning_rate": 4.9951659459490294e-05,
1824
+ "loss": 1.1749,
1825
+ "step": 296
1826
+ },
1827
+ {
1828
+ "epoch": 0.03,
1829
+ "learning_rate": 4.995116509138936e-05,
1830
+ "loss": 0.7934,
1831
+ "step": 297
1832
+ },
1833
+ {
1834
+ "epoch": 0.03,
1835
+ "learning_rate": 4.995066821070679e-05,
1836
+ "loss": 0.7168,
1837
+ "step": 298
1838
+ },
1839
+ {
1840
+ "epoch": 0.03,
1841
+ "learning_rate": 4.995016881749261e-05,
1842
+ "loss": 1.1443,
1843
+ "step": 299
1844
+ },
1845
+ {
1846
+ "epoch": 0.03,
1847
+ "learning_rate": 4.994966691179711e-05,
1848
+ "loss": 1.0016,
1849
+ "step": 300
1850
+ },
1851
+ {
1852
+ "epoch": 0.03,
1853
+ "eval_loss": 1.1079908609390259,
1854
+ "eval_runtime": 72.0399,
1855
+ "eval_samples_per_second": 2.762,
1856
+ "eval_steps_per_second": 0.694,
1857
+ "step": 300
1858
+ },
1859
+ {
1860
+ "epoch": 0.03,
1861
+ "learning_rate": 4.994916249367084e-05,
1862
+ "loss": 0.8799,
1863
+ "step": 301
1864
+ },
1865
+ {
1866
+ "epoch": 0.03,
1867
+ "learning_rate": 4.994865556316458e-05,
1868
+ "loss": 0.7981,
1869
+ "step": 302
1870
+ },
1871
+ {
1872
+ "epoch": 0.03,
1873
+ "learning_rate": 4.9948146120329395e-05,
1874
+ "loss": 1.1415,
1875
+ "step": 303
1876
+ },
1877
+ {
1878
+ "epoch": 0.03,
1879
+ "learning_rate": 4.9947634165216584e-05,
1880
+ "loss": 0.7678,
1881
+ "step": 304
1882
+ },
1883
+ {
1884
+ "epoch": 0.03,
1885
+ "learning_rate": 4.994711969787769e-05,
1886
+ "loss": 0.6894,
1887
+ "step": 305
1888
+ },
1889
+ {
1890
+ "epoch": 0.03,
1891
+ "learning_rate": 4.9946602718364515e-05,
1892
+ "loss": 0.2112,
1893
+ "step": 306
1894
+ },
1895
+ {
1896
+ "epoch": 0.03,
1897
+ "learning_rate": 4.994608322672914e-05,
1898
+ "loss": 0.0144,
1899
+ "step": 307
1900
+ },
1901
+ {
1902
+ "epoch": 0.03,
1903
+ "learning_rate": 4.994556122302386e-05,
1904
+ "loss": 0.0126,
1905
+ "step": 308
1906
+ },
1907
+ {
1908
+ "epoch": 0.03,
1909
+ "learning_rate": 4.994503670730125e-05,
1910
+ "loss": 0.0285,
1911
+ "step": 309
1912
+ },
1913
+ {
1914
+ "epoch": 0.03,
1915
+ "learning_rate": 4.994450967961413e-05,
1916
+ "loss": 0.0182,
1917
+ "step": 310
1918
+ },
1919
+ {
1920
+ "epoch": 0.03,
1921
+ "learning_rate": 4.994398014001557e-05,
1922
+ "loss": 0.0169,
1923
+ "step": 311
1924
+ },
1925
+ {
1926
+ "epoch": 0.03,
1927
+ "learning_rate": 4.994344808855888e-05,
1928
+ "loss": 0.0094,
1929
+ "step": 312
1930
+ },
1931
+ {
1932
+ "epoch": 0.03,
1933
+ "learning_rate": 4.9942913525297655e-05,
1934
+ "loss": 0.0169,
1935
+ "step": 313
1936
+ },
1937
+ {
1938
+ "epoch": 0.03,
1939
+ "learning_rate": 4.994237645028572e-05,
1940
+ "loss": 0.0135,
1941
+ "step": 314
1942
+ },
1943
+ {
1944
+ "epoch": 0.03,
1945
+ "learning_rate": 4.994183686357717e-05,
1946
+ "loss": 0.0131,
1947
+ "step": 315
1948
+ },
1949
+ {
1950
+ "epoch": 0.03,
1951
+ "learning_rate": 4.994129476522632e-05,
1952
+ "loss": 0.0138,
1953
+ "step": 316
1954
+ },
1955
+ {
1956
