File size: 36,550 Bytes
6793140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1496
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: We are currently involved in, and may in the future be involved
    in, legal proceedings, claims, and government investigations in the ordinary course
    of business. These include proceedings, claims, and investigations relating to,
    among other things, regulatory matters, commercial matters, intellectual property,
    competition, tax, employment, pricing, discrimination, consumer rights, personal
    injury, and property rights.
  sentences:
  - What factors does the regulatory authority consider when ensuring data protection
    in cross border transfers in Zimbabwe?
  - How does Securiti enable enterprises to safely use data and the cloud while managing
    security, privacy, and compliance risks?
  - What types of legal issues is the company currently involved in?
- source_sentence: The Company’s minority market share in the global smartphone, personal
    computer and tablet markets can make developers less inclined to develop or upgrade
    software for the Company’s products and more inclined to devote their resources
    to developing and upgrading software for competitors’ products with larger market
    share. When developers focus their efforts on these competing platforms, the availability
    and quality of applications for the Company’s devices can suffer.
  sentences:
  - What is the role of obtaining consent in Thailand's PDPA?
  - Why might developers be less inclined to develop or upgrade software for the Company's
    products?
  - What caused the increase in energy generation and storage segment revenue in 2023?
- source_sentence: '** : EMEA (Europe, the Middle East and Africa) The Irish DPA implements
    the GDPR into the national law by incorporating most of the provisions of the
    GDPR with limited additions and deletions. It contains several provisions restricting
    data subjects’ rights that they generally have under the GDPR, for example, where
    restrictions are necessary for the enforcement of civil law claims. Resources*
    : Irish DPA Overview Irish Cookie Guidance ### Japan #### Japan’s Act on the Protection
    of Personal Information (APPI) **Effective Date (Amended APPI)** : April 01, 2022
    **Region** : APAC (Asia-Pacific) Japan’s APPI regulates personal related information
    and applies to any Personal Information Controller (the “PIC''''), that is a person
    or entity providing personal related information for use in business in Japan.
    The APPI also applies to the foreign'
  sentences:
  - What are the requirements for CIIOs and personal information processors in the
    state cybersecurity department regarding cross-border data transfers and certifications?
  - How does the Irish DPA implement the GDPR into national law?
  - What is the current status of the Personal Data Protection Act in El Salvador
    compared to Monaco and Venezuela?
- source_sentence: View Salesforce View Workday View GCP View Azure View Oracle View
    US California CCPA View US California CPRA View European Union GDPR View Thailand’s
    PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Privacy
    View Security View Governance View Marketing View Resources Blog View Collateral
    View Knowledge Center View Securiti Education View Company About Us View Partner
    Program View Contact Us View News Coverage
  sentences:
  - What is the role of ANPD in ensuring LGPD compliance and protecting data subject
    rights, including those related to health professionals?
  - According to the Spanish data protection law, who is required to hire a DPO if
    they possess certain information in the event of a data breach?
  - What is GCP and how does it relate to privacy, security, governance, marketing,
    and resources?
- source_sentence: 'vital interests of the data subject; Complying with an obligation
    prescribed in PDPL, not being a contractual obligation, or complying with an order
    from a competent court, the Public Prosecution, the investigation Judge, or the
    Military Prosecution; or Preparing or pursuing a legal claim or defense. vs Articles:
    44 50, Recitals: 101, 112 GDPR states that personal data shall be transferred
    to a third country or international organization with an adequate protection level
    as determined by the EU Commission. Suppose there is no decision on an adequate
    protection level. In that case, a transfer is only permitted when the data controller
    or data processor provides appropriate safeguards that ensure data subject rights.
    Appropriate safeguards include: BCRs with specific requirements (e.g., a legal
    basis for processing, a retention period, and complaint procedures) Standard data
    protection clauses adopted by the EU Commission,  level of protection. If there
    is no adequate level of protection, then data controllers in Turkey and abroad
    shall commit, in writing, to provide an adequate level of protection abroad, as
    well as agree on the fact that the transfer is permitted by the Board of KVKK.
    vs Articles 44 50 Recitals 101, 112 GDPR states that personal data shall be transferred
    to a third country or international organization with an adequate protection level
    as determined by the EU Commission. Suppose there is no decision on an adequate
    protection level. In that case, a transfer is only permitted when the data controller
    or data processor provides appropriate safeguards that ensure data subject'' rights.
    Appropriate safeguards include: BCRs with specific requirements (e.g., a legal
    basis for processing, a retention period, and complaint procedures); standard
    data protection clauses adopted by the EU Commission or by a supervisory authority;
    an approved code'
  sentences:
  - What is the right to be informed in relation to personal data?
  - In what situations can a controller process personal data to protect vital interests?