+ "epoch": 0.03,
1957
+ "learning_rate": 4.9940750155287775e-05,
1958
+ "loss": 0.0172,
1959
+ "step": 317
1960
+ },
1961
+ {
1962
+ "epoch": 0.03,
1963
+ "learning_rate": 4.994020303381636e-05,
1964
+ "loss": 0.0196,
1965
+ "step": 318
1966
+ },
1967
+ {
1968
+ "epoch": 0.03,
1969
+ "learning_rate": 4.993965340086719e-05,
1970
+ "loss": 0.0103,
1971
+ "step": 319
1972
+ },
1973
+ {
1974
+ "epoch": 0.03,
1975
+ "learning_rate": 4.993910125649561e-05,
1976
+ "loss": 0.018,
1977
+ "step": 320
1978
+ },
1979
+ {
1980
+ "epoch": 0.03,
1981
+ "learning_rate": 4.9938546600757205e-05,
1982
+ "loss": 0.0128,
1983
+ "step": 321
1984
+ },
1985
+ {
1986
+ "epoch": 0.03,
1987
+ "learning_rate": 4.993798943370785e-05,
1988
+ "loss": 0.0112,
1989
+ "step": 322
1990
+ },
1991
+ {
1992
+ "epoch": 0.03,
1993
+ "learning_rate": 4.9937429755403634e-05,
1994
+ "loss": 0.0176,
1995
+ "step": 323
1996
+ },
1997
+ {
1998
+ "epoch": 0.03,
1999
+ "learning_rate": 4.993686756590093e-05,
2000
+ "loss": 0.371,
2001
+ "step": 324
2002
+ },
2003
+ {
2004
+ "epoch": 0.03,
2005
+ "learning_rate": 4.993630286525634e-05,
2006
+ "loss": 0.5097,
2007
+ "step": 325
2008
+ },
2009
+ {
2010
+ "epoch": 0.03,
2011
+ "learning_rate": 4.993573565352674e-05,
2012
+ "loss": 0.8996,
2013
+ "step": 326
2014
+ },
2015
+ {
2016
+ "epoch": 0.03,
2017
+ "learning_rate": 4.9935165930769235e-05,
2018
+ "loss": 0.9685,
2019
+ "step": 327
2020
+ },
2021
+ {
2022
+ "epoch": 0.03,
2023
+ "learning_rate": 4.99345936970412e-05,
2024
+ "loss": 0.5462,
2025
+ "step": 328
2026
+ },
2027
+ {
2028
+ "epoch": 0.03,
2029
+ "learning_rate": 4.993401895240027e-05,
2030
+ "loss": 0.8048,
2031
+ "step": 329
2032
+ },
2033
+ {
2034
+ "epoch": 0.03,
2035
+ "learning_rate": 4.993344169690431e-05,
2036
+ "loss": 0.7428,
2037
+ "step": 330
2038
+ },
2039
+ {
2040
+ "epoch": 0.03,
2041
+ "learning_rate": 4.9932861930611454e-05,
2042
+ "loss": 0.9778,
2043
+ "step": 331
2044
+ },
2045
+ {
2046
+ "epoch": 0.03,
2047
+ "learning_rate": 4.993227965358008e-05,
2048
+ "loss": 0.9751,
2049
+ "step": 332
2050
+ },
2051
+ {
2052
+ "epoch": 0.03,
2053
+ "learning_rate": 4.993169486586884e-05,
2054
+ "loss": 0.8585,
2055
+ "step": 333
2056
+ },
2057
+ {
2058
+ "epoch": 0.03,
2059
+ "learning_rate": 4.99311075675366e-05,
2060
+ "loss": 1.0175,
2061
+ "step": 334
2062
+ },
2063
+ {
2064
+ "epoch": 0.03,
2065
+ "learning_rate": 4.9930517758642503e-05,
2066
+ "loss": 0.7355,
2067
+ "step": 335
2068
+ },
2069
+ {
2070
+ "epoch": 0.03,
2071
+ "learning_rate": 4.992992543924596e-05,
2072
+ "loss": 1.1919,
2073
+ "step": 336
2074
+ },
2075
+ {
2076
+ "epoch": 0.03,
2077
+ "learning_rate": 4.992933060940661e-05,
2078
+ "loss": 0.9677,
2079
+ "step": 337
2080
+ },
2081
+ {
2082
+ "epoch": 0.03,
2083
+ "learning_rate": 4.992873326918434e-05,
2084
+ "loss": 0.4328,
2085
+ "step": 338
2086
+ },
2087
+ {
2088
+ "epoch": 0.03,
2089
+ "learning_rate": 4.9928133418639316e-05,
2090
+ "loss": 1.2334,
2091
+ "step": 339
2092
+ },
2093
+ {
2094
+ "epoch": 0.03,
2095
+ "learning_rate": 4.992753105783194e-05,
2096
+ "loss": 1.3437,
2097
+ "step": 340
2098
+ },
2099
+ {
2100
+ "epoch": 0.03,
2101
+ "learning_rate": 4.992692618682286e-05,
2102
+ "loss": 1.3923,
2103
+ "step": 341
2104
+ },
2105
+ {
2106
+ "epoch": 0.03,
2107
+ "learning_rate": 4.992631880567301e-05,
2108
+ "loss": 0.747,
2109
+ "step": 342
2110
+ },
2111
+ {
2112
+ "epoch": 0.03,
2113
+ "learning_rate": 4.9925708914443526e-05,
2114
+ "loss": 0.7077,
2115
+ "step": 343
2116
+ },
2117
+ {
2118
+ "epoch": 0.03,
2119
+ "learning_rate": 4.9925096513195846e-05,
2120
+ "loss": 0.8386,
2121
+ "step": 344
2122
+ },
2123
+ {
2124
+ "epoch": 0.03,
2125
+ "learning_rate": 4.992448160199162e-05,
2126
+ "loss": 1.0766,
2127
+ "step": 345
2128
+ },
2129
+ {
2130
+ "epoch": 0.03,
2131
+ "learning_rate": 4.992386418089279e-05,
2132
+ "loss": 2.5327,
2133
+ "step": 346
2134
+ },
2135
+ {
2136
+ "epoch": 0.03,
2137
+ "learning_rate": 4.992324424996151e-05,
2138
+ "loss": 0.669,
2139
+ "step": 347
2140
+ },
2141
+ {
2142
+ "epoch": 0.03,
2143
+ "learning_rate": 4.992262180926022e-05,
2144
+ "loss": 1.1023,
2145
+ "step": 348
2146
+ },
2147
+ {
2148
+ "epoch": 0.03,
2149
+ "learning_rate": 4.992199685885159e-05,
2150
+ "loss": 0.9316,
2151
+ "step": 349
2152
+ },
2153
+ {
2154
+ "epoch": 0.04,
2155
+ "learning_rate": 4.992136939879856e-05,
2156
+ "loss": 1.0181,
2157
+ "step": 350
2158
+ },
2159
+ {
2160
+ "epoch": 0.04,
2161
+ "eval_loss": 1.1037520170211792,
2162
+ "eval_runtime": 72.8274,
2163
+ "eval_samples_per_second": 2.732,
2164
+ "eval_steps_per_second": 0.687,
2165
+ "step": 350
2166
+ },
2167
+ {
2168
+ "epoch": 0.04,
2169
+ "learning_rate": 4.992073942916432e-05,
2170
+ "loss": 1.1855,
2171
+ "step": 351
2172
+ },
2173
+ {
2174
+ "epoch": 0.04,
2175
+ "learning_rate": 4.992010695001229e-05,
2176
+ "loss": 0.7205,
2177
+ "step": 352
2178
+ },
2179
+ {
2180
+ "epoch": 0.04,
2181
+ "learning_rate": 4.991947196140618e-05,
2182
+ "loss": 0.7094,
2183
+ "step": 353
2184
+ },
2185
+ {
2186
+ "epoch": 0.04,
2187
+ "learning_rate": 4.991883446340992e-05,
2188
+ "loss": 1.0553,
2189
+ "step": 354
2190
+ },
2191
+ {
2192
+ "epoch": 0.04,
2193
+ "learning_rate": 4.991819445608772e-05,
2194
+ "loss": 0.8234,
2195
+ "step": 355
2196
+ },
2197
+ {
2198
+ "epoch": 0.04,
2199
+ "learning_rate": 4.991755193950401e-05,
2200
+ "loss": 0.3084,
2201
+ "step": 356
2202
+ },
2203
+ {
2204
+ "epoch": 0.04,
2205
+ "learning_rate": 4.991690691372352e-05,
2206
+ "loss": 0.1456,
2207
+ "step": 357
2208
+ },
2209
+ {
2210
+ "epoch": 0.04,
2211
+ "learning_rate": 4.991625937881116e-05,
2212
+ "loss": 0.5623,
2213
+ "step": 358
2214
+ },
2215
+ {
2216
+ "epoch": 0.04,
2217
+ "learning_rate": 4.991560933483218e-05,
2218
+ "loss": 0.5258,
2219
+ "step": 359
2220
+ },
2221
+ {
2222
+ "epoch": 0.04,
2223
+ "learning_rate": 4.991495678185202e-05,