  - What obligations in PDPL must data controllers or processors meet to protect personal
    data transferred to a third country or international organization?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.4020618556701031
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5773195876288659
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6804123711340206
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7938144329896907
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4020618556701031
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1924398625429553
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1360824742268041
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07938144329896907
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4020618556701031
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5773195876288659
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6804123711340206
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7938144329896907
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5821623921468868
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5161471117656685
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5239473985229559
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.41237113402061853
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5670103092783505
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6597938144329897
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7835051546391752
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.41237113402061853
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18900343642611683
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1319587628865979
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07835051546391752
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.41237113402061853
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5670103092783505
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6597938144329897
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7835051546391752
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5830365443881826
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5208312878415973
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5295727941555394
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.4020618556701031
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6185567010309279
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6494845360824743
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7628865979381443
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4020618556701031
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20618556701030924
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12989690721649483
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07628865979381441
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4020618556701031
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6185567010309279
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6494845360824743
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7628865979381443
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.576352896876016
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5177957781050565
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.527827441661229
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v22")
# Run inference
sentences = [
    "vital interests of the data subject; Complying with an obligation prescribed in PDPL, not being a contractual obligation, or complying with an order from a competent court, the Public Prosecution, the investigation Judge, or the Military Prosecution; or Preparing or pursuing a legal claim or defense. vs Articles: 44 50, Recitals: 101, 112 GDPR states that personal data shall be transferred to a third country or international organization with an adequate protection level as determined by the EU Commission. Suppose there is no decision on an adequate protection level. In that case, a transfer is only permitted when the data controller or data processor provides appropriate safeguards that ensure data subject rights. Appropriate safeguards include: BCRs with specific requirements (e.g., a legal basis for processing, a retention period, and complaint procedures) Standard data protection clauses adopted by the EU Commission,  level of protection. If there is no adequate level of protection, then data controllers in Turkey and abroad shall commit, in writing, to provide an adequate level of protection abroad, as well as agree on the fact that the transfer is permitted by the Board of KVKK. vs Articles 44 50 Recitals 101, 112 GDPR states that personal data shall be transferred to a third country or international organization with an adequate protection level as determined by the EU Commission. Suppose there is no decision on an adequate protection level. In that case, a transfer is only permitted when the data controller or data processor provides appropriate safeguards that ensure data subject' rights. Appropriate safeguards include: BCRs with specific requirements (e.g., a legal basis for processing, a retention period, and complaint procedures); standard data protection clauses adopted by the EU Commission or by a supervisory authority; an approved code",
    'What obligations in PDPL must data controllers or processors meet to protect personal data transferred to a third country or international organization?',
    'In what situations can a controller process personal data to protect vital interests?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4021     |
| cosine_accuracy@3   | 0.5773     |
| cosine_accuracy@5   | 0.6804     |
| cosine_accuracy@10  | 0.7938     |
| cosine_precision@1  | 0.4021     |
| cosine_precision@3  | 0.1924     |
| cosine_precision@5  | 0.1361     |
| cosine_precision@10 | 0.0794     |
| cosine_recall@1     | 0.4021     |
| cosine_recall@3     | 0.5773     |
| cosine_recall@5     | 0.6804     |
| cosine_recall@10    | 0.7938     |
| cosine_ndcg@10      | 0.5822     |
| cosine_mrr@10       | 0.5161     |
| **cosine_map@100**  | **0.5239** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4124     |
| cosine_accuracy@3   | 0.567      |
| cosine_accuracy@5   | 0.6598     |
| cosine_accuracy@10  | 0.7835     |
| cosine_precision@1  | 0.4124     |
| cosine_precision@3  | 0.189      |
| cosine_precision@5  | 0.132      |
| cosine_precision@10 | 0.0784     |
| cosine_recall@1     | 0.4124     |
| cosine_recall@3     | 0.567      |
| cosine_recall@5     | 0.6598     |
| cosine_recall@10    | 0.7835     |
| cosine_ndcg@10      | 0.583      |
| cosine_mrr@10       | 0.5208     |
| **cosine_map@100**  | **0.5296** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4021     |
| cosine_accuracy@3   | 0.6186     |
| cosine_accuracy@5   | 0.6495     |
| cosine_accuracy@10  | 0.7629     |
| cosine_precision@1  | 0.4021     |
| cosine_precision@3  | 0.2062     |
| cosine_precision@5  | 0.1299     |
| cosine_precision@10 | 0.0763     |
| cosine_recall@1     | 0.4021     |
| cosine_recall@3     | 0.6186     |
| cosine_recall@5     | 0.6495     |
| cosine_recall@10    | 0.7629     |
| cosine_ndcg@10      | 0.5764     |
| cosine_mrr@10       | 0.5178     |
| **cosine_map@100**  | **0.5278** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,496 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                             | anchor                                                                             |
  |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                             |
  | details | <ul><li>min: 67 tokens</li><li>mean: 216.99 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 21.6 tokens</li><li>max: 102 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anchor                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|
  | <code>Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>What is the purpose of the Data Command Center?</code>                                              |
  | <code>data subject must be notified of any such extension within one month of receiving the request, along with the reasons for the delay and the possibility of complaining to the supervisory authority. The right to restrict processing applies when the data subject contests data accuracy, the processing is unlawful, and the data subject opposes erasure and requests restriction. The controller must inform data subjects before any such restriction is lifted. Under GDPR, the data subject also has the right to obtain from the controller the rectification of inaccurate personal data and to have incomplete personal data completed. Article: 22 Under PDPL, if a decision is based solely on automated processing of personal data intended to assess the data subject regarding his/her performance at work, financial standing, credit-worthiness, reliability, or conduct, then the data subject has the right to request processing in a manner that is not solely automated. This right shall not apply where the decision is taken in the course of entering into</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>What is the requirement for notifying the data subject of any extension under GDPR and PDPL?</code> |
  | <code>Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of,  PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its</code> | <code>What is the purpose of Third Party & Cookie Consent in data automation and security?</code>         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.2128  | 10     | 3.8486        | -                      | -                      | -                      |
| 0.4255  | 20     | 2.3611        | -                      | -                      | -                      |
| 0.6383  | 30     | 2.3209        | -                      | -                      | -                      |
| 0.8511  | 40     | 1.3248        | -                      | -                      | -                      |
| **1.0** | **47** | **-**         | **0.5278**             | **0.5296**             | **0.5239**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->