2224
+ "loss": 0.5237,
2225
+ "step": 360
2226
+ },
2227
+ {
2228
+ "epoch": 0.04,
2229
+ "learning_rate": 4.9914301719936386e-05,
2230
+ "loss": 0.9311,
2231
+ "step": 361
2232
+ },
2233
+ {
2234
+ "epoch": 0.04,
2235
+ "learning_rate": 4.9913644149151256e-05,
2236
+ "loss": 2.1465,
2237
+ "step": 362
2238
+ },
2239
+ {
2240
+ "epoch": 0.04,
2241
+ "learning_rate": 4.991298406956284e-05,
2242
+ "loss": 1.0485,
2243
+ "step": 363
2244
+ },
2245
+ {
2246
+ "epoch": 0.04,
2247
+ "learning_rate": 4.991232148123761e-05,
2248
+ "loss": 0.5495,
2249
+ "step": 364
2250
+ },
2251
+ {
2252
+ "epoch": 0.04,
2253
+ "learning_rate": 4.991165638424229e-05,
2254
+ "loss": 0.5886,
2255
+ "step": 365
2256
+ },
2257
+ {
2258
+ "epoch": 0.04,
2259
+ "learning_rate": 4.991098877864385e-05,
2260
+ "loss": 0.9717,
2261
+ "step": 366
2262
+ },
2263
+ {
2264
+ "epoch": 0.04,
2265
+ "learning_rate": 4.991031866450953e-05,
2266
+ "loss": 0.6979,
2267
+ "step": 367
2268
+ },
2269
+ {
2270
+ "epoch": 0.04,
2271
+ "learning_rate": 4.990964604190679e-05,
2272
+ "loss": 0.3933,
2273
+ "step": 368
2274
+ },
2275
+ {
2276
+ "epoch": 0.04,
2277
+ "learning_rate": 4.990897091090338e-05,
2278
+ "loss": 0.7745,
2279
+ "step": 369
2280
+ },
2281
+ {
2282
+ "epoch": 0.04,
2283
+ "learning_rate": 4.9908293271567286e-05,
2284
+ "loss": 0.7866,
2285
+ "step": 370
2286
+ },
2287
+ {
2288
+ "epoch": 0.04,
2289
+ "learning_rate": 4.990761312396673e-05,
2290
+ "loss": 0.7686,
2291
+ "step": 371
2292
+ },
2293
+ {
2294
+ "epoch": 0.04,
2295
+ "learning_rate": 4.990693046817023e-05,
2296
+ "loss": 0.7124,
2297
+ "step": 372
2298
+ },
2299
+ {
2300
+ "epoch": 0.04,
2301
+ "learning_rate": 4.99062453042465e-05,
2302
+ "loss": 1.1124,
2303
+ "step": 373
2304
+ },
2305
+ {
2306
+ "epoch": 0.04,
2307
+ "learning_rate": 4.990555763226455e-05,
2308
+ "loss": 0.8905,
2309
+ "step": 374
2310
+ },
2311
+ {
2312
+ "epoch": 0.04,
2313
+ "learning_rate": 4.990486745229364e-05,
2314
+ "loss": 1.0419,
2315
+ "step": 375
2316
+ },
2317
+ {
2318
+ "epoch": 0.04,
2319
+ "learning_rate": 4.9904174764403255e-05,
2320
+ "loss": 1.1019,
2321
+ "step": 376
2322
+ },
2323
+ {
2324
+ "epoch": 0.04,
2325
+ "learning_rate": 4.990347956866315e-05,
2326
+ "loss": 0.6797,
2327
+ "step": 377
2328
+ },
2329
+ {
2330
+ "epoch": 0.04,
2331
+ "learning_rate": 4.9902781865143326e-05,
2332
+ "loss": 0.522,
2333
+ "step": 378
2334
+ },
2335
+ {
2336
+ "epoch": 0.04,
2337
+ "learning_rate": 4.9902081653914056e-05,
2338
+ "loss": 0.8258,
2339
+ "step": 379
2340
+ },
2341
+ {
2342
+ "epoch": 0.04,
2343
+ "learning_rate": 4.990137893504585e-05,
2344
+ "loss": 0.8358,
2345
+ "step": 380
2346
+ },
2347
+ {
2348
+ "epoch": 0.04,
2349
+ "learning_rate": 4.9900673708609455e-05,
2350
+ "loss": 1.0822,
2351
+ "step": 381
2352
+ },
2353
+ {
2354
+ "epoch": 0.04,
2355
+ "learning_rate": 4.989996597467591e-05,
2356
+ "loss": 0.8717,
2357
+ "step": 382
2358
+ },
2359
+ {
2360
+ "epoch": 0.04,
2361
+ "learning_rate": 4.9899255733316465e-05,
2362
+ "loss": 0.8567,
2363
+ "step": 383
2364
+ },
2365
+ {
2366
+ "epoch": 0.04,
2367
+ "learning_rate": 4.9898542984602656e-05,
2368
+ "loss": 0.0489,
2369
+ "step": 384
2370
+ },
2371
+ {
2372
+ "epoch": 0.04,
2373
+ "learning_rate": 4.989782772860624e-05,
2374
+ "loss": 0.0117,
2375
+ "step": 385
2376
+ },
2377
+ {
2378
+ "epoch": 0.04,
2379
+ "learning_rate": 4.989710996539926e-05,
2380
+ "loss": 0.0183,
2381
+ "step": 386
2382
+ },
2383
+ {
2384
+ "epoch": 0.04,
2385
+ "learning_rate": 4.989638969505399e-05,
2386
+ "loss": 0.0143,
2387
+ "step": 387
2388
+ },
2389
+ {
2390
+ "epoch": 0.04,
2391
+ "learning_rate": 4.989566691764295e-05,
2392
+ "loss": 0.0117,
2393
+ "step": 388
2394
+ },
2395
+ {
2396
+ "epoch": 0.04,
2397
+ "learning_rate": 4.989494163323894e-05,
2398
+ "loss": 0.0188,
2399
+ "step": 389
2400
+ },
2401
+ {
2402
+ "epoch": 0.04,
2403
+ "learning_rate": 4.989421384191499e-05,
2404
+ "loss": 0.0138,
2405
+ "step": 390
2406
+ },
2407
+ {
2408
+ "epoch": 0.04,
2409
+ "learning_rate": 4.989348354374438e-05,
2410
+ "loss": 0.0138,
2411
+ "step": 391
2412
+ },
2413
+ {
2414
+ "epoch": 0.04,
2415
+ "learning_rate": 4.9892750738800664e-05,
2416
+ "loss": 0.0121,
2417
+ "step": 392
2418
+ },
2419
+ {
2420
+ "epoch": 0.04,
2421
+ "learning_rate": 4.989201542715762e-05,
2422
+ "loss": 0.014,
2423
+ "step": 393
2424
+ },
2425
+ {
2426
+ "epoch": 0.04,
2427
+ "learning_rate": 4.989127760888932e-05,
2428
+ "loss": 0.0112,
2429
+ "step": 394
2430
+ },
2431
+ {
2432
+ "epoch": 0.04,
2433
+ "learning_rate": 4.9890537284070037e-05,
2434
+ "loss": 0.0236,
2435
+ "step": 395
2436
+ },
2437
+ {
2438
+ "epoch": 0.04,
2439
+ "learning_rate": 4.988979445277433e-05,
2440
+ "loss": 0.0129,
2441
+ "step": 396
2442
+ },
2443
+ {
2444
+ "epoch": 0.04,
2445
+ "learning_rate": 4.9889049115077005e-05,
2446
+ "loss": 0.0129,
2447
+ "step": 397
2448
+ },
2449
+ {
2450
+ "epoch": 0.04,
2451
+ "learning_rate": 4.988830127105311e-05,
2452
+ "loss": 0.0204,
2453
+ "step": 398
2454
+ },
2455
+ {
2456
+ "epoch": 0.04,
2457
+ "learning_rate": 4.9887550920777956e-05,
2458
+ "loss": 0.02,
2459
+ "step": 399
2460
+ },
2461
+ {
2462
+ "epoch": 0.04,
2463
+ "learning_rate": 4.988679806432712e-05,
2464
+ "loss": 0.0099,
2465
+ "step": 400
2466
+ },
2467
+ {
2468
+ "epoch": 0.04,
2469
+ "eval_loss": 1.1065870523452759,
2470
+ "eval_runtime": 71.8543,
2471
+ "eval_samples_per_second": 2.769,
2472
+ "eval_steps_per_second": 0.696,
2473
+ "step": 400
2474
+ }
2475
+ ],
2476
+ "logging_steps": 1,
2477
+ "max_steps": 10000,
2478
+ "num_train_epochs": 9223372036854775807,
2479
+ "save_steps": 100,
2480
+ "total_flos": 6460489806643200.0,
2481
+ "trial_name": null,
2482
+ "trial_params": null
2483
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a87f7bc738b1ba0679e4bc919ec2c7b708e16bc585561e76f9d112c47941171
3
+ size 4